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Counterexamples in multimarginal optimal transport
with Coulomb cost and spherically symmetric data

Maria Colombo ∗ Federico Stra †

October 13, 2018

Abstract

We disprove a conjecture in Density Functional Theory, relative to multimarginal
optimal transport maps with Coulomb cost. We also provide examples of maps
satisfying optimality conditions for special classes of data.

1 Introduction

A natural problem in Quantum Physics consists in studying the behavior of N electrons
subject to the interaction with some nuclei, their mutual interaction and the effect of
an external potential. In this setting, a relevant quantity is the ground state energy
of the system, which can be found by solving the Schrödinger equation. However, this
procedure is computationally very costly even for a small number of electrons; Density
Functional Theory proposes an alternative method to compute the ground state energy
and was first introduced by Hohenberg and Kohn [12] and then by Kohn and Sham [13].

In [3, 6] the authors present a mathematical model for the strong interaction limit
of Density Functional Theory; they study the minimal interaction of N electrons and
the semiclassical limit of DFT. The model is based on Monge multimarginal optimal
transport (see also the recent survey [9], where the state of the art on this problem is
described), which consists in the minimization problem

(M) = inf
{ ∫

Rn
C
(
x, T2(x), . . . , TN (x)

)
dρ(x) : T2, . . . , TN ∈ T (ρ)

}
, (1.1)

where ρ ∈P(Rn) is a given probability measure, C : (Rn)N → [0,∞] is the Coulomb
interaction

C(x1, . . . , xN ) =
∑

1≤i<j≤N

1
|xi − xj |

∀(x1, . . . , xN ) ∈ (Rn)N , (1.2)

and T (ρ) is the set of admissible transport maps

T (ρ) = {T : Rn → Rn Borel : T]ρ = ρ } .
∗Scuola Normale Superiore, Pisa, maria.colombo@sns.it.
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Since the cost is symmetric, a natural variant of the Monge problem allows only cyclical
maps

(Mcycl) = inf
{ ∫

Rn
C
(
x, T (x), . . . , T (N−1)(x)

)
dρ(x) : T ∈ T (ρ), T (N) = Id

}
where with T (k) we denote the composition of T with itself for k times. Following the
standard theory of optimal transport (see [19, 1]), we also introduce the Kantorovich
problem

(K) = min
{ ∫

(Rn)N
c(x1, . . . , xN ) dγ(x1, . . . , xN ) : γ ∈ Π(ρ)

}
,

where Π(ρ) is the set of transport plans

Π(ρ) =
{
γ ∈P(RnN ) : πi]γ = ρ, i = 1, . . . , N

}
and πi : (Rn)N → Rn are the projections on the i-th component for i = 1, . . . , N . To
every (N − 1)-uple of transport maps T2, . . . , TN ∈ T (ρ) we canonically associate the
transport plan γ = (Id, T2, . . . , TN )]ρ ∈ Π(ρ). As proved in [4], if ρ is non-atomic the
values of the minimum problems coincide

(K) = (M) = (Mcycl).

Existence of optimal transport plans in (K) follows from a standard compactness
and lower semicontinuity argument. In turn, existence of optimal maps in (M) is largely
open; it is understood only with N = 2 marginals in any dimension n and in dimension
n = 1 with any number N of marginals (see [6] and [5] respectively). In a different
context, optimal cyclical maps as in (Mcycl) appear in [11] for some particular costs
generated by vector fields.

As regards uniqueness of optimal symmetric plans with Coulomb cost, it holds in
dimension 1, but, as shown in [15], it fails in the same class already when we consider
spherically symmetric densities in R2, for any N . On the other hand, the Kantorovich
duality works also for this cost (see [16]) and the dual problem admits maximizers
(namely, Kantorovich’s potentials), as shown by De Pascale [8]; moreover, in [7] the
limit of symmetric optimal plans as N →∞ is shown to be the infinite product measure
of ρ with itself.

Beyond the 1-dimensional case, which is well understood, a physically relevant case
is given by spherically symmetric densities ρ in Rn, with any number of marginals.
In the physics literature, they appear in [17, 18] to study simple atoms like Helium
(N = 2), Litium (N = 3), and Berillium (N = 4). In this case the problem reduces,
thanks to the spherical symmetry, to a problem in 1-dimension, with a more complicated
cost function (see [15], where this reduction is rigorously described). In the class of
admissible transport maps for problem (Mcycl), Seidl, Gori Giorgi and Savin identified
some particularly simple maps: roughly speaking, they divide Rn in N spherical shells,
each containing one electron in average, and consider the transport maps which send
each shell onto the next one by a monotonically increasing or decreasing map. They
conjecture the optimality of one of these maps in (Mcycl).
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Figure 1: A configuration of three charges at distances r1, r2 and r3 with angles θ2 and
θ3.

In the following, we provide counterexamples to the conjecture showing that there are
cases in which none of these maps is optimal in problem (Mcycl). On the other hand, we
also point out situations where some of these maps satisfy optimality conditions, namely
c-monotonicity. We deal for simplicity with radial measures in R2 with 3 marginals,
although similar examples and computations can be carried out in any dimension and
with any number of marginals.

The plan of the paper is the following. In Section 2 we present the problem with
spherically symmetric data, we recall the notion of c-monotonicity and a few properties of
optimal transport maps, and we give some examples and counterexamples. In Sections 3
and 4 we study the properties of the cost for close radii and for spread apart radii,
respectively. In Section 5 we apply these properties to give rigorous proofs of the
examples and counterexamples.

2 Examples and counterexamples

2.1 Monge and Kantorovich problems with radial densities

As we mentioned above, the transport problem (1.1) reduces to a 1-dimensional one (i.e.,
by proving that spheres get mapped to spheres), as rigorously done in [15]. Assuming
from now on N = 3, given three radii r1, r2, r3 ∈ R+ = (0,∞), we consider the associated
exact cost (see Figure 1)

c(r1, r2, r3) = min
{ 1
|v2 − v1|

+ 1
|v3 − v2|

+ 1
|v1 − v3|

: |vi| = ri, i = 1, 2, 3
}
, (2.1)

which is a positive, symmetric, continuous function. Let us denote (0,∞) by R+. Given
a non-atomic probability measure ρ ∈P(R+), the set of transport maps reads as

T (ρ) = {T : R+ → R+ Borel : T]ρ = ρ } ,

and the cyclical Monge problem corresponding to (1.1) can be written as

(Mcycl) = inf
{ ∫

R+
c
(
x, T (x), T (2)(x)

)
dρ(x) : T ∈ T (ρ), T (3) = Id

}
. (2.2)

3



T (r)

r0
0

1

1

2

2

3

3

(a) III map.

