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Abstract
Detecting prestressed wire breakage in concrete bridges is essential for ensuring
safety and longevity and preventing catastrophic failures. This study proposes a
novel approach for wire breakage detection using Mel-frequency cepstral coef-
ficients (MFCCs) and back-propagation neural network (BPNN). Experimental
data from two bridges in Italy were acquired to train and test the models. To
overcome the limited availability of real-world training data, data augmentation
techniques were employed to increase the data set size, enhancing the capabil-
ity of the models and preventing over-fitting problems. The proposed method
uses MFCCs to extract features from acoustic emission signals produced by wire
breakage, which are then classified by the BPNN. The results show that the pro-
posedmethod can detect and classify sound events effectively, demonstrating the
promising potential of BPNN for real-time monitoring and diagnosis of bridges.
The significance of this work lies in its contribution to improving bridge safety
and preventing catastrophic failures. The combination of MFCCs and BPNN
offers a newapproach towire breakage detection,while the use of real-world data
and data augmentation techniques are significant contributions to overcoming
the limited availability of training data. The proposedmethod has the potential to
be a generalized and robustmodel for real-timemonitoring of bridges, ultimately
leading to safer and longer-lasting infrastructure.

1 INTRODUCTION

Bridges are essential structures for the smooth opera-
tion of transportation networks and significantly affect
economic and social development. The number of aged
infrastructure networks, particularly bridges, is growing
in all developed countries, and the integrity of bridges
has become a severe problem. News worldwide reports
of bridge collapse cases that, although rare compared to
the number of these structures, have deep social and eco-
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original work is properly cited.
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nomic consequences. The recent dramatic collapse of the
Polcevera bridge in Genova, Italy, in 2018, has evidenced
the fragility of some engineering masterpieces and, specif-
ically, the critical effects of prestressing cable degradation.
The incident also brought attention to the need for better
maintenance and monitoring of these structures to ensure
their safety and prevent similar incidents from happening
in the future. The corrosion of prestressing cables, which
can be promoted by construction defects, exposure to envi-
ronmental agents, and use of de-icing salts (Bassuoni &

186 wileyonlinelibrary.com/journal/mice Comput Aided Civ Inf. 2024;39:186–202.

mailto:giulio.ventura@polito.it
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/mice


FARHADI et al. 187

Rahman, 2016; Zhutovsky & Douglas Hooton, 2017), is not
easily quantifiable due to the substantial inaccessibility of
the cables and the fact that the degradation can be highly
localized and, therefore, difficult to spot out.Moreover, it is
highly dangerous because itmay induce structural collapse
without warning signals. Visual inspection is basically
unable to assess the status of the prestressing system, and
traditional structural health monitoring (SHM) systems
show very strong limitations due to the fact that severe loss
of prestressing force is required to get measurable effects
and, at this point, the safety level can be already compro-
mised. On the other hand, it is practically not possible to
carry out detailed investigations on each bridge to detect
potential prestressing cable corrosion as these investiga-
tions are very expensive and time-consuming, and there
are always specific parts that are inaccessible. Therefore,
building a system that can efficiently detect the wires
failure is an important step toward ensuring long-term
operation, safety, and reliability of aging infrastructure net-
works (Giglioni et al., 2022) as well as preventing costly
repairs or replacements.
One approach to detect wire breakage, that is, the acous-

tic emission (AE) technique, has been extensively studied
inmaterial and construction research (Laxman et al., 2023;
Yuyama et al., 1995) as it is sensitive to failure and breakage
of materials. The release of elastic waves due to the sud-
den stress variation related to failure can be captured by
AE sensors and safely used for event detection on at-risk
structures, such as prestressed concrete bridges. However,
as pointed out by Yuyama et al. (2007), the application
of the AE technique to prestressing wire breakage poses
some challenges: signal characteristics produced by wire
breakage, wave attenuation during propagation, proper
sensor selection and array for sound detection, and wire
failure detection under noisy environments. Besides, long-
term monitoring produces a large amount of data that
require accurate analysis, which can be time-consuming.
Therefore, it is necessary to have efficient and reliable
data processing and analysis methods to detect poten-
tial issues impairing structural safety quickly. One of the
most efficient approaches to deal with this issue is utiliz-
ing machine learning (ML) and deep learning (DL)-based
models. ML and DL are considered subfields of computer
science that can build necessary algorithms based on the
collected data of certain occurrences (Jordan & Mitchell,
2015). These models can be trained to identify patterns in
the data, classify the data into different categories, or make
predictions about future events. This can allow for the
automated and efficient analysis of large amounts of data,
reducing the time and effort required for manual analy-
sis. In recent years, rapid innovations in DL algorithms,
improvements in CPU and GPU technology, and the avail-
ability of natural or synthetic training data (Gao et al., 2019;

Nikolenko, 2021) have provided a considerable impetus for
the research and implementation of these techniques in
several scientific and engineering fields (Cakir et al., 2015;
Farhadi et al., 2022; Luo & Paal, 2023).
Significant progress has been made in the field of dam-

age detection, particularly through the application of AI-
based models. Lin et al. (2022) proposed a dynamics-based
cross-domain structural damage detection approach using
deep transfer learning. Y. Zhang et al. (2022) introduced
a novel method for damage detection of nonlinear struc-
tures using probability density ratio estimation. Zheng
et al. (2022) contributed to this field by proposing a multi-
stage semi-supervised active learning framework for crack
identification, segmentation, andmeasurement of bridges.
Zou et al. (2022) focused on multicategory damage detec-
tion and safety assessment of post-earthquake reinforced
concrete structures using DL. Pan and Zhang (2022) intro-
duced a dual attention DL network for automatic steel
surface defect segmentation. Furthermore, Amezquita-
Sanchez et al. (2018) and Sirca Jr and Adeli (2018) have
delved into the critical area of health monitoring of struc-
tures. These recent studies collectively demonstrate the
active research endeavors in the field of damage detection,
providing valuable insights and inspiring further investi-
gations.
The main idea behind the present study is to ana-

