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ABSTRACT
Histological staining plays a crucial role in anatomic pathology for the analysis of biological tissues and the formulation of di-
agnostic reports. Traditional methods like hematoxylin and eosin (H&E) primarily offer morphological information but lack 
insight into functional details, such as the expression of biomarkers indicative of cellular activity. To overcome this limitation, 
we propose a computational approach to synthesize virtual immunohistochemical (IHC) stains from H&E input, transferring 
imaging features across staining domains. Our approach comprises two stages: (i) a multi-stage registration framework ensuring 
precise alignment of cellular and subcellular structures between the source H&E and target IHC stains, and (ii) a deep learning-
based generative model which incorporates functional attributes from the target IHC stain by learning cell-to-cell mappings from 
paired training data. We evaluated our approach of virtual restaining H&E slides to simulate IHC staining for phospho-histone 
H3, on inguinal lymph node and bladder tissues. Blind pathologist assessments and quantitative metrics validated the diagnostic 
quality of the synthetic slides. Notably, mitotic counts derived from synthetic images exhibited a strong correlation with physical 
staining. Moreover, global and stain-specific metrics confirmed the high quality of the synthetic IHC images generated by our 
approach. This methodology represents an important advance in automated functional restaining, achieved through robust reg-
istration and a model trained on precisely paired H&E and IHC data to transfer functions cell-by-cell. Our approach forms the 
basis for multiparameter histology analysis and comprehensive cohort staining using only digitized H&E slides.

1   |   Introduction

Histological staining is a fundamental technique in pathology 
used for the analysis of biological tissues and the diagnosis of 
pathologies. Pathologists utilize various staining modalities to 
examine specimens from both morphological and biochemical/
functional perspectives. These stains highlight different tissue 
characteristics, allowing to extract valuable information for dis-
ease grading, classification, and diagnosis. The most common 
and widespread stain for histopathological assessment is he-
matoxylin and eosin (H&E), which facilitates the comparison 

of morphological and cellular features across different tissues 
and pathological conditions. In addition to H&E, special histo-
chemical stains like periodic acid-Schiff (PAS), trichrome, or 
immunohistochemical (IHC) stainings are employed to further 
investigate the tissue properties [1, 2].

Obtaining multiple serial tissue sections for H&E and subse-
quent special stains allows fast parallel processing but is limited 
by lack of precise correspondence and risk of exhausting diag-
nostic material. A potential alternative to this approach is rep-
resented by cutting a single section which is initially stained for 
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H&E and subsequently destained and restained for histochem-
ical or IHC stains based on specific requests. This comprehen-
sive approach allows to spare tissue, simultaneously observe the 
same cellular structures with different stains, and obtain both 
morphological and functional features. Indeed, it enables the 
assessment of cell and tissue morphology from H&E staining 
and the identification of specific proteins or cellular structures 
from the special or IHC stain, thereby highlighting aspects such 
as cell proliferation and mitotic activity [3]. However, this pro-
cess faces practical challenges. The multi-step staining protocol, 
which requires removing the initial stain, is time-consuming 
and often not compatible with the daily workload of a pathology 
unit. Furthermore, the destaining process required aggressive 
chemical phases which may impact tissue preservation and 
stain reliability [4].

A clinical use case where both H&E and IHC stains are re-
quired for diagnostic and prognostic purposes is the detection 
and quantification of mitoses. Mitosis assessment is a common 
and essential procedure in pathology, especially in the neo-
plastic setting where the mitotic count (i.e., the presence and 
density of cells undergoing cell division) is an essential param-
eter to define tumor aggressiveness, prognosis, and treatment 
strategy [5]. The commercially available immunohistochem-
ical marker phospho-histone H3 (PHH3) has emerged as a 
valuable assay for mitotic detection [6, 7]. This IHC marker 
specifically highlights the phosphorylated form of histone H3, 
which is a critical protein involved in chromosomal conden-
sation during mitosis, thus targeting all cells in the process of 
mitosis and ultimately allowing a specific mitotic count. The 
integration of morphological information from H&E staining 
with the specific mitotic activity highlighted by PHH3 stain-
ing provides a more comprehensive understanding of tumor 
characteristics, aiding in accurate diagnosis and personalized 
patient management [8].

The optimal diagnosis is achieved when the same slide is ana-
lyzed using H&E and IHC stainings, allowing for an assessment 
of the same cellular structures from both morphological and 
functional perspectives. However, this approach is expensive 
and resource-intensive for laboratory technicians and pathol-
ogists. Figure 1a shows a sample image pair of the same slide 
first stained with H&E and then restained using PHH3, while 
Figure 1b shows adjacent tissue sections.