T (r)

r0
0

1

1

2

2

3

3

(b) IDD map.
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(d) DDI-map.

Figure 2: The four types of maps considered in the conjecture in the case of a uniform
density on [0, 3].

We also introduce the set of transport plans

Π(ρ) = { γ ∈P(R3
+) : πi]γ = ρ, i = 1, 2, 3 } ,

where πi : (R+)3 → R+ are the projections on the i-th component for i = 1, . . . , 3, and
the Kantorovich multimarginal problem

(K) = min
{ ∫

(R+)3
c(r1, r2, r3) dγ(r1, r2, r3) : γ ∈ Π(ρ)

}
. (2.3)

2.2 Some special maps

In the following definition, we introduce some special transport maps, which were
conjectured in [18] to be good candidates for optimality in problem (2.2).

Definition 2.1. Let ρ ∈M (R+) be a non-atomic probability measure and let d1, d2 ∈
R+ such that ρ([0, d1]) = ρ([d1, d2]) = ρ([d2,∞]) = 1/3. The DDI-map T : R+ → R+
associated to ρ is the unique (up to ρ-negligible sets) map such that T]ρ = ρ and

• T maps (0, d1) onto (d1, d2) decreasingly,

• T maps (d1, d2) onto (d2,∞) decreasingly,

• T maps (d2,∞) onto (0, d1) increasingly.

Similarly, we define, for instance, the DID-map mapping (0, d1) onto (d1, d2) decreas-
ingly, (d1, d2) onto (d2,∞) increasingly and (d2,∞) onto (0, d1) decreasingly.

The {D, I}3-class associated to ρ is composed by the maps with all the possible
monotonicities, under the condition that T (3) = Id: therefore we have III, IDD, DID
and DDI, (see Figure 2).

In the rest of the paper we answer the following question:

Question 2.2. Is the DDI-map associated to ρ optimal in problem (2.2) for every
measure ρ ∈ P(R+)? Is one of the maps in {D, I}3-class associated to ρ optimal in
problem (2.2) for every non-atomic probability measure ρ ∈P(R+)?

4



2.3 A necessary condition for optimality: c-monotonicity

Before presenting the examples and counterexamples, we recall a well-known optimality
condition in optimal transport.

Definition 2.3. Let c : (R+)N → [0,∞] be a cost function. We say that a set
Γ ⊂ (R+)N is c-monotone with respect to p ⊆ {1, . . . , N} if

c(x) + c(y) ≤ c(X(x, y, p)) + c(Y (x, y, p)) ∀x, y ∈ Γ, (2.4)

where X(x, y, p), Y (x, y, p) ∈ (R+)N are obtained from x and y by exchanging their
coordinates on the complement of p, namely

Xi(x, y, p) =
{
xi if i ∈ p
yi if i /∈ p Yi(x, y, p) =

{
yi if i ∈ p
xi if i /∈ p ∀i ∈ {1, ..., N}.

(2.5)
We say that Γ ⊂ (R+)N is c-monotone if (2.4) holds true for every p ⊆ {1, . . . , N}.

Let γ ∈ Π(ρ) be a transport plan. The following Proposition ([14, Lemma 2], see also
[5, Proposition 2.2], where the result is used to describe optimal maps with Coulomb
cost in 1 dimension) presents a necessary condition for optimality of γ.

Proposition 2.4. Let c : (R+)3 → [0,∞] be a continuous cost and let ρ be a probability
measure on (R+). Let γ ∈ Π(ρ) be an optimal transport plan for problem (2.3) and
assume (K) <∞ (therefore γ has finite cost). Then supp γ is c-monotone.

Remark 2.5. Given an optimal plan γ, the support of γ is c-monotone even in a stronger
sense than the one in Definition 2.3. More precisely, given two points x and y (for
simplicity, assume that all their coordinates are distinct to avoid multiplicity issues), we
have that

c(x) + c(y) ≤ c(X) + c(Y ) (2.6)

for every choice of X,Y ∈ (R+)N such that the union of the coordinates of X and Y is
the same as the union of the coordinates of x and y. Indeed, given any permutation σ of
the coordinates of (R+)N , we have that σ(y) is in the support of the symmetrization of
γ, which is still optimal because of the symmetry of the optimal plan. Hence, applying
Proposition 2.4 to x and σ(y), we obtain (2.6) for any X and Y .

2.4 Counterexamples

The first example shows that the DDI-map is not always optimal in problem (2.2), by
taking as marginal a measure which is concentrated in a small neighborhood of the unit
sphere.

Counterexample 2.6. There exists ε > 0 such that, setting

ρε = 1
12ε1[1,1+12ε] dr ∈M (R+),

the DDI-map associated to ρε is not c-monotone and, therefore, not optimal in prob-
lem (2.2).
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(a) A configuration of three charges at the
same distance r1 from the origin with angles
θ2 = 2/3π and θ3 = −2/3π.
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(b) A configuration of three charges at dis-
tances r1, r2 and r3 with angles θ2 = π and
θ3 = 0.

The proof is based on the analysis of c-monotonicity for similar radii, obtained by
Taylor expanding the cost around the point (1, 1, 1). The analysis of c-monotone sets in
this context suggests that the DID-map may be optimal in this example.

The next example modifies the previous one by sending 1/6 of the total mass far
away; in this way, the cost of the orbits of these points (which have two coordinates
close to 1 and one large coordinate) can be easily computed. Thanks to this property,
we can show that none of the maps in the {D, I}3-class can be optimal, since their
support is not c-monotone.

Counterexample 2.7. There exist M, ε > 0 such that, setting

ρM,ε =
( 1

6ε1[1,1+5ε] + 1
61[M,M+1]

)
dr ∈M (R+),

none of the maps in the {D, I}3-class associated to ρM,ε is optimal in problem (2.2).

Remark 2.8. In Remark 5.1 we will see a similar result for the problem with 4 marginals.
However, we preferred to restrict the presentation to the case with 3 marginals since
the ideas involved are the same, but the computations are easier.

There are particular measures ρ for which the DDI-map is c-monotone (whereas
this property fails in Counterexample 2.6 and 2.7). For this reason one may expect that
this map is also optimal in problem (2.2), but, to show this, sufficient conditions for
optimality (stronger than c-monotonicity) would have to be identified.

