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A B S T R A C T   

The increased diffusion of Photovoltaic (PV) generation could be limited by the grid capacity to host the power 
input from PV systems, especially in mid-day hours on sunny days. This paper proposes a framework of analysis 
to determine the mitigation of the PV energy curtailment in the grid, based on a novel smart charging strategy for 
electric vehicles (EVs) that operate in the grid-to-vehicle mode. This framework adopts a combination of methods 
and techniques, with a clustering procedure to group the EV charging stations with some PV systems based on the 
electrical distance, a novel smart charging strategy for the EVs based on the definition of fuzzy weights, and the 
exploitation of the blockchain technology with a Proof-of-Authority consensus protocol to reinforce network 
security and achieve decentralization. The blockchain provides full traceability of EV charging operations and 
grid status monitoring during time. The proposed framework contains novel indicators of avoided PV power 
reduction and energy curtailment. To account for the EV-related uncertainty, these indicators are determined 
from a Monte Carlo-based assessment of the three-phase power flow results. The results are presented on a three- 
phase unbalanced 123-node system with given locations of PV systems and EV charging stations.   

1. Introduction 

The exploitation of renewable energy sources (RES) is a viable option 
to reduce the harmful impact of the greenhouse gas emissions resulting 
from the use of fossil fuels as the primary source of energy generation. 
Photovoltaic (PV) installations are the dominant type of RES connected 
to the Medium Voltage (MV) or Low Voltage (LV) grids. The reduction in 
the production cost and the increase in the PV module efficiency that 
occurred in the last years enable progressive PV diffusion. On the global 
scale, the diffusion of PV installations is still limited, compared with the 
overall electricity needs. However, on a local scale, the power produced 
by PV installations could already exceed the local demand in some pe
riods of time, especially in mid-day periods with a clear sky. In this case, 
the Distribution System Operator (DSO) needs to curtail some parts of 
the production from PV power plants to comply with the grid con
straints, in order to avoid overcurrents in the network branches (lines 
and transformers) and/or over-voltages in some grid nodes [1]. A lack of 
suitable means to prevent PV generation curtailment leads to the 
wasting of energy produced by RES and raises issues about fairness of 

active power curtailment [2]. The extent of PV curtailment is not 
negligible [3], with percentages higher than 5% of the PV energy pro
duction occurred for example in Texas (8.4% in 2018 [3]) and in Cali
fornia (10% in the first four months of 2020 [4] and 6.3% in 2022 [5]). 
The report of the International Energy Agency [6] indicates that the 
curtailment of the energy produced from variable renewable energy 
(VRE) resources remains relatively low (from 1.5% to 4%) in most large 
renewable energy markets. However, the energy curtailment for VRE 
systems will likely increase with the expected growth in the VRE 
diffusion if the countries will not manage the renewable energy inte
gration with appropriate measures, particularly with the expansion of 
the transmission and distribution networks and increasingly higher 
adoption of storage systems. 

From the literature, the solutions proposed to tackle PV generation 
curtailment during operation typically fall into three major categories:  

1) Development of control strategies to enhance the operation of PV 
systems by exploiting the active and reactive power control capa
bilities of the equipment available in the distribution network (e.g., 
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local control on the PV inverters, and control of capacitor banks and 
on-load tap changers of the transformers). 

2) Designing battery energy storage systems (BESS) suitable for man
aging the energy produced by RES, by storing the excess of produc
tion into the batteries and supply the demand through the batteries 
in case of low or fluctuating production from RES. The presence of a 
local BESS could enable the local energy system to exploit the whole 
PV production by storing it into the BESS rather being curtailed. 
However, the costs of BESS systems are still relatively high, and their 
installation is not sufficiently scattered in the distribution systems to 
ensure that there will be no PV production curtailment. 

3) Adapting the intermittent demand to receive the excess of PV gen
eration, e.g. by rescheduling the on/off periods of appliances in 
residential areas based on different strategies during peak power 
generation hours or defining smart charging strategies for the elec
tric vehicles (EVs) connected to the grid. Therefore, the excess en
ergy injected by PV energy to the grid would be consumed and 
avoided to be curtailed, while satisfying the EV owner or user needs. 

The main aspects referring to relevant solutions developed for these 
categories are based on the selected references critically reviewed 
below. 

With reference to the first category indicated previously (control 
strategies), priority is given to the reduction of the related barriers 
through decentralized control of active and reactive power, leaving PV 
curtailment only as the last resort [7]. By analyzing the effectiveness of 
different control schemes, including centralized and decentralized 
control [8], the conclusion is that the most effective scheme is the 
volt-var operation mode, based on limiting the voltage increase at the 
point of grid connection of the PV system by controlling the reactive 
power based on local voltage measurement. 

For the second category (BESS design), power shortfalls and PV 
curtailments in a power system with PV and BESS can be reduced by 
using a scheduling method [9]. From the results obtained through nu
merical simulations on the Kanto area of Japan, this methodology 
eliminates power shortfalls by 100% with the consideration of BESS in 
the grid and reduces PV energy curtailment to 69.5% and 95.2% in 
months of high and low solar irradiance, respectively. The calculation of 
the optimal size of a residential storage system takes into account the 
possible overvoltages that lead to PV energy curtailment in residential 
rooftops [10]. The method used considers energy curtailment, voltage 
levels, and the financial losses incurred by PV owners, because when
ever PV energy curtailment occurs the owner incurs a financial loss due 
to lack of energy production. The method has been implemented for an 
11 kV feeder in South Australia and the results suggest that PV energy 
curtailment could be reduced by 54.7% in case of installation of 100% 
optimally sized storage system on the grid. The charging and discharg
ing of BESS scheduled in [11] reduces the PV curtailment based on the 
day-ahead and intraday few-hours-ahead forecast PV power outputs. 
Rescheduling the charge/discharge of the BESS based on more accurate 
intraday forecasts enables more efficient use of PV generation. Another 
solution is to set up a decentralized management method for a PV system 
equipped with the energy storage and a Power Conditioning System 
(PCS), considering real time pricing and distributed decision making 
[12]. In this case, a pricing signal is sent to each PCS at each time step 
and every PCS adjust their optimal set point for the output power as a 
solution to an individual optimization problem. This methodology has 
been assessed through numerical and real physical experiments carried 
out in Japan on a downscaled model with 1 kW capacity that represents 
the operation of the PCS on a PV system with 2.5 MW capacity, indi
cating that this method could also be used effectively in cases without 
batteries installed. Shared ESS charging and discharging, together with 
PV production curtailment, is addressed in [13], where the PV producers 
share the costs of the ESS infrastructure and distribute the profits based 
on power sensitivity allocation ratios. 

The third category (demand adaptation) is the one of specific interest 

in this paper. The trend is to reduce PV energy curtailments by 
increasing the consumption inside the grid. The International Energy 
Agency [14] identifies the opportunity of EV participation for increasing 
local flexibility to support more variable renewable generation. Smart 
EV charging strategies could contribute to reduce RES curtailment up to 
40% with respect to unmanaged EV charging [15]. In a LV distribution 
network with deep PV penetration, a voltage regulation strategy has 
been developed through a consensus-based cooperative of plug-in EVs 
(PEV) and PV active power curtailment [16]. Coordinated charging and 
discharging control of PEV batteries provides maximum utilization of 
the energy generated by PVs which is going to be curtailed to meet the 
grid constraints. The strategy has been verified to be feasible and ver
satile when EVs arrive or depart occasionally only, so that this strategy 
may not hold for frequent EV departures and arrivals. This approach 
assumes that each customer has both rooftop PV and PEV systems, while 
in practical cases this could not happen. EV charging with battery 
swapping is addressed in [17] for providing peak shaving in networks 
with variable production from PV and wind systems, where the uncer
tainty in the EV charging strategy is reduced by starting with a swapped 
EV battery. In the coordinated EV charging strategy presented in [4], a 
fitted Q-iteration algorithm has been considered, because it needs fewer 
learning steps. This algorithm is implemented on EVs to adjust the EV 
charging schedule by reinforcement relearning. This research is con
ducted in California based on three case studies that consider 100 EVs 
with similar battery ratings (5 kW maximum power) and capacity (16.67 
kWh), and in all of them a fleet of EVs belong to an aggregator that 
exploits the charging strategy to achieve a certain goal. The studies are 
conducted without considering the distribution grid with its topology, 
generation, demand and constraints, which is a limiting factor, as other 
stakeholders may not be fully considered [18]. A model predictive 
control-based method that uses PV inverters reactive power compensa
tion and EV active power charging is presented in [19] to provide 
flexibility in radial distribution systems, with testing conducted on the 
IEEE 123-bus system by considering a high penetration level with 30 PV 
systems and 25 EV aggregators. Sensitivity-based active power curtail
ment is addressed in [20] to mitigate voltage violations in a 45-bus 
European distribution network with 6 PV systems and 3 EV charging 
stations. 