lyze the ultrasonic signals with the approach known as
“Sound Event Detection” (SED), to detect wire break-
age on prestressed reinforced concrete bridges. SED has
been initially developed from music retrieval and recently
has surged attention in various fields using ML and DL
approaches, including scene recognition (Chu et al., 2006),
surveillance in different environments (Geiger &Helwani,
2015), speech recognition (Mesaros et al., 2021), and audio
segmentation (Heittola et al., 2013). Artificial neural net-
works (ANN), which use multiple hidden layers, have
outperformed traditional techniques in the last few years,
particularly for SED tasks. Sigtia et al. (2016) compared
the classification performance of three different sound-
recognition algorithms and highlighted that the ANN
model outperforms all other models. To train the ANN
algorithm sufficiently, it is essential to extract relevant
information; therefore, theAE signals are transformed into
a higher level representation. These features, mainly used
in acoustic scene classification, speech recognition, and
SED, can be extracted from spectrograms (Cakir et al.,
2016). Mel-frequency cepstral coefficient (MFCC), as one
of the conventional acoustic features, were successfully
applied in different learning algorithms (Couvreur et al.,
1998; Ito et al., 2009) to provide robust models for sound
classification tasks.
However, to the best of our knowledge, this is the first

study that applies MFCC to AE signals for detecting wire
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breakage in prestressed concrete bridges, an application
that poses unique challenges. First, the objective difficulty
of collecting real-world data by cutting wires in exist-
ing bridges requires enlarging the data set available for
training through physics-based data augmentation (DA)
approaches, numerical simulations of the breakage pro-
cess, and/or laboratory tests. Furthermore, there is a need
to develop a generalized model capable of detecting wire
breakage in bridges that are not part of the training data
set. Ideally, this model should exhibit the ability to identify
wire breakage in new and unobserved conditions with-
out the necessity for pre-training. Finally, AE signals in
the context of wire breakage detection have significant
differences with respect to common sound events.
In this research, a novel and tailored approach is pre-

sented for wire breakage detection in prestressed concrete
beams. Themethod utilizes a back-propagation neural net-
work (BPNN) combined with input features derived from
Mel-frequency cepstral coefficients (MFCCs), specifically
adapted and optimized for wire breakage detection. The
unique application of these techniques in this context takes
into account the physical and spectral characteristics of
the wire breakage signals. By carefully adjusting parame-
ters and exploring different configurations, an optimized
solution is achieved, enhancing the reliability and perfor-
mance of the approach. Additionally, DA techniques are
employed to address limited training data and improve
the model’s generalization ability, making it more appli-
cable in real-world scenarios. This research contributes to
advancing the field of wire breakage detection by provid-
ing a robust and accurate method tailored for prestressed
concrete beams.
Compared to other inspection/monitoring techniques,

such as radiography (Khedmatgozar Dolati et al., 2023),
fiber optics (Hampshire & Adeli, 2000), and so on, the pro-
posed SED model coupled to an AE monitoring system
offers unique advantages for early detection of prestress-
ing system degradation. It ensures continuous, automated,
and noninvasive monitoring of existing structures, with
the ability to detect a single wire breakage in tendons. This
cost-effective solution provides essential information for
bridge maintenance and safety. The significance of detect-
ing a single wire breakage lies in the fact that corrosion
in prestressing wires can be highly localized. Identifying
a single wire breakage reveals areas where the entire ten-
don is undergoing corrosion. The previously introduced
inspection and monitoring techniques lack this capability
due to limited accessibility (e.g., anchorage zones) or insuf-
ficient sensitivity. For example, fiber optics are suitable for
new bridges and require substantial breakage to impact
local stress in concrete. Additionally, a single wire break-
age only affects approximately 0.01% of the first vibration
frequency of a typical prestressed bridge beam; therefore,

operational modal analysis identification cannot detect
such a small change.
The content of the paper is as follows. The experimental

process is explained in Section 2. Then, the MFCC tech-
nique, different applied DA, and ANNs are proposed in
Section 3. Next, metric measurements and model evalua-
tion results are presented in Section 4. Finally, conclusions
are drawn in Section 5.

2 PHYSICAL PROBLEM SETTING

2.1 Acoustic emission

The AE monitoring technique is based on the acquisi-
tion of ultrasonic signals, which typically have frequencies
between 20 kHz and 1 MHz. The significance of studying
signals in the ultrasonic range lies in that, by doing so, it
can effectively isolate the phenomenon to be monitored
from the structure operational and ambient background
noise. As progressive damage resulting from applied
stresses and environmental conditions evolves, local fail-
ure may occur. This is characterized by a micro-fracturing
process immediately followed by a rapid dislocation that
results in the sudden release of energy in the form of tran-
sient elastic waves known as AE waves (Grosse & Ohtsu,
2008; Nair & Cai, 2010; Scruby, 1987).
There are three phases for AE: triggering from a weak

point, propagating through the volume, and reaching a
new equilibrium state. The elastic wave generated by a
phenomenon is typically characterized by a steep ris-
ing front followed by an exponentially diminishing trend.
Eventually, the wave propagates through the material and
reaches the surface of the component, where it is detected
by piezoelectric sensors. AE events involve a series of
waves as a mechanical wave propagation phenomenon.
The first part is composed of longitudinal and transverse
waves; the second part is the superposition of surface
waves and the fraction of directed waves that arrive pro-
gressively due to the multiple reflections. AE signals from
transducers are then amplified, and pre-processing with
the proper filter and threshold settingsmay eliminate back-
ground noise. Finally, signals are recorded and analyzed
(RILEM Technical Committee, 2010).

