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Abstract

The present work aims at investigating the failure size effect of a spheroidal

void in an infinite linear elastic solid under remote tension by means of the

coupled Finite Fracture Mechanics (FFM) approach. The opening stress field

and the stress intensity factor (SIF) of an annular crack surrounding the cavity

—necessary for the FFM implementation— are obtained numerically through

parametric axisymmetric finite element analyses (FEAs): The spheroid aspect

ratio is varied between 0.1 and 10 and Poisson's ratio between 0.1 and 0.5.

Accordingly, semi-analytical functions approximating the stress concentration

factor and the SIF are put forward. Finally, the failure size effect on spheroidal

voids is reported, and FFM predictions are compared with experimental results

on the fatigue limit arising from corrosion pits, showing a fairly good

agreement.

KEYWORD S
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1 | INTRODUCTION

Finite Fracture Mechanics (FFM)1,2 is a coupled fracture
initiation criterion that allows to provide strength predic-
tions based on the simultaneous fulfilment of a stress
condition and the energy balance, thus presenting an
intrinsic physical meaning. In contrast to Linear Elastic
Fracture Mechanics (LEFM), which assumes crack
growth to develop continuously, FFM rests on the
assumption of finite crack advance. This feature is shared
with other nonlocal models previously proposed, which
can be grouped in the framework of the Theory of Criti-
cal Distances (TCD),3,4 in turn inspired by the works of
Hashin5 and Kim and Nairn.6 Unlike these approaches,
according to which the crack advance is a material

property, FFM involves a structural crack extension,
since dependent on geometric characteristics and loading
conditions as well.

All in all, these features enable FFM to provide reli-
able failure estimations for plain, cracked, and notched
elements: In comparison, LEFM only works for geome-
tries with a sufficiently large crack.7,8 Indeed, FFM is able
to catch the transition from strength to toughness-
governed failure regimes as the characteristic size of the
stress-raiser varies. With the focus on the size effect of
failure, FFM has been recently applied to brittle materials
in presence of circular holes,9–12 square notches,13–15

Penny-shaped cracks,16 and spherical cavities.17 Like-
wise, FFM has been proved to provide predictions close
to the well-established cohesive zone model.12,18–20
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Although initially proposed and applied only to static
problems, FFM was later extended to assess the fatigue
limit of structural components. Whereas the static formu-
lation requires the knowledge of the material ultimate
tensile strength and of the fracture toughness, both the
plain fatigue limit and the threshold value of the stress
intensity factor range are needed in the fatigue regime. In
this field, FFM has been applied to different notched
geometries under either mode I21–23 or mode III24 loading
conditions.

In the framework of fatigue failure, one of the most
important issues is that related to corrosion pitting.
This phenomenon is of great concern, for instance, for
high-strength steel wires25 and aluminum aerospace
components,26 or to structures under intense and unsteady
high-frequency fluid–structure interactions, like turbine
blades.27,28 Corrosion is a chemical process that causes the
gradual weakening of solid matter, with great impact to
metallic components. Its appearance and evolution is
influenced by many different parameters, including mate-
rial composition, environment, temperature, and surface
conditions. In particular, corrosion pitting is a very local-
ized and critical form of damage. Pits are small and diffi-
cult to detect, and as stress raisers, they can lead to the
sudden brittle failure of structures and mechanical compo-
nents while stressed well under their design load.