The introduction of digital pathology has revolutionized the 
way tissue slides are handled, allowing for digitization, stor-
age, and easy sharing of images between different centers 
[9]. In this context, artificial intelligence (AI) techniques can 
extract hidden quantitative information from digital histo-
pathology images  [10]. The integration of AI-based methods 
aims to reduce pathologist workload and improve diagnosis 
formulation [11]. Deep learning is now enabling digital re-
placement of parts of the histological staining procedure for a 
more sustainable, rapid and cost-effective pipeline in histopa-
thology. In virtual staining, histological stains are created by 
training deep networks to digitally convert unstained or un-
labeled tissue sections into stained/labeled images or through 
the transformation of images of an already stained tissue sam-
ple into another type of stain [12]. One emerging area of re-
search in this field involves generative adversarial networks 
(GANs), which have shown promise in automatically perform-
ing virtual restaining. Starting from real images stained with 
a specific dye, these GANs can generate synthetic images that 
simulate different stainings. This novel approach holds great 
potential for transforming clinical analysis of histopathologi-
cal images [13].

Despite its great potential, the virtual restaining process faces 
several key challenges. First, paired generative models require 
paired image data with corresponding cells in the two histo-
logical stains. However, obtaining such precisely matched 
paired data is difficult, as previously explained. Conversely, 
unpaired models do not require exactly matching source and 
target domain images, enabling style transfer but without 
functional content transfer capabilities [14]. In the case of 
consecutive slides, misalignments arise due to variations in 
slide preparation techniques and differences in the scanned 
field of view. Addressing this problem requires an initial reg-
istration phase to align the image datasets [15–17]. Validating 
that the restaining process successfully transfers the correct 
functional information, and not just a visual style, is also man-
datory. However, quantitative evaluation in this area remains 
limited. While some studies rely on pathologists' evaluations, 
few works compute full-reference quantitative metrics or 
algorithm-based feature analysis [13].

The purpose of this work is to develop and evaluate a novel ex-
perimental automated framework for functionally restaining 

FIGURE 1    |    (a) H&E-IHC image pair acquired by chemically destaining and restaining the same tissue section. (b) Matched H&E and IHC-
stained slides derived from two consecutive tissue sections.

 10981098, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23165 by M
assim

o Salvi - Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino , W
iley O

nline L
ibrary on [04/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 of 13

digitalized microscopic tissue slides. The proposed model is 
based on a multi-stage registration framework that aligns his-
tological slices and a generative model, trained on paired data, 
that creates realistic PHH3 synthetic images, enabling the trans-
fer of functional information at the cell level. To the best of our 
knowledge, this is the first study which validates each step of the 
pipeline, both the multi-stage registration process and the final 
virtually restained image quality. The main contributions of this 
work are summarized as follows:

•	 A multi-stage registration approach is employed to achieve 
precise pixel-wise matching between cellular and subcellu-
lar structures from H&E and IHC slides. Accurate image 
alignment is critical, as it ensures corresponding structures 
are properly mapped during virtual restaining.

•	 A deep leaning-based generative model is trained on paired 
data, enabling the transfer of functional information. Unlike 
prior methods focused solely on stain style-transfer, our 
model considers both morphological and functional attri-
butes, learning cell-to-cell mappings from training data.

•	 Quantitative evaluation of both registration and restaining 
stages is conducted. Global image quality assessment (IQA) 
metrics, landmark-based target registration error (TRE) and 
novel IHC-based local metrics provide a thorough assess-
ment of the registration accuracy and quality of the restain-
ing results.

•	 Synthetic images are evaluated by an expert pathologist for 
mitotic count and compared to counts from real IHC im-
ages. This clinical validation provides valuable insight into 
the accuracy and reliability of virtual restaining for diagnos-
tic applications.

2   |   Literature Review

Deep learning-based virtual staining and restaining methods 
can be categorized into two main groups based on their image 
transformation approach:

1.	 Label-free virtual staining: this process involves digitally con-
verting unstained or unlabeled tissue sections into stained/
labeled images. Rivenson et al. [18] performed virtual H&E, 
trichrome and silver staining on autofluorescence images, 
with qualitative validation by pathologists but no quantita-
tive metrics. Li et al. [19] transferred unlabeled tissue into 
H&E, picrosirius and orcein stained versions, qualitatively 
validated on rat sections after rigid registration. Pillar and 
Ozcan [20] used a GAN for virtual H&E, trichrome, sil-
ver and HER2 staining, assessed by pathologists without 
quantification. Zhang et al. [21] presented a virtual stain-
ing framework able to stain in H&E defocused autofluores-
cence images of unlabeled tissue. Standard intensity-based 
quantitative metrics were computed during validation. Bai 
et al. [22] transformed unlabeled breast tissue into HER2 
stained images. Synthetic images were assessed by three 
expert pathologists in terms of HER2 score and staining 
quality. Salido et al. [23] compared models for virtual H&E 
staining of breast tissue, with quantitative and manual reg-
istration analysis. Rana et al. [24] proposed a deep learning 

model to generate H&E-stained prostate cancer images form 
unstained counterparts. The virtual staining method was 
quantitatively and clinically validated, but no analysis was 
carried out for the registration process. Li et al. [25] trans-
formed autofluorescence images of label-free autopsy tissue 
sections into H&E-stained versions, using a standard U-Net 
architecture to predict the displacement vector field. Pillar 
et al. [26] published a comprehensive review of the latest ad-
vancements in generating pseudo-stained outputs from non-
fixed human tissue; the review is limited to standard H&E 
stain.

