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Abstract. We propose a non-local model for contact guidance and steric hindrance depending
on a single external cue, namely the extracellular matrix, that affects in a twofold way the polar-
ization and speed of motion of the cells. We start from a microscopic description of the stochastic
processes underlying the cell re-orientation mechanism related to the change of cell speed and di-
rection. Then, we formally derive the corresponding kinetic model that implements exactly the
prescribed microscopic dynamics, and, from it, it is possible to deduce the macroscopic limit in the
appropriate regime. Moreover, we test our model in several scenarios. In particular, we numerically
investigate the minimal microscopic mechanisms that are necessary to reproduce cell dynamics by
comparing the outcomes of our model with some experimental results related to breast cancer cell
migration. This allows us to validate the proposed modeling approach and to highlight its capability
of predicting qualitative cell behaviors in diverse heterogeneous microenvironments.

Key words. non-local model, kinetic transport equations, Markovian processes, contact guid-
ance, steric hindrance, extracellular matrix

MSC codes. 92B05, 92C17, 60J05, 35Q20

DOI. 10.1137/22M1506389

1. Introduction. It is well established that cell migration, based on diverse mi-
gration modes, is essential for normal processes such as embryonic development, im-
mune function, and tissue repair and that it also plays a critical role in disease states,
including cancer dissemination [29, 38, 39, 40, 42, 43]. The process of cell migration
is greatly affected by the surrounding microenvironment that cells sense through their
protrusions and to which they respond by adapting their dynamics. A prominent role
in cell migration is played by the extracellular matrix (ECM), that is the fiber-like
component present within all tissues and organs which provides physical scaffolding
for the cellular constituents. One of the major ECM components is collagen, which
represents up to 30\% of the total protein mass of a multicellular animal and, in par-
ticular, type I collagen is the most abundant one in the human body [4].

The influence of the ECM on cell migration. There are several biophysical and
biochemical factors of the ECM, in particular of collagen, that influence cell migration.
The ones having a major impact are related to confinement, rigidity, topology, and
adhesion properties [4]. Each one of these features gives rise to certain cell migration
responses, and it is often difficult from the experimental point of view to decouple the
different aspects in order to investigate the effect and role of each of them separately.
However, understanding every single mechanism and its specific role in the overall
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S430 M. CONTE AND N. LOY

dynamics is important for extrapolating in vitro analyses to in vivo situations. For
instance, one of the most outstanding goals in the context of cancer spread and dis-
semination is the development of therapeutic strategies targeting specific mechanisms
that play a crucial role in cancer cell invasion.

The ECM is characterized by a number of mechanical, biophysical, and chemi-
cal properties influencing cell migration, which is governed by the interplay between
cell-generated propulsion forces, adhesion forces, and resisting forces arising from the
steric hindrance properties of the matrix. It is possible to identify some factors that
influence the direction of the cells and others that affect their speed. Specifically, the
alignment of the collagen fibers is shown to stimulate contact guidance [15, 14], which
is the tendency of cells to migrate by crawling on the fibers and following the direc-
tions imposed by them. Concerning the speed, it generally depends on mechanical
and biophysical properties of the ECM such as stiffness, porosity, and collagen den-
sity. On a flat surface, migration speed decreases with matrix stiffness mainly due to
the increased stability of focal adhesions. In a three-dimensional (3D) environment,
cell migration has a biphasic nature, as it is additionally impaired by the steric hin-
drance properties of the ECM that impose resisting forces to cell migration and can
affect cells' motility. Steric hindrance depends on mechanical and structural matrix
properties (pore size and fiber spacing, collagen density) as well as cell properties
(cell size, cell stiffness) [8, 22, 52, 15, 51]. Here, we shall focus on the effect of pore
size and collagen density in 3D migration. In particular, these can lead to physical
limits if the pores are too narrow and, thus, represent a steric obstacle to cell motion.
Conversely, if the spacing between the fibers is larger than the cell size, then cells
start having difficulties in forming the adhesion contact necessary for their motility.
As the pores' average size may be related to the ECM density M , cells' mean speed
may be expressed as a function of M [51]. In particular, it is found that there is an
optimal matrix density Mmax ensuring the maximum possible speed and a threshold
valueMth, which corresponds to a small pore size, that hampers the cell from moving
in a certain direction [51]. Specifically, in [51], the authors show that the dependence
of the speed on the ECM pore size is linear, but the dependence of the density on
the pore size is not linear. Moreover, in [4], the dependence of the speed on the ECM
pore size (and therefore on the ECM density) has been shown to have a parabola-like
behavior, and this has been used in previous works [25]. Thus, the mean speed can
be seen as a quadratic-like function of the ECM density.