Various approaches found in the literature refer to centralized stra
tegies applicable in the distribution grid. Coordinated actions carried 
out by multiple PV and EV aggregators are considered in [21] to provide 
an even partitioning of the PV power to be curtailed by all aggregators at 
each time step of analysis. In another EV coordinated charging method 
to consume PV energy production and avoid overvoltages in the low 
voltage distribution networks [22], every house is equipped with solar 
panels and each household owns an EV. In this case, in order to reduce 
PV energy curtailments by means of utilization of EVs, three main issues 
are considered: (i) determination of appropriate amount of EV charging 
shift, where inappropriate charging shift may cause extra costs for the 
users, since the excess amount energy produced by PVs could be sold to 
the grid; (ii) assurance of customer autonomy on charging their vehicles, 
and (iii) assurance of equity. The users who schedule their EV charging 
accordingly should receive greater benefits than those who do not. The 
bidders submit their bids in an algorithm-based manner according to the 
truthful bids for the target value. In the auction mechanism, the users 
voluntarily determine the bids without knowing the other’s bids and 
compete to obtain the rights to carry out the EV charging shift. The 
winners of an auction shift their charging schedule and obtain the 
incentive as the summation of fees by other bidders in the network. The 
robustness of the methodology illustrated is evaluated through simula
tions carried out in both residential and industrial areas. The auction 
mechanism leads to a voluntary voltage reduction by shifting the 
charging period of EVs as well as PV output curtailment. Also in this 
case, situations in which EVs are not present in all locations with PV 
production, and hence with the consequence that the bidders cannot be 
uniformly present, are not considered. Moreover, in a valley-filling 
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approach with the contribution of EVs for the reduction of renewable 
energy curtailment [23], the simulation results on the Kyusyu area in 
Japan show that applying this approach could almost eliminate all 
renewable energy curtailments with 20% penetration of EVs. Different 
scenarios regarding the uncertainties such as EVs plug-in time and 
available charging/discharging capacity are also modelled. A further 
contribution from Japan considers the impact of different rated of EV 
diffusion and PV capacity for a planning period of 10 years. The authors 
conclude that with a sufficiently high EV diffusion (the scenarios 
analyzed consider from 300,000 to 570,000 EVs) it is possible to 
maintain the level of PV energy curtailed between 10% and 15% [24], 
however, additional improvements due to EV smart charging are not 
considered. The PV and EV hosting capacity is analyzed in [25] on the 
IEEE European Low Voltage test network, showing that PV curtailment 
does not improve the hosting capacity for EV, as well as that EV smart 
charging improves only slightly the PV hosting capacity. However, the 
benefits of EV smart charging for the operation of existing PV systems 
are not discussed in that study. A distributionally robust optimization is 
proposed in [26] for a distribution network operation under uncertainty 
conditions, where the network topology is considered, the demand 
curtailed is included in the objective function; however, the generation 
curtailment is not represented. 

The scheduling of the respective EV charging can be seen as a service 
in the context of demand response strategies aimed at reducing PV en
ergy curtailment and the corresponding economic losses. The trans
mission system operator sets out the requests and incentives, and the 
managing entity of the EV charging station decides how the EVs 
belonging to the charging station participate in the demand response 
action [27]. However, no type of uncertainty is taken into account. 
Other papers consider energy curtailment costs inside an objective 
function used for distribution system optimization. For example, a 
multi-objective coordinated charging model of EVs has been formulated 
in [28] by considering the maximum profit of the virtual power plant 
and the minimum variance of the distribution network load. Further
more, an optimization problem has been set up in [29] by introducing a 
renewable power curtailment penalty cost and the waiting time cost for 
EV battery swapping. Addressing economic optimization aspects is 
outside the scope of this paper. 

The emerging blockchain and distributed ledger technology (DLT) 
have attracted considerable interest in the energy sector, especially in 
smart grids, where integrating and coordinating a large number of 
growing connections can be a challenging issue for the traditional 
centralized grid systems [30]. Examples of application of blockchains in 
smart grids include solutions to control and manage increasingly 
decentralized complex energy systems [31] and charging stations [32], 
decentralized coordination and control for integration of distributed 
energy resources [33] and energy dispatching [34], innovative trading 
platforms where prosumers and consumers can trade their energy sur
plus on a peer-to-peer network [35] leveraging secure smart contracts 
[36], solutions to improve the resilience and the security of smart grids 
[37], decentralized systems to manage EV charging [38] and 
vehicle-to-grid power trading mechanisms in smart grids [39], and EV 
incentive system to maximize the utilization of renewable energy [40]. 

The integration of blockchain in the context of EV charging in
frastructures is evolving. Conventional consensus algorithms have been 
included to manage transactions and guarantee decentralization and 
traceability of the payments [41]. Transactions are made based on bids 
that depend on forecasting different parameters [42]. Leveraging the 
distributed ledger technology for the EVs billing system is aimed at 
preventing malicious tampering on the transactions [43]. 

The smart charging methodologies introduced in [44,45] for the 
integration of PV energy and grid stabilization by means of energy 
storage systems (ESS) and EVs are based on scheduling EV charging to 
avoid overloads and peak load shaving. Smart EV charging in
frastructures are proposed, as are ways to evaluate grid parameters such 
as charging demands and loads to provide best charging schedule and 

achieve energy price cutting and load congestion prevention. The ref
erences on the adaptation of blockchain for EV charging mainly exploit 
conventional consensus algorithms based on Proof of Stake (PoS). The 
algorithms that consider the charging power and grid parameters rely on 
the forecasts made based on the given parameters and ask the EV owners 
to charge in specific timing periods established by the algorithm to gain 
profits. In the original PoS, validators are selected based on the amount 
of stake (wealth) that they put and those with higher stakes tends to 
have a higher chance of being chosen to forge their blocks. Thus, 
wealthier members become wealthier in each round. This strategy might 
end up in a “nothing at the stake” congestion, which is a common 
drawback of a PoS algorithm [46]. Moreover, PoS consensus is typically 
adopted in public-permissionless blockchain solution, which could be 
inconvenient in smart grid applications where there could be the need 
for a more restricted and private control over users and transactions. In 
the proposed system, blockchain is running based on the proof of au
thority (PoA) algorithm. According to the literature [47], this consensus 
protocol is decentralized and improves the security of the system against 
malicious cyber-attacks. In addition, implementing this protocol, 
traceability and scalability are gained at the same time. It is also a pri
vate blockchain algorithm suitable for the proposed methodology. 

From the indications provided above, setting up an overall frame
work of EV interaction with the grid for reducing the PV power 
curtailment is one of the current challenges. To fill the research gaps 
identified from the literature review, the main contribution provided in 
this paper is the formulation of an overall framework that features the 
following novelties:  

▪ The PV generation curtailment is characterized in a three-phase 
unbalanced distribution grid, taking into account the grid 
constraints, with the definition of a reference case and of spe
cific PV energy curtailment indicators.  

▪ The effects of uncertainty on PV generation and with regard to 
EVs (type of EV, arrival time, departure time and initial state of 
charge) are addressed with a Monte Carlo-based approach by 
defining the new indicators avoided PV energy curtailment 
effectiveness and PV peak power reduction effectiveness.  

▪ The smart charging of EVs is considered for grid-to-vehicle 
applications, proposing an EV smart charging strategy in 
which the EVs are supplied by the excess of PV production by 
increasing their charging power, scheduled for successive time 
steps. The proposed framework adopts a combination of 
methods and techniques (clustering, fuzzy logic and block
chain) and has a broader prospect with respect to the applica
tion of specific methodologies to solve individual aspects of PV 
generation curtailment as found in the current literature.  

▪ The blockchain-based EV charging strategy proposed in this 
paper aims to address the reduction of PV energy curtailment 
during the peak power generation by exploiting EVs modelled 
as a dynamic battery. Therefore, the installation of expensive 
BESS in the grid can be avoided. In addition, EVs charge their 
batteries with higher charging power when needed to reduce 
PV curtailment, thus reducing their charging time. The pro
posed strategy works properly regardless of the type of EV 
charger used in the charging infrastructures and time of the 
day. It also does not involve EV owners in the charging process. 
EV owners benefit from the excess energy generated by PVs 
without paying extra costs. 