2.	 Stain-to-stain transformations or virtual restaining: meth-
ods which computationally transform the image of an al-
ready stained tissue (e.g., stained with H&E) into another 
stain (special histochemical or IHC stains) without phys-
ically tampering with the slides. Xu et al. [14] proposed a 
conditional CycleGAN to transform H&E-stained images 
into IHC synthetic images. The network was trained with 
unpaired data and the results were not quantitatively as-
sessed. Similarly, Liu et al. [27] proposed an unpaired stain 
transfer method using pathology-consistent constrained 
GANs for transferring between H&E and Ki-67-stained 
images. They utilize cycle consistency and pathology-
specific losses to enable unpaired training and introduce 
pathological representation networks to enforce consistent 
pathological features. Mercan et al. [28] proposed a vir-
tual staining framework to generate synthetic phospho-
histone H3 images from H&E-stained breast images. No 
quantitative metrics were assessed; the validation was 
only performed by training a mitosis classifier on GAN 
feature maps. De Haan et al. [4] proposed a stain-to-stain 
transformation framework to create three additional spe-
cial stains (PAS, Masson's trichrome and Jones silver stain) 
from existing H&E tissue sections. Results are limited to 
nonneoplastic kidney tissue and were evaluated by three 
nephropathologists in terms of kidney disease diagnoses 
and quality scores. Both image co-registration step and 
virtual restaining were not quantitatively assessed. Liu 
et al. [29] proposed a breast cancer immunohistochemi-
cal (BCI) dataset and a pyramid pix2pix image-to-image 
translation model to synthesize HER2 breast sections from 
paired H&E-stained images. A semi-automatic registration 
method is employed to align image pairs. Standard quanti-
tative evaluation metrics were computed for the quality of 
generated images. Vasiljević et al. [30] analyzed the virtual 
stain-to-stain translation of four stains (Jones H&E, Sirius 
red, and IHC stains like CD68 and CD34) to demonstrate 
that relatively small changes in CycleGAN-based methods 
could have a great impact on translation quality. Yan et al. 
[31] proposed a study based on unpaired data for Masson's 
trichrome stained image generation from the correspond-
ing H&E-stained images. Zhang et al. [32] proposed a 
staining transfer framework to generate virtual functional 
staining from H&E to several combinations of IHC stains, 
including ER/PR/HER2 in breast tissue and Ki67/CC10/
proSPC in mouse lung. Gadermayr et al. [33] proposed a 
GAN-based stain-translation of PAS to acid fuchsin orange 
G (AFOG) stain and IHC stains like Col3 and CD31 on kid-
ney tissue images, to facilitate segmentation applications in 
digital pathology.
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3   |   Materials and Methods

In this paper, we present our method to generate synthetic 
PHH3 images from H&E-stained ones. Figure  2 summarizes 
the overall flowchart of the proposed approach. Our method is 
based on a multi-stage registration framework that aligns histo-
logical H&E-IHC tissue pairs and a GAN-based model is trained 
on registered data to create realistic PHH3 synthetic images.

3.1   |   Dataset

Tissue sections from inguinal lymph nodes and bladder 
were cut, stained with H&E and scanned with a Hamamatsu 
NanoZoomer S210 Digital slide scanner at 40× magnification 
(0.221 μm/pixel). Subsequently, the H&E-stained slides were de-
stained and restained with PHH3, then rescanned at same mag-
nification. This process resulted in dual-stained H&E-PHH3 
slides representing the same tissue section. Bladder tissue sam-
ples were used as an independent blind test set for validation 
purposes.

3.2   |   Multi-Stage Registration Framework

Registration is necessary to spatially align H&E-PHH3 image 
pairs. We employed the VALIS (Virtual Alignment of pathoL-
ogy Image Series) method developed by Gatenbee et al. [34, 35]. 
VALIS first performs a macro-registration through a cascade of 
rigid and affine transformations on lower magnification. Then, 
it conducts micro-registration at higher magnifications by com-
puting a localized pixel-wise displacement field. For successful 
registration, the authors recommend converting RGB images to 
the CAM16-UCS color space format prior to alignment to stan-
dardize hue and colorfulness [36]. VALIS macro-registration es-
timates global matrix transformations while micro-registration 
refines alignment at higher resolution. However, micro-
registration requires the images to be partially aligned before-
hand. For a 34 × 42 k pixels image pair at 20× magnification, 
VALIS registration takes approximately 45 min; at 10× or higher, 
attempting micro-registration of the full-size images exceeds the 
memory capacity of a 64 GB workstation. Therefore, applying 
VALIS full resolution registration was deemed unfeasible for 

our dual-stained slides. In this work, we employed a multi-stage 
registration framework based on VALIS method, to achieve 
pixel-level matching using a two-step process:

•	 1st stage: tissue sections were initially registered with VALIS 
using a 1.25× working magnification for macro-registration 
and 2.5× for micro-registration. CAM16-UCS conversion 
was skipped as no performance decrease was observed, sav-
ing 23% of RAM and computational time.