Moreover, they investigate only the range of densities that are above Mmax, i.e.,
the value allowing for the maximal speed, as they only consider the range of densities
that if increased cause a decrease in the cell speed, while we consider a larger range
of ECM densities, considering eventually vanishing ECM densities (large pore size),
ECM densities (corresponding to smaller pores) that help cell motility, and very high
densities (very small pores) that hinder cells from moving and constitute a physical
limit of migration. In this case, it is known that the dependence of the speed on the
ECM pore size (density) has a parabola-like behavior as shown in [4] and references
therein. This is why this quadratic (parabola-like) behavior of the speed has also been
used in previous works [24, 25].

The role of the ECM in breast cancer dissemination. Cell-ECM interactions have
particular importance in the development and dissemination of breast cancer cells. In
fact, the stromal matrix surrounding tumors may be highly linearized and this would
enhance cancer invasiveness [18, 38, 42, 43]. Thus, the study of cell response to a
locally aligned matrix is of utmost interest, as it could suggest therapeutic strategies
to target stromal invasion. In particular, in [38], the authors introduce the concept of
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KINETIC MODEL: CONTACT GUIDANCE \& STERIC HINDRANCE S431

tumor-associated collagen signatures (TACS) that are used to stage mammary car-
cinoma tumor progression levels. In [8], the authors investigate the role of steric
hindrance on MDA-MB 231 breast cancer cells in 3D collagen gels, looking into the
impact of stiffness and density of collagen. In particular, concerning the role of col-
lagen density, it is known that collagen-dense breast tissue also increases the risk of
breast carcinoma, although the relationship between collagen density and tumorige-
nesis is not well understood [40]. In [34], the authors perform experiments showing
that increasing matrix density leads to reduced mean squared displacements and cell
speeds (both mean and effective velocity). A first attempt to replicate these ex-
perimental results has been done in [17], where the authors propose a microscopic
model in which they impose an external drag force to mimic ECM influence on cell
speed. They assume that cells undergo increasing difficulty when migrating in denser,
and consequently more viscous, matrices. This allows them to recover the fact that
higher matrix densities imply lower speeds and mean squared displacements. Then,
they impose a cubic net locomotive force with some ad hoc coefficients to recover
the appropriate values of the speeds. Finally, in [44], the authors investigate through
a model the role of contact guidance and steric hindrance in the presence of cyclic
stress.

As a matter of fact, the interplay between contact guidance and steric hindrance
plays a significant role in breast cancer progression and dissemination. Provenzano,
in particular, highlights the prominent role of these two aspects in his works [38, 40].
Notwithstanding, a systematic study of the coupling of these two aspects has not been
well investigated. This is mainly related to the difficulty of building experimental
settings in which the two mechanisms can be studied together as purely superposing
effects, for instance because the alignment of the fibers alters the porosity at the micro-
scopic scale [49]. For the above reasons, we want to introduce a mathematical model
that takes into account at the same time contact guidance and ECM porosity/density
impact on the cell speed. This would allow us to perform in silico experiments com-
bining these two mechanisms and make predictions on the possible way cells sort or
combine the two processes. Existing models regarding cell migration on the ECM
with a particular focus on the role of confinement and ECM porosity/density influ-
ence on the cell speed include individual-based models [46, 47], kinetic models [26],
and mechanical models [37, 36]. On the other hand, contact guidance has also been
successfully described at the mesoscopic level through kinetic equations in [10, 19],
where the authors propose models that allow one to take into account the variation
of the microscopic velocities in response to a given ECM fiber network. Moreover,
kinetic equations have been proven to be very successful in modeling cell migration
[1, 3, 5, 6, 11, 12, 19, 24, 25, 26, 27].

