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The backreaction of dispersed rigid fibers to turbulence is analyzed by means of a state-of-the-art fully
coupled immersed boundary method. The following universal scenario is identified: turbulence at large
scales looses a consistent part of its kinetic energy (via a Darcy friction term), which partially reappears at
small scales where a new range of energy-containing scales does emerge. Large-scale mixing is thus
depleted in favor of a new mixing mechanism arising at the smallest scales. Anchored fibers cause the same
backreaction to turbulence as moving fibers of large inertia. Our results thus provide a link between two
apparently separated realms: the one of porous media and the one of suspension dynamics.
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The interaction between fluid flows and dispersed
objects concerns a wide range of physical problems with
both environmental and industrial application, such as
transport processes in canopies or porous media, as well
as suspension dynamics and complex fluids [1–4]. In
boundary-layer meteorology, e.g., the presence of plant
canopies modifies the momentum and heat fluxes, con-
sequently altering ecological mechanisms of primary
importance such as carbon dioxide exchange [1,2,5,6],
with important implications on climate changes. In this
framework, Ref. [1] highlighted how the classical turbu-
lence scenario well explained by Kolmogorov’s theory [7]
can be intrinsically modified by the presence of the canopy:
the drag exerted by the latter causes the energy of the
flow to be extracted at the large scales and partially
reintroduced at smaller scales where fine flow structures
are generated. This energy transfer mechanism, labeled as a
“spectral shortcut,” is commonly invoked to explain
why the Kolmogorov scaling for the energy spectrum
EðkÞ ∼ k−5=3 does not hold in canopy turbulence [1,6].
However, the full comprehension of this phenomenon on a
more fundamental basis is still missing and the object of
active research [8–14]. Similarly, for the case of suspen-
sions, the backreaction to the flow due to the presence of
dispersed particles is poorly understood and no fully
predictive models exist [15–20].
In this Letter, we reveal the existence of a nonlocal

energy transfer mechanism universally present when a
turbulent flow interacts with a dispersed phase. To
describe this multiscale fluid-structure interaction

problem, we consider a turbulent flow with dispersed
fibers, as shown in Fig. 1. We present results of a scale-
by-scale spectral analysis showing that (i) the large-scale
dynamics can be effectively described in terms of a Darcy
friction (when the flow is observed on scales much larger
than the typical correlation length of the dispersed phase),
and (ii) the length scale at which energy is reintroduced
in the flow is the characteristic distance between
the dispersed elements, and not their size as usually
assumed.

FIG. 1. A snapshot of the three-dimensional flow under
investigation and N ¼ 83 fibers of length c=L ¼ ð4πÞ−1 dis-
persed within. Cut planes are colored by the pressure field.
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The problem is tackled by means of direct numerical
simulations (DNS) complemented with an immersed
boundary method (IBM) [21–23] [24] to comprehensively
investigate both the small- and the large-scale dynamics. In
particular, we consider a triperiodic fluid domain of size
L ¼ 2π, where turbulence is sustained by forcing the
incompressible Navier-Stokes equations at the largest scale
(i.e., on the first wave number k ¼ 1), in the unstable
regime of the Arnold-Beltrami-Childress (ABC) flow at
Re≡ ν−1 ¼ 130, being ν the kinematic viscosity of the
fluid [32,33]. An ensemble of N rigid fibers of length
c=L ¼ ð4πÞ−1 are immersed in the flow, their concentration
being quantified by the number density n ¼ N=L3; the
latter is always such that we fall into the dilute regime, i.e.,
nc3 ≪ 1 [3]. To better isolate the different effects, fibers
can be either fixed or moving. In the fixed configuration,
we consider different fiber lengths c and concentrations
n, isotropic and anisotropic orientation distributions, and
both evenly and randomly spaced fibers. In the moving
configuration, we vary the fiber inertia by changing the
linear density difference between the fiber and the
fluid, Δρ̃.
Figure 2 shows the energy spectra EðkÞ for several cases

from our numerical study. First, results for the fixed-fiber
configuration with isotropic orientation are collected
in Fig. 2(a). Starting from the single-phase solution
(i.e., N ¼ 0) and increasing the fiber concentration, the
amplitude of the energy-containing low-wave number
components is found to decrease. The presence of fibers
alters the energy distribution across the scales of motion:
while the large-scale (low-wave number) components are
damped, the small-scale (high-wave number) activity is
enhanced. Although the first wave number remains the
dominant mode, a secondary peak is clearly observed at a
higher wave number kc ¼ 2π=l. We find that the associated
length scale l corresponds to the spacing between fibers,
i.e., l ¼ L=