•	 2nd stage: after the 1st registration stage, a luminance cor-
rection approach proposed in our previous study [37], was 
employed to optimize and balance the illuminant condition 
of unstained regions. Then, several image fields with at least 
80% of tissue area were extracted from preregistered slides. 
The VALIS method was finally applied to full resolution 
(40×) non-pyramidal image fields to achieve cellular struc-
ture matching.

This computationally efficient two-step framework enables the 
proposed virtual restaining task. All registration steps with 
varying magnifications from the original tissue sections until 
the non-pyramidal image fields are quantitatively evaluated in 
the following sections.

3.3   |   Data Preparation

In PHH3 staining, 3,3′-diaminobenzidine (DAB) provides 
brown-colored staining of cells in mitotic activity and hematox-
ylin is employed as a counterstain in blue color [6]. As mitotic 
cells are far fewer than normal cells, a traditional patch ex-
traction risks producing a highly unbalanced training set with 
predominately negative hematoxylin-stained patches. For this 
reason, we implemented a DAB-driven patch extraction process 
that focuses on accurately capturing examples of the mitosis 
cells stained brown by DAB. Our targeted extraction approach 
involves the following steps:

1.	 Cells in mitosis are segmented from red-blue channels using 
global thresholding and their centroid is computed.

2.	 A 256 × 256 window scrolls each IHC tile: each time the 
centroid of a DAB cell falls within the window, multiple 

FIGURE 2    |    Workflow of the proposed method. A multi-stage registration approach is employed to align whole tissue sections (1st stage) and to 
achieve precise pixel-wise matching between cellular structures (2nd stage). Registered paired image data are used to train a GAN-based virtual 
restaining model enabling the transfer of functional information.
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patches are extracted by moving the region of interest (ROI) 
in all directions. In this way, the same DAB-stained cell 
is placed in different locations of the patch, as shown in 
Figure 3a.

3.	 To enhance diversity, 20 patches are randomly selected from 
those obtained per centroid, maximizing distance between 
list positions.

4.	 Corresponding H&E patches are extracted using the same 
coordinates, as reported in Figure 3b.

Additionally, nonoverlapping 256 × 256 patches lacking DAB 
cells (negative patches) are acquired from the same IHC tile 
after verifying segmentation detects no mitosis cells (Figure 3b). 
This balanced extraction strategy provides well-constructed 
patch pairs for training, with DAB-stained examples alongside 
negative patches. The two cell populations are now equally rep-
resented for GAN training.

3.4   |   Generative Model for Virtual Restaining

We implemented a conditional generative adversarial network 
(cGAN) based on the Pix2Pix framework proposed by Isola 
et al. [38] for the task of translating H&E-stained slides to IHC-
stained images. The generator follows a U-Net architecture with 
an encoder-decoder structure and addition of skip connections 
between mirrored layers in the encoder and decoder. This helps 
preserve low-level details in the output and allows reuse of spa-
tial information from the input. The U-Net generator contains 
8 downsampling layers with a base channel size of 64 and uti-
lizes instance normalization. Dropout is also applied during 
training for added regularization. The discriminator employs a 
PatchGAN classifier [39] which views the image as a patchwork 
and predicts if each N × N patch is real or fake. This focuses the 
adversarial loss on local image structures rather than individ-
ual pixels. Our implementation uses a discriminator with three 
convolutional layers, an input channel size of 6 (concatenated 
H&E and IHC images), base channel size of 64 and instance 
normalization.

The model was trained with an adversarial LSGAN (Least 
Squares GAN) loss [40] combining the discriminator loss 
with a L1 pixel-wise loss between the generated and ground 
truth IHC images. This helps overcome limitations of L1 in 
producing blurry results while addressing artifacts from the 
adversarial loss alone. The loss weights are set at 100 for the 
L1 term. The network takes 256 × 256 RGB image patches as 
input, with a total of 102 776 patches split into training (75%) 
and validation (25%) set. To our knowledge, this represents 
the largest cohort of paired H&E and IHC images for virtual 
restaining to date.

Training was performed using the Adam solver with alternating 
gradient descent updates between the generator and discrimi-
nator. A batch size of 4 is used over 50 epochs, with validation 
every 100 iterations. Data augmentation including random flip-
ping and rotation is also applied. After training, the best epoch 
was chosen as the one that provided the lowest root mean square 
error (RMSE) between synthetic and real patches on valida-
tion set.

The GAN model was then tested both on patches and larger tiles 
of size 1800 × 1800 pixels. To apply the generative model to tiles, 
we used the inference and center-cropping approach described 
in our previous work [41]. Briefly, a sliding window of 256 by 256 
pixels was used, and only the central crop of 192 × 192 pixels was 
retained. The window was then slid over to the next patch with 
appropriate padding. Figure 4 illustrates the tile reconstruction 
process. The PyTorch framework (v1.13.1) was utilized for both 
training and testing purposes.