Studies focused on the topic have been proposed since
the middle of the last century, by approximating the pit
shape as in between hemispherical and hemispheroidal.
Eubanks29 and Fujita et al.,30 for instance, derived the
analytical stress distribution given by a hemispherical
hole under all-around remote tension. More recent works
focused on the estimation of the stress concentration fac-
tor Kt, that is the ratio between the maximum value of
the stress at the pit surface and the nominal stress on the
gross section area, through three-dimensional (3D) finite
element analyses (FEAs). To cite but a few, Huang
et al.31 assessed Kt for pits under uniaxial tension as a
function of the geometry. Similarly, Cerit et al.32 and Jie
and Susmel25 estimated Kt for semi-elliptical cavities and
proposed some analytical approximate expressions. On
the down side, precise 3D FEAs are computationally
expensive and do not result adequate for preliminary siz-
ing of structural components, especially considering that
Kt based studies are not able to catch any size-effect
according to classical linear elasticity.33

To simplify the analysis, Härkegård et al.34 approxi-
mated the fatigue behavior of a hemispherical pit by that
of a spherical cavity in an infinite tensile body, whose
stress solution is known analytically. Under this assump-
tion, the fatigue limit was estimated using different
methods, including Smith-Miller's model,35 which con-
siders the pit equivalent to a crack defined by its axial

projection, and Murakami's area model,36 which takes into
account the area of the defect projected along the direction
of the maximum normal stress. Härkegård37 extended the
analysis using also FKM “support factor,” according to
FKM Guideline38 and applying the TCD3 in the form of
the Point Method. Accordingly, fracture takes place when
the normal stress equals the tensile strength at a critical
distance from the stress raiser. TCD was implemented also
by Jie and Susmel25 to provide fatigue life estimations for
corrosion pits, modelled as semi-ellipsoidal cavities, but
disregarding the initiation crack shape.

While therefore, on the one hand, there emerges the
need to improve the model proposed by Härkegård et al.34

by taking into account the spheroidal (and not only spheri-
cal) geometry of the pit, on the other hand, this must be
done considering the appropriate shape of the onset crack.

The goal of the present study is to analyze the failure
behavior of a spheroidal void in an infinite tensile
domain by means of FFM. Thereby, the present study
generalizes those by Cornetti and Sapora16 on Penny-
shaped cracks and by Chao Correas et al.17 on spherical
cavities, which can be seen as particular cases of spher-
oids: In the former, the vertical axis is null; in the latter,
the two axis lengths are equal with each other. The FFM
criterion is here implemented by exploiting the axisym-
metric problem and, consequently, by considering an
annular crack shape. Following what done by Härkegård
et al.,34 the strength estimations are compared with
experimental fatigue data related to corrosion pitting on
two different materials: 12% Cr martensitic27 and
17-4PH28 turbine-grade steels.

2 | THE ANNULAR CRACK
AROUND A SPHEROIDAL CAVITY

Given a spheroidal void embodied in an infinite domain
under a uniform remote stress σ∞, applied perpendicular
to the void equator plane (Figure 1), let us introduce a
cylindrical coordinates system (r, θ, z) centered in the
spheroid. The r-θ plane thus coincides with the spheroi-
dal equator and the z-axis with its revolution axis, in turn
aligned with the remote loading. The two semi-axes nor-
mal and parallel to the loading σ∞ are denoted by a and
b, respectively.

Considering an isotropic homogenous material and
given that the configuration under study is axisymmetric,
an annular crack of width c is expected to initiate under
Mode I opening conditions in the z = 0 plane, that is
within the void's equator.

In the reference plane for fracture, z = 0, the tridi-
mensional coordinate system (r, θ, z) can be reduced to
unidimensional, the only relevant coordinate being the

876 FERRIAN ET AL.
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radial one, r. Accordingly, the stress field function of
interest can be expressed as (r ≥ a):

σzz rð Þ¼ σ∞S r, a, b, vð Þ ð1Þ

and the stress concentration factor Kt writes:

Kt ¼ σzz að Þ
σ∞

ð2Þ

Note that the shape function S (r, a, b, v) in
Equation (1) depends on the geometrical dimensions of
the void, as well as on the material through Poisson's
ratio v. In this work, S is estimated through a parametrized
and axisymmetric FEA using ANSYS® code. In order to
mimic the infinite geometry assumption, the height h and
the width w of the domain are considered at least 10 times
greater than the maximum spheroidal axis a or b. Vertical
symmetry in the setup is exploited, and just the upper half
is modelled. Axisymmetric quadratic elements are used,
with eight nodes and characterized by a reduced integra-
tion solution scheme. The FE mesh pattern used to calcu-
late the stress field is analogous to that used to calculate

the SIF (see Section 2.1), but for the presence of the crack
and the respective localized mesh refinement at the crack
tip. The minimum dimension of the finite elements at the
stress concentration region is determined through a con-
vergent analysis and set equal to 0.01 a.