ffiffiffiffi

N3
p

. Notice that the characteristic length of the
single canopy element (in our case the fiber length c) does
not appear directly, in contrast to what is typically claimed
for turbulence in plant canopies [1,6]. Figure 2(a) also
includes the results for fibers randomly distributed in the
domain: a similar behavior is evident, except for a smoother
transition in the intermediate range of scales. This differ-
ence is due to the uneven spacing between fibers, resulting
in a distribution of kc instead of a uniquely defined value. A
similar outcome is obtained when the fiber orientation has
an anisotropic distribution, as reported in Fig. 2(b). Here,
fibers lie on evenly spaced planes and have a two-dimen-
sional orientation distribution. In this case, the weakening
of the flow due to fibers is less intense for the velocity
components parallel to the planes (E11 and E22) than for the
normal component (E33). Nevertheless, the structure of the
energy spectra is the same, with a reduced energy level for
large scales and a secondary peak emerging at the same
characteristic length scale l previously identified. Finally,

Fig. 2(c) shows the resulting spectra for the configuration
where fibers are moving. The feedback of fibers to the flow
causes energy reduction at large scales associated with an
enhancement occurring at small scales. While the large-
scale suppression becomes irrelevant in the limit of
vanishing inertia, this is not the case for the small-scale
intensification. This indeed appears even for negligible
fiber inertia when the fiber and fluid velocities are
very close to each other. In this limit fibers only act to
increase the effective fluid density, thus increasing the
effective Reynolds number of the flow and, ultimately,
the resulting small-scale turbulence. This mechanism is the
same at work for fine dust in a flow field [15,18]. The large-
scale suppression increases as the fiber inertia becomes
more and more important, giving rise to a spectral gap. For
the largest fiber inertia we have analyzed, the energy
distribution along the scales is very similar to that of the
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FIG. 2. Energy spectra for (a) fixed fibers with isotropic
orientation for different fiber concentrations, (b) fixed fibers
evenly spaced with anisotropic orientation, (c) moving fibers with
different inertia (along with the magenta curve for randomly
distributed fixed fibers reported again for comparison). The black
curve represents the single-phase case, i.e., N ¼ 0.
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fixed randomly distributed fibers having the same number
density [see the magenta curve in Fig. 2(c)]. As we will see
in this Letter, large scales are subject to a Darcy dissipation
mechanism. However, for the latter dissipative effect to
emerge, sufficiently large velocity differences between
fibers and fluid must occur. Note that, the underlying
mechanism here is different from those found in turbulent
flows with polymer additives that are inertialess, elastic,
and of microscopic size [34–37].
To get a deeper understanding of how energy is redis-

tributed in the flow, we consider the governing equation for
the energy spectrum,

∂tE ¼ T þ V þ FFOR þ FFIB; ð1Þ
where the quantities appearing on the right-hand-side
correspond to the nonlinear energy transfer T, the viscous
dissipation V, the external flow forcing FFOR, and the fluid-
structure coupling FFIB [24]. For steady or statistically
steady flows, the left-hand side becomes zero, and the
energy balance is governed only by the four terms
appearing on the right-hand side. In Fig. 3, each of these

terms is plotted as a function of the wave number in the two
limiting situations outlined previously. We first consider the
case of fibers with relatively small inertia [Fig. 3(a)]. Here,
the fluid-structure coupling FFIB turns out to be negligible
at the lowest wave numbers, and, consequently, the scale-
by-scale balance resembles that of the single-phase case
(also included in the figure, see the dashed curves) with
minor differences not affecting substantially the resulting
scenario. However, despite the fact that the large-scale
dynamics is not affected by the dispersed phase, FFIB is
active on a broadband high-wave number region and
responsible of the enhanced small-scale activity, consis-
tently with what is observed for the energy spectra. Overall,
at the first wave number the energy input FFOR is balanced
only partially by the dissipation V, and the remaining part
is transferred by the nonlinear term T to higher wave
numbers. Because of the limited Re, no constant-flux
energy cascade can be observed (i.e., here the flow is
multiscale and chaotic but does not exhibit a constant-flux
inertial range); nevertheless, a certain proliferation of
active scales of motion occurs up to the wave number
where viscous dissipation becomes dominant. In contrast,
a dramatic change of the overall balance occurs if
heavy fibers, or, equivalently, fixed fibers, are considered
[Fig. 3(b)]. Here, the nonlinear term T turns out to be
negligible compared with the other ones. The large-scale
dynamics is now governed by the balance between the
external forcing FFOR and the fluid-structure coupling FFIB:
the former injects energy, while the latter subtracts it. All
terms are vanishing over an intermediate range of wave
numbers, indicating that the energy transfer occurring in the
presence of the dispersed phase is nonlocal. Indeed, at large
wave numbers (small scales) the positive contribution of
the fluid-structure coupling FFIB is essentially balanced by
the negative viscous dissipation V, with their amplitudes
decaying when further increasing k. Notice that the same
balance has been observed in Ref. [19] for particle-laden
homogeneous shear flow.
These observations show the presence of scale separation