3.5   |   Performance Metrics

Quantitative performance metrics were computed to assess the 
multi-stage registration framework and to evaluate the synthetic 
IHC images generated by the virtual restaining method. Images 
of different sizes were extracted to evaluate each step of the pro-
posed method. Four types of evaluation metrics were used: (i) 
global IQA metrics, (ii) landmark-based TRE, (iii) novel local 
DAB intensity-based metrics, and (iv) clinical parameters such 
as mitotic count and quality score.

3.5.1   |   Multi-Stage Registration Assessment

Several IQA metrics were computed between each registered 
H&E-PHH3 image pair. Structural similarity (SSIM) index 
and peak signal-to-noise ratio (PSNR) were used to assess 
image similarity [13]. Pearson's correlation coefficient (PCC) 
and mutual information (MI) were calculated to evaluate 
image correlation [16]. Intensity-based SSIM and PSNR are 
negatively influenced by different color appearance of H&E 
and IHC images, which is reflected on pixel intensity values. 
PCC and MI are better suited to evaluate the registration pro-
cess. TRE is also used as evaluation metric to assess the ac-
curacy of a paired-point registration. TRE is defined as the 
Euclidean distance between corresponding landmarks, man-
ually annotated by an expert pathologist. A set of 25 points 
was manually reported for each H&E-PHH3 image pair at full 
resolution (40×) in the evaluation dataset.

In addition, we evaluated the following Y-biased weighted SSIM 
in YCbCr color space to focus on luminance values at the ex-
pense of chroma components:

where SSIMY , SSIMCb, and SSIMCr are SSIM values between 
H&E and PHH3 images for luminance, blue- and red-
difference chroma components, respectively [42]. In the case 
of perfectly registered images, Y-biased weighted SSIM is 
equal to 1.0 since its definition is a linear convex combination 
of SSIM values.

3.5.2   |   Virtual Restaining Assessment

Full-reference IQA metrics (PCC, SSIM, PSNR, and MI) were 
computed between real and synthetic PHH3 images to eval-
uate the virtual restaining process and for state-of-the-art 
direct performance comparison. Concerning the quantitative 

(1)wSSIMY−bias=0.8 ⋅ SSIMY +0.1 ⋅SSIMCb+0.1 ⋅SSIMCr
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analysis, in addition to IQA metrics for similarity assess-
ment, we propose a new local DAB intensity-based metric 
to focus on the chromogen (DAB) employed to stain PHH3 

cells undergoing mitosis. A color deconvolution-based ap-
proach [43] is used to separate DAB channel from the hema-
toxylin counterstain. Since DAB intensity color spectrum is 

FIGURE 3    |    Data preparation for the generative model. (a) DAB-driven patch extraction process. (b) Sample image pair of extracted patches with 
positive (left) and negative (right) IHC-staining.

FIGURE 4    |    Process for virtually restaining a tissue tile using the patch-trained GAN model. The input H&E tile is first extended by mirroring its 
boundaries. A sliding window inference is then performed, where the network generates IHC patches within a 256 × 256 window. For each window, 
only the central 192 × 192 region of the prediction is retained after cropping out boundary artifacts. Finally, cropping is applied to obtain the final 
IHC tile.
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most strongly represented in the red chroma component, we 
computed the following Cr-biased weighted SSIM in YCbCr 
color space:

where SSIM values were computed between DAB channels of 
original and synthetic PHH3 images, obtained using color decon-
volution technique. In the case of perfectly registered images, Cr-
biased weighted SSIM is equal to 1.0 since its definition is a linear 
convex combination of SSIM values. In addition, another DAB 
intensity-based metric was proposed for the quantitative analy-
sis. Color distance (CDIST) is defined as the Euclidean distance 
between the average color of each DAB-stained cell in the real 
IHC image and the corresponding synthetic one. DAB-stained 
cells were annotated by an expert pathologist for all test images. 
Higher values of CDIST denote a worse DAB intensity color cor-
respondence between real and synthetic mitotic instances.

From a clinical perspective, by evaluation of an expert patholo-
gist, mitotic count, and image quality were also assessed for real 
and synthetic IHC images. The mitotic count is defined as the 
number of DAB-stained cells undergoing mitosis, while image 
quality was graded with a score of “1: bad,” “2: poor,” “3: accept-
able,” “4: good,” and “5: excellent.”

4   |   Results

Table  1 summarizes the composition of the evaluation image 
dataset. All images are extracted at full magnification (40×) to 
best assess cellular structures. The evaluation metrics computed 
to assess each task are described in the following subsections. As 
shown in Table 1, the image field of view (FoV) is progressively 
reduced to focus on cellular structures at the end of the pipeline.

4.1   |   Quantitative Results for Multi-Stage 
Registration

Each step of the multi-stage registration framework was as-
sessed by computing IQA evaluation metrics. All metrics were 
computed by extracting images of different FoVs at full mag-
nification (40×). The 1st stage task evaluated both macro- and 
micro-registration using 108 images of size 4000 × 4000 pixels. 
The 2nd stage was assessed on 1462 images of size 2000 × 2000 
pixels. Image field registration took approximately 57 s per 
H&E-PHH3 pair of size 2000 × 2000 pixels. Figure 5 shows a vi-
sual analysis of the multi-stage registration process.