Kinetic models, in general, are intrinsically multiscale models. They allow one to
start from the microscopic description of the dynamics, including measurable param-
eters of the individual migration, and to derive a mesoscopic model in which cells'
position and velocity, which follow the prescribed microscopic dynamics, are statis-
tically described by a distribution function. The time evolution of this function is
ruled by a kinetic transport equation with a turning (or scattering) operator that
implements the defined microscopic dynamics. By introducing the moments of the
distribution function, it is also possible to derive macroscopic formulations describ-
ing the overall dynamics of the system. A particular class of kinetic equations is
the one implementing velocity-jump processes [48]. These are microscopic Markov-
ian processes that prescribe a transition probability T of choosing a new velocity and
a frequency of re-orientation \eta , thus being 1

\eta , the mean run time spent running on
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S432 M. CONTE AND N. LOY

a linear tract between two consecutive re-orientations. Such equations are popularly
used to model the cell migration mode called run and tumble, consisting in alternating
runs over straight lines and re-orientations, and they allow one to do complete statis-
tics regarding migration quantities (mean squared displacement, mean and effective
speed, etc.) [31].

In this note, we shall propose a non-local model for contact guidance and steric
hindrance. As done in [25, 26], we consider different processes for the speed and po-
larization of a cell, but, in the present work, there is a single external cue, the ECM.
The ECM is described statistically in terms of its macroscopic density and statistical
distribution of the fiber direction affecting cell speed and direction, respectively. The
ECM is evaluated non-locally in the physical space. The non-locality is due to the
fact that cells sense the ECM and, thus, the direction of the fibers by extending their
protrusions, which are a great determinant in contact guidance [2] and, in general,
in the presence of strong heterogeneous or anisotropic environments [18, 38, 45]. In
particular, we state a microscopic discrete in time stochastic process from which we
formally derive the kinetic model. To do this, we shall take advantage of classical
tools of kinetic theory, mostly used in the literature of multi-agent systems [7, 33].
Precisely, this has its roots in the classical kinetic theory for gas dynamics and de-
scribes the dynamics through microscopic interaction rules and collision-like kinetic
Boltzmann--Povzner equations for non-local interactions. Such equations allow for
a large variety of well-consolidated analytical tools, e.g., derivation procedures, the
quasi-invariant limit, and limit scaling procedures. However, they are poorly known
in the community of cell migration modeling. Thus, in section 2.1 we describe more
accurately the microscopic dynamics through these interaction rules. Then, in sec-
tion 2.2, after establishing a parallelism with the most known velocity jump process,
we formally derive the kinetic model that exactly implements the microscopic dynam-
ics. Moreover, in section 2.3, we briefly review some classical procedures for deriving
macroscopic models in the appropriate regime on the basis of the observed experi-
mental parameters. Finally, we test our model in several scenarios in section 3. We
observe its ability to replicate different experimental results presented in [34, 50] and
related to breast cancer cell migration as well as to qualitatively predict cell behavior
in response to heterogeneous microenvironments.

2. Mathematical modeling. Our aim is to describe cell migration by model-
ing the re-orientation mechanism at the microscopic level and by means of formally
derived kinetic equations. Each cell will be identified by its position x \in \Omega \subset \BbbR d,
speed v \in [0,U ], U being the maximum speed a cell can achieve, and polarization
direction \^v \in \BbbS d - 1, so that v = v\^v, which belongs to the sphere of radius U , is the
microscopic velocity vector. The distribution density function p = p(t,x, v, \^v), with
t > 0, describes the statistical distribution of the speeds and directions for cells at
time t and located in x.

Aggregate quantities, usually referred to as macroscopic quantities, describing the
cell population, can be defined as the statistical moments of the distribution p, i.e.,

-- the cell number (or macroscopic) density, which is the expected mass in (t,x):

\rho (t,x) =

\int U

0

\int 
\BbbS d - 1

p(t,x, v, \^v)d\^vdv,(2.1)

-- the mean velocity of cells located in x at time t:

U(t,x) =
1

\rho (t,x)

\int U

0

\int 
\BbbS d - 1

p(t,x, v, \^v)vd\^vdv .(2.2)
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KINETIC MODEL: CONTACT GUIDANCE \& STERIC HINDRANCE S433

We are interested in cell migration on the ECM and, in particular, in two mech-
anisms: contact guidance, which concerns the choice of the direction and depends on
the fibrous structure of the ECM, and steric hindrance, which affects cell speed and is
regulated by the density of the ECM itself. Therefore, we introduce the distribution
function of the ECM fibers m=m(x, \^v), \^v \in \BbbS d - 1, describing the statistical distribu-
tion of the fibers identified by their direction \^v \in \BbbS d - 1 in each point of the physical
space x\in \Omega \subset \BbbR d. As we do not consider remodeling, the distribution m is stationary.
The macroscopic density of the ECM is defined at each point x\in \Omega by

