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Duca degli Abruzzi 24, 10129 Torino, Italy – daniela.tordella@polito.it,

michele.iovieno@polito.it

In the absence of kinetic energy production, the influence of the initial condi-
tions on turbulent transport can be characterized by the presence of an energy
gradient or by the concurrency of an energy and a macroscale gradient. In this
work, we present a similarity analysis that interpret a new result on the sub-
ject recently obtained by means of numerical experiments on shearless mixing
(Tordella & Iovieno, 2005, a–b). In short, the absence of a macroscale gradient
is not a sufficient condition for the setting of the asymptotic Gaussian state
hypothesized by Veeravalli and Warhaft (1989), where, regardless of the exis-
tence of velocity variance distributions, turbulent transport is mainly diffusive
and the intermittency is nearly zero up to moments of order four. In fact, we
observed that the intermittency increases with the energy gradient, with a
scaling exponent of about 0.29. The similarity analysis, which is in fair agree-
ment with the previous experiments, is based on the use of the kinetic energy
equation, which contains information concerning the third order moments of
the velocity fluctuations. The analysis is based on two simplifying hypothe-
ses: first, that the decays of the turbulences being mixed are almost nearly
equal (as suggested by the experiments), second, that the pressure-velocity
correlation is almost proportional to the convective transport associated to
the fluctuations (Yoshizawa, 1982, 2002).

1 Numerical results on the energy mixing. Second and
higher order velocity moments

A few aspects of the interaction of different decaying homogeneous and
isotropic turbulences in absence of mean shear are described in the labo-
ratory experiments by Gilbert (1980) and Veeravalli and Warhaft (1989). In
this particular flow configuration the two turbulences external to the mixing
have the same mean velocity but different turbulent kinetic energy and have
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Fig. 1. (a) Normalized kinetic energy during decay: xc is the mixing centre, the
position where normalized energy is equal to 1/2, and ∆ is the mixing layer thickness,
suffices 1, 2 correspond to high and low turbulent kinetic energies respectively. (b)
Initial three-dimensional energy spectra for the DNS simulation. Continuous line:
high energy region; dashed line: low energy region.

been experimentally investigated by means of turbulence generated by grids
with different size, but with the same solidity. This produces two homoge-
neous turbulences with the same mean velocity but with different energy and
scale.

In this paper, we consider the influence on turbulent transport of ini-
tial conditions characterized by the presence of an energy gradient and the
absence of a macroscale gradient, see fig.1(a)-(b) and fig.2. The simulations
were carried out by means of either direct numerical or large eddy simula-
tions. The direct numerical simulations here presented were carried out by
means of a new technique for the parallel dealised pseudospectral integration
of the Navier-Stokes equations (Iovieno et al., 2001). The boundary conditions
are periodic in all directions. Two computational domains, a (2π)3 cube with
1283 points, and a 4π(2π)2 parallelepiped with 256 × 1282 points, were used
to obtain an estimate of the numerical accurary. In the initial condition, the
two turbulence fields are matched by using the Briggs et al.(1996) technique.

The same numerical method was used to implement the large eddy sim-
ulations, which were carried out by using the Intrinsic Angular Momentum
(IAM) subgrid scale model (Iovieno & Tordella, 2002). This model is based
on the proportionality of the turbulent diffusivity to the intrinsic moment of
momentum of the finite element of a fluid. The IAM correctly scales the eddy
diffusivity νδ, with respect to both the filtering length and the dissipation
rate, and introduces a differential equation – the intrinsic angular momentum
equation – to follow the evolution of νδ. This is particularly advantageous in
the case of nonequilibrium turbulence fields, since it adds a degree of freedom
to the subgrid modelling.
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It is recalled that the basic definition of a longitudinal integral scale that
permits a direct measure and does not depend on the flow global Reynolds
number is

�(t) =
1
3

∑
i

∫ ∞
0

Rii(r, t)dr

Rii(0, t)
, (1)

where Rii is the longitudinal velocity correlation, see Batchelor (1953). The
integral length approximation deduced from the hypothesis of statistical equi-
librium, i.e. � = E3/2/ε, should be applied with caution whenever the Re does
not allow the great divergence of scales to be obtained that the universal
equilibrium theory requires. In fact, at the relatively low Reynolds numbers,
typical of the current literature,

�ε/E3/2 = f(Re). (2)

Function f is of order 1, but is not yet completely known. Simulations of
homogeneous and isotropic turbulence in the periodic box and laboratory ex-
perience, see Batchelor and Towsend (1948) and the collection of experimental
data in Sreenivasan (1998), show that, in the low Re number range, its value
almost halfs when the Re quadruple. In this paper, we use definition (1),
principally because it is not affected by the actual value of Re and because it
evidences that the integral scale does not depend on the level of kinetic energy
but on the spectral distribution of energy over the wave numbers. Further-
more, definition (1) implies that turbulences which have similar spectra, but a
different overall kinetic energy, see fig.1 b, have the same spatial macroscale.
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Fig. 2. Kinetic energy contours. Plots at 3 < t/τ < 4.