Table  2 reports the quantitative metrics for each registration 
task. Higher metric values denote better registration alignment, 
except for TRE for which lower values are considered better. 
The micro-registration step improved PCC value of 23.5% and a 
further increase of 11.8% was observed after the final 2nd stage 
registration step. SSIM and PSNR also increased with each sub-
sequent registration step, though the gains were smaller than for 
PCC. MI scores had the largest improvement between 1st and 
2nd registration, nearly doubling from 0.618 to 0.918. MI is es-
pecially sensitive to non-linear mappings, suggesting the final 
step best captured complex tissue deformations. TRE, reported 
in physical units, shows a decrease of 75% between macro and 
micro-registration and a further decrease of 58% in the last reg-
istration stage. wSSIMY-bias shows a better increase in absolute 
terms with respect to standard SSIM since more weight is given 
in the computation of luminance component, thus it is less af-
fected by different color appearance of H&E and PHH3 images. 
Each step of the proposed multi-registration framework is useful 
for achieving final pixel-level cellular matching.

4.2   |   Quantitative Results for Virtual Restaining

The performance of the proposed virtual restaining method 
was evaluated using both global IQA metrics and novel local 
DAB intensity-based metrics. From the test set, we generated 
and evaluated a total of 130 virtual restained images of size 
1800 × 1800 pixels. Table  3 presents the quantitative results 
achieved by our method on the test set, compared with state-of-
the-art AI methods.

On average, the mean IQA metric scores were high, indicating 
very good alignment between real and virtually restained images. 
Additionally, low standard deviations across metrics suggest con-
sistent performance between images. Regarding DAB-based met-
rics, wSSIMCr-bias nearing 1.0 demonstrates the GAN accurately 
reproduced DAB color mappings globally. However, the larger 
standard deviation for CDIST implies greater variability in local 
DAB intensity distributions between images.

Compared to other state-of-the-art AI methods, our proposed 
model outperforms them across all quantitative metrics, 
demonstrating its superior performance in generating high-
quality virtual PHH3 staining. The Style transfer network [4] 
achieves the lowest scores among the compared methods, 
with an SSIM of 0.678 and a PSNR of 25.51 dB. The Pyramid 
GAN [29] and Conditional GAN [28] show improved perfor-
mance, with SSIM values of 0.724 and 0.739, and PSNR val-
ues of 26.54 and 26.47 dB, respectively. However, our proposed 

(2)wSSIMCr−bias=0.1 ⋅SSIMY +0.1 ⋅SSIMCb+0.8 ⋅SSIMCr

TABLE 1    |    Evaluation image dataset composition.

Task Tissue # Images
Image size 

(pixels) Evaluation metrics

1st stage: macro-registration Lymph nodes, Bladder 108 4000 × 4000 IQA, TRE wSSIM in YCbCr

1st stage: micro-registration

2nd stage: field registration 1462 2000 × 2000

Virtual restaining Bladder 130 1800 × 1800 IQA, DAB intensity-based 
Mitotic count, Quality score
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model surpasses all these methods, achieving an SSIM of 0.861 
and a PSNR of 29.70 dB, indicating a higher level of structural 
similarity and signal quality in the virtually restained images. 
Furthermore, our model achieves the highest PCC and MI 
scores, suggesting a strong correlation and information shar-
ing between the virtual and real staining. The wSSIM score of 
0.974 further confirms the accurate reproduction of DAB color 
mappings in our model. The lowest CDIST value of 44.53 for 
our model, compared with the other methods, demonstrates a 
better match in local DAB intensity distributions between the 
virtual and real staining.

Figure 6a,b shows sample results from evaluating the virtual 
restaining approach. It presents real H&E and paired PHH3-
IHC images alongside the corresponding synthetically gen-
erated images. Global and local quantitative metrics are also 
shown for visual assessment purposes. Figure 6c presents the 
histogram distribution of CDIST values calculated over DAB-
stained cells.

We further analyzed the color distribution of the virtually PHH3-
stained images by converting them from RGB to YCbCr color 
space [21]. Figure 7 shows the histogram distributions of the Cb 

FIGURE 5    |    Results for each step of the multi-stage registration framework (i.e., macro-, micro-, and field registration). Zoomed-in views of the 
H&E-PHH3 image pair are shown at top, and the resulting image fusion from aligning the pair is shown at bottom, with associated quantitative 
metrics.

TABLE 2    |    Validation of the multi-stage registration framework. Average quantitative metrics (± standard deviation) are reported.

Task

IQA metrics Landmark YCbCr

PCC SSIM PSNR (dB) MI TRE (μm) wSSIM

1st stage: macro at 
1.25×

0.467 
(±0.155)

0.322 
(±0.108)

17.18 
(±2.065)

0.290 
(±0.183)

1.177 
(±0.668)

0.461 
(±0.093)

1st stage: micro at 
2.5×

0.702 
(±0.093)

0.500 
(±0.086)

18.50 
(±2.026)

0.618 
(±0.211)

0.289 
(±0.100)

0.601 
(±0.072)

2nd stage at 40× 0.820 
(±0.058)

0.612 
(±0.082)

19.13 
(±2.593)

0.918 
(±0.212)

0.122 
(±0.022)

0.679 
(±0.070)

TABLE 3    |    Comparison of the proposed model with other state-of-the-art AI methods for virtual restaining. Average quantitative metrics (± 
standard deviation) are provided for the assessment of virtual restaining quality. The best performances are highlighted in bold.