To confirm the effectiveness of the proposed approach, simulations 
are carried out on a three-phase unbalanced distribution system with 
different numbers of charging points inside the network. 

The next sections of this paper are organized as follows. Section 2 
presents the overall framework considered for addressing the cases with 
PV power curtailment. Section 3 illustrates the model used for EV smart 
charging. Section 4 is dedicated to the application to a distribution 
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network. The last section contains the concluding remarks. 

2. Framework for assessing PV power curtailment 

2.1. Main concepts 

The possibility of avoiding PV power curtailment is analyzed by 
defining a reference case, in which all the available PV generation can be 
used in the system. This reference case is defined in the ideal situation in 
which no grid constraints are enforced. PV power curtailment is then 
assessed by imposing the grid constraints and calculating other solutions 
in which no violation of these constraints occurs under specific scenarios 
of climatic conditions and energy management inside the system. 
Different cases are addressed, by considering the type of day with 
reference to the climatic conditions (e.g., sunny or cloudy day), and the 
management strategies adopted. The analysis is carried out by taking 
daily demand and PV generation patterns with a specified time step of 
analysis. Changing the time step would lead to different results, because 
of the averaging effect that produces smoother power patterns when the 
time step duration increases [48]. 

In the reference case, the following quantities are observed, for a 
given day:  

▪ The PV power Pref
PV(t) generated during time.  

▪ The PV peak power P̂
ref
PV reached during the day.  

▪ The energy Wref
PV generated by the PV system in the day. 

The other cases analyzed are denoted with the superscript k = 1, …, 
K. The following quantities are of interest:  

▪ The PV power P(k)
PV(t) generated during time. 

▪ The peak PV power P̂
(k)
PV reached during the day without vio

lations of the grid limits.  
▪ The PV energy W(k)

PV generated by the PV system in the day 
without violations of the grid limits.  

▪ The power reductions due to PV power curtailment during the 
day, obtained by taking only the positive values of the differ
ence between the reference PV power and the PV power 
generated during time:  

ΔP(k)
PV(t) = max

{
Pref

PV(t) − P(k)
PV(t), 0

}
(1)    

▪ The cumulative distribution function F(ΔP(k)
PV) of the PV power 

reductions due to PV power curtailment during the day, 
calculated by considering the exceeding probability of the 
values ΔP(k)

PV for all the cases with positive ΔP(k)
PV. 

2.2. PV energy curtailment indicators 

The need for respecting grid limits causes the curtailment of the 
excess PV generation. The following indicators of PV curtailment are 
determined for case k = 1, …, K:  

1) The PV energy W(k)
PV,cur curtailed during the day [49]: 

W(k)
PV,cur = W ref

PV − W(k)
PV (2)    

2) The peak power reduction P̂
(k)
PV,cur after PV curtailment, calculated by 

considering the peaks of PV generation in the reference case and in 
the case analyzed, which generally occur at different time steps: 

P̂
(k)
PV,cur = P̂

ref
PV − P̂

(k)
PV (3)    

3) The maximum of the PV power reductions due to PV power 
curtailment during the day: 

P̂
(k)
PV,red = max

t

{
ΔP(k)

PV(t)
}

(4)    

4) The PV power reduction P(k)
PV,red, x% due to PV power curtailment with 

exceeding probability x% during the day, which gives a less extreme 

indication than P̂
(k)
PV,red about the PV power reductions that occur 

during the period of analysis. The term P(k)
PV,red, x% is determined as 

the value of ΔP(k)
PV such that F(ΔP(k)

PV) = x/100. For example, 
P(k)

PV,red, 5% is the PV power reduction that is exceeded for 5% of the 
cases in which there is a PV power curtailment. 

The analysis is carried out on distribution systems, which typically 
operate in unbalanced conditions. The results are then analyzed based 
on the three-phase power flow calculations, to check the constraint 
satisfaction on each phase. The PV energy curtailment is taken as the 
sum of the PV energy curtailments that occurs over the three phases at 
each node of the grid where PV systems are in operation. 

2.3. Uncertainty effects 

Both PV generation and EV arrival are subject to uncertainty. How
ever, the cases with higher PV energy curtailment occur on sunny days, 
in which the uncertainty in the PV production is low. Nevertheless, the 
uncertainty on the EV arrival and state of charge is generally higher. 
This aspect has been taken into account by executing, for the same 
weather conditions for PV generation, M simulations in the Monte Carlo 
framework, with different instances of the random variables associated 
to the EV arrival, initial state of charge and duration of the permanence 
at the charging point. The random variables are picked up from a uni
form probability distribution in the specific ranges of variation estab
lished for each random variable. The time of the day for EV arrival is 
considered minute-by-minute. For the minimum and maximum initial 
state of charge of the EV battery, and minimum and maximum duration 
of permanence at the charging point, the limits of the ranges are spec
ified in Section 4.1 for the case study. 

Let us consider as random variable r of interest the indicators W(k)
PV,cur,

P̂
(k)
PV,cur, P̂

(k)
PV,red or P̂

(k)
PV,red,x%, generated to correspond to independent 

random samples. The uncertainty on the estimation of the random 
variable is represented by the variance of the expected value, estimated 
by using the sample mean EM{r} and the sample variance σ2

M(r) deter
mined after M Monte Carlo simulations: 

σ2
M(EM{r}) =

σ2
M(r)
M

(5)  

with the corresponding standard deviation: 

σM(EM{r}) =
σM(r)

̅̅̅̅̅
M

√ (6) 

Starting from an initial number of simulations M − 1 (for M higher 
than a minimum value), with the calculation of the corresponding 
sample mean and sample variance according to the general definition, 
the update of the sample mean EM{r} and sample variance σ2

M(r) for 
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successive values of M can be carried out by considering the incremental 
expressions that avoid the full recalculation of the values from the 
general definition when M increases: 

EM{r} = EM− 1{r} +
rM − EM− 1{r}

M
(7)  

σ2
M(r) =

(

1 −
1

M − 1

)

σ2
M− 1(r) + M(EM{r} − EM− 1{r})2 (8) 

From these values, a criterion for determining the termination of the 
Monte Carlo simulation, also used in power system problems where the 
outcomes depend on the extraction of many random variables [50], is 
based on the calculation of the coefficient of variation [51] after M 
simulations: 

βM =
σM(EM{r})

EM{r}
=

σM(r)
EM{r}

̅̅̅̅̅
M

√ (9)  

stopping the Monte Carlo simulation when the following condition is 
verified: 

βM < ε (10)  

where ε is the threshold considered in the stop criterion. 
More in detail, confidence intervals can be considered. For a normal 

probability distribution of the outcomes, with (1 − α)*100% confi
dence, the confidence bounds are E{r} ± zα/2 σ(r)/

̅̅̅̅̅
M

√
(e.g., the 95% 

confidence bounds correspond to α = 0.05 and zα/2 = 1.96, and the 99% 
confidence bounds correspond to α = 0.01 and zα/2 = 2.58). The stop 
criterion that determines the end of the Monte Carlo process after M 
simulations can be established when the following condition is verified 
[52]: 

zα/2σM(r)
EM{r}

̅̅̅̅̅
M

√ < εMC (11)  

where the left-hand side of (11) is the Monte Carlo test error, and εMC is 
the threshold considered for convergence. The number of iterations MMC 
is then the smallest number M that satisfies the condition (11). 

If the Monte Carlo samples come from a non-normal distribution, the 
situation is more challenging [53] and many criteria have been pro
posed. In a simple case, the term zα/2 in (11) could be multiplied by an 
arbitrary (i.e., not supported by a rigorous approach) inflaction factor 
[54] higher than unity to represent a more conservative approximate 
confidence interval. In this paper, the Monte Carlo test error is tracked 
for different values of M for the random variables referring to curtailed 
energy and power. The variation of the Monte Carlo test error is also 
tracked to identify possible significant changes. On these bases, 
considering the numbers of iterations MMC found in the different cases, a 
suitable number M* of Monte Carlo simulations can be selected to carry 
out the further analyses indicated below. 

The statistics of the results are shown as Cumulative Distribution 
Functions (CDFs) of the PV energy curtailed W(k)

PV,cur defined in (2) and of 

P(k)
PV,red, x% after PV curtailment defined in (4). Starting from these CDFs, 

specific indicators can be formulated to assess the effectiveness of the 
proposed strategy. A novel general framework is introduced here to 
construct these indicators. At first, the reference case of PV production is 

taken, with PV energy production Wref
PV and PV peak power P̂

ref
PV. Then, 

the m = 1, …, M* occurrences of PV energy production W(k)
PV,m and PV 

power P(k)
PV,m(t) are determined from the M* Monte Carlo simulations. 