2.2 Experimental setting

The bridge Alveo Vecchio, located on the A16 Napoli-
Canosa highway in Italy, has been selected to collect
real-world data. This bridge was set out of service in 2005
following a nearby landslide that precluded its reliability.
This condition made it possible to conduct experimen-
tal studies under the actual deterioration and constraint
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FARHADI et al. 189

F IGURE 1 (a) Lateral view of the beam; (b) sensors positions on the bridge Alveo Vecchio; (c) close look at the wire cut.

setting to evaluate and assess the bridge safety on-site.
Additionally, Alveo Vecchio well represents the typical
existing Italian highway bridge. The experimental studies
on this bridge, sponsored byAutostrade per l’Italia (ASPI)1,
provide a unique opportunity to assess and clarify the fail-
ure and degradation mechanism of prestressed concrete
components under operation, thanks to the application of
nondestructive and destructive tests and examination on
the main structural components.
The Alveo Vecchio viaduct has the following character-

istics: two parallel reinforced concrete decks (one for each
roadway) and three bays with simply supported I-girders.
The deck of each carriageway consists of four longitudinal
prestressed reinforced concrete I-girders with a cast-in-
place deck slab 20 cm thick; the longitudinal girders are
connected by three intermediate diaphragms and two end
diaphragms 25 cm thick. The prestressing system consists
of 14 post-tensioned cables for each girder. Each cable has
12 parallel wires with a diameter of 7 mm and is placed in
a grouted corrugated metal sheath.
In view of the present research, the first preliminary

experimental campaignwas operated to acquireAE signals
from the breakage of post-tensioned prestressing wires
in reinforced concrete girders. Failure was triggered by
cutting the cross-section of the wire with an electric trim-

1 the experimental studies are part of a collaboration agreement between
the “Ministry of Infrastructure and Sustainable Mobility” (MIMS), ASPI,
Università di Trento, Politecnico di Torino, and other Italian Universities.

mer until generating a spontaneous tensile breaking. The
interdepartmental center SISCON of Politecnico di Torino
performed the tests as part of the planned extensive exper-
imental framework that included load tests and many
other nondestructive and destructive investigations. The
AE signals were acquired using a MISTRAS Sensor High-
way III system, considered cutting-edge instrumentation.
The system is equipped with eight acquisition channels
and specialized software, which allows for the complete
acquisition and processing of data. The PK family sensors
were selected, which are designed as medium frequency
AE sensors, equipped with an integrated, ultra-low noise,
low power, and filtered preamplifier that offers a 26 dB
amplification. Additionally, it incorporates an integrated
Auto Sensor Test (AST) capability, enabling the sensor to
both emit and receive signals. This unique feature allows
for convenient verification of sensor coupling and perfor-
mance at any point in time, whether it’s before, during, or
after a test. The AE signals were captured with an acquisi-
tion rate of 2 MHz. Then the signals were time stretched to
the audible range for human check of the acquired infor-
mation, resulting in a fictitious 100 kHz sampling rate (the
considered time interval between two samples has been
increased, without information loss).
The selected position of the sensors (S1–S8) was on the

lower edge of the girder (Figure 1a,b) to be able to evaluate
the AE signal transformation and attenuation through the
structural components, including concrete. This is essen-
tial to accurately acquiring and interpreting the acoustic
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F IGURE 2 Structural scheme of the Ansa del Tevere bridge located in Roma, Italy.

signals and verifying the ability to detect the wire cut
despite a substantial distance between the breaking point
and the sensor. Eight transducers were used; two of them
were broadband (positioned S1 and S8), while the rest were
resonant. The cutting operation was performed on two
beams (called T3 and T4), with eight cuts per beam and 16
in total. For each specific cut scenario, different thresholds
were applied to the sensors involved. For example, when
cutting occurred between sensors S1 and S2, thresholds of
75 dB were used for S1 and S2, 60 dB for S3, 55 dB for S4,
S5, and S6, and 25 dB for S7 and S8. Remarkably, no AE
events were recorded during the cutting operations until
the tensile breaking. Concrete core drilling was performed
in an adjacent girder, but this was neither detected as an
AE event. This has shown a good insensitivity of the AE
technique to external disturbances while gathering wire
breakage events.
The second phase of the experimental tests took place

on the “Ansa del Tevere” viaduct, also known as “Ponte
Morandi” or “ViadottoMorandi.” This cable-stayedmotor-
way suspension bridge is located in Roma, Italy, on the A91
Roma-Fiumicino highway in the Magliana district. The
bridge has a reinforced concrete structure and suspension
cables embedded in square concrete castings (see Figure 2).
The western cables support the prestressed concrete deck,
while the eastern cables are anchored to reinforced con-
crete caissons to act as a counterweight. The main span
consists of a 74-m long cantilever multi-cell box girder
and a 63-m long twin deck with eight prestressed rein-
forced concrete I-girders with a cast-in-place deck slab
16 cm thick and six intermediate diaphragms. The pre-
stressed reinforced concrete I-girders are simply supported
on a pile, and the cantilever part is through a Gerber

hinge. Although different types of cables (with straight
and twisted wires) have been cut in different structural
elements, only the results from a parallel wire tendon
placed in one of the I-girders are included in this study.
This choice was made for better consistency with the data
obtained from Alveo Vecchio. In particular, the prestress-
ing system of the I-beams consists of 18 cables having 21
parallel wires each. The diameter of a single wire is 7 mm.
The arrangement of the eight AE sensors along the beam
is shown in Figure 2.

3 METHODS

In this section, a conceptual description of MFCC feature
extraction is given. Then, the DA techniques are explained
briefly and, finally, proposed ANN model is discussed.