Method

IQA metrics DAB-based

PCC SSIM PSNR (dB) MI wSSIM CDIST

Style transfer 
network [4]

0.794 
(±0.054)

0.678 
(±0.032)

25.51 
(±0.560)

0.762 
(±0.167)

0.947 
(±0.006)

46.00 
(±42.17)

Pyramid GAN [29] 0.840 
(±0.036)

0.724 
(±0.030)

26.54 
(±0.565)

0.894 
(±0.142)

0.948 
(±0.007)

49.40 
(±41.67)

Conditional GAN 
[28]

0.844 
(±0.043)

0.739 
(±0.035)

26.47 
(±0.579)

0.949 
(±0.173)

0.945 
(±0.008)

47.44 
(±40.60)

Proposed model 0.913 
(±0.023)

0.861 
(±0.018)

29.70 
(±0.815)

1.339 
(±0.180)

0.974 
(±0.008)

44.53 
(±41.24)

 10981098, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23165 by M
assim

o Salvi - Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino , W
iley O

nline L
ibrary on [04/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



9 of 13

and Cr chroma channels, which represent the blue and red infor-
mation, respectively. Examining the Cb and Cr chroma channels 
confirmed that the GAN successfully reproduced the characteris-
tic color distributions seen in real H&E and IHC samples.

4.3   |   Assessment of Mitotic Count and Image 
Quality Score

An expert pathologist also qualitatively assessed the clinical 
accuracy of virtual restaining for tissue analysis tasks. The 
pathologist compared the mitotic count in synthetic images to 
the corresponding real PHH3-IHC images. Additionally, image 
quality was evaluated qualitatively on a 5-point qualitative scale 
(“1: bad,” “2: poor,” “3: acceptable,” “4: good,” and “5: excellent”). 

Figure 8 reports the mitotic count and quality scores between 
real and synthetic images. The PCC for mitotic counts was 
0.792. On average, synthetic and real images received scores of 
4.45 and 3.71, respectively. In 98% of cases, the pathologist rated 
synthetic image quality as equal or higher than the real image 
quality. This side-by-side evaluation by an expert validated that 
the synthetic images accurately represented mitotic activity and 
achieved perceptual quality equivalent or better than real stain-
ing for clinical use.

5   |   Discussion

This study aimed to develop and evaluate a novel experimental 
automated method for functional virtual restaining of digital 

FIGURE 6    |    Sample images showcasing quantitative metrics for virtual restaining assessment: Presenting both the best case—sample#1 (a)—and 
a faulty case—sample#2 (b)—of functional transfer. Additionally, zoomed-in views are provided for a direct comparison of real and synthetic PHH3-
stained mitotic cells, contoured in red. (c) Histogram distribution of color distance metric for all DAB-stained cells.
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pathology slides. Our model is based on a multi-stage registra-
tion framework that aligns histological slices and a generative 
model that creates realistic synthetic images of the target stain. 
To the best of our knowledge, this is the first study to propose a 
deep learning-based generative model with extensive validation 
both from a quantitative perspective and clinical implications.

The multi-stage registration framework leveraged coarse and 
fine-scale alignment techniques at varying magnifications to 
gradually improve matching between structures. PCC improved 
from 0.467 at 1.25× to 0.702 at 2.5×, validating the benefit of 

higher magnification refinement (Table 2). Field registration at 
40× provided a further boost to 0.820, demonstrating the cumu-
lative gains from stepwise alignment. MI also increased after 
completion of the two registration stages, showing improved 
ability to capture non-linear tissue deformations. Thanks to 
this two-step approach we were able to achieve pixel-level cor-
respondence between cellular structures while avoiding compu-
tational limitations.

The GAN model learned to translate H&E slides to realistic syn-
thetic PHH3 images, as shown through strong quantitative and 

FIGURE 7    |    Histogram analysis in YCbCr color space. (a, b) Real H&E and IHC images; (c, d) Cb and Cr channel histogram distributions for real 
and synthetic images. (e) Synthetic PHH3-stained image generated by the GAN model; (f) DAB staining intensities extracted via color deconvolution; 
(g, h) Cr channel of synthetic image and Cr histogram comparison of real and synthetic DAB intensity images.