Then, the W(k)
PV,cur,m and P̂

(k)
PV,red,m are calculated from (2) and (4), 

respectively, and the corresponding Complementary Cumulative Dis
tribution Functions (CCDFs) are formed. 

In the ideal case, the PV energy production would be unchanged in 
all M* occurrences with respect to Wref

PV, and the PV peak power would 

then be always equal to P̂
ref
PV. Otherwise, there will be reductions in the 

PV energy production and in the PV peak power. The framework 
introduced compares the outcomes of the Monte Carlo simulations with 
the ideal case (in which the CCDF has all values equal to zero). Then, the 
difference between the CCDF obtained from Monte Carlo simulations 
and the ideal CCDF is represented by the area (qualitatively shown in 
Fig. 1 for a generic variable y) calculated as 

Ay =
1

M∗

∑M∗

m=1
ym (12) 

On these bases, a new indicator of effectiveness of the solutions is 
introduced here as: 

ξy =
1

1 + Ay
(13) 

The indicator ξy has its maximum value equal to 1 when all the oc
currences of the Monte Carlo analysis are equal to the ideal case. 
Otherwise, the indicator ξy can be used to set up a relative comparison 
among the effects of applying different strategies to decrease PV 
curtailment. In particular, when y = W(k)

PV,cur/Wref
PV, the area determined is 

AW from (12) and the indicator is denoted as Avoided PV energy curtail
ment effectiveness: 

ξW =
1

1 + AW
(14)  

Moreover, when y = P̂
(k)
PV,red (to be expressed in per units), the area 

determined is AΔP̂ from (12) and the indicator is denoted as PV peak 
power reduction effectiveness: 

ξΔP̂ =
1

1 + AΔP̂
(15) 

Finally, when y = P(k)
PV,red, x% (to be expressed in per units), the area 

determined is AΔP,x% from (12) and the indicator is denoted as PV power 
reduction effectiveness at x%: 

ξΔP,x% =
1

1 + AΔP,x%
(16) 

In addition to the previous indicators, the average PV energy cur
tailed W(k)

PV,cur is calculated from the m = 1, …, M* occurrences W(k)
PV,cur,m of 

PV energy curtailed: 

W(k)
PV,cur =

1
M

∑M

m=1
W(k)

PV,cur,m (17)  

2.4. Categorization of the PV systems and EV charging stations in the 
distribution system 

The context of the application is grid-to-vehicle, in which the EVs 
need to be charged. The main goal is to address the issues regarding the 
energy curtailment of PVs installed in the grid, without adopting con
trolling strategies to enhance the operation of PV systems and without 

Fig. 1. Definition of the area from the CCDF.  
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the installation of BESS. In fact, the proposed method investigates on the 
capacity of EV batteries connected to the grid and through a charging 
power management of EV chargers mitigates the PV energy curtailments 
in a decentralized, secure, and traceable way. The distribution network 
considered is typically at the medium voltage level, considering that the 
EV charging infrastructure has to manage a sufficient number of EVs to 
guarantee the support needed to reduce the PV power curtailment to a 
significant extent. 

The presence and location of PV systems and EV charging stations in 
the distribution network have an impact on the results of the power flow 
analysis. The EV charging strategy will be mostly influenced by the in
formation on the PV systems located closer to the EV charging stations. 
For this purpose, information on the electrical distance among PV sys
tems and EV charging stations is calculated and used in the definition of 
the EV charging strategy. In the radial network, the electrical distance is 
approximated by the absolute value of the sum of the series impedances 
found along the path between the nodes where the PV system and the EV 
charging station are located. The PV systems and EV charging stations 
are then grouped by using the kmeans clustering technique, using the 
electrical distances as features [55]. The initial number of clusters is 
chosen equal to the number of charging stations. However, based on the 
electrical distances, kmeans could assign more charging points to the 
same cluster, leaving other clusters without charging stations. The final 
number of clusters C considered is equal to the number of clusters 
formed by kmeans that contain at least one EV charging station (the 
other clusters are discarded). The PV systems located outside the C final 
clusters will not be taken into account to affect the EV charging strategy. 

3. Framework for assessing PV power curtailment smart 
charging of electric vehicles with fuzzy weights and blockchain- 
based ev selection 

3.1. Smart charging principles 

The analysis is carried out by considering i = 1, …, I successive time 
steps with equal duration. In the three-phase system, it is also necessary 
to identify the phase p = {a,b,c} to which the EV is connected in the 
charging station. The EVs j = 1, …, J are associated to the cluster c = 1, 
…, C, to the charging station n = 1, …, N, and to the plug r = 1, …, Rp at 
phase p to which each EV is connected. 

The EVs connected to different points in the distribution system 
should meet three conditions so as to earn the allowance for increasing 
their charging power. These conditions are based on the following 
parameters:  

1) the state of charge (SoC) of each EV  
2) the loading percentage of the line; and,  
3) the PV power production (indicated as RES in the sequel). 

The proposed strategy is based on the generation of fuzzy weights, 
considering these parameters. The fuzzy weights are generated based on 
the “Mamdani fuzzy interference system” [56] and are assigned to each 
EV at each time step during charging. The three conditions are expressed 
in terms of fuzzy weights wijcnpr (detailed below) and of minimum PV 
power production PPV,min, as follows:  

1) The fuzzy weight is higher than the average fuzzy weight wijcnp 

assigned to each plug located in the same charging station and 
connected to the same phase: 

wijcnpr >

∑R
r=1wijcnpr

R
(18)    

2) The fuzzy weight is higher than the minimum value wmin, with the 
objective of limiting the number of EVs that increase the charging 
power: 

wijcnpr ≥ wmin (19)   

3) The PV power generation at the time step i is higher than the mini
mum limit, to exclude situations in which the generation from PV is 
very low: 

PPV
i > PPV,min (20)   

where PPV,min = κPV PPV,peak, in which κPV is a user-defined multiplier, 
and PPV,peak is the per-phase peak power generation of each PV plant 
connected to the grid. 

When these conditions are met, the proposed control strategy is 
activated to supply the eligible EVs. At each EV charging point, each 
phase has R plugs for EV charging. The increase in the EV charging 
power is not a fixed amount, since it fluctuates depending on the loading 
percentage of the lines that supply the charging stations, the PV pro
duction, and the SoC of each EV. 

Fig. 2 illustrates the flow-chart that indicates the overall scheme of 
the calculations for different time steps. The availability of an excess of 
PV power production is checked in each cluster at each phase, to 
determine whether the EV charging can be increased. Fig. 3 shows the 
flow-chart of the internal calculation process at a given time step, cluster 
and phase. The calculation of the fuzzy weights (using the EV and grid 
parameters), the assignment of the fuzzy weights to the charging points 
(plugs) with EVs connected and the selection of the plugs in which the 
EV charging power has to be increased are included in the “smart con
tract” associated with the blockchain. The eligible plugs selected to in
crease the EV charging power, together with the output power, the type 
and identifier of the EV, the state of charge and the time stamp are the 
outputs of the “smart contract” that are added to the blockchain 
structure. 

In more details, the control strategy monitors the amount of power 
injected by PV systems into the portion of the grid belonging to a cluster, 
in the corresponding phase p of the three-phase system and in the cur
rent time step i, and the power consumed in the previous time step i-1 in 
the same phase, and then calculates their difference. If the difference is 
positive, the excess power could be used by increasing loads, in our case 
by adding up the power of some chargers that feed the EVs in a coor
dinated manner. The procedure to increase the EV charging power for 
charging the selected EVs according to the selection mechanism previ
ously explained is organized as follows (for simplicity of representation, 
the subscripts c, n and r are dropped off). The eligible EVs are allowed to 
increase their charging power Pch

ijp up to the given power limit Plim
j to 

protect EV batteries from damaging. In practice, the power to be 
increased at the R′

p ≤ Rp chargers with eligible EVs connected at phase p 
is νp = PPV

p − Pload
(i− 1)p, where Pload

(i− 1)p stands for power consumed at the 
previous time step by all the loads including EVs connected to the grid:  

▪ If νp > 0, proportional sharing of the power to be increased is 
applied to the R′ chargers, so that at each one of these chargers 
there is a power increase equal to νp/R′. If the power limit Plim

jp is 
reached at any charger j connected to phase p, the power at that 
charger is limited to the power limit and the remaining chargers 
with eligible EVs will share the remaining power increase.  

▪ If the condition νp > 0 is not met, the EV charging power at 
phase p is not increased with respect to the situation already in 
place. This means that only in case of excess energy generation 
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by PVs the system would increase the charging power available 
to EVs. 