3.1 Feature extraction

MFCCs are one of the most dominant and prevalent fea-
tures used for SED, and one of the reasons for their success
is the ability to represent the signal spectrum compactly.
Figure 3 indicates the required steps to extract MFCCs
from the original signals. This process can be explained in
detail as follows (Logan, 2000):

1. Frame blocking and windowing of the signal
The AE signals are considered nonstationary sig-

nals; consequently, to have stable acoustic features, it
is essential to consider them over a sufficiently short
period. Therefore, the original waveforms are divided
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F IGURE 3 Process to extract MFCC features.

into smaller frames at fixed intervals using windowing
functions (Blackman & Tukey, 1958) such as Hamming,
Hann, and Bartlett. In general, the purpose of applying
window functions is to smooth the frames, eliminate
the edge effects, and enhance the harmonics in the sig-
nals while using the DFT on the signals (Logan, 2000).
In addition, the window function secures that the sig-
nal ends close to zero. The following formula represents
Hamming window function (Rao & Manjunath, 2017)
which was used in this study:

𝑤[𝑘] = 0.54 − 0.46 cos

(
2𝜋𝑘

𝐾

)
𝑘 = 0,… , 𝐾 − 1

(1)
where 𝐾 is the number of data points in each frame.

2. Discrete Fourier Transform
At the end of the initial phase, a vector of cepstral fea-

tures is generated for each created frame. In this step,
the Discrete Fourier Transform (DFT) of each frame

F IGURE 4 Scaled Mel frequency versus physical frequency.

is computed using Equation (2), and the log of the
amplitude spectrum is obtained as the perceived signal
loudness has a logarithmic behavior (Logan, 2000).

𝑋[𝑘] =

𝑁−1∑
𝑛=0

𝑥(𝑛)𝑒
−𝑗2𝜋𝑛𝑘

𝑁 0 ≤ 𝑘 ≤ 𝑁 − 1 (2)

where 𝑁 is the number of points used to compute the
DFT.

3. Warping the frequencies to the Mel-scale
In this step, theMel spectrum is computed by passing

the computed frequency content Equation (2) through
a set of band-pass filters known as the Mel-filter bank.
This is essential for capturing the spectral characteris-
tics of the signal relevant to wire breakage detection.
Mel is an abbreviation of melody and a measurement
unit based on human auditory perception (Stevens &
Volkmann, 1940; Stevens et al., 1937). As indicated in
Figure 4, Mel-scale has a linear behavior below 1000
Hz, whereas, beyond this range, it increases logarith-
mically and is highly compressive (Rao & Manjunath,
2017). A good approximation of the Mel-scale can be
derived from the physical frequency as follows (Beigi,
2011):

𝑓mel =
1000

log(2)
log

(
1 +

𝑓

1000

)
(3)

where 𝑓mel represents Mel-frequency and 𝑓 denotes
physical frequency. The filter banks apply to both the
frequency and time domains; however, for MFCC cal-
culation, the filters are typically implemented in the
frequency domain. The most typical filter is triangle-
shaped. Mel-spectrum of the magnitude spectrum𝑋[𝑘]

can be obtained by multiplying 𝑋[𝑘] by each triangular
Mel weighting filter as follows:

𝑆[𝑚] =

𝑁−1∑
𝑘=0

[∣ 𝑋[𝑘] ∣2 𝐻𝑚[𝑘]] 0 ≤ 𝑚 ≤ 𝑀 − 1 (4)
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where 𝑀 is the total number of triangular filters usu-
ally selected into 20–40 (Logan, 2000). The reason that
conventionally 20–40 filters are used is that it provides
a good trade-off between the resolution and complexity.
If too few filters are selected, some important informa-
tion (features) can be lost or smoothed out; in contrast,
if too many filters are used, it will be computation-
ally expensive, and some features can be correlated.
It is worth noting that the number of filters can also
depend on other factors, such as the sampling rate and
frequency range of the signals (Pan & Zhang, 2022).
𝐻𝑚[𝑘] is the weight given to the 𝑘th energy spectrum
bin contributing to the𝑚th output band and expressed
as follows:

𝐻𝑚[𝑘] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 𝑘 < 𝑓(𝑚 − 1)

2(𝑘 − 𝑓(𝑚 − 1))

𝑓(𝑚) − 𝑓(𝑚 − 1)
𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)

2(𝑓(𝑚 + 1) − 𝑘)

𝑓(𝑚 + 1) − 𝑓(𝑚)
𝑓(𝑚) ≤ 𝑘 ≤ 𝑓(𝑚 + 1)

0 𝑘 > 𝑓(𝑚 + 1)

(5)
where 𝑓(𝑚) can be expressed as:

𝑓(𝑚) =

(
𝑁

𝑓

)
𝑓−1mel

(
𝑓mel(𝑓𝑙) +𝑚

𝑓mel(𝑓ℎ) −𝑓mel(𝑓𝑙)

𝑀 + 1

)
(6)

where 𝑓𝑙 and 𝑓ℎ indicate the lowest and highest
frequencies, respectively.

4. Extract MFCCs using inverse Discrete Cosine
Transform
The inverse DCT or DCT-III reported in Equation (7)

is applied to the transformedMel frequency coefficients
and computes cepstral coefficients.