Proposition 2.9 (Examples of c-monotone DDI-maps). There exists M > 0 such
that for any probability measure ρ such that ρ([1, 2]) = ρ([3, 4]) = ρ([M,∞)) = 1/3 the
DDI-map is c-monotone (according to Definition 2.3).

3 Taylor expansion of the cost at r1 = r2 = r3 = 1

In this section we want to address the following problem: given three radii r1(t), r2(t)
and r3(t) parametrized by t ∈ R and starting from the value 1 at t = 0, what is the

6



expansion of c
(
r1(t), r2(t), r2(t)

)
in powers of t at t = 0?

First, we notice that at t = 0 the optimal angles are ±2/3π and c(1, 1, 1) =
√

3.
Indeed, given three unitary vectors v1, v2, v3, calling α1, α2, α3 the angles of the triangle
with vertices v1, v2, v3 we have that |v1 − v2| = 2 sinα3 (and cyclical) and therefore, by
Jensen’s inequality and by the convexity of α 7→ (sinα)−1 in [0, π],

1
|v2 − v1|

+ 1
|v3 − v2|

+ 1
|v1 − v3|

= 1
2

3∑
i=1

1
sinαi

≥ 3
2 sin((α1 + α2 + α3)/3) =

√
3, (3.1)

with equality if and only if the triangle is equilateral.
Taking the angles to be exactly ±2/3π leads to the following cost

c4(r1, r2, r3) := 1√
r2

1 + r1r2 + r2
2

+ 1√
r2

2 + r2r3 + r2
3

+ 1√
r2

1 + r1r3 + r2
3

≥ c(r1, r2, r3).

(3.2)
However the inequality is strict as soon as the three radii are different and the approxi-
mation of c with c4 is too rough to deduce that they enjoy the same c-monotonicity
structures. Therefore, we perform a finer analysis.

We want to take into account only the first order variation of the radii as functions
of t, so it is natural to consider three linearly varying radii

r1(t) = 1 + a1t, r2(t) = 1 + a2t, r3(t) = 1 + a3t

where a1, a2, a3 ∈ R are some constants. To these radii we associate the exact cost

g(a1, a2, a3, t) = c(1 + a1t, 1 + a2t, 1 + a3t), (3.3)

and we study the expansion of this function near t = 0.

Lemma 3.1. Let a1, a2, a3 ∈ R and let g be as in (3.3). Then we have that

g(a, b, c, 0) =
√

3.

∂g

∂t
(a1, a2, a3, 0) = −a1 + a2 + a3√

3
,

∂2g

∂t2
(a1, a2, a3, 0) = 4(a2

1 + a2
2 + a2

3) + 6(a1a2 + a2a3 + a3a1)
5
√

3
,

∂3g

∂t3
(a1, a2, a3, 0) =308(a3

1 + a3
2 + a3

3)
375
√

3

+ 888(a2
1a2 + a1a

2
2 + a2

2a3 + a2a
2
3 + a2

3a1 + a3a
2
1) + 498a1a2a3

375
√

3
.

(3.4)

In the proof, we will write the Coulomb potential of three charges in terms of the
distances from the origin and the angles between the charges. Given three radii r1, r2,
r3 and two angles θ2 and θ3, we define the Coulomb potential of the configuration of
charges depicted in Figure 1:

C(r1, r2, r3, θ2, θ3) = 1
|v2 − v1|

+ 1
|v3 − v2|

+ 1
|v1 − v3|

(3.5)
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where
v1 = (r1, 0), v2 = r2(cos θ2, sin θ2), v3 = r3(cos θ3, sin θ3).

By definition of c, we notice that

c(r1, r2, r3) = min
θ2,θ3∈R

C(r1, r2, r3, θ2, θ3). (3.6)

Proof of Lemma 3.1. For t ∈ R and θ = (θ2, θ3) ∈ R2 we define also the function

G(t, θ) = C(1 + a1t, 1 + a2t, 1 + a3t, θ2, θ3).

Then g(t) = G
(
t, θ0(t)

)
where θ0(t) is the pair of angles which minimizes (3.6). From

this optimality condition we know that

Gθ
(
t, θ0(t)

)
= 0.

We want to apply the implicit function theorem to find the behavior of θ0(t). It’s easy
to check that θ0(0) = (2/3π,−2/3π) and a direct computation shows that

Gθθ
(
0, θ0(0)

)
= 5

6
√

3

(
1 −1/2
−1/2 1

)
∈ Inv(R2;R2).

Therefore θ0 ∈ C∞
(
(−ε, ε)

)
for some ε > 0 and we can compute its derivatives in 0. In

particular, we have that

θ′0(0) = G−1
θθ ·Gtθ

∣∣∣
(0,θ0(0))

= 1
5
√

3

(
−a1 − a2 + 2a3
a1 − 2a2 + a3

)
. (3.7)

The idea is now to consider the first order approximation

θ̄(t) = θ0(0) + θ′0(0)t =
(

2/3π
−2/3π

)
+ 1

5
√

3

(
−a1 − a2 + 2a3
a1 − 2a2 + a3

)
t

and the perturbed cost
h(t) = G

(
t, θ̄(t)

)
.

We claim that h(t) = g(t) + o(t3), namely

h(0) = g(0), h′(0) = g′(0), h′′(0) = g′′(0), h′′′(0) = g′′′(0).

The first two are clearly true, since θ̄(0) = θ0(0) and θ̄′(0) = θ′0(0) by definition. Now
consider the function t 7→ G

(
t, θ(t)

)
, where θ is either θ0 or θ̄. To prove the claim, we

show that its second and third derivatives at t = 0 depend only on θ′(0) and not on the
second and third derivatives of θ.

As a matter of fact, we have

d2G
(
t, θ(t)

)
dt2

∣∣∣∣∣
t=0

= Gtt + 2Gtθθ′ +Gθθθ
′θ′ +Gθθ

′′
∣∣∣
t=0

,

8



but Gθ
(
0, θ(0)

)
= 0, so the second derivative does not depend on θ′′(0). In a similar

fashion, we have

d3G
(
t, θ(t)

)
dt3

∣∣∣∣∣
t=0

= Gttt+3Gttθθ′+3Gtθθ(θ′)2+Gθθθ(θ′)3+3
(
Gtθ +Gθθθ

′) θ′′+Gθθ′′′∣∣∣
t=0

.

Again, Gθ
(
0, θ(0)

)
= 0, therefore θ′′′(0) doesn’t contribute. Furthermore, we have

Gθ
(
t, θ0(t)

)
= 0, so that differentiating in t yields

Gtθ
(
0, θ0(0)

)
+Gθθ

(
0, θ0(0)

)
θ′0(0) = 0.