3.2. Fuzzy logic-based decision-making making 

The shape of the Membership Functions (MFs) depends on how one 
believes in a given linguistic variable. It is more a question of intuition 
than criteria. The only condition that a MF must really satisfy is that it 
must vary between 0 and 1. The function itself can be an arbitrary curve, 
whose shape can be defined as a suitable function from the point of view 
of simplicity, convenience, speed, and efficiency. Therefore, the type of 
MF does not play a crucial role in shaping how the model performs [57]. 
The intervals and number of MFs in this work are shaped intuitively and 
based on linguistic forms. Fig. 4 shows the MFs [58] used in the fuzzy 
logic model. The number of MFs belonging to each parameter is 3, 5, and 
3, respectively. 

In the definition of the MF for the per cent line loading, the maximum 
line loading considered is 90%, as a conservative limit to avoid the in
crease of the EV charging power when there are one or more lines too 
close to their limit. The fuzzy weights in the proposed methodology are 
generated phase by phase, and the per cent loading of the corresponding 
phase is considered as one of the three parameters for the generation of 
fuzzy weights at each phase (Fig. 5 shows the fuzzy logic-based decision- 
making unit diagram). In practice, if the line loading exceeds 90% at one 
phase of the grid, in the rules established the charging power of the EVs 
will not be changed in that phase. 

The combinations of the MFs determine the overall number of rules 
which in this case is equal to 45. The decisions are made according to 
these rules, which are defined intuitively. 

Some of the rules introduced are:  

▪ If (SoC is low) and (RES is high-moderate) and (line loading is 
moderate) then (fuzzy weight is high) 

Fig. 2. Flow-chart of the overall scheme of the calculation process.  

Fig. 3. Flow-chart of the internal calculation process at a given time step, 
cluster and phase. 
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▪ If (SoC is moderate) and (RES is high) and (line loading is high) 
then (fuzzy weight is high)  

▪ If (SoC is high) and (RES is high) and (line loading is low) then 
(fuzzy weight is medium) 

The full set of fuzzy rules is provided in Section A of the Supple
mentary Material. 

The strategy to define the fuzzy weights is backed up from the se
curity point of view with adding up blockchain. At each time step, the 
transactions would be inserted inside blocks forged by the charging 
points to which EVs are connected (Fig. 6). The blockchain algorithms 
used in the charging strategy are incentive-based rather than stake- 
based [47]. The decentralization provided by blockchain ends up in 
omitting third parties to speed up the process and save energy and time 

Fig. 4. Fuzzy membership functions for the input variables.  

Fig. 5. Fuzzy logic decision-making diagram.  

Fig. 6. Interconnections of the EV charging stations through blockchain.  
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as well. It is worth noting that the traceability feature of the blockchain 
is available here, so that the transactions done by EV charging plugs and 
the grid status can be monitored for further statistical studies. 

3.3. Specific blockchain solution for decentralized and scalable EV 
charging infrastructure 

The main benefits of adopting a blockchain-based solution in the 
management of EV charging infrastructures are the increased decen
tralization, security and scalability of the distribution network. In such 
scenario, charging data and transactions are not stored in a central 
system, but are distributed across a network of nodes, enhancing reli
ability, reducing risks of single-point-of-failure and making recharging 
infrastructure more robust [59]. Moreover, as the number of EVs and 
charging stations grows, the distributed nature of blockchain allows to 
easily scale up and to handle a large number of transactions efficiently, 
ensuring that the charging infrastructure can keep up with increasing 
recharging demand [60]. 

The proposed blockchain application is based on a PoA consensus 
protocol that selects the validator nodes by publishing the blocks (and 
thus the charging request transactions) on the blockchain based on their 
reputation and their identity, which is periodically validated. PoA is 
mainly adopted in private-permissioned blockchain approaches, and the 
advantages of using it include high security, scalability and lower energy 
consumption [61]. As shown in Fig. 7, the proposed solution leverages 
the fuzzy weights of the EVs connected to the same EV charging station 
and same phase of the network for the selection of the merit vehicles for 
increasing their charging power. In particular, if an EV that requests to 
increase its charging power has a fuzzy weight greater than the average 
of the fuzzy weights of all the other EVs involved in the charging phe
nomena at the same charging point (and the fuzzy weight is higher than 
the selected minimum threshold), the blockchain allows the vehicle to 
send a charging request transaction that will be validated and published 
by a pool of trusted validator nodes. Following the transaction, a per
manent and immutable set of transaction data will be stored on the 
blockchain to guarantee full transparency and traceability of the 
recharging operations, as well as protection against malicious 
cyber-attacks (Fig. 7). The security aspect of blockchain would be 
reinforced over time as the number of members functioning to the 
network (in our case EVs connected to the charging station plugs) will be 
increased and it ends up in producing longer chains which are difficult to 
be manipulated by external attackers. 

The Eqs. (11)–(13) determine the three sufficient conditions for the 
selection mechanism of EVs to increase their charging power: the EVs 
with fuzzy weights higher than the average of all fuzzy weights in the 
network and greater than the user-defined minimum would gain their 
profit in form of increasing their charging power. The node (charging 
plug) that has the greatest fuzzy weight among those chosen would forge 

the block containing the transactions into the chain. 

4. Case study application to a distribution system 

4.1. System data 

The proposed method has been applied to a modified version of the 
IEEE 123-bus distribution network [62], supplied at the nominal voltage 
4.16 kV. Since the original network provided in [63] has no PV and no 
EV charging points, PV systems have been added in specific nodes to 
simulate the impact of renewable energy on the whole grid. The 
configuration of the system is shown in Fig. 8. The PV generator loca
tions have been chosen as in [64]. Single-phase PV inverters are con
nected to single-phase nodes at nodes 6, 11, 28, 43, 84, 90, 94, and 109. 
Three-phase PV inverters are connected to the three-phase nodes 48, 65, 
and 76. The PV system peak power generation at each phase of the 
interfaced inverters is 400 kW. The PV production data are extracted in 
both scenarios (sunny day and cloudy day) from one-minute data taken 
from real measurements in Southern Europe installations. 

The load patterns are constructed based on one-minute load data of 
different types of users, taken from real measurements. The load data for 
the loads marked as PQ type in [63] have been aggregated to form 
different load patterns at each node, adding a number of individual load 
patterns in such a way that the peak power of the aggregate daily load 
pattern is comparable with the active power values indicated in the 
reference case for each phase of the IEEE 123-bus network. The load 
values for the other types of loads have not been changed. The evolution 
in time of the PQ loads at the specific nodes is provided in the Supple
mentary material. 

The kmeans clustering algorithm based on the electrical distances 
has been executed as indicated in Section II.D, with 5 initial clusters 
(equal to the number of EV charging points). The nodes considered are 
the ones in which there are either PV generation or EV charging points. 
The electrical distances with respect to the charging points are sum
marized in Fig. 9. The electrical distances have been given to the clus
tering algorithm as inputs. The clustering results provide a vector in 
which each node is assigned the number of the cluster. In the clustering 
solution, two pairs of EV charging points have been grouped together, 
leading to C = 3 final clusters, as shown in Fig. 9. 

The smart charging strategy has been evaluated with different 
number of charging plugs available in the grid, namely, 45, 90, and 135. 
This means that there are certain number of plugs designed in five 
charging stations located inside the grid and nine plugs per phase are 
provided by charging stations in the case with 135 plugs. The charging 
stations that feed the EVs are connected to the grid by means of MV/LV 
transformers at nodes 23, 44, 91, 105, and 610. The EV charging in
frastructures are equipped with 7.4 kW and 22 kW chargers by default. 
The number of EVs connected to the grid, the specific brand of EVs, the 

Fig. 7. Interactions among the computational models. The directions of the arrows indicate the information flow.  
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type of charger they are using, the state of charge (SoC) of each EV, the 
duration for which each EV remains at the charging station with the 
arrival and departure times, all are selected randomly in a day. EVs are 
selected randomly among a group of five fully electric vehicles (“Dacia 
Spring”, “Fiat 500E”, “Smart EQ ForTwo”, “Renault Twingo ZE”, and 
“Renault Zoe”). The battery capacity of these EVs used in the simulations 
is chosen according to the brochures of the manufacturers. For picking 
up the random variables from a uniform probability distribution, it has 
been assumed that the EVs remain at the charging station with minimum 
of 30 min and maximum of 8 h, with the initial SoC selected between 
20% and 95%. 