M(x) :=

\int 
\BbbS d - 1

m(x, \^v)d\^v.(2.3)

Hence, the distribution

q(x, \^v) :=
m(x, \^v)

M(x)
(2.4)

is, for each x \in \Omega , the probability density function describing the statistical distri-
bution of the directions of the fibers at x \in \Omega . In particular, as the fibers are not
polarized, we assume that q (and therefore m) is even as a function of \^v for all x\in \Omega ,
which implies that the average direction of the fibers vanishes:

\BbbE q :=

\int 
\BbbS d - 1

q(x, \^v)\^vd\^v= 0.

Moreover, we can introduce the variance-covariance matrix of q:

\BbbD q :=

\int 
\BbbS d - 1

q(x, \^v)\^v\otimes \^vd\^v.

The tensor \BbbD q is symmetric and positive semidefinite. If it is positive definite, then it is
diagonalizable. Equal eigenvalues correspond to an isotropic distribution of the ECM
fibers. Conversely, an anisotropic distribution is characterized by different eigenval-
ues, with the leading eigenvector representing the direction of preferential orientation
of ECM fibers. This allows one to reproduce isotropic/anisotropic migration on a
nonpolarized fiber network [19, 32]. In particular, if q is the von Mises distribution,
the corresponding variance-covariance matrix is positive definite.

2.1. Microscopic model. The individual dynamics of a cell may be described
at the microscopic level by means of evolution equations for random variables taking
into account the position Xt \in \Omega , the speed Vt \in [0,U ], and the direction \^Vt \in \BbbS d - 1

of a cell whose joint distribution function is p(t,Xt = x, Vt = v, \^Vt = \^v) for each t and
x. As classically done in kinetic theory, the microscopic dynamics of cell speed and
direction are described by the means of binary interactions. In the present case, the
ECM fibers are described by the random variables Yt \in \Omega and \^Vm

t \in \BbbS d - 1, whose
distribution function is m(Yt = y, \^Vm

t = \^vm).
In particular, the re-orientation mechanism related to the change of cell speed

and direction may be described in terms of discrete in time stochastic processes [33]
for the random variables Vt and \^Vt, which, during a time interval \Delta t, may change or
not according to whether a re-orientation happens or not. These dynamics may be
implemented in a discrete in time random process as\Biggl\{ 

\^Vt+\Delta t = (1 - \Sigma )\^Vt +\Sigma \^V\prime 
t,

Vt+\Delta t = (1 - \Sigma )Vt +\Sigma V \prime 
t ,

(2.5)
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S434 M. CONTE AND N. LOY

where \Sigma is a Bernoulli random variable with parameter \mu B(Yt  - Xt)\Delta t, saying
whether a re-orientation, during which a cell changes both its direction and speed
of motion, happens (\Sigma = 1) or not (\Sigma = 0). The quantity \mu is the frequency of inter-
action with the ECM through the protrusions, while B is the interaction kernel that
governs the rate at which an agent in position Xt (in this case the cell) interacts with
an agent in position Yt (a fiber of the ECM) and changes its velocity. This typically
allows one to take into account non-local interactions in the physical space, meaning
interactions between two agents located at a certain distance [13, 21]. In the present
context, this is related to the cell's capability of sensing its neighborhood by interact-
ing with/measuring the ECM population m(y, \^vm), whose value will affect the new
velocity after the re-orientation. We remark that in order for \Sigma to be well defined, we
need \Delta t\leq 1/(\mu B(Yt  - Xt)), which means that for a high frequency \mu there is a high
probability of having a re-orientation during a given time interval \Delta t. As in [7], we
assume that B has a compact support and that \Delta t\leq 1

\mu maxB . The random variables

V \prime 
t and \^V\prime 

t denote the new speed and direction after a re-orientation. We also remark
that we are assuming that there is a unique microscopic process driving re-orientation
and that both direction and speed change simultaneously, and not independently, at
each re-orientation. This assumption is related to the fact that we are considering
a unique external factor (ECM) affecting speed and direction at the same time. Of
course, other assumptions can be done, e.g., one can assume independent processes
for the changes in direction and speed.