But then also
Gtθ

(
0, θ̄(0)

)
+Gθθ

(
0, θ̄(0)

)
θ̄′(0) = 0,

since θ̄′(0) = θ′0(0). Therefore we see that in both cases the coefficient of θ′′ vanishes.
This concludes the proof of the claim because we have shown that the first three
derivatives of h and g coincide at t = 0.

At this point the derivatives of h can be computed directly, since h(a1, a2, a3, · ) is
an explicit function of the last variable.

In Lemma 3.1 we found the first nontrivial Taylor term in the expansion of g(t). We
employ this computation to obtain informations on the c-monotonicity of points with
linearly spaced radii close to t = 0.

Lemma 3.2. For every t > 0, consider six linearly spaced radii

(r1, r2, r3, r4, r5, r6) = (1, 1 + t, 1 + 2t, 1 + 3t, 1 + 4t, 1 + 5t). (3.8)

Then there exists t0 > 0 such that, for every t ≤ t0,

c(r1, r4, r6) + c(r2, r3, r5) < c(r1, r4, r5) + c(r2, r3, r6).

Proof. Let us define

F (t) = g(0, 3, 5, t) + g(1, 2, 4, t)− g(0, 3, 4, t)− g(1, 2, 5, t)

Applying Lemma 3.1 we can compute the derivatives of F and find that

F (0) = 0, F ′(0) = 0, F ′′(0) = 0, F ′′′(0) = −284
√

3
125 < 0;

this shows that F (t) < 0 for t sufficiently small and proves the lemma.

Remark 3.3. Considering r1, ..., r6 as in (3.8), one could prove that the choice 146-235
is optimal between all possible choices, namely

c(r1, r4, r6) + c(r2, r3, r5)
= min { c(p1, p2, p3) + c(p4, p5, p6) : {p1, . . . , p6} = {r1, . . . , r6} } , (3.9)

for t small enough. Moreover, one could see that (3.9) holds also if we replace c with
c4 defined in (3.2). This is, however, not needed for our counterexamples.
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Remark 3.4 (Asymptotic expansion of the cost at infinity). Although they will not be
used in the proofs of the main results, we report the following formulas since they might
help in future studies to gain more insight into the structure of c-monotone sets. We
are interested in the asymptotic expansion of the cost as some of the radii go to infinity
and the others remain fixed.

For (r1, r2, r3) = (1, 1, r), the optimal angles are

θ2(r) = π − 8
r2 + o

( 1
r3

)
, θ3(r) = −π2 −

4
r2 + o

( 1
r3

)
.

In comparison to (3.7), this expansion is harder to justify (but can be easily verified
numerically). However, from this fact it follows rigorously that the cost has the following
asymptotic behaviour:

c(1, 1, r) = C(1, 1, r, π,−π/2)− 4
r4 + o

( 1
r4

)
=
(1

2 + 1√
1 + r2

)
− 4
r4 + o

( 1
r4

)
.

Similarly, for (r1, r2, r3) = (1, r, r), the optimal angles are

θ2(r) = π

2 + 4
r

+ o

( 1
r2

)
, θ3(r) = −π2 −

4
r

+ o

( 1
r2

)
,

and the cost is

c(1, r, r) = C(1, r, r, π/2,−π/2)− 4
r3 + o

( 1
r4

)
= 1

2r + 2√
1 + r2

− 4
r3 + o

( 1
r4

)
.

Furthermore, one can verify that

c(1, r, r) = C

(
1, r, r, π2 + 4

r
,−π2 −

4
r

)
−O

( 1
r7

)
.

4 Condition for c = cπ and cπ-monotonicity

When the radii are spread apart, a reasonable approximate cost appears to be

cπ(r1, r2, r3) = 1
r1 + r2

+ 1
r2 + r3

+ 1
r3 − r1

,

which arises from collocating the charges at angles θ2 = π and θ3 = 0 (see Figure 3b).
In the first part of this section we want to study under which condition on the radii r1,
r2 and r3 we have

c(r1, r2, r3) = cπ(r1, r2, r3).

We start with a heuristic argument involving a necessary condition. Up to permutations,
we may assume r1 ≤ r2 ≤ r3. It is simple to check that

Cθ(r1, r2, r3, π, 0) = 0,

10
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Figure 3: The region in the (r2, r3) plane where Cθθ(r1, r2, r3, π, 0) ≥ 0, with r1 = 1.
The dotted line is r3 = r2 + 7.

where C has been defined in (3.5), either by direct computation or by a symmetry
argument.1 If (θ2, θ3) = (π, 0) must be a minimum, then a necessary condition is

Cθθ(r1, r2, r3, π, 0) ≥ 0,

in the sense that the Hessian matrix is positive-definite. We have

Cθθ(r1, r2, r3, π, 0) =

r2
(

r1
(r1+r2)3 + r3

(r2+r3)3

)
− r2r3

(r2+r3)3

− r2r3
(r2+r3)3 r3

(
r2

(r2+r3)3 − r1
(r3−r1)3

)
;


since the first entry is positive, this 2× 2 matrix is positive-definite if and only if the
determinant is positive too, namely

detCθθ(r1, r2, r3, π, 0) = −r1r2r3[r2r3(r2 − r3) + r1(r2
2 + 5r2r3 + r2

3) + r3
1]

(r1 + r2)3(r2 + r3)2(r3 − r1)3 ≥ 0,

or equivalently
r1(r2

2 + 5r2r3 + r2
3) + r3

1 < r2r3(r3 − r2).

Figure 3 depicts the region where the Hessian is positive.
We partially justify the previous argument in the following lemma which, despite

not being quantitative, will suffice for our purposes.

Lemma 4.1. If 0 < r−1 ≤ r
+
1 < r−2 ≤ r

+
2 , then there exists r−3 (r−1 , r

+
1 , r

−
2 , r

+
2 ) such that

for every r1 ∈ [r−1 , r
+
1 ], r2 ∈ [r−2 , r

+
2 ] and r3 ≥ r−3 we have

c(r1, r2, r3) = cπ(r1, r2, r3).
1In fact, the four configurations with θ2, θ3 ∈ {0, π} are always stationary.
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Figure 4: The curves in T2 whose four intersections correspond to stationary points of
C(r1, r2, r3, θ2, θ3). The two solid curves are defined by (4.1a). The dashed curves are
defined by (4.1b).