and outline the possibility of an effective description for
the large-scale dynamics. We therefore propose to
model the fluid-structure coupling in Eq. (1) by a
Darcy-like friction term FFIBðkÞ ¼ −DEðkÞ, where D is
the Darcy friction factor. The latter can be evaluated by
measuring the decay rate of the low-wave number
components of the spectrum when adding the fibers to
the single-phase flow [24]. The decay of Eðk; tÞ is found
to be substantially exponential, so that we can write
Eðk; tÞ ¼ Eðk; t ¼ 0Þ expð−βtÞ þ Eðk; t → ∞Þ, where β ¼
2ðDþ k2νÞ is the characteristic time decay rate. Note that
this is true as long as the nonlinear term T is negligible. The
decay of the first and second spectral modes reveal to be
essentially independent of the wave number k for all the
investigated cases, with D ≈ β=2 supporting the validity of
the Darcy-like description for the fluid-structure coupling
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FIG. 3. Spectral energy balance according to Eq. (1) for (a) 83

moving fibers of length c=L ¼ ð4πÞ−1 with small inertia
(Δρ̃ ¼ 10−2, solid curves), compared to the single-phase case
(i.e., N ¼ 0, dashed curves). (b) The same configuration but with
large inertia (Δρ̃ ¼ 101, solid curves), compared to the case
where fibers are fixed with random position and isotropic
orientation (dashed curves). All the quantities are premultiplied
by k to improve the plot readibility. Black: external forcing FFOR;
green: fluid-structure coupling FFIB; cyan: viscous dissipation V;
orange: nonlinear term T.
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at the large scale. We observe that the friction factor D
grows with the number of fibers N, it is independent of the
fiber spatial distribution when isotropic, while it reduces
when anisotropic. Finally, D decreases when fibers are
allowed to move.
This mean-field large-scale description can be applied to

normalize the energy spectra as shown in Fig. 4 for the
different configurations we have analyzed in Figs. 2(a)
and 2(b). Note also that the wave number is normalized
using the characteristic wave number kc, so that the
small-scale (high-wave number) peaks for different con-
centrations substantially overlap (conversely, without nor-
malizing the curves would collapse in the low-wave
number region; see inset). The normalization applies over
the whole range of scales, confirming the universality of the
physical mechanisms under investigation and proving the
validity of our phenomenological description. For the
anisotropic case, the Darcy friction features a diagonal
tensor D; our analysis applies for each of the three
components of EðkÞ using the corresponding diagonal
entry of D, as well as for the total spectrum using the first
invariant of D (i.e., its trace). As a final note, the collapsed
spectra also reveal a power law ∼k−3 scaling at the small
scales k=kc ≥ 1, the fingerprint of a regime characterized
by smooth fluctuations in space.
To further confirm the generality of our findings, we

have also considered other flows, such as the parallel
Kolmogorov flow (not shown here) and the widely used
homogeneous isotropic turbulence (HIT) [38], whose
results are reported in Fig. 5. In particular, the figure
shows the energy spectra obtained in HIT for two different
fiber concentrations. Again, consistently with what already
observed, we find an increase of the small-scale activity
(scaling approximately as k−3) and a reduction of energy
for the large scales. The latter becomes more pronounced as

the number of fibers is increased. In the figure, we also
present results from effective single-phase computations
where we solve the governing equations of the fluid,
and the presence of fibers is modeled by the Darcy drag
term. Looking at the time history of the mean kinetic
energy reported in the inset of Fig. 5, the effective
description provides a very good approximation of the
fully resolved solution, the agreement increasing with the
fiber concentration.
A note should be added on the validity of our effective

model: the nonlinear contribution to the energy balance has
to be negligible. This is found to occur only when the
concentration of the dispersed phase is sufficiently high
(although still in the dilute configuration). One additional
constraint arises from the fiber inertia in the case of a
suspension of moving fibers: the turbulence modulation
discussed here is evident only for large enough density
ratios, provided the concentration is also high enough.
We have found that a solution of fibers dispersed in

turbulence totally changes the classic turbulent energy
budget. Because of the backreaction of the fibers to the
flowing fluid, the intensity of the large-scale motion is
damped. Flow kinetic energy reduces at large scales being
reinjected at small scales causing small-scale mixing. The
scenario is robust with respect to changes of the underlying
turbulence characteristics. Because we found the same
results for both fixed fibers (forming a turbulent porous
medium) and freely moving fibers, the two realms of
porous media and suspension dynamics now appear much
closer than previously thought.
To conclude, we expect a similar scenario also for other

objects such as particles of different shapes or droplets
[16,17,19,20]. The resulting phenomenology indeed
appears to be ruled by general properties such as inertia
and concentration rather than their particular geometry.
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