Classically, in kinetic theory, the microscopic dynamics are described through
interaction rules. In general, such microscopic rules are written in the form

V \prime 
t = I(Vt, \^Vt, \^V

m
t ) +

\surd 
D\Theta , \^V\prime 

t = \^I(Vt, \^Vt, \^V
m
t ) +

\sqrt{} 
\^\BbbD \Xi ,(2.6)

where I, \^I describe the deterministic part, which may depend on both the pre-re-
orientation speed Vt and direction \^Vt, as well as on the orientation of the fiber \^Vm

t .

D and \^\BbbD are diffusion matrices, being
\sqrt{} 

\^\BbbD 
T\sqrt{} 

\^\BbbD = \^\BbbD , while \Theta and \Xi are white noises,
i.e., \langle \Theta \rangle = \langle \Xi \rangle = 0, \langle \Theta 2\rangle = \langle \Xi 2\rangle = 1. Here and hereafter, \langle \cdot \rangle denotes the average
operator with respect to all random variables appearing in brackets. As we assume
no ECM re-modeling, we have that in a binary interaction the direction of the fiber
does not change, i.e., \^Vm

t+\Delta t = \^Vm
t . This approach, also known as the collisional

approach, which is classical in kinetic theory and in the literature of multi-agent
systems, allows for detailed descriptions of the microscopic dynamics.

Remark . ECM fibers are assumed to remain constant, i.e., their state does not
change after interacting with the cells. In this sense, this microscopic process may
also be considered as an interaction with a fixed background, i.e., m is fixed. However,
we have presented the microscopic process as a binary interaction process and an
envisaged possible extension is to consider the evolution of the ECM fibers, which
may describe the remodeling of the ECM.

Remark . Usually, in works where experimental and computer-based models are
coupled (see, e.g., [17, 34]), the evolution of the cell velocity is described by consid-
ering the superposing effect of external forces Fext, modeled to take into account
the influence of the external environment. In particular, these locomotive forces are
determined by estimation from the data. This approach allows the use of open-
source softwares such as Physicell [16], which is a hybrid 3D cell simulator that
combines the model of the cellular environment (the chemical cues, the ECM me-
chanical behavior, etc.) as a continuum with an agent-based model for the cells.
The approach we propose here allows us to start from an agent-based model in which
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KINETIC MODEL: CONTACT GUIDANCE \& STERIC HINDRANCE S435

details about the microscopic dynamics may be implemented and then included in the
macroscopic models that can be derived. In the modeling framework given by (2.6),
I and \^I may be linked to the external forces acting on the cells by simply setting
Vt+\Delta t

\^Vt+\Delta t = Vt \^Vt +Fext\Delta t.
On the other hand, if we want to describe the microscopic process as a velocity-

jump process, we need to consider transition probabilities as probability density func-
tions of the random variables V \prime 

t and \^V\prime 
t that are given by

V \prime 
t \sim \psi (V \prime 

t | M(Yt)), \^V\prime 
t = \^Vm

t \sim m(Yt, \^V
m
t ) .(2.7)

Here, \psi = \psi (v| M) is a probability density function of the speeds, conditioned by
the ECM density M . It has an average speed \=v(M) depending on M and a second
moment DM such that its variance is DM  - \=v(M)2.

We then consider the kinematic relation for the variation of the positionXt during
a time interval \Delta t given by

Xt+\Delta t =Xt +\Delta tVt.(2.8)

As already mentioned, the ECM is explored by the cell through its protrusions,
which may be extended up to a maximum sensing radius R. As previously done in
[26], in order to include physical limits of migration, we shall consider a non-constant
sensing radius, identifying the fact that a cell cannot measure the external cue in a
physical region that cannot be reached. In particular, the ECM densityMth represents
this physical limit and we shall consider the non-constant sensing radius defined by [26]

RM (t,x, \^v) =

\Biggl\{ 
R if M(t,x+ \lambda \^v)\leq Mth \forall \lambda \in [0,R],

inf\{ \lambda \in [0,R] : M(t,x+ \lambda \^v)>Mth\} otherwise.
(2.9)

The latter means that, in a given direction \^v, the sensing radius is limited as soon as
the protrusion encounters a region through which the cell cannot migrate, while it is
maximum if such a region, in a certain direction \^v, is not reached within a distance
R. In particular, the sensing radius will affect the support of the interaction kernel,
also called the Povzner kernel [13], namely