The dependence of the turbulence mixings with a macroscale ratio L =
�2

�1
= 1 on the initial conditions has been considered and documented through

single-point statistics (Tordella & Iovieno, 2005, Iovieno & Tordella, 2002
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– here and in the following subscript 1 and 2 refer to the high/low energy
regions, respectively). It is seen that the statistical distributions of orders
higher than the second highly depend on the initial values of the ratio of
energy, E = E1/E2. If the energy ratio is far from unity, no Gaussian behaviour
is observed up to order four. The asymptotic state for the shearless turbulence,
where the velocity variance follows the form of an error function and the
velocity fluctuations are Gaussian, which was attributed by Veeravalli and
Warhaft(1989) to the L ≈ 1 type of mixing and, in particular, to Gilbert’s
experiment (where, because of the very low energy gradient exploited, it was
very difficult to show the weak, eventual removing of the velocity statistics
from the Gaussian behaviour) was not observed. On the contrary, the mixing
is very intermittent. If the lateral penetration is considered in terms of the
position of the maximum of skewness and kurtosis distributions, it is observed,
that, when L = 1, the intermittency increases with the energy ratio with a
scaling exponent that is almost equal to 0.29, see fig.s 3(a,b). Independently
of the values of the control parameters a set of common properties exists
for all the studied mixings. First, the statistical distributions become self-
similar after nearly a decay of three time units. Second, in the self-similarity
region of the decay, the lateral spreading rate is on average close to 0.15.
Third, the kinetic energy distribution has a common shape (see, (13) below).
Fourth, all the mixings are very intermittent, as the skewnes S and kurtosis
K distributions show, see fig.s 3(a) and 3(b).
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Fig. 3. Skewness (a) and kurtosis (b) of the velocity component in the inhomoge-
neous direction x (E = 6.7, L = 1.0): xc is the mixing centre, ∆ the mixing layer

thickness and τ1 = �(0)/E1(0)
1
2 . Data from [3] and [6] are also shown.

2 Similarity analysis

We analyze here the consequences of the observation that in all the numerical
mixing experiments a self-similar state appears to exist. In the time interval
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where the near–similarity is reached (t/τ > 3), to carry out the similarity
analysis, we considered the second moment equations for the velocity fluc-
tuations (u, in the inhomogeneous direction x, v1, v2 in the plane normal to
x),

∂tu2 + ∂xu3 = −2ρ−1∂xpu + 2ρ−1p∂xu − 2εu + ν∂2
xu2 (3)

∂tv2
1 + ∂xv2

1u = 2ρ−1p∂y1v1 − 2εv1 + ν∂2
xv2

1 (4)

∂tv2
2 + ∂xv2

2u = 2ρ−1p∂y2v2 − 2εv2 + ν∂2
xv2

2 (5)

The two mixed turbulences decay in a similar way, as shown by the numerical
simulations (Tordella & Iovieno, 2005). In the decay laws

E1(t) = A1(t + t0)−n1 , E2(t) = A2(t + t0)−n2 (6)

the exponents n1, n2 are close each other, which assures the constancy of E
with respect to the time variable. In this analysis, we suppose n1 = n2 = n =
1, a value which corresponds to Rλ � 1 (Batchelor & Townsend, 1948).

In the absence of energy production, the pressure-velocity correlation has
been shown to be approximately proportional to the convective fluctuation
transport (Yoshizawa, 1982, 2002)

−pu = aρ
u3 + 2v2

1u

2
, a ≈ 0.10, (7)

moreover all experiments show no appreciable difference in the second order
moments in the mixing, i.e. u2 � v2

i , so that u3 − v2
1u � 2ρ−1p∂xu and

consequently

−ρ−1pu = αu3, α =
3a

1 + 2a
≈ 0.25. (8)