Proof. We denote by T2 the 2-dimensional torus R2/(2πZ)2. The idea of the proof is
the following: we claim that for sufficiently large r3 there are exactly four stationary
points (θ2, θ3) ∈ T2 for C(r1, r2, r3, θ2, θ3), corresponding to θ2, θ3 ∈ {0, π}. Therefore
c(r1, r2, r3) must coincide with the value achieved at one of them and by comparing the
four values we arrive at the desired conclusion.

First of all, we compute the gradient

Cθ(r1, r2, r3, θ2, θ3) =

−
r1r2 sin(θ2)

(r2
1+r2

2−2r1r2 cos(θ2))3/2 −
r2r3 sin(θ2−θ3)

(r2
2+r2

3−2r2r3 cos(θ2−θ3))3/2

− r1r3 sin(θ3)
(r2

1+r2
3−2r1r3 cos(θ3))3/2 + r2r3 sin(θ2−θ3)

(r2
2+r2

3−2r2r3 cos(θ2−θ3))3/2

 .
The gradient vanishes if and only if the following equations are simultaneously satisfied:

r1r2 sin(θ2)(
r2

1 + r2
2 − 2r1r2 cos(θ2)

)3/2 + r1r3 sin(θ3)(
r2

1 + r2
3 − 2r1r3 cos(θ3)

)3/2 = 0, (4.1a)

− r1r3 sin(θ3)(
r2

1 + r2
3 − 2r1r3 cos(θ3)

)3/2 + r2r3 sin(θ2 − θ3)(
r2

2 + r2
3 − 2r2r3 cos(θ2 − θ3)

)3/2 = 0. (4.1b)

To show that there are exactly four stationary points, the idea is that, for r3 sufficiently
large, equations (4.1a) and (4.1b) define two pairs of closed curves on T2, of type
(0, 1) and (1, 1) respectively, with the property that every curve from the first family
intersects each curve of the second family in a single point. The situation is represented
in Figure 4.

Step 1. Given r1, r2 and a sufficiently large r3, we claim that for every θ3 ∈ S1

there are exactly two values θ̃0
2(θ3), θ̃π2 (θ3) ∈ S1 which satisfy (4.1a); moreover θ̃0

2(θ3)
and θ̃π2 (θ3) are close to 0 and π respectively by less than O

(
r−2

3
)
, uniformly in θ3, and

12



their derivatives go to to zero uniformly in θ3 for r3 →∞.2 These functions correspond
to the solid, almost vertical, lines in Figure 4.

We begin by finding a useful bound on |sin(θ2)|. The two terms of (4.1a) can be
estimated by ∣∣∣∣∣ r1r2 sin(θ2)(

r2
1 + r2

2 − 2r1r2 cos(θ2)
)3/2

∣∣∣∣∣ ≥ r−1 r
−
2 |sin(θ2)|

(r+
1 + r+

2 )3 ,∣∣∣∣∣ r1r3 sin(θ3)(
r2

1 + r2
3 − 2r1r3 cos(θ3)

)3/2

∣∣∣∣∣ ≤ r+
1 r3

(r3 − r+
1 )3 ,

therefore, in order to have equality (4.1a), it must be that

r−1 r
−
2 |sin(θ2)|

(r+
1 + r+

2 )3 ≤ r+
1 r3

(r3 − r+
1 )3 ,

that is
|sin(θ2)| ≤ r+

1 (r+
1 + r+

2 )3

r−1 r
−
2

· r3

(r3 − r+
1 )3 = O

(
r−2

3
)

(4.2)

as r3 →∞, where the implied constant depends only on r±1 and r±2 .
We have already discussed that, for every θ3 ∈ S1, the second term in (4.1a) is

smaller than r3(r3 − r+
1 )−3 in magnitude. On the other hand, the first term vanishes

for θ2 = 0, π and is equal to ±r1r2(r2
1 + r2

2)3/2 for θ2 = ±π/2. Therefore, by continuity,
for r3 large we have at least two solutions to (4.1a).

The estimate on |sin(θ2)| proves that the solutions must be located near 0 and π.
Now we want to prove that there are exactly two of them. To do so, we verify that the
partial derivative with respect to θ2 of the first term in (4.1a) is different from zero for
θ2 in the prescribed intervals around 0 and π. Indeed, the derivative is

∂

∂θ2

∣∣∣∣
θ2=0

(
r1r2 sin(θ2)(

r2
1 + r2

2 − 2r1r2 cos(θ2)
)3/2

)
= r1r2

(r2 − r1)3 ,

∂

∂θ2

∣∣∣∣
θ2=π

(
r1r2 sin(θ2)(

r2
1 + r2

2 − 2r1r2 cos(θ2)
)3/2

)
= − r2

(r1 + r2)3 ,

therefore it is different from zero around the two points and the two solutions are simple.
The claim is almost entirely proved. We now have the two functions θ̃0

2( · ), θ̃π2 ( · )
and the last thing that we want to derive is the estimate of their first derivatives. Let
θ2( · ) be one of the two functions. Thanks to the implicit function theorem, we know
that θ2( · ) is at least C1 and we can compute

θ′2(θ3) = −r3
r2
· 2(r2

1 + r2
3) cos(θ3) + r1r3[−5 + cos(2θ3)]

2(r2
1 + r2

2) cos
(
θ2(θ3)

)
+ r1r2

[
−5 + cos

(
2θ2(θ3)

)]
·
(
r2

1 + r2
2 − 2r1r2 cos

(
θ2(θ3)

)
r2

1 + r2
3 − 2r1r3 cos(θ3)

)5/2

.

2More precisely, they are close to zero by less than O
(
r−2

3
)
, uniformly in θ3.
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All the terms are fairly easy to deal with, apart from the denominator of the second
fraction. However, we have that

2(r2
1 + r2

2) cos(θ2) + r1r2[−5 + cos(2θ2)]
∣∣
θ2=0 = 2(r2

1 − 2r1r2 + r2
2) ≥ 2(r−2 − r

+
1 )2,

−2(r2
1 + r2

2) cos(θ2)− r1r2[−5 + cos(2θ2)]
∣∣
θ2=π = 2(r2

1 + 2r1r2 + r2
2) ≥ 2(r−2 + r−1 )2,

therefore, by the continuity of the functions involved and by compactness, there exists
a neighbourhood U of {0, π} such that if r1 ∈ [r−1 , r

+
1 ], r2 ∈ [r−2 , r

+
2 ] and θ2 ∈ U then∣∣∣2(r2

1 + r2
2) cos(θ2) + r1r2[−5 + cos(2θ2)]

∣∣∣ > (r−2 − r
+
1 )2.