B(y - x) = \delta (y - (x+ \lambda \^vm))\gamma (\lambda ),(2.10)

where \gamma (\lambda ) is a sensitivity function having compact support in [0,RM (t,x, \^vm)]. This
models the fact that a cell in x measures the information given by m in each po-
sition y = x + \lambda \^vm, i.e., along each direction \^vm, with \lambda \in [0,RM (t,x, \^vm)], and
the information is weighted according to \gamma . In particular, \gamma may be a Dirac delta if
the cell only evaluates the information on the tip of the protrusion, while it may be
a characteristic function if the cell weights uniformly the information up to the tip
of the protrusion. An illustration of the Povzner kernel is reported in Figure SM1.
Hereafter, ``SM"" indicates supplementary materials (ConteLoy SM R1.pdf [local/web
1.92MB]), which are directly referenced from the main article webpage.

2.2. Mesoscopic model. Through a rather classical procedure [33], it is pos-
sible to derive a kinetic equation for the evolution of the distribution p describing
the statistical distribution of cells obeying the microscopic process (2.5)--(2.8)--(2.10)
joined with (2.6) or (2.7). Here, we report the main steps of the derivation, while a
more detailed description of the procedure is provided in section SM1.
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S436 M. CONTE AND N. LOY

Let \phi = \phi (x, v, \^v) be an observable quantity defined on \Omega \times \scrV , where we have
introduced the notation \scrV = [0,U ] \times \BbbS d - 1 for brevity. We consider \phi to be a \scrC \infty 

function having compact support, and we let \Sigma be the Bernoulli random variable
with parameter \mu B(Yt - Xt)\Delta t. From (2.5) together with the assumed independence
of \Sigma , we see that the mean variation rate of \phi in the time interval \Delta t satisfies\Bigl\langle 
\phi 
\Bigl( 
Xt+\Delta t, Vt+\Delta t, \^Vt+\Delta t

\Bigr) \Bigr\rangle 
 - 
\Bigl\langle 
\phi 
\Bigl( 
Xt, Vt, \^Vt

\Bigr) \Bigr\rangle 
\Delta t

=

\Bigl\langle 
\phi 
\Bigl( 
Xt+Vt \^Vt\Delta t, Vt, \^Vt

\Bigr) 
(1 - \mu B\Delta t)+\phi 

\Bigl( 
Xt+Vt \^Vt\Delta t, V

\prime 
t , \^V

\prime 
t

\Bigr) 
\mu B\Delta t - \phi 

\Bigl( 
Xt, Vt, \^Vt

\Bigr) \Bigr\rangle 
\Delta t

.

Whence, we deduce the instantaneous time variation of the average of \phi in the limit
\Delta t\rightarrow 0+ as

d

dt

\Bigl\langle 
\phi 
\Bigl( 
Xt, Vt, \^Vt

\Bigr) \Bigr\rangle 
=

\Bigl\langle 
\mu B(Yt  - Xt)

\Bigl[ 
\phi 
\Bigl( 
Xt, V

\prime 
t , \^V

\prime 
t

\Bigr) 
 - \phi 

\Bigl( 
Xt, Vt, \^Vt

\Bigr) \Bigr] \Bigr\rangle 
(2.11)

+
\Bigl\langle 
\nabla x \cdot 

\Bigl( 
Vt \^Vt\phi (Xt, Vt, \^Vt)

\Bigr) \Bigr\rangle 
.

Here, on the right-hand side, the first two terms take into account the gain and loss
terms related to the re-orientation process, respectively, while the last term accounts
for the free particle drift. If the microscopic process ruling the evolution of V \prime 

t , \^V\prime 
t

is the velocity jump process (2.7), then the gain term describing the new cell's speed
and direction (V \prime 

t , \^V
\prime 
t) can be written as\Bigl\langle 

B(Yt  - Xt)\phi 
\Bigl( 
Xt, V

\prime 
t , \^V

\prime 
t

\Bigr) \Bigr\rangle 
=

\int 
\BbbR 

\int 
\Omega 

\int 
\scrV 

\biggl( \int 
\scrV 
\gamma (\lambda )\phi (x, v\prime , \^v\prime )\psi (v\prime | M(x+ \lambda \^v\prime ))m(x+ \lambda \^v\prime , \^v\prime )d\^v\prime dv\prime 