In the initial value problem here considered, the moment distributions are
determined by the coordinates x, t, and by the energy E and the macroscale
� of the two mixing turbulences. Thus, through dimensional analysis

uk = E
k
2
1 ϕuk(η, R�1 , ϑ1, E ,L) ∀k, εu = E

3
2
1 �−1ϕεu(η, R�1 , ϑ1, E ,L), (9)

where η = x/∆(t), ∆(t) is the mixing layer thickness, R�1 = E
1
2
1 (t)�1(t)/ν

is the Reynolds number relevant to the high energy turbulence, ϑ1 =
tE

1
2
1 (t)/�1(t) is the dimensionless time scale of the flow and E = E1(t)/E2(t),

L = �1(t)/�2(t). It should be noticed that, if n = 1, E , L, ϑ1 = n/f(Rλ1) and
R�1 ∝ t1−n are constant (Batchelor 1953). By inserting relation (9) in (3), it
is possible to deduce that ∆(t) ∝ �1(t). By putting ∆(t) = �(t), one obtains:
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−1
2
η
∂ϕuu

∂η
+

1
f(Rλ1)

(1 − 2α)
∂ϕuuu

∂η
− ν

Af(Rλ1)2
∂2ϕuu

∂η2
=

= ϕuu − 2
f(Rλ1)

ϕεu (10)

Given the lateral boundaries of the mixing, which correspond to homogeneous
conditions for the turbulence, one can observe that the rhs of (10) must be an
odd function of η. It is zero in homogeneous (equilibrium) turbulence, while
the previously mentioned experiments (Tordella & Iovieno, 2005) suggest that
this rhs could be modelled by means of a diffusive term, so that

2
f(Rλ1)

ϕεu − ϕuu = β
∂2ϕuu

∂η2
(11)

where β is a constant of proportionality; β = 0 corresponds to the hypothesis
of local equilibrium. In the following, by simply writing f instead of f(Rλ1),
the skewness, S = ϕuuu/ϕ

3/2
uu , reads

S =
ϕ
− 3

2
uu

(1 − 2α)

[
f

2

∫ η

−∞
η
∂ϕuu

∂η
dη +

(
ν

A1f
− βf

)
∂ϕuu

∂η

]
(12)

By representing the second moments with the fitting curve given by the ex-
perimental distributions (Veeravalli-Warhaft, 1989 and Tordella & Iovieno,
2005)

3
2
ϕuu =

1 + E−1

2
− 1 − E−1

2
erf(η) (13)

one obtains

S =
1 − E−1

√
π

f

4(1 − 2α)

(
3
2

) 1
2

(
1 − 4ν

A1f2
+ 4β

)
e−η2 ×

[
1 + E−1

2
− 1 − E−1

2
erf(η)

]− 3
2

(14)

Figure 4 shows the good agreement of the modelled variance and skewness dis-
tributions (relations 13 and 14) with the experimental data. The intermittency
parameter associated to the lateral penetration of the mixing is compared in
fig.5 with the values given by the present similarity law. It can be observed that
the scaling exponent deduced from the experiment (Tordella & Iovieno, 2005),
which is approximately equal to 0.29, is correctly represented. It should be no-
ticed that such scaling is independent from the energy-dissipation model (11),
because the model coefficient β does not influence the shape of the skewness
distribution (14) and does not modify the position of the skewness maximum,
which appears to be a function of the energy ratio E only. However, β deter-
mines the value of the maximum of the skewness distribution, and β ≈ 0.08
gives the best fit with experimental data by Tordella & Iovieno (2005). The
other parameters that appear in figures 4 and 5 are α = 0.25 (see equation
8) and f(Rλ1) = 0.65. This value has been obtained for Reλ1 = 45 from
Sreenivasan (1998).



Shear-free turbulence interaction 7

−3 −2 −1 0 1 2 3
(x-xc )/∆

0.0

0.2

0.4

0.6

0.8

1.0

φ uu

3.7
4.5
5.2
5.6
Similarity profile

t/τ1
(a)

−3 −2 −1 0 1 2 3
(x-xc)/∆

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

S

3.7
4.5
5.2
5.6
LES − IAM model
DNS , Briggs  et al.
Similarity solution

t/τ1

(b)

Fig. 4. Normalized energy and skewness distributions; E = 6.7 and L = 1.

0 10 20 30 40 50 60
E1 /E2

0.0

0.5

1.0

1.5

(x
s-

x c)
/∆

DNS
LES, IAM model Reλ=45
LES, IAM model Reλ=450
Data fitting
Similarity solution

Fig. 5. Position xs of the maximum of the skewness S distribution as a function of
the initial ratio of energy E = E1/E2 with L = 1.

3 Conclusions

The present similarity analysis confirms our numerical experiment result
where the turbulent transport is highly intermittent for shear-free decaying
homogeneous isotropic interacting flows with kinetic-energy ratios far from
unity in contrast to a Gaussian asymptotic state.
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