From this and (4.2), which ensures that θ2(θ3) ∈ U , we deduce that for r3 large

∣∣θ′2(θ3)
∣∣ ≤ r3

r−2
· 2(r+

1 )2 + 2r2
3

(r−2 − r
+
1 )2 ·

(r+
1 + r+

2 )5

(r3 − r+
1 )5 = O

(
r−2

3

)
.

Step 2. Next we perform the same analysis for (4.1b). We prove that there exist
two C1 functions θ̂0

2(θ3) and θ̂π2 (θ3) which are the only solutions of (4.1b) when θ3 is
prescribed and that their derivatives are strictly positive. First of all, we introduce the
new variable ψ = θ2 − θ3. Equation (4.1b) reads as

− r1 sin(θ3)(
r2

1 + r2
3 − 2r1r3 cos(θ3)

)3/2 + r2 sin(ψ)(
r2

2 + r2
3 − 2r2r3 cos(ψ)

)3/2 = 0. (4.3)

• The solutions lie in two strips. From equation (4.3) we get

r+
1

(r3 − r+
1 )3 ≥

∣∣∣∣∣ r1 sin(θ3)(
r2

1 + r2
3 − 2r1r3 cos(θ3)

)3/2

∣∣∣∣∣
=
∣∣∣∣∣ r2 sin(ψ)(
r2

2 + r2
3 − 2r2r3 cos(ψ)

)3/2

∣∣∣∣∣ ≥ r−2 |sin(ψ)|
(r+

2 + r3)3 .

Therefore we have

|sin(ψ)| ≤
(
r3 + r+

2
r3 − r+

1

)3
r+

1
r−2
,

which, for r3 sufficiently large, implies |sin(ψ)| < η for a fixed η ∈ (r+
1 /r

−
2 , 1).

• There are at least two solutions. The first term of (4.3) is bounded by∣∣∣∣∣ r1 sin(θ3)(
1 + r2

3 − 2r3 cos(θ3)
)3/2

∣∣∣∣∣ ≤ r1
(r3 − 1)3 .

On the other hand, when ψ = ±π/2 the second term equals

± r2
(r2

2 + r2
3)3/2 ,

which is bigger for r3 large enough. This tells us that for every θ3 there are at least
two distinct values of ψ which solve (4.3), because the second term is a continuous
periodic function of ψ.
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• There are exactly two solutions. The derivative of the second term is

∂

∂ψ

(
r2 sin(ψ)

(r2
2 + r2

3 − 2r2r3 cos(ψ))3/2

)
= −3r2

2r3 + (r3
2 + r2r

2
3) cos(ψ) + r2

2r3 cos(ψ)2

(r2
2 + r2

3 − 2r2r3 cos(ψ))5/2 .

We observe that the denominator is always positive. We study the sign of the
numerator. The equation

−3r2
2r3 + (r3

2 + r2r
2
3)t+ r2

2r3t
2 = 0

for the unknown t has the two solutions

−r2
2 − r2

3 +
√
r4

2 + 14r2
2r

2
3 + r4

3

2r2r3
,

−r2
2 − r2

3 −
√
r4

2 + 14r2
2r

2
3 + r4

3

2r2r3
.

However, only the first one lies in the range [−1, 1], whereas the second is less
than −2. In fact,

r2
2 + r2

3 +
√
r4

2 + 14r2
2r

2
3 + r4

3 ≥ r
2
2 + r2

3 +
√
r4

2 + 2r2
2r

2
3 + r4

3 = 2(r2
2 + r2

3) ≥ 4r2r3.

Therefore the function has exactly two stationary points and is monotone between
them.

• Derivative of the solutions. At this point we know that there exist two
functions ψ0(θ3) and ψπ(θ3) such that the corresponding θ̂0

2(θ3) = ψ0(θ3) + θ3 and
θ̂π2 (θ3) = ψπ(θ3) + θ3 parametrize the solutions of (4.1b).
The goal is to show that for r3 sufficiently large we have θ′2(θ3) ≥ C > 0 for some
constant C independent of r3, where θ2( · ) is either θ̂0

2( · ) or θ̂π2 ( · ). Thanks to
the implicit function theorem we can compute the derivative

θ′2(θ3) = (r2
2 + r2

3 − 2r2r3 cos(ψ))5/2

−3r2
2r3 + (r3

2 + r2r2
3) cos(ψ) + r2

2r3 cos(ψ)2

·
(

r1 cos(θ3)
(r2

1 + r2
3 − 2r1r3 cos(θ3))3/2 + r2 cos(ψ)

(r2
2 + r2

3 − 2r2r3 cos(ψ))3/2

− 3r2
1r3 sin(θ3)2

(r2
1 + r2

3 − 2r1r3 cos(θ3))5/2 −
3r2

2r3 sin(ψ)2

(r2
2 + r2

3 − 2r2r3 cos(ψ))5/2

)
,

where ψ = θ2 − θ3 as before. We introduce the parameter κ = 1/r3 and write the
derivative in terms of it. We have that

θ′2(θ3) = f(r1, r2, 1/r3, θ2 − θ3, θ3)

where

f(r1, r2, κ, ψ, θ3) = (1− 2r2κ cos(ψ) + r2κ
2)5/2

−3r2κ+ (r3
2κ

2 + r2) cos(ψ) + r2
2κ cos(ψ)2

·
(

r1 cos(θ3)
(1 + r2

1κ
2 − 2r1κ cos(θ3))3/2 + r2 cos(ψ)

(1 + r2
2κ

2 − 2r2κ cos(ψ))3/2

− 3r2
1κ sin(θ3)2

(1 + r2
1κ

2 − 2r1κ cos(θ3))5/2 −
3r2

2κ sin(ψ)2

(1 + r2
2κ

2 − 2r2κ cos(ψ))5/2

)
. (4.4)
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Observe that the only singularities are due to the denominator of the first fraction.
However, the singular values of ψ lie outside the two intervals

S = [− arcsin(η), arcsin(η)] ∪ [π − arcsin(η), π + arcsin(η)]

for κ sufficiently small (r3 large enough), because they converge to ±π/2. Therefore
there exists κ+ > 0 such that the function f is continuous in the domain

D = [r−1 , r
+
1 ]r1 × [r−2 , r

+
2 ]r2 × [0, κ+]κ × Sψ × [0, 2π]θ3 .