The values considered for assigning the fuzzy weights (from Section 
3.1) are κPV = 0.1 and wmin = 0.5. 

4.2. Computational framework and results 

The performance of the method proposed in this paper is assessed by 
considering two scenarios, one in a sunny day with clear sky and one in a 
cloudy day, with three case studies in each scenario. The first case is the 
reference case, with clear sky over the whole territory, which sets up the 
terms of comparison with the solutions of the other two cases that 
represent EVs connected to the grid in the uncoordinated or coordinated 

manners. The reference case is executed without imposing grid con
straints and without EVs. 

The peak PV power generation injected into the grid by the inverters 
in each phase in the reference case (sunny day) for every PV plant per 
phase is Pref

PV = 400 kW at timestep #805, and the corresponding energy 
generated in the same day Wref

PV = 3.256 MWh. 
According to network analysis, the application of the proposed 

charging strategy to mitigate PV energy curtailment has no negative 
impact on the voltage profile of the buses, as there is no over-voltage or 
under-voltage in the grid. The voltage magnitudes remain always in the 
range from 0.9 to 1.1 per unit. Based on the simulations carried out, the 
overloads occur in the lines close to the supply point, which connect the 
nodes 149, 1, 7, 8, and 13. 

The PV energy curtailment mitigation results from the integration of 
the smart charging strategy for EVs into the charging stations. The best 
solution would have no PV energy curtailment during specific times of a 
day thanks to the augmented charging power of the eligible EVs 
selected. 

4.2.1. First scenario (Sunny day) 
The PV data are taken from a summer day in Italy, where during the 

summer there is a shift of one hour, so that the peak power in a sunny 

Fig. 8. IEEE 123-bus system (adapted). The lines from nodes 151–300 and 54–94 are open in the radial configuration analyzed.  

Fig. 9. IEEE 123-bus system (adapted). The lines from nodes 151–300 and 54–94 are open in the radial configuration analyzed.  

S. Saadatmandi et al.                                                                                                                                                                                                                          



Electric Power Systems Research 230 (2024) 110181

11

day is expected to occur at 1 pm. The results of two cases with unco
ordinated EV charging and coordinated EV charging (the latter, labelled 
with “after”, applies the proposed methodology) indicate that:  

a) For EVs connected to the grid in an uncoordinated manner (k = 1): 
the peak power generation of each PV system per phase is P(1)

PV =

371.5 kW at timestep #886, which ends up in the peak power 
curtailment P(1)

PV,cur = 63.6 kW. The total energy generated is W(1)
PV =

3.147 MWh and the corresponding energy curtailment is W(1)
PV,cur =

109.4 kWh.  
b) For EVs connected to the grid in the coordinated manner (k = 2): the 

PV peak power generation in this case is P(2)
PV = 400 kW at timestep 

#805, with null peak power curtailment. Figs. 10 and 11 depict the 
PV energy curtailment with and without the EV charging strategy per 
phase, and the colored area indicates the PV energy curtailed. In both 
cases, simulations are carried out with the same number of EVs 
connected to the grid in the coordinated and uncoordinated man
ners. The proposed method for EV charging manages the energy 
generated by PVs properly and prevents PV generation from being 
curtailed. The maximum PV power reduction in Fig. 10 (equal to 
62.6 kW) occurs at time step #812. The maximum PV power 
reduction in Fig. 11 is null. 

Fig. 12 shows the results achieved in the presence of EVs connected 
to the grid randomly, without and after the implementation of the EV 
controlling strategy in the grid-to-vehicle mode. To guarantee compa
rability, the simulations have been executed by using the same initial 
seed for random number extraction. The per cent maximum loading is 
99.6% and occurs at phase “a” at time step #781. 

The results of the EV charging at a grid node are presented in the 
Appendix. 

4.2.2. Second scenario (Cloudy day) 
The same simulations have been carried out to evaluate the impact of 

the proposed methodology on PV energy curtailment in a cloudy day 
(again in the summer period in Italy). Basically, there could be some 
time periods in which the PV power is excessively high and would have 
to be curtailed in a cloudy day, so the EV charging strategy can be 
effective in mitigating the PV power curtailment in these time periods. 
The peak power produced by each PV system is Pref

PV = 400 kW at 
timestep #847. The total PV energy produced during the day from all PV 
systems is Wref

PV = 2.6167 MWh. 
The two cases studied are:  

a) EVs connected to the grid in an uncoordinated manner (k = 3): the 
peak PV power generation occurs at timestep #831, and it is equal to 

P1
PV = 371.7 kW and the corresponding peak power curtailment is 

P(3)
PV,cur = 55.66 kW, the energy injected to the grid is W(3)

PV = 2.5784 

MWh, and W(3)
PV,cur = 38.3 kWh has been curtailed.  

b) EVs connected to the grid in coordinated manner (k = 4): the peak PV 
power generation isP(4)

PV = 396.4 kW taking place at timestep #882 
and leading to the peak power curtailment P(4)

PV,cur = 25.06 kW. The 

total energy production is W(4)
PV = 2.6117 MWh with the corre

sponding curtailed energy W(4)
PV,cur = 5.0 kWh. 

Figs. 13 and 14 indicate the feasibility of the proposed methodology 
in a cloudy day. Also in this case, the proposed approach manages the PV 
energy production to mitigate the PV energy curtailment close to the PV 
production peaks. The smart charging system stores the excess PV en
ergy into the EV batteries, decreasing the network branch loading as 
occurred in the first scenario (Fig. 15). 

4.3. Effectiveness indicators under uncertainty 

To consider the impact of uncertainties on the random variables 
referring to the EVs (at given PV generation), the indications of Section 
2.3 have been followed. The details are shown below for two repre
sentative random variables, i.e. the PV energy curtailed W(k)

PV,cur and the 

PV peak power reduction P̂
(k)
PV,red. The Monte Carlo simulations have 

been executed by considering the stop criterion indicated in Eq. (11), 
considering the 99% confidence bounds correspond to α = 0.01 and zα/2 

= 2.58, and with different thresholds εMC. Common value used in the 
literature are εMC = 0.05 or εMC = 0.01. The minimum and maximum 
numbers of Monte Carlo simulations executed have been equal to 10 and 
400, respectively. In the cases tested, the results have been particularly 
positive, so that it has been necessary to reduce the thresholds to 
remarkably low values to find values higher than 10 of the minimum 
number of Monte Carlo simulations MMC needed to obtain a Monte Carlo 
test error lower than the threshold εMC. Table 1 shows the values of MMC 
obtained for different thresholds εMC. From the results shown in Table 1, 
it emerges that MMC is significantly lower for the PV energy curtailment 
with respect to the PV peak power reduction. This can be explained by 
the variability of the location of the peak power reduction in the 
different cases, which makes the solutions more variable. Moreover, 
concerning the cases analyzed, the EV coordinated cases show higher 
MMC values than the EV uncoordinated cases, because in the coordinated 
cases there are the effects of the smart charging strategies, that lead to 
more variable EV charging patterns with respect to the regular EV 
charging carried out in the EV uncoordinated case. Finally, in the cloudy 
day cases the MMC values are lower than in the sunny days for the PV 

Fig. 10. PV power generation with uncoordinated EV charging (sunny day).  
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energy curtailment, as there is a smaller period in which the curtailment 
appears, while the MMC values are higher than in the sunny days for the 
PV peak power reduction, because of the variability of the peaks due to 
less regular PV power production during time. The same comments are 
valid for the contents shown in Table 2, in which the variation of the 
Monte Carlo test error is shown for different numbers of simulations, 
indicating a converging trend in all cases. Furthermore, Table 3 shows 
how the Monte Carlo test error changes in two successive numbers of 
simulations. From the plots shown in Table 3 emerges that the changes 

are remarkably small already after a few dozens of iterations. 
Based on the results obtained, the number M* =100 Monte Carlo 

simulations is chosen for calculating the effectiveness indicators re
ported in Section 2.3, in such a way to have a common value for all 
calculations, which is also large enough to form the CCDFs with an 
acceptable number of points. The simulation time to determine the 
sharing of the PV power between the plugs where EVs are connected in a 
single Monte Carlo simulation executed on the entire day on a 11th Gen 
Intel® Core™ i7–1165G7 @ 2.80 GHz laptop has been about 20 s for a 

Fig. 11. PV power generation with coordinated EV charging (sunny day).  

Fig. 12. Loading of the three phases of line between nodes 149 and 1 without and after considering the coordinated EV charging (sunny day).  

Fig. 13. PV power generation with uncoordinated EV charging (cloudy day).  