Varying Poisson's ratio v from 0.1 to 0.5, the stress
field is evaluated for different ratios b/a ranging from 0.1
to 10. Results are presented in Figure 2A. As v increases,
the stress field intensifies for any aspect ratio. However,
the dependence of the stress field on v is limited in mag-
nitude. Indeed, considering b/a = 0.5, the peak stress
value obtained for v = 0.5 is nearly 9% higher than the
corresponding one for v = 0.1. This difference progres-
sively decreases as r increases, the stress field quickly
converging to the applied loading σ∞.

Figure 2B shows the behavior of Kt as a function of
v and b/a. This trend can be approximated by the follow-
ing expression, which we propose on the basis of a non-
linear fitting on numerical results (typical errors lower
than 5%):

Kt ¼ 1þ m
b=að Þn ð3aÞ

m¼ 0:23v2þ0:27vþ1:0 ð3bÞ

n¼�0:03v2�0:11vþ1:1 ð3cÞ

Note that, for the spherical case (b/a = 1),
Equation (3) provides close results to those by the (exact)
analytical expression (4),39 with a maximum deviation of
3% for v = 0.2:

Kt ¼ 3 9�5vð Þ
2 7�5vð Þ ð4Þ

2.1 | Stress intensity factor

The SIF Ksph
I for an annular crack of width c surrounding

the spheroidal void (Figure 1), on the basis of the works
by Fett40 and Chao Correas et al.,17 can be achieved con-
sidering the interpolation between two limit cases: (i) the
edge crack and (ii) the Penny shaped crack. Indeed, when
a, b>> c, the configuration resembles an edge crack of
length c (Figure 3A), while if a, b<< c, it tends to a
Penny shaped one with radius a+ c (Figure 3B).

Based on the above considerations, we can express
the SIF Ksph

I as follows:

Ksph
I ¼ σ∞

ffiffiffiffiffi
πc

p
Fsph
I

Fsph
I ¼FEC

I γ c, a, b, vð ÞþFPC
I 1� γ c, a, b, vð Þ½ �

(
ð5Þ

FIGURE 1 Schematic representation of a spheroidal void in an

infinite tensile continuum. The annular crack of length c (grey line)

surrounding the spheroidal void represents the supposed crack

initiation

FERRIAN ET AL. 877
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where Fsph
I , FEC

I , and FPC
I are the shape functions in the

spheroidal, edge cracked, and Penny-shaped cracked con-
figurations, respectively, whereas γ (c, a, b, v) is the inter-
polation function.

In accordance to previous observations, γ = 1 when
a << b: Thus,Fsph

I ¼FEC
I , with FEC

I given by the well-
known factor 1.122 times the stress concentration factor
Kt. On the other hand, a >> b requires γ= 0 to achieve
Fsph
I ¼FPC

I . The shape function FPC
I can be obtained

through the method mentioned in Fett40:

FPC
I ¼

Zaþc

a

σzz rð ÞhPC r, a, cð Þdr ð6Þ

where the weight function hPC r, a, cð Þ is defined as

hPC r, a, cð Þ¼ 2rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π cþað Þ cþað Þ2� r2

� �q ð7Þ

As concerns the function γ for intermediate geometries,
Chao Correas et al.17 proposed an interpolating expres-
sion based on axisymmetric FEA results for the spherical
case (a = b = R):