• Limit case. We rewrite equation (4.3) in terms of κ as

− r1 sin(θ3)
(1 + r2

1κ
2 − 2r1κ cos(θ3))3/2 + r2 sin(ψ)

(1 + r2
2κ

2 − 2r2κ cos(ψ))3/2 = 0. (4.5)

Let Γr1,r2,κ denote the set of solutions (ψ, θ3) ∈ Sψ × [0, 2π]θ3 to (4.5). By the
continuity of (4.5) we know that

Γ =
⋃

r1∈[r−1 ,r
+
1 ]

⋃
r2∈[r−2 ,r

+
2 ]

⋃
κ∈[0,κ+]

Γr1,r2,κ ⊂ D

is a closed set. Our ultimate goal is to show that f is positive on Γr1,r2,κ when κ
is small enough.
We start by studying the limit case κ = 0. The limit curve Γr1,r2,0 is given by the
equation

r1 sin(θ3) = r2 sin(ψ). (4.6)
For κ = 0, the function f equals

f(r1, r2, 0, ψ, θ3) = 1
r2 cos(ψ)

(
r1 cos(θ3) + r2 cos(ψ)

)
= 1 + r1 cos(θ3)

r2 cos(ψ) .

We claim that this function is positive on the curve defined by (4.6). Indeed,
positivity is guaranteed if we are able to prove that∣∣∣∣r1 cos(θ3)

r2 cos(ψ)

∣∣∣∣ < 1.

But, by squaring, this is equivalent to

r2
1 cos(θ3)2 < r2 cos(ψ)2,

which, thanks to (4.6), reduces to the true inequality r2
1 < r2

2.

• Conclusion. Finally, we prove that f ≥ C > 0 on Γr1,r2,κ for κ close to zero,
where C is a constant depending only on r±1 and r±2 .
We know that f is positive on the compact set

K =
⋃

r1∈[r−1 ,r
+
1 ]

⋃
r2∈[r−2 ,r

+
2 ]

Γr1,r2,0.

Therefore there exists a positive constant C and an open neighbourhood U of K
in D such that f > C on U . Since Γ is closed, a compactness argument shows
that Γr1,r2,κ ⊂ U for κ close to zero and this concludes the proof.
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Step 3. The previous steps tell us that (4.1a) defines two vertical curves and (4.1b)
two diagonal curves. The estimates on the derivatives of such curves prove that the
intersections are simple, therefore there are exactly four stationary points. But we
already know four stationary points, namely

(θ2, θ3) = (0, 0), (0, π), (π, 0), (π, π).

To conclude, we can just compare the costs associated to each of them and pick the
smallest one. It is easy to see that (θ2, θ3) = (π, 0) is the optimal choice. In fact, (0, 0)
is clearly the worst. Among the three cases left, we can say that (π, 0) always beats
(π, π), that is

C(r1, r2, r3, π, π)− C(r1, r2, r3, π, 0)

=
( 1
r3 − r2

− 1
r3 − r1

)
+
( 1
r2 + r1

− 1
r3 + r2

)
> 0,

as both the differences in parenthesis are positive. Finally, (π, 0) beats (0, π) too because

C(r1, r2, r3, 0, π)− C(r1, r2, r3, π, 0) = 2r1(r2
3 − r2

2)
(r2

2 − r2
1)(r2

3 − r2
1)
> 0.

In the following lemma, we prove that, with the frozen cost cπ, given six increasing
radii numbered 1, . . . , 6 the choice of two disjoint subsets of three elements which
minimizes the cost is always given by 145 and 236. Actually, we prove only some
comparisons that are enough for our examples, but one could show in general that

cπ(r1, r4, r5) + cπ(r2, r3, r6) =
= min { cπ(p1, p2, p3) + cπ(p4, p5, p6) : {p1, . . . , p6} = {r1, . . . , r6} } .

The proof of this fact reduces to the characterization of c-monotonicity with Coulomb
cost performed in [5, Proposition 2.4].

Lemma 4.2. Let 0 < r1 < · · · < r6. Then we have that

cπ(r1, r4, r5) + cπ(r2, r3, r6) ≤ min
{
cπ(r1, r4, r6) + cπ(r2, r3, r5),

cπ(r1, r3, r6) + cπ(r2, r4, r5), cπ(r1, r3, r5) + cπ(r2, r4, r6)
}
.

(4.7)

Proof. Let us consider the one dimensional Coulomb cost defined in R

c̄(v1, v2, v3) = 1
|v2 − v1|

+ 1
|v3 − v2|

+ 1
|v1 − v3|

∀v1, v2, v3 ∈ R.

We notice that cπ(r1, r4, r5) = c̄(r1,−r4, r5) and, more in general, for all the 3-uples
appearing in (4.7) the cπ-cost and the c̄-cost satisfy the same relation. In [5, Proposition
2.4] it is proved that, given the six points −r4,−r3, r1, r2, r5, r6 the best way to choose
two 3-uples to minimize the one dimensional Coulomb cost is to take the points in odd
position and the points in even position; in particular, we have

c̄(−r4, r1, r5) + c̄(−r3, r2, r6) ≤ min
{
c̄(−r4, r1, r6) + c̄(−r3, r2, r5),

c̄(−r3, r1, r6) + c̄(−r4, r2, r5), c̄(−r3, r1, r5) + c̄(−r4, r2, r6)
}
,

which proves (4.7).
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Remark 4.3. The previous lemma allows to prove that, for the cost cπ, the symmetrized
optimal plan for the problem (2.3) is unique and coincides with the symmetrization of
the DDI-map.

5 Proofs of examples and counterexamples

Proof of Counterexample 2.6. Let t0 be given by Lemma 3.2 and let us choose ε ≤ t0/2.
If, by contradiction, the DDI-map T associated to ρε is optimal, by Proposition 2.4 its
support is c-monotone. Let us consider 1 + ε, 1 + 3ε and the images of these points
through T and T ◦ T :

T (1 + ε) = 1 + 7ε, T ◦ T (1 + ε) = 1 + 9ε,

T (1 + 3ε) = 1 + 5ε, T ◦ T (1 + 3ε) = 1 + 11ε,

We notice that these points

(r1, ..., r6) = (1 + ε, 1 + 3ε, 1 + 5ε, 1 + 7ε, 1 + 9ε, 1 + 11ε),

are equally spaced; hence, we can apply the scaling properties of the cost function and
Lemma 3.2 with t = 2ε/(1 + ε) ≤ t0 to deduce that,

c(r1, r4, r6) + c(r2, r3, r5) = 1
1 + ε

[
c
( r1

1 + ε
,
r4

1 + ε
,
r6

1 + ε

)
+ c
( r2

1 + ε
,
r3

1 + ε
,
r5

1 + ε

)]
<

1
1 + ε

[
c
( r1

1 + ε
,
r4

1 + ε
,
r5

1 + ε

)
+ c
( r2

1 + ε
,
r3

1 + ε
,
r6

1 + ε

)]
= c(r1, r4, r5) + c(r2, r3, r6).