Fig. 14. PV power generation with coordinated EV charging (cloudy day).  
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sunny day, while it has been lower for cloudy days in which there are 
less time steps in which the EV charging power has to be increased. 

The minute-by-minute simulations throughout a day executed M* =
100 times have then been considered, and the effectiveness indicators in 
the EV uncoordinated and coordinated charging cases have been 
calculated. Considering the sunny day, the CDF of the PV energy 

produced is indicated in Fig. 16, and the CCDF of the PV energy curtailed 
is shown in Fig. 17. The results end up in avoided PV energy curtailment 
effectiveness ξ(1)W = 0.969 for the EV uncoordinated charging case, which 
increases to ξ(1)W = 0.992 in the EV coordinated charging case. The 

average PV energy curtailed is W(1)
PV,cur = 102.9 kWh in the EV uncoor

dinated charging case and W(2)
PV,cur = 25.7 kWh in the EV coordinated 

charging case. 
Considering the PV peak power, the CDF is shown in Fig. 18, while 

Fig. 19 reports the CCDF of the PV peak power reduction. The PV peak 
power reduction effectiveness is ξ(1)ΔP̂ = 0.938 in the EV uncoordinated case 

and becomes ξ(2)ΔP̂ = 0.993 in the EV coordinated case. The PV power 

reduction effectiveness at 5% is ξ(1)ΔP,5 % = 0.872 in the EV uncoordinated 

case and ξ(2)ΔP,5 % = 0.931 in the EV coordinated case. 
Table 4 shows the effectiveness indicators in the cloudy day. The 

benefits of applying the coordinated EV strategy are still evident, even if 
these benefits are less due to shorter periods that would require a 
reduction in the PV production. 

4.4. Comparisons with another EV charging management system 

An emblematic method to be compared with the proposed approach 
is presented in Ref. [23]. This method proposes a charging control 

Fig. 15. Loading of the three phases of line between nodes 149 and 1 before 
and after considering the coordinated EV charging (cloudy day). 

Table 1 
Minimum number MMC of Monte Carlo simulations for different thresholds εMC. The superscripts indicate the cases analyzed, with (s,u): sunny day, EV uncoordinated; 
(s,c): sunny day, EV coordinated; (c,u): cloudy day, EV uncoordinated; and (c,c): cloudy day, EV coordinated.  

εMC random variable 

W(s,u)
PV,cur P̂

(s,u)
PV,red 

W(s,c)
PV,cur P̂

(s,c)
PV,red 

W(c,u)
PV,cur P̂

(c,u)
PV,red 

W(c,c)
PV,cur P̂

(c,c)
PV,red 

0.001 63 >400 187 >400 12 >400 52 >400 
0.002 19 47 46 119 <10 37 18 217 
0.003 <10 23 23 31 <10 18 <10 66 
0.004 <10 12 <10 <10 <10 13 <10 41 
0.005 <10 <10 <10 <10 <10 <10 <10 27  

Table 2 
Monte Carlo test error for increasing number of simulations.  
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system based on the vehicle-to-grid (V2G) configuration to mitigate the 
PV generation curtailment during the peak power production hours. EV 
aggregators manage the charging and discharging of the EVs connected 
to the charging points. The method follows the principle of valley filling 

for mitigating the excess PV power generation that is injected into the 
grid. The valley-filling problem is formulated in Ref. [23] considering a 
set of scenarios with the corresponding weighting probabilities. For the 
sake of comparison with the results shown in the proposed approach, in 
which there are two scenarios (sunny day and cloudy day) the results are 
presented separately for the two scenarios. 

The objective function considered for each scenario is: 

min

{
∑

t

(
Ltarget,t − Dt − Pc

t +Pd
t

)
}

(21) 

Table 3 
Variation of the Monte Carlo test error at two successive numbers of simulations.  

Fig. 16. PV energy produced in the sunny day.  

Fig. 17. PV energy curtailed in the sunny day.  

Fig. 18. PV peak power in the sunny day.  

Fig. 19. PV peak power reduction in the sunny day.  

Table 4 
Effectiveness indicators in the cloudy day.  

Case WPV,cur ξW ξΔP̂ ξΔP,5% 

EV uncoordinated 37.5 kWh 0.828 0.939 0.874 
EV coordinated 8.7 kWh 0.834 0.987 0.924  

Table 5 
Effectiveness indicators in the sunny day from hourly-based analysis.  

Case WPV,cur ξW ξΔP̂ ξΔP,5% 

EV coordinated 67.2 kWh 0.980 0.964 0.946 
From Ref. [23] 130.2 kWh 0.961 0.930 0.886 
EV uncoordinated 142.0 kWh 0.958 0.924 0.878  
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where, at time step t, Ltarget is the target total generation without PV 
power curtailment, Dt is the total demand, while Pc

t and Pd
t represent the 

EV charging and discharging power, respectively, under the constraint 
that charging and discharging cannot occur at the same time. 

Hourly time steps are used in Ref. [23] and are considered here in the 
comparison with the proposed approach. The simulations have been 
executed with 100 Monte Carlo repetitions for taking into account the 
impact of uncertainties on the random variables referring to the EVs, 
with the same type of calculations carried out in Section 4.3. The two 
cases (EV uncoordinated and EV coordinated) have been compared with 
the results obtained by applying the procedure presented in Ref. [23]. 
The indicators reported in Section 2.3 have been used to provide a 
comparison based on a global assessment of the results obtained. These 
indicators are shown in Table 5 for a sunny day and in Table 6 for a 
cloudy day. In all the cases shown, the proposed approach in the EV 
coordinated case shows better results than the ones obtained by 
applying the method of Ref. [23], with lower values of the energy cur
tailed WPV,cur and higher values of the effectiveness indicators ξW, ξΔP̂, 
and ξΔP,5 %. In turn, the result obtained in the EV uncoordinated case are 
worse than in the other two cases. 

For the sunny day, the CDF of the PV energy produced is indicated in 
Fig. 20, and the CCDF of the PV energy curtailed is shown in Fig. 21. The 
total PV energy generated, calculated from hourly values, is 3.256 MWh. 
The PV energy in the solution proposed in this paper is 3.189 MWh, with 
67.2 kWh of PV energy curtailment. Moreover, for uncoordinated 
charging the PV energy is 3.114 MWh, with 142.0 kWh of PV energy 
curtailment. With the methodology presented in Ref. [23], the PV gen
eration is 3.126 MWh, with 130.2 kWh of PV energy curtailment. From 
the detailed results provided in the method presented in Ref. [23], it 
appears that even though V2G is allowed by the method, there is no 
contribution of V2G in the period corresponding to PV power curtail
ment, namely, all the EVs are operated in the grid-to-vehicle mode in 
that period. This is clearly explainable, as in the period of high PV 
production, when PV power curtailment could be more likely, in the 
presence of power injections in the grid from V2G, the situation would 
become worse, requiring more PV power curtailment. This aspect is also 
evident by looking at Eq. (14), where setting to zero the terms Pd

t at the 
various time steps contributes to reaching the minimum of the objective 
function, confirming the validity of the proposed approach based on 
grid-to-vehicle charging of EVs. Fig. 22 shows an example of PV power 
generation for one of the repetitions, showing the PV power reductions 
needed in the various situations with respect to the reference (unre
stricted) case with no PV power curtailment. 

The comparisons with respect to the peak power are not shown, as 
the determination of the peak power based on hourly data is poorly 
significant with respect to the actual evolution of the power patterns 
[65]. 

For the cloudy day, the CDF of the PV energy produced is indicated in 
Fig. 23, and the CCDF of the PV energy curtailed is shown in Fig. 24. The 
total PV energy generated, calculated from hourly values, is 2.688 MWh. 
The PV energy in the solution proposed in this paper is 2.681 MWh, with 
7.1 kWh of PV energy curtailment. Moreover, for uncoordinated 
charging the PV energy is 2.631 MWh, with 56.7 kWh of PV energy 
curtailment. With the methodology presented in Ref. [23], the PV gen
eration is 2.639 MWh, with 49.2 kWh of PV energy curtailment. Also in 
this case, in the period corresponding to PV power curtailment there is 
no contribution of V2G, and all the EVs are operated in the 

grid-to-vehicle mode. Fig. 25 shows an example of PV power generation 
for one of the repetitions in a cloudy day, indicating the PV power re
ductions needed in the various situations with respect to the reference 
(unrestricted) case with no PV power curtailment. 

The results of the various comparisons executed clearly show that the 
proposed approach performs considerably better than the method 
defined in Ref. [23]. 

Table 6 
Effectiveness Indicators in the cloudy day from hourly-based analysis.  