γ c, Rð Þ¼ R
Rþ5c

� �2

ð8Þ

Equation (8) fulfils the limit cases of an edge crack and a
Penny shaped crack, since γ ! 1 for c/R ! 0, and γ ! 0
for c/R ! ∞. Note that Equation (8) is independent from

FIGURE 2 (A) Dimensionless longitudinal stress field for b/a = 0.5 as v varies from 0.1 to 0.5; (B) stress concentration factor Kt as a

function of b/a and v [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Limit cases for the SIF:

(A) edge crack for a, b >> c; (B) Penny

shaped crack for a, b << c

878 FERRIAN ET AL.
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v, reflecting the weak dependence on Poisson's ratio
detected numerically.

We can herein generalize Equation (8) for the
spheroidal configuration as:

γ c, a, b, vð Þ¼ a
aþ f σ a, b, vð Þc

� �2
ð9Þ

with:

f σ a, b, vð Þ¼ Q �a
b

� �P

ð10Þ

Equation (10) satisfies the conditions f σ a< < bð Þ¼ 0
and f σ a> > bð Þ¼∞.

To evaluate the parameters P and Q, parametrized
axisymmetric FEAs using ANSYS® code are performed to
determine different Ksph

I values. The mesh and the model
schematic definition are represented in Figure 4. Once
again, the height h and the width w of the model are con-
sidered at least 10 times greater than the maximum sphe-
roidal semi-axes to ensure negligible edge-effects.
Axisymmetric quadratic elements are used, with 8 nodes
and characterized by a reduced integration solution
scheme. To reduce the computational cost yet keeping
the accuracy, following a convergence analysis, the mesh
is refined within a semi-circle of radius 0.5c centered at
the crack tip: Therein, the minimum dimension of the
elements is set to 0.01c.

Now, it is seen that the SIF problem, that is, the esti-
mation of P and Q, is doubly parametrized, since it
depends on both b/a and c/a ratios. In this sense, for each
b/a from 0.1 to 10, the SIF magnitude is obtained for dif-
ferent c/a, also within the range from 0.1 to 10. Subse-
quently, the parameters P and Q are determined on the

basis of best fitting to the numerical results. This proce-
dure is repeated for five different Poisson's ratios (v = 0.1,
0.2, 0.3, 0.4, 0.5), showing that P and Q do not show a
strong dependence on v. For this reason, the average
values of those estimated for the different values of v,
namely, P = 1.86 and Q = 2.70, are considered. This
choice leads, for the spherical case, to fσ ≈ 6.3
(Equation 10) which slightly differs from the factor 5 pro-
posed17 in Equation (8).

3 | FINITE FRACTURE
MECHANICS (FFM)

According to Finite Fracture Mechanics (FFM), crack
propagation occurs when a stress and an energy condi-
tions are simultaneously fulfilled. FFM was proposed and
consolidated in the static regime1,2 and recently extended
to the fatigue framework.22,23 Following Leguillon's
approach,1 the stress requirement imposes that the nor-
mal stress range Δσzz must exceed the plain fatigue limit
Δσ0 over a finite distance l. Under linear elastic assump-
tions, the discrete energy balance can be defined through
the J-integral range formalism, which involves the SIF
range ΔKI and its threshold value ΔKth. Particularizing
the FFM formulation to the present geometry, which
turns out to be positive, the two conditions can be cast in
the following form:

Δσzz aþ lcð Þ¼Δσ0Z lc

0
ΔKsph

I cð Þ
h i2

2π cþað Þdc¼ π aþ lcð Þ2�a2
� �

ΔK2
th

8<
:

ð11Þ

The energy balance can also be coupled with an average
stress condition, requiring that the average longitudinal

FIGURE 4 Finite element model implemented to determine the SIF Ksph
I for b/a= 0.5

FERRIAN ET AL. 879
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stress range over a distance l must exceed the plain
fatigue limit Δσ0. Accordingly, the avg-FFM approach
writes:

Zaþlc

a

Δσzz rð Þ2πrdr¼ π aþ lcð Þ2�a2
� �

Δσ0

Z lc

0
ΔKsph

I cð Þ
h i2

2π cþað Þdc¼ π aþ lcð Þ2�a2
� �

ΔK2
th

8>>>>><
>>>>>:

ð12Þ

Both FFM formulations (11) and (12) are thus repre-
sented by a system of two equations in two unknowns:
the fatigue limit Δσf and the critical crack advancement
lc, which reveals to be a structural parameter, since
dependent on both material and geometry.