𝐶[𝑛] =

𝑀−1∑
𝑚=0

log(𝑆[𝑚]) cos

(
𝜋𝑛(𝑚 − 0.5)

𝑀

)

𝑛 = 0, 1, 2, … , 𝐶 − 1 (7)

𝐶 is the number of Mel bands, and 𝐶[𝑛] are the cep-
stral coefficients. Evaluating the inverse DCT from the
signal 𝑋[𝑘] gives the representation of the energy con-
tent of the signal. One advantage of MFCCs is their
robustness toward noise and spectral estimation errors
under various conditions (Balsamo et al., 2014). The
algorithmused to extract the coefficients is summarized
in Algorithm 1

ALGORITHM 1 A pseudo-code algorithm for MFCC
extraction

Input: signal
Output: mfcc_features - The extracted Mel-frequency cepstral
coefficients

Define the frame_length as the desired duration of each frame in
seconds

Define the hop_length as the desired time shift between
consecutive frames in seconds

frames← SplitInFrames(signal, frame_len, hop_len)
mfcc_features← []
for each frame in frames do
spectrum← FFT(frame)
power_spectrum← PowerSpectrum(spectrum)
mel_spectrum←MelFilterbanks(power_spectrum)
cepstral_coefficients← DCT(mel_spectrum)
mfcc_features.append(cepstral_coefficients)

end for
returnmfcc_features

3.2 Data augmentation

The number of parameters, such as weights and bias,
to train an ANN model is exceptionally high; therefore,
to build a generalized model, a large number of train-
ing data sets is required for each class to cover acoustic
class variability based on themodel complexity (Takahashi
et al., 2016; C. Zhang et al., 2021). Moreover, many possi-
ble sound combinations are limited or cannot be present
in the recorded data, making generalizationmore difficult.
There are multiple ways to maximize the model perfor-
mance on the test data set; however, DA plays a key role
and is a prevalent way to increase training sets for learning
algorithms artificially (H. Zhang et al., 2017). In theory, an
accurate DA allows to the elimination of the performance
differences between the train and test sets (Chun et al.,
2022).
DA techniques used for SED can be varied from time

stretching and dynamic range compression for essential
signal augmentation to mixup and block mixing for com-
plex ones (Mesaros et al., 2021). In the present study,
polarity inversion, mixup, and time-shifting were used to
enhance the model performance.

3.2.1 Polarity inversion

This is a simple DA method that flips the waveform by
multiplying it by −1. The assumption is that a signal’s
polarity does not affect its acoustic content. Therefore,
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flipping the waveform will not change the information
content of the signal but create a new sample that can be
added to the training data set. Polarity inversion can be
useful for increasing the variability of the data set andmak-
ing the model more robust to changes in signal polarity.
In this study, the polarity of a randomly selected sub-
set of the training data was inverted to create additional
training data.

3.2.2 Mixup

Mixup DA introduced by H. Zhang et al. (2017) was
employed to generate new training samples by linearly
interpolating existing ones. An augmented signal 𝑠mix can
be generated as follows:

𝑠mix = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 (8)

where, 𝑥𝑖 and 𝑥𝑗 are the original source signals from the
same class, and 𝜆 is a value between 0 and 1 randomly
extracted from a uniformor beta distribution. This formula
results in a new mixed sample that has some characteris-
tics of both original signals, introducing more variation in
the training data.

3.2.3 Time-shifting

To further enhance the diversity of the environmental
noise training data set, time-shifting was employed. This
method involves shifting the signals by a defined time
interval to generate new samples. Each signal has been
divided into eight segments and shifted each segment by
a random number of samples between 0 and the length
of the signal. This technique produced eight new sam-
ples for each original signal. By applying time-shifting, the
model can become more resilient to slight variations in
the time alignment of the ultrasonic signals, which can
occur due to various environmental factors. This technique
can help improve the overall performance and accuracy
of the model by introducing additional variation in the
training data.
All these techniques can increase the data set diversity

andmake themodelmore robust to sound event variations.
However, it is worth noting that when applying DA tech-
niques, it is essential to ensure that the modifications are
realistic and do not introduce new classes or nonphysical
sound events.

3.3 Back-propagation neural network

This section briefly explains the BPNN utilized for binary
classification. BPNN is a supervised learning algorithm

that consists of input, hidden, and output layers, as illus-
trated in Figure 5. In this study, the input layer receives
the MFCC values, while the output layer represents the
source signal class, namely wire breakage or environ-
mental noise. The network is trained to predict a binary
output, with a value of 1 indicating wire breakage and a
value of 0 indicating environmental noise. The hidden lay-
ers receive the weighted combinations of these variables
and employ activation functions to give the output tar-
gets. The learning algorithm is based on a gradient-based
propagation technique, with an error function used to
compute the error between themodel output and observed
data to update the weight values in each iteration (Wang
et al., 2022). However, MacKay (2019) proposed employing
the “cross-entropy” error function instead of the sum-of-
squares for a classification problem leads to faster training
and improved generalization. The error function is the
negative log-likelihood of the true labels given the pre-
dicted probabilities, computed as in Equation (9). The
function output is a scalar value reflecting the model loss
or error. The weights and biases will be adjusted through
the back-propagation steps to decrease the loss value and
improve the model performance (Chollet, 2018). The for-
mula for binary cross-entropy loss is given by Murphy
(2013):

𝐶𝐸 = −
1

𝑆

𝑆∑
𝑖=1

𝑦𝑖 log 𝑝(𝑦𝑖) + (1 − 𝑦𝑖) log (1 − 𝑝(𝑦𝑖)) (9)

where 𝑆 represents the total number of samples in the
data set. Each sample 𝑖 is associated with a true label 𝑦𝑖 ,
where 𝑦𝑖 takes the value of 0 for noise and 1 for breakage.
The predicted probability of the positive class (breakage) is
denoted as 𝑝(𝑦𝑖). Additional descriptions of ANN models
can be found in the literature (Bishop, 2006; Goodfellow
et al., 2016).

4 EXPERIMENTS AND ANALYSIS

This section explains data collection and implementa-
tion, model hyperparameters, metrics measurements used
for the model evaluation, classification results and over-
all evaluation.

4.1 Data set and implementation

As this is the first study to classify wire failure as sound
event for SHM using AE signals, a rigorous data selection
procedure is required to ensure that the data set is repre-
sentative of the important events that may occur during
the bridge lifetime. Besides, there is currently no available
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194 FARHADI et al.