This contradicts the c-monotonicity of the support by taking p = {3}.

Proof of Counterexample 2.7. Step 1. By choosing ε sufficiently small (independently
on M), we exclude that the DDI-map is optimal in problem (2.2) for every M > 2.

Let T be the piecewise continuous DDI-map. Consider the following two points in
the support of the plan associated to T (recall that the support is a closed set):(

1 + ε

2 , T
(

1 + ε

2

)
, T (2)

(
1 + ε

2

))
=
(

1 + ε

2 , 1 + 7ε
2 , 1 + 9ε

2

)
,

lim
r→1+ε−

(
r, T (r), T (2)(r)

)
= (1 + ε, 1 + 3ε, 1 + 5ε).

We claim that they violate the c-monotonicity property (Proposition 2.4) with p = {3},
namely

f(ε) = c

(
1 + ε

2 , 1 + 7ε
2 , 1 + 9ε

2

)
+ c(1 + ε, 1 + 3ε, 1 + 5ε)

−
[
c

(
1 + ε

2 , 1 + 7ε
2 , 1 + 5ε

)
+ c

(
1 + ε, 1 + 3ε, 1 + 9ε

2

)]
> 0
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for ε sufficiently small. The proof is similar to that of Lemma 3.2. Using the formulas
obtained in Lemma 3.1 we just compute the derivatives

f(0) = f ′(0) = f ′′(0) = 0,

f ′′′(0) = 71
√

3
100 > 0.

Step 2. We exclude that the maps DID, IDD, III in the {D, I}3-class are optimal
in problem (2.2) for M large enough.

We present the argument to exclude the DID-map, the others being similar. Let us
fix x, y ∈ (M + 1/4,M + 3/4), x < y, and let us consider their orbits through T , that is
T (x), T (y) ∈ (1, 1 + ε0) and T (2)(x), T (2)(y) ∈ (1 + 3ε0, 1 + 4ε0). Let us consider the
increasingly ordered points

(r1, ..., r6) =
(
T (y), T (x), T (2)(x), T (2)(y), x, y

)
;

the couples of points (r1, r4, r6) and (r2, r3, r5) belong to the support of the plan
associated to the DID-map. By Lemma 4.1, we can choose M sufficiently large so that
the previous points, as well as the points (r1, r4, r5) and (r2, r3, r6), have the same c
and cπ cost. By Lemma 4.2, which describes the cπ monotonicity, we have

c(r1, r4, r5) + c(r2, r3, r6) = cπ(r1, r4, r5) + cπ(r2, r3, r6)
≤ cπ(r1, r4, r6) + cπ(r2, r3, r5)
= c(r1, r4, r6) + c(r2, r3, r5).

This shows, by Proposition 2.4, that the DID-map cannot be optimal.

Remark 5.1. Our method can be applied to the 4-marginal problem to show that there
exists ε > 0 such that, setting

ρε = 1
16ε1[1,1+16ε] dr ∈M (R+),

any map in the {D, I}4-class associated to ρε is not optimal in problem (2.2). Indeed,
let T be any such map. Pick two points in [1, 1 + 16ε] such that the union of their two
orbits is

{r1, . . . , r8} = {1 + ε, 1 + 3ε, 1 + 5ε, 1 + 7ε, 1 + 9ε, 1 + 11ε, 1 + 13ε, 1 + 15ε}.

We claim that T is not c-monotone because the partitioning of {r1, . . . , r8} into two
quartets that minimizes

c(ri1 , ri2 , ri3 , ri4) + c(ri5 , ri6 , ri7 , ri8)

is {(r1, r5, r6, r7), (r2, r3, r4, r8)} and such partition doesn’t correspond to any of the
maps in the {D, I}4-class.

The way to see this is to extend the results of Section 3 to the 4-marginal case.
Consider four radii

(r1, r2, r3, r4) = (1 + a1t, 1 + a2t, 1 + a3t, 1 + a4t).
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Following the same derivation, we find that the angles that give the cost c areθ2(t)
θ3(t)
θ4(t)

 =

 π/2
π

3/3π

+ 6−
√

2
34

−a1 − a2 + a3 + a4
2a4 − 2a2

a1 − a2 − a3 + a4

 t+ o(t).

In turn, this provides the expansion of the cost up to the third order and this information
can be used to verify the asymptotic optimality of any given partition. We omit the
formulas, since this computations are better performed with the aid of a computer
algebra system.

Proof of Proposition 2.9. Let M be chosen, thanks to Lemma 4.1, so that

c(r1, r2, r3) = cπ(r1, r2, r3) for every r1 ∈ [1, 2], r2 ∈ [3, 4], r3 ∈ [M,∞). (5.1)

In order to prove the c-monotonicity property, since the map T is cyclical and since its
orbits take exactly one point in each interval [1, 2], [3, 4], and [M,∞), it is enough to
show that, given x, y ∈ [1, 2], x < y, we have

c
(
x, T (x), T (2)(x)

)
+ c
(
y, T (y), T (2)(y)

)
≤ c(x,A,B) + c(y, C,D) (5.2)

for every possible choice of A,B,C,D such that {A,C} = {T (x), T (y)} and {B,D} =
{T (2)(x), T (2)(y)}. By definition, we have that

1 ≤ x < y ≤ 2 ≤ 3 ≤ T (y) < T (x) ≤ 4 ≤M ≤ T (2)(x) < T (2)(y);

hence by (5.1) we have that c
(
x, T (x), T (2)(x)

)
= cπ

(
x, T (x), T (2)(x)

)
(and similarly for

y and for the other 3-uples) and by Lemma 4.2 we have that

c
(
x, T (x), T (2)(x)

)
+ c
(
y, T (y), T (2)(y)

)
= cπ

(
x, T (x), T (2)(x)

)
+ cπ

(
y, T (y), T (2)(y)

)
≤ cπ(x,A,B) + cπ(y, C,D) = c(x,A,B) + c(y, C,D),

for every possible choice of A,B,C,D such that {A,C} = {T (x), T (y)} and {B,D} =
{T (2)(x), T (2)(y)}; this proves (5.2).
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