3.1 | FFM implementation

Introducing Equations (1) and (5) into Equation (11), the
critical conditions (Δσ∞ = Δσf) predicted by FFM follow:

Δσf
Δσ0

¼ 1
S aþ lc, a, b, vð Þ

Δσf
Δσ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lth l2c þ2alc
	 


2π
Zlc
0

c cþað Þ Fsph
I c, a, b, vð Þ

h i2
dc

vuuuuuut

8>>>>>>>>><
>>>>>>>>>:

ð13Þ

where lth = (ΔKth/Δσ0)2 generalizes the well-known
Irwin's length defined in the static framework.22 FFM
estimations are obtained by equaling the right-hand sides
of system (13): The solution of an implicit nonlinear
equation yields the critical crack advancement lc. This
value is then introduced into one of the two equations
in (13) to get the corresponding dimensionless fatigue
limit. On the other hand, considering the avg-FFM
approach (Equation 12), the critical conditions are found
through the following system:

Δσf
Δσ0

¼ l2c þ2alc

2
Zaþlc

a

S r, a, b, vð Þrdr

Δσf
Δσ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lth l2c þ2alc
	 


2π
Zlc
0

c cþað Þ Fsph
I c, a, b, vð Þ

h i2
dc

vuuuuuut

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð14Þ

which can be solved analogously to Equation (13).
Strength predictions for different b/a ratios varying from
0 (Penny-shaped crack) to 10 (very prolate spheroid) are
plotted in Figure 5 considering a constant Poisson's ratio
v = 0.3. As evident, the normalized failure stress Δσf/Δσ0
increases for higher b/a ratios, that is for more prolate
spheroids. Clearly, the solution herein obtained for b/
a = 0 coincides with the Penny shaped crack solution
reported by Cornetti and Sapora.16

The influence of Poisson's ratio on the strength
scaling is highlighted in Figure 6A, where the theoretical

FIGURE 5 Fatigue strength estimations provided by (A) FFM and (B) avg-FFM for different ratios b/a over the range 0 to 10. Poisson's

ratio is fixed, v = 0.3

880 FERRIAN ET AL.
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estimations are plotted for v = 0.1 and v = 0.5, fixing
b/a = 0.5. As expected, avg-FFM provides the most
conservative estimations. Besides, lower effective
strength predictions are obtained increasing Poisson's
ratio. Nevertheless, the dependency of the results on v is
again small, and it increases as a/lth increases, until
becoming nearly constant from a/lth ≈ 102, that is, when
the solution becomes governed by the stress concentra-
tion factor Kt.

In Figure 6B, the normalized critical crack advance-
ment lc/lth is reported as function of a/lth. Avg-FFM pro-
vides higher lc/lth values with respect to FFM, but both
approaches converge to 3π/8 for a/lth ! 0 and to
2/1.1222π for a/lth ! ∞. These extreme values coincide
with those obtained for a Penny shaped crack16 and an
edge crack,2 respectively. Furthermore, once again, the
influence of Poisson's ratio on lc/lth is small and limited
—in this case— to the transition zone between the void-
less and large-size solutions, similarly to the case of
spherical voids.