F IGURE 5 Structure of back-propagation neural network.

data set of wire breakage events; therefore, generating a
data set suitable for training the event detection models
was a key element. The primary data set collected from
the Alveo Vecchio bridge contains 244 acoustic signals,
including 128 wire cut signals and 116 environmental noise
signals. The wire cut signals were accurately recorded by
fixing an optimal threshold value on amplitudes to avoid
recording any noise during the cutting operation. This is
important to ensure that the data set only contains rel-
evant information and that the data are reliable. Strong
label signals make the available data set more robust, and
augmenting different classes would be easier and more
efficient. It will also minimize the possibility of errors
during the detection of sound events in real-time moni-
toring. Multiple channels help capture sound events from
different positions, improving detection and classifica-
tion accuracy. As previously evidenced, the pre-processing
phase involved stretching in time the signals to adjust their
frequency range from ultrasonic to audible frequencies
and, thus, consistently applying the Mel-spectrum rep-
resentation, originally developed to highlight the human
perception of a sound. The re-scaling process resulted in a
final sampling rate of 100 kHz with a frequency range of
0–50 kHz.
In certain scenarios, it can be challenging to distin-

guish between wire breakage signals and environmental
noise based on their characteristic parameters, such as
amplitude and energy alone. Figure 6a,b depicts the
time-domain representations of wire breakage signals,
while Figure 6c represents the environmental noise signal.
In the signal in Figure 6b, the absolute energy, amplitude,
and risetime values are significantly higher with the values
of 3.8 × 107 aJ, 1.5 V, and 704 μs, respectively, compared
to the environmental noise signal in Figure 6c, which

F IGURE 6 Time-domain representation: (a, b) wire breakage
signal; (c) environmental noise signal.

has values of 6.2 aJ, 6 × 10−4 V and 49 μs. Conversely, in
Figure 6a, representing a wire breakage signal detected
by a sensor far from the cut, the corresponding energy,
amplitude, and risetime values are lower with the values
of 0.54 aJ, 3.8 × 10−4 V and 47 μs, respectively, compared
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FARHADI et al. 195

F IGURE 7 (a, b) Time-domain waveform visualization; (c, d) frequency-domain analysis; (e, f) Mel-spectrum representation; (g, h)
MFCC characterization for wire breakage and environmental noise, respectively.

to the wire breakage signal in Figure 6c. These observa-
tions highlight the challenge of discerning differences
between wire breakage signals and environmental noise
based solely on these parameters. On the other hand,
the signals represented in Figure 6a and c may contain
distinct patterns and frequency components that can
be effectively captured and analyzed through advanced
signal processing techniques such as Mel-spectrogram
and MFCC.
Figure 7 provides different representations of the anal-

ysis conducted on wire breakage and environmental noise
signals. The time-domain waveform representations are
depicted in Figure 7a,b, indicating the temporal charac-
teristics of the preprocessed breakage and noise signals.

Moving to the frequency domain, Figure 7c,d presents the
frequency-domain analysis, revealing the spectral content
of the signals. In order to extract meaningful features for
further analysis, the sound samples were converted into
MFCCs using Python and the SciPy library, as described in
Section 3. The choice of FFT length is critical, and it was
ensured that it is at least the same length as the window
to provide a high-resolution representation and sufficient
information. For this study, 32 filter banks with 256-FFT
points were utilized, resulting in compact features com-
prising 384 frames. An example of the Mel-spectrum and
MFCC representation is presented in Figure 7e,f. It is
important to note that the selection of the FFT length
was based on the signal sampling rate and the desired
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196 FARHADI et al.

TABLE 1 Distribution of original and augmented data set for
training and testing: Alveo Vecchio bridge.

Data type
Number of
samples Percentage

Original (total) 244 –
Original (wire breakage) 128 52.50%
Original (environmental noise) 116 47.50%
Original (training set) 195 80.00%
Original (test set) 49 20.00%
Augmented (total) 2706 –
Augmented (wire breakage) 1374 55.00%
Augmented (environmental
noise)

1332 45.00%

frequency resolution, ensuring an appropriate repre-
sentation of the underlying signal characteristics. These
representations serve as valuable inputs for subsequent
analysis and classification tasks, enabling the effective
characterization and differentiation of wire breakage and
environmental noise signals.
To ensure the validity of the proposed approach and to

build a baseline model, the model was initially trained
solely on the data collected from the Alveo Vecchio bridge,
which consist of 244 signals, including 128 wire breakage
events and 116 environmental noise events. The train-test
set has been split into 80%–20%. Then, to increase the
sample size and improve the model performance, a DA
approach was employed to both train and test sets, keep-
ing the proportion 80%–20%, which resulted in 2706 total
events, including 1374 wire cuts and 1332 environmental
noise events. The DA approach included time-shifting for
environmental noise and polarity inversion and mixup
techniques for both wire breakage and environmental
noise events. Table 1 presents the distribution of the orig-
inal and augmented data sets for training and testing on
the Alveo Vecchio bridge. Moreover, due to the uncer-
tainty of materials and structures, evaluating the models
on different structures with specific geometry and char-
acteristics is vital. To address this concern, the secondary
data set collected from theAnsa del Tevere bridgewas used
to evaluate the trained model capability for wire break-
age detection on a different structure. The data collected
from Ansa del Tevere were solely used as an unseen test
data set.

4.2 Model parameters

To optimize the training process of the BPNN models,
we utilized MFCCs with a consistent size of 32 × 128.
This standardized format ensures efficient data process-

TABLE 2 Optimized hyperparameters: Key factors for trained
model performance on both original and augmented data set.

Hyperparameter Selected parameters
Input size 32 × 128

Number of hidden layers 5
Number of epochs 500
Activation function leaky-relu
Learning rate 9.5E-7
Optimizers Nadam
Initializer Glorot
Number of neurons (1st layer) 1000
Number of neurons (hidden layers) 90

ing capabilities of the models (Gao et al., 2019). For each
model, we carefully selected specific hyperparameters,
which are listed in Table 2. Given the potentially slow and
computationally demanding nature of training an ANN
model with numerous parameters, various strategies were
adopted to enhance the model performance, as described
in the following.