Case WPV,cur ξW ξΔP̂ ξΔP,5% 

EV coordinated 7.1 kWh 0.849 0.961 0.987 
From Ref. [23] 49.2 kWh 0.839 0.917 0.932 
EV uncoordinated 56.7 kWh 0.838 0.907 0.927  

Fig. 20. Comparison among the CDFs of the PV energy produced in the sunny 
day (hourly data). 

Fig. 21. Comparisons among the CCDFs of the PV energy curtailed in the sunny 
day (hourly data). 

Fig. 22. PV power generation in the sunny day (hourly data).  

Fig. 23. Comparison among the CDFs of the PV energy produced in the cloudy 
day (hourly data). 
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5. Concluding remarks 

A novel dedicated framework for characterizing the PV generation 
curtailment in the grid has been presented, proposing new indicators to 
assess the effectiveness of solutions for mitigating the PV power and 
energy curtailment. Within this framework, the smart charging of EVs 
has been considered as a viable solution for grid-to-vehicle applications. 
An EV smart charging strategy has been proposed, in which the EVs are 
supplied by the excess energy produced by the PV system, and the EV 
charging power is managed through a strategy based on fuzzy weights, 
backed up by blockchain to guarantee security in the selection of the 
charging points, considering the variation of the EV charging power as a 
transaction. 

The mitigation of the PV energy curtailment depends on the number 
and characteristics of the EVs connected to the grid. To consider the 
impact of the EV charging stations as an additional load that can be 
locally balanced with more PV generation, a clustering procedure has 
been executed to group the EV charging stations with some PV systems 
based on the electrical distance. In this way, the assignment of fuzzy 
weights to the charging points in the EV charging stations is driven by 
the PV generation located in the same cluster. 

In particular cases, where a cluster contains no PV system, the fuzzy 
weights in the EV charging points belonging to that cluster are inactive, 
and the charging of the corresponding EVs occurs as in the uncoordi
nated charging case. However, in the future evolution of the grid, new 
PV systems and EV charging points are (very) likely to become available, 
and the update of the clustering algorithm will take into account the new 
situation. In this regard, the results of the clustering procedure and the 
indicators determined can disclose useful information about the effec
tiveness of the location of the PV system and EV charging stations in the 
grid. 

The results obtained indicate the higher effectiveness of using the 
proposed coordinated strategy for EV charging with respect to the un
coordinated case, considering realistic random variations for the num
ber of the EVs present in the EV charging stations, as well as their 
technical characteristics and timings of arrival and departure. The 
effectiveness of the proposed methodology has been evaluated in two 

different case scenarios: sunny day and cloudy day. The results clearly 
indicate that the implemented method could be effective in mitigating 
PV generation curtailments even in cloudy days when the continuity of 
energy production is not guaranteed, and the power production curve 
consists of many fluctuations. Running Monte Carlo simulations, the 
uncertainties are evaluated since the number of EVs connected to the 
grid varies throughout a day and the figures depict the effectiveness of 
coordinated charging manner proposed in this paper in comparison with 
uncoordinated charging manner where EVs are connected to the grid 
randomly and are immediately charged after their arrival. The proposed 
approach is transparent to the user, as it provides full information about 
the eligible EVs chosen to store the excess amount of PV energy during 
time. The requests of each EV user (i.e. to have the EV charged at the 
minimum desired state of charge at the end of the permanence period in 
the charging station) are in any case satisfied in the proposed method
ology with or without the user’s participation in the smart charging. 

In the comparison with another method proposed in the literature, 
which also considers V2G, executed by considering uncertainties and 
assessed through the global indicators of effectiveness, the proposed 
approach in the EV coordinated charging mode performs better than the 
approach proposed in Ref. [23], while the cases with EV management in 
the uncoordinated charging mode are worse, confirming that the prac
tices that include EV coordination are effective to reduce PV energy 
curtailment in the periods of high PV power production. 

The proposed approach can be used with any type of generation, load 
of storage connected to the local distribution network. The inclusion of 
private blockchain, based on the PoA consensus algorithm in the 
charging procedure of the EVs not only guarantees the security of the 
network against malicious tampering of information, but also provides 
decentralization and traceability features, with EVs reaching the 
consensus among themselves without the intervention of third parties. 
This ends up in the reduction of time and costs for the EV charging 
management. The status of EVs and grid may be traced and monitored in 
every moment thanks to the ambient provided the distributed ledger 
tech. 

The limitations of the proposed approach could come from its 
application in real-world situations, as the outcomes concerning the EVs 
depend on the forecast values of loads and of PV generations. This 
limitation is common to any approach that must be applied in real 
conditions. A positive aspect in this respect is that the largest energy 
curtailment occurs in sunny days, in which the PV power generation 
during time can also be more predictable, so that the real-case solutions 
should be considerably similar from the simulated solutions. Another 
limitation is that the proposed method depends on the number of EVs 
connected to the grid. If the number of EVs connected to the grid is not 
large enough when the EV support is needed (especially during the PV 
peak power generation in a sunny day), the PV energy curtailment 
mitigation could not be guaranteed due to the lack of additional load 
available from the EV side. Likewise, if there is a failure in the electronic 
boards or communication system for one or more EVs and their charging 
stations, the contribution of these EVs cannot be considered by the 
charging management system. 
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Appendix 

Results of EV charging at a grid node 

To show some details on the fuzzy weights and their impact on the selection of the plugs with EVs connected to activate, let us consider the three 
phases of node #23, connected to cluster #1, for the time steps from minute 400 to minute 1000. In particular, there are three plugs (identified as r =
19, 20, and 21) at phase “a”, three plugs (r = 22, 23, and 24) at phase “b”, and three plugs (r = 25, 26, and 27) at phase “c”. The EVs connected to the 
plugs are identified by their EV type and associated individual identifier. With reference to the indications provided in Section 3.1, Fig. A1 reports the 
fuzzy weights associated with the plugs at the three phases and Fig. A2 shows the SoC of the EV batteries for the EVs connected, compared with the EV 
uncoordinated case. The results indicate that at minute 600 there are 1 EV connected to a plug at phase “a” (#20) and 2 EVs connected to two plugs at 
phase “c” (#26 and #27). The EV batteries connected to all these plugs already reached their maximum SoC and cannot be used for further SoC 
increase until the EV leaves the plug and another EV arrives. In the period from minute 400 to minute 1000, the EVs connected to the plugs #26 and 
#27 are never selected by the EV coordinated charging strategy, as the batteries of the corresponding EVs have already reached the maximum SoC and 
the EVs remain connected for the whole period. 

At minute 605 an EV is connected to plug #23 and is selected in the coordinated EV charging strategy to increase the charging power immediately 
(and the fuzzy weight is assigned), while in the uncoordinated EV charging strategy this EV would be charged at the default charging power (Fig. A2). 
In the EV coordinated charging strategy, this EV reaches the maximum SoC at minute 616, then its fuzzy weight remains high because the PV gen
eration and load conditions would require more EV load, however, this plug will not be selected anymore. 

At minute 611 the EV connected to plug #20 leaves after having reached its maximum time to remain connected, and another EV arrives and is 
connected to the plug. At this time step, in the EV coordinated charging strategy there are the conditions to increase the EV charging power 
immediately (as shown in Fig. A1 by the assignment of the fuzzy weight), while in the EV uncoordinated strategy this EV would be charged at the 
default charging power). 

At minute 625 there is a reduction of the fuzzy weight for plug #20; however, plug #20 continues to be selected for charging until the battery of the 
EV connected reaches the maximum SoC (at minute 631). In the successive time steps, fuzzy weights are still assigned to plug #20, however, this plug 
is not selected anymore. 

At plug #25, an EV arrives at minute 637 and is immediately assigned a high fuzzy weight, however, plug #25 is not selected by the EV coordinated 
charging strategy because of the situation of the other EVs in the cluster. At minute 719 the EV leaves plug #25 and is replaced by another EV that 
arrives with a high SoC, is assigned relatively low fuzzy weights during its permanence, so that the battery of the EV connected to plug #25 is charged 
in the default mode until reaching the maximum SoC and is then no longer available for participating in the coordinated EV charging strategy. 

At plug #21, an EV arrives at minute 864, is immediately assigned a high fuzzy weight, and is selected to increase the EV charging power. This EV 
reaches the maximum SoC at minute 896, then plug #21 is no longer selected (its fuzzy weight decreases to low values and later to zero).

Fig. A1. Fuzzy weights associated to the EV plugs in the EV coordinated charging strategy.   
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Fig. A2. SoC of the EV batteries connected to the plugs at node #23.  
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