4 | COMPARISON WITH
EXPERIMENTAL DATA

Several works in the scientific literature addressed the
evaluation of stress concentration due to the presence of
corrosion pits.25,32 As outlined in Section 1, corrosion pit-
ting is a localized and accelerated dissolution process
—mainly affecting metals— that occurs as a result of a
damage of the protective passive film on the material sur-
face. This phenomenon is one of the most common fail-
ure mechanisms in presence of a corrosive environment.

In a recent work, Härkegård et al.34 approximated the
fatigue behavior of a surface pit by that of a spherical
void in an infinite body. This approximation allows to
overcome the drawback related to the high computa-
tional cost of a 3D FEA because the geometry becomes
axisymmetric. Note that differences between edge and
centre notched geometries are usually small: For b/a = 1,
the deviation of the stress concentration factor Kt is 7%
for v = 0.25,29 whereas for b/a ! 0, the deviation of the
SIF is around 12%.41 Hence, we herein make the same
assumption, approximating the edge hemispheroidal
geometry by a central spheroidal one.

Following this approach, the axisymmetric model pre-
sented in Figure 1 is exploited. Fatigue strength estima-
tions obtained for a spheroidal void are hence compared
with experimental fatigue data on steel specimens in
presence of corrosion pits.27,28

Experimental tests on specimens of a 12% Cr martens-
itic steel for steam turbine blades (E = 200 GPa and
v = 0.3), with a single corrosion pit, were carried out by
Salzman et al.27 Fatigue results were generated by means
of ultrasonic fatigue testing carried out in air at 90�C.
Three different stress ratios were considered: RL = 0.05,
0.5, and 0.8. For each RL, the mechanical properties of
the materials are reported in Table 1: They were evalu-
ated experimentally in the reference article.27

The fatigue limit Δσ0 refers to 109 cycles and is based
on S-N curves covering the range 104–109 cycles. Test
results are divided into three different categories: (i) No
Crack, (ii) Self Arrested Crack (SAC), and (iii) Failure. In
the former case, no cracks were observed after 109 cycles,
whereas in the second case, SAC cracks were detected
after the same number of cycles. In the latter case, fatigue

FIGURE 6 (A) Fatigue strength estimations Δσf/Δσ0 and (B) normalized critical crack advancement lc/lth by FFM and avg-FFM, for b/

a = 0.5: v = 0.1 (thin line) and v = 0.5 (thick line)
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failure occurred from 105 cycles upwards. The pits were
characterized by a ratio 0.5 < b/a < 1 (see the subplot of
Figure 7A). Experimental data are plotted in Figure 7A,
together with a schematic representation of the pit and
theoretical strength estimations for b/a = 0.5 and 1. As
expected, FFM and avg-FFM predictions reveal conserva-
tive for b/a = 0.5. Anyhow, the FFM approach
(Equation 13) reveals to be more accurate. Despite the
intrinsic uncertainty and scatter in the fatigue results, “No
Crack” data generally fall in between the two FFM curves.

A second set of data obtained by Schönbauer et al.28

is also considered. In this study, fatigue life tests were
carried out in air at 90�C by means of an ultrasonic
fatigue test machine on pre-pitted specimens made of
17-4PH turbine-grade steel (E = 200 GPa and v = 0.3).
Two different stress ratios were considered, RL = 0.05
and 0.4: The evaluated mechanical properties28 are
reported in Table 1. The fatigue limit Δσ0 refers again to
109 cycles. Results were divided into “No Crack” and
“Failure.” In the former case, no cracks were observed
after 109 cycles, whereas in the latter case, failure

occurred for a number of cycles ranging from 105 to
2�106. The pits were characterized by a ratio b/a approxi-
mately variable between 0.5 and 1. Results are presented
in Figure 7B: In this case, avg-FFM provides the most
reliable predictions, being able to catch the transition
from “No Crack” to “Failure” data. Finally, the value of
the critical crack lengths lc can be estimated from
Figure 6B and Table 1 (lch) for both steels: Its value
approximately ranges from 0.007 to 0.13 mm for FFM,
and from 0.010 to 0.19 mm for avg-FFM.