∙ Feature extraction: To solve this problem, MFCCs
were extracted to train the model, which decreased the
size of training from [𝑥 ∗ 𝑥] traditional spectrum to [𝑘 ∗
𝑛], where 𝑘, 𝑛 < 𝑥.

∙ Data set size: DA techniques were implemented to
increase the size of the data set.

∙ Initialization: Glorot initialization (Glorot & Bengio,
2010) was set to avoid vanishing and exploding gradient
problems.

∙ Regularization: To avoid overfitting and enhance the
model performance, some regularization techniques,
including batch normalization (BN) proposed by Ioffe
and Szegedy (2015), and drop-out initially introduced by
Hinton et al. (2012) were applied.

∙ Optimization: Nadam optimizer (Dozat, 2016) was
applied to boost solutions convergence.

∙ Hyperparameters: Randomized search CV approach
was utilized to find the optimal hyperparameters
(Table 2).

∙ Early stopping: Callback was used to interrupt the
training processes when the selected validation metrics
stopped improvements.

Moreover, to avoid the risk of sampling bias and infor-
mation leaks (Chollet, 2018), cross-validation using a
stratified shuffle technique has been employed where n-
split set to 10 and the validation size to 0.1. This technique
merges shuffle split and stratified fold split and allows
for a more robust evaluation of the model. The model
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evaluation metric has been set to “loss” to assess the
model performance.

4.3 Evaluation criteria

Evaluating the performance of trained DL models is an
essential step in assessing their effectiveness. Therefore,
computational metrics were employed to asses proposed
models by comparing the predicted output and ground-
truth labels. The comparison between these two valueswas
obtained using true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). Accuracy (Ac), Pre-
cision (Pr), Recall (Re) or Sensitivity (Se), Specificity (Sp),
and F1-score (F1) were employed as common methods in
binary classification.
In addition, Matthews Correlation Coefficient (MCC)

introduced by Matthews (1975) was implemented using
Equation (10), which computes the coefficients for binary
classes. The values forMCC range in [−1,+1], with the best
scores +1. It is the only binary classification metric that
considers all the confusion matrix parameters and gener-
ates a high score when the model can predict positive and
negative classes.

MCC

=
𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁√

(𝑇𝑃 + 𝐹𝑃) ⋅ (𝑇𝑃 + 𝐹𝑁) ⋅ (𝑇𝑁 + 𝐹𝑃) ⋅ (𝑇𝑁 + 𝐹𝑁)

(10)

When there are no positive or negative measurements,
MCC will be undefined. The average conditional probabil-
ity (ACP) (Baldi et al., 2000) was used to face this problem
and capture both specificity and sensitivity:

ACP

=
1

4

[
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑁

]

(11)

For the model to be reliable and applicable to real-
world scenarios, besides the accuracy, its performance in
minimizing both FP and FN is of paramount importance.
Obviously, a high number of FN (breakage signals identi-
fied as noise) has a negative impact on themodel reliability.
However, the number of prestressing wires in a concrete
beam is always very large; accordingly, missing a single
wire breakage is not a critical issue. Therefore, an accept-
able probability of having FNs could range from 5% to
10%. Structural collapse requires the breakage of multiple

wires, making the joint probability of missing all events
extremely low. In a real application scenario, the detec-
tion of a single wire breakage triggers human intervention
for a further and more invasive inspection to better assess
the condition of the structure. Common interventions
require removing a portion of concrete in the region where
the damage has been localized and performing a visual
inspection of the prestressing tendon. However, such an
operating protocolmakes the detection of FP (noise signals
identified as breakage) more critical. As the noise signals
recorded by the AE system in a real case are much more
than the breakage signals, even a very low probability of
having FP (e.g., 1%) may trigger the human intervention
every few days or weeks, which is certainly not accept-
able. Therefore, although high accuracy is important, a
primary focus is on minimizing FP, thereby achieving a
high Recall/Sensitivity score.

4.4 Classification result

This section provides an overview of the results obtained
from our proposed BPNN models for wire breakage detec-
tion, utilizing both the original and augmented data
set. Figure 8 presents an overview of the workflow in
this approach. BPNN algorithm with two different reg-
ularization techniques, namely, BN and dropout, was
implemented using the Keras library—a high-level neural
networkAPI—on the TensorFlow platform. The classifica-
tion performance of these models is discussed in detail in
this section.
To assess the trained models performance, initially,

they were evaluated on the test set from the Alveo Vec-
chio bridge, which was used during the training phase.
This enabled evaluation of the model performance on
the data it was trained on and overall reliability assess-
ment. Furthermore, the trained models were evaluated
on an unseen data set from the Ansa del Tevere bridge
to assess their ability to generalize on new scenarios and
real-world applications.
To gain a deeper understanding of the performance of

the proposed models, confusion matrices were employed
to evaluate their effectiveness. The sequential model
achieved an accuracy of 93.85% on the Alveo Vecchio test
set indicating its ability to make correct wire breakage pre-
dictions. Moreover, it could attain an F1-score of 93.00%
and MCC score of 0.88, indicating its efficiency in striking
a balance between precision and recall (Figure 9a). Simi-
larly, this model with BN and dropout regularization could
achieve an overall accuracy of 98.00%. This enhancement
was accompanied by an F1-score of 98.30% and an MCC
score of 0.96, illustrating the efficacy of the proposed reg-
ularization techniques in improving model performance

 14678667, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13079 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [22/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fmice.13079&mode=


198 FARHADI et al.

F IGURE 8 The strategy workflow for sound event detection approach to identify prestressing wire breakage in bridges.

TABLE 3 Performance metrics comparison for event detection on test set.