FIGURE 8    |    Clinical analysis presenting the difference in mitotic count between synthetic and real PHH3-stained images (a), along with 
corresponding image quality scores (b).
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qualitative alignment scores. Global IQA metrics exceeded 0.91 
for PCC, 0.86 for SSIM and 29.7 dB for PSNR, validating good 
overall similarity (Table 3). It is important to note that the global 
image quality metrics reported in this study aim to quantify the 
similarity between the virtual and real staining in terms of over-
all image attributes such as color distribution, sharpness, and 
contrast. The higher scores for the virtual staining indicate that 
our generative model successfully captures and reproduces these 
general image properties from the real PHH3 staining. However, 
these metrics do not directly assess the functional quality or ac-
curacy of the virtual staining itself. For the purpose of evaluat-
ing the functional quality of the virtual staining, we introduced 
novel stain-specific metrics to assess the precision and sensitiv-
ity of mitotic figure labeling in the virtual PHH3 images. These 
metrics further confirmed accurate reproduction of global and 
localized DAB patterns (average wSSIMCr-bias of 0.974 ± 0.008), 
though some synthetic cells differed more from real counterparts, 
indicating room for improvement in consistency (Figure 6). Our 
model quantitatively outperforms other state-of-the-art AI meth-
ods proposed for virtual restaining.

Pathologist scores confirmed synthetic images provided high 
quality representations suitable for diagnostic tasks, with mitotic 
counts well-correlated overall and quality approaching real IHC 
images (Figure  8). However, a small overestimation risk was 
noted, warranting optimization to distinguish atypical nuclei. 
Specifically, some non-tumor cells with very dense chromatin, 
such as neutrophils, or multilobed nuclei similar to atypical neo-
plastic mitoses, are transformed into tumor mitoses by the gener-
ative model. Further refinements to the model architecture and 
training process could help distinguish these challenging nuclei. 
Nevertheless, this phenomenon is extremely limited, with no 
more than an additional count compared to the real ones.

Our study makes several key contributions. First, we employed 
a multi-stage registration approach to achieve precise pixel-wise 
matching between cellular and subcellular structures from the 
source H&E and target IHC stains. Accurate image alignment 
is critical, as it ensures corresponding structures are properly 
mapped during virtual restaining. Second, we trained a deep 
learning-based generative model on paired data, enabling the 
transfer of functional information at the single cell level. Unlike 
previous methods that focused solely on stain style-transfer, our 
model considers both morphological and functional attributes of 
individual cells by learning from cell-to-cell mappings from the 
paired training data.

The proposed virtual restaining method has significant clinical 
implications in the field of digital pathology. One key clinical 
application is the assessment of mitotic activity, which is cru-
cial for tumor grading and prognosis. Our method allows for the 
virtual generation of PHH3 staining, specifically highlighting 
cells undergoing mitosis. The strong correlation observed be-
tween mitotic counts derived from synthetic and physical PHH3 
staining validates the reliability of our approach for this critical 
task. Furthermore, the ability to generate multiple virtual stains 
from a single H&E slide can enhance the efficiency and cost-
effectiveness of pathology laboratories. Instead of performing 
multiple physical staining procedures, pathologists can leverage 
our virtual restaining method to obtain comprehensive morpho-
logical and functional information from a single digital slide. 

This can lead to reduced turnaround times and optimized re-
source utilization.

The proposed pipeline is also scalable and can be easily extended 
to additional IHC biomarkers such as p53 or other histochemi-
cal stains like PAS or trichrome. In terms of computational ef-
ficiency, the method takes only approximately 1.27 s to process 
the staining of an 1800 × 1800 tile.

However, some limitations of the current approach should be ac-
knowledged. In this study, we focused on generating synthetic 
PHH3 images from H&E-stained sections of human lymph 
nodes and bladder tissue only. While these tissue types demon-
strate the approach's potential, future studies must validate it 
across more tissue types and disease states. Moreover, the regis-
tration step required to build the paired training dataset is com-
putationally intensive. However, once trained, the generative 
model directly translates an H&E image into the correspond-
ing synthetic IHC image without need for further registration 
or alignment. Finally, although using destained-restained sec-
tions enables precise alignment, consecutive sections may be 
more readily available in clinical practice. Future research will 
expand the handled pairs to consecutive sections of primary or-
gans like the liver and kidney.

Currently, our research group is actively working on expand-
ing this approach to enable the processing of entire whole-
slide images. With our proposed algorithm, starting from a 
single H&E section, we aim to generate all the special stain-
ings associated with that tissue, while also preserving the 
functional information conveyed by these stains. This exten-
sion will provide a comprehensive and efficient solution for 
virtual restaining of large-scale digital pathology images, en-
abling pathologists to obtain a wealth of valuable information 
from a single H&E slide.

6   |   Conclusion

In conclusion, we have presented a novel approach for vir-
tual enhanced digital pathology through functional restaining. 
Our multi-stage registration framework, combined with a deep 
learning-based generative model, allows for the transfer of func-
tional information between stains, enabling a comprehensive 
assessment of cellular structures from both morphological and 
functional perspectives. The extensive quantitative and clinical 
validation of our method demonstrates its accuracy and poten-
tial for diagnostic applications. While still limited in scope, this 
research presents an important initial step toward automated 
multiparameter analysis of digitized histology with applications 
in efficiency, sample preservation, and simultaneous biomarker 
examination. Future research directions include exploring the ap-
plication of our approach to different staining modalities and fur-
ther investigating its impact on various pathological assessments.
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