5 | CONCLUSIONS

In this work, the size effect of a spheroidal cavity in an
infinite linear elastic solid under remote tension was
investigated by means of Finite Fracture Mechanics
(FFM) approaches. In order to obtain the stress field and
SIF expressions, necessary to apply FFM, an axisymmet-
ric and parametric FEA was conducted using ANSYS®

code, varying v between 0.1 and 0.5, and the axis ratio b/

TABLE 1 Mechanical properties of the materials considered in the present study

Material Reference RL Δσ0 (MPa) ΔKth (MPa√m) lth (mm)

12% Cr martensitic steel Salzman et al.27 0.05 640 3.8 0.035

0.5 370 2.7 0.053

0.8 150 2.2 0.220

17-4PH steel Schönbauer et al.28 0.05 769 3.3 0.019

0.4 600 2.6 0.019

FIGURE 7 Comparison between the experimental data obtained by (A) Salzman et al.27 and by (B) Schönbauer et al.28 and theoretical

fatigue limit estimations Δσf/Δσ0 provided by FFM (continuous line) and avg-FFM (dashed line) for b/a = 0.5 (thin line) and b/a = 1 (thick

line). The subplot in Figure 7A is re-arranged from Salzman et al.27 [Colour figure can be viewed at wileyonlinelibrary.com]
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a from 0.1 (an oblate spheroid) to 10 (a prolate spheroid).
The SIF function related to an annular crack from the
void's equator was obtained through an interpolation
between two limit cases: the edge crack (very small
cracks) and the Penny shaped crack (very large cracks).
By approximating corrosion pits with spheroidal cavities,
theoretical estimations were analyzed and compared suc-
cessfully with experimental fatigue data,27,28 resulting in
improved predictive capabilities in comparison with fail-
ure/fatigue criteria already proposed in the literature.
The approximation allowed us avoiding the implementa-
tion of 3D FEAs, which reveal more complex, both com-
putationally and substantially. Indeed, the
implementation of 3D FFM failure analysis for the case
at hand would result in increasing complexity as for
determining the finite crack growth shape, which is no
more annular due to the lack of axial symmetry. A first
attempt could be to assume a finite crack advance whose
front is given by iso-stress lines, as proposed recently by
other authors,42 so to satisfy exactly the stress require-
ment. However, for larger defects, crack growth could be
even different, as energy condition is expected to prevail.
In this sense, further studies are in progress.

The present work constitutes a first effort towards the
generalization of coupled FFM approaches to the study of
spheroidal voids and of the effect of corrosion pitting on
the fatigue limit. Following steps could include: (i) the
implementation of Cohesive Crack Model approaches to
further validate the theoretical framework; (ii) the FFM
extension to determine the finite fatigue life as presented
by Jie and Susmel,25 who applied TCD to high-strength
metallic cables; (iii) the investigation of the interaction
between two or more pits, as presented by Chouchaoui
and Pick43 and Hou and Song.44
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NOMENCLATURE

a spheroidal void semi-axis normal to the loading
b spheroidal void semi-axis parallel to the

loading
c annular crack length
E Young's modulus
Kt stress concentration factor
Ksph

I SIF for an annular crack of width
c surrounding the spheroidal void

Fsph
I SIF shape function in the spheroidal

configuration
FEC
I SIF shape function in the edge cracked

configuration
FPC
I SIF shape function in the Penny shaped

cracked configuration
h height of the FE geometry
l finite crack advance
lc critical finite crack advance
lth Irwin's length
P,Q coefficients of the interpolating function γ
S stress field shape function
w width of the FE geometry
(r, θ, z) cylindrical coordinates system
ΔKth threshold value of the stress intensity factor range
Δσf fatigue limit
Δσ0 plain fatigue limit
γ interpolating function for the SIF
σzz normal stress
σ∞ uniform remote stress
v Poisson's ratio
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