Models Accuracy Precision Recall Specificity F1-score MCC ACP
Alveo Vecchio Baseline 95.50 100.00 91.20 100.00 95.40 0.91 0.95

Sequential 93.85 100.00 87.00 93.00 93.00 0.88 0.94
Batch 98.00 100.00 96.50 100.00 98.30 0.96 0.98
Dropout 98.00 100.00 96.50 100.00 98.30 0.96 0.98

Ansa del Tevere Baseline 67.00 33.30 30.80 79.95 32.00 0.09 0.55
Sequential 61.00 23.10 23.10 73.70 23.00 0.03 0.48
Batch 78.50 75.00 23.00 97.40 35.30 0.35 0.68
Dropout 82.35 70.00 54.00 92.10 61.00 0.58 0.75

(Figure 9b and c). In the experimentation process, all
models were trained for 250 epochs to thoroughly assess
their capabilities and convergence patterns (Figure 10). It
is worth noting that early stopping was employed as a
precautionary measure to prevent overfitting. A patience
value of 5 and monitoring the loss function were utilized
as criteria for early stopping.
The final results presented in Table 3 indicate the impact

of utilizing augmented data on model performance. It is
noteworthy that the average performancemetrics achieved
by the augmented data models surpass those of the
sequential model without augmentation. Among themod-
els employing regularization techniques, the sequential

model with regularization emerged as the most effec-
tive, showcasing the highest scores across all metrics. The
F1-scores of 98.30% attained by these models illustrate
their ability to strike a balance between precision and
recall, encompassing both positive and negative classes
accurately. Moreover, these models exhibited the highest
MCC and ACP scores, recording values of 0.96 and 0.98,
respectively. These scores reflect the model outstanding
predictive power, especially in identifying the highest pos-
itive and negative classes. These findings highlight the
fundamental value of augmented data and the efficacy
of employing regularization techniques in enhancing the
performance of wire breakage detection models.
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F IGURE 9 Confusion matrices for testing results on the Alveo Vecchio bridge (a–c) and Ansa del Tevere bridge (d–f).

In the second step of our analysis, the trained models
were applied to detect wire breakage signals in the Ansa
del Tevere bridge. The number of wire cut signals collected
in this bridge was 13, while there were 38 environmental
noise signals. The evaluation of the models, as depicted in
Table 3, revealed a decrease in their performance across
all measuredmetrics when compared to the Alveo Vecchio
bridge test set. A robust model should have high sensitiv-
ity and specificity to minimize false detections in breakage
and noise signals. Nevertheless, it is crucial to acknowl-
edge that the decline inmodel performancemay stem from
various underlying factors, extending beyond the only con-
sideration of their robustness. For instance, a practical
issue that was evidenced in the Ansa del Tevere bridge
and that makes it different from the Alveo Vecchio bridge
is poor grouting of the sheath. This issue can affect how
the ultrasonic wave propagates through the structure and,
therefore, its shape and amplitude when detected by the
sensors. The confusion matrices presented in Figure 9d–f
provide a better understanding of the model performance.

Notably, the sequential model, devoid of any regularizers,
just identified three wire cut signals. On the other hand,
the model with BN obtained the highest TN values, cor-
rectly detecting 37 out of 38 environmental noise signals,
and achieved the highest specificity score of 97.40%.
On the other hand, the dropout model demonstrated

superior performance compared to the other models by
successfully detecting 7 out of 13 wire breakage signals,
achieving accuracy and F1-score of 82.35% and 61.00%,
respectively. The MCC values for the sequential models,
both without and with augmentation, were close to zero,
indicating random predictions and a lack of agreement
between the true labels and the predicted labels. These
findings suggest that the dropout model holds the most
promise for effectively detecting wire breakage signals in
the Ansa del Tevere bridge data set. However, further
fine-tuning may be necessary to reduce the number of
false positives, thereby enhancing the model’s precision
in accurately identifying genuine wire breakage instances.
These results underscore the significance of employing
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F IGURE 10 Learning curves using augmented data set.

regularization techniques in this task to improve overall
model performance and reliability.

5 CONCLUSION

This study proposes a novel approach for detecting and
classifying wire breakage and environmental noise sig-
nals in prestressed concrete bridges using BPNN models.
The proposed models utilized MFCC extracted from AE
signals as input data, and different DA techniques were
employed to address the scarcity of real data for training
ANN algorithms. Polarity inversion, mixup, and time-
shifting effectively augment wire cut and environmental

noise signal data sets. These techniques preserve the
physics of the signals, closely resembling the original data
and improving performance in classification and detec-
tion. The successful application of MFCC to detect wire
breakage is particularly noteworthy. It reduces data dimen-
sionality while effectively representing spectral features
in a compact form, which is critical for model train-
ing and generalization. Two regularizers were applied to
improve the BPNN algorithm generalization performance,
with the dropout model proving to be the most promising
one.
For the future expansion of this research, some more

advanced ML algorithms are planned to be explored, such
as Neural Dynamic Classification Algorithm (Rafiei &
Adeli, 2017), Ensemble Learning (Alam et al., 2020; Lax-
man et al., 2023), and Self-Supervised Learning (Rafiei
et al., 2022). These models have shown promising results
in different applications andmay improve the reliability of
wire breakage detection.
Despite the promising outcomes of the current study,

improving the model reliability for different bridges is
needed.Ultrasonicwaves are varied by structure andmate-
rials, making signal characteristics somehow unique to
each bridge, posing a challenge for having a universal
model for wire cut detection. To address this issue, future
works can be directed toward developing a more diverse
data set that includes a broader range of bridge types.
Although this study was focused on wire breakage, the
proposed SED approach can be extended to identify a
wider range of structural damage mechanisms, becoming
an essential and effective tool for the permanent safety
monitoring of new or aging infrastructures.
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