\biggr) 
\times p(t,x, v, \^v)d\^vdv dxd\lambda ,(2.12)

while \Bigl\langle 
B(Yt  - Xt)\phi 

\Bigl( 
Xt, Vt, \^Vt

\Bigr) \Bigr\rangle 
=

\int 
\Omega 

\int 
\BbbR 

\int 
\scrV 
\phi (x, v, \^v)p(t,x, v, \^v)m(x+ \lambda \^v, \^v)\gamma (\lambda )d\^vdvd\lambda dx(2.13)

and \Bigl\langle 
\nabla x \cdot 

\Bigl( 
Vt \^Vt\phi (Xt, Vt, \^Vt)

\Bigr) \Bigr\rangle 
= - 

\int 
\Omega 

\int 
\scrV 
\phi (x, v, \^v)v\^v \cdot \nabla xp(t,x, v, \^v)d\^vdvdx.(2.14)

Rewriting (2.11) with (2.12)--(2.13)--(2.14) and choosing \phi (x, v, \^v) = \xi (x)\varphi (v, \^v) in
the kinetic equation for p, we obtain

d

dt

\int 
\scrV 
\varphi (v, \^v)p(t,x, v, \^v)d\^vdv+\nabla x \cdot 

\int 
\scrV 
\varphi (v, \^v)vp(t,x, v, \^v)d\^vdv

= \eta 

\int 
\scrV 

\biggl[ \int 
\scrV 
T [m](v\prime , \^v\prime )\varphi (v\prime , \^v\prime )d\^v\prime dv\prime  - \varphi (v, \^v)

\biggr] 
p(t,x, v, \^v)d\^vdv,(2.15)

where

T [m](x, v, \^v) =

\int RM (x,\^v)

0

m(x+ \lambda \^v, \^v)
\=M(x)

\psi (v| M(x+ \lambda \^v))\gamma (\lambda )d\lambda (2.16)
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KINETIC MODEL: CONTACT GUIDANCE \& STERIC HINDRANCE S437

is a transition probability satisfying\int 
\scrV 
T [m](x, v, \^v)d\^vdv= 1

and describing the probability for a cell located at x of choosing a speed v and direction
\^v. This transition probability encodes the fact that a cell extends its protrusions and
senses the ECM in each direction, collecting at the same time information regarding
the fiber structure and macroscopic ECM density, and weights them in the same way.
The strong form of (2.15) is

\partial p

\partial t
(t,x, v, \^v) + v \cdot \nabla xp(t,x, v, \^v) =\scrJ [p](t,x, v, \^v),(2.17)

which describes the evolution of the statistical distribution of the cells that obey the
microscopic dynamics (2.7), where the right-hand side is the turning operator

\scrJ [p](t,x, v, \^v) = \eta (\rho (t,x)T [m](x, v, \^v) - p(t,x, v, \^v)) .(2.18)

In (2.18), \eta = \mu \=M is the frequency of re-orientation at the population level, which
depends not only on the frequency \mu but also on the measured quantity of the ECM.
The quantity

\=M(x) =

\int 
\BbbS d - 1

\int RM (x,\^v)

0

m(x+ \lambda \^v, \^v)\gamma (\lambda )d\lambda d\^v

is, in fact, an average of the ECM density over the measured neighborhood, where
the information is weighted by \gamma . We stress the fact that this particular transition
probability (2.16) is the one implementing the microscopic process (2.5)--(2.7), in
which cells change simultaneously both direction and speed, as they sense the same
external cue m, influencing the choice of direction and speed through two different
mechanisms. This is different from considering two independent sensings as in [25, 26],
where the two measured quantities affecting the direction and the speed have different
origins. The average velocity of the transition probability (2.16) is given by

UT (x) =

\int 
\scrV 
T [m](x, v, \^v)v\^vdvd\^v

=

\int 
\BbbS d - 1

\int RM (x,\^v)

0

m(x+ \lambda \^v, \^v)
\=M(x)

\=v(x| M(x+ \lambda \^v))\gamma (\lambda )d\lambda \^vd\^v,

where \=v(x| M(x+\lambda \^v)) represents the mean of the probability density function of the
speed \psi , conditioned by the ECM density M , while the variance-covariance matrix is

\BbbD T (x) =

\int 
\scrV 
T [m](x, v, \^v) (v - UT )\otimes (v - UT )dv d\^v

=DM

\int 
\BbbS d - 1

\int RM (x,\^v)

0

m(x+ \lambda \^v, \^v)
\=M(x)

\gamma (\lambda )d\lambda \^v\otimes \^vd\^v - UT (x)\otimes UT (x),

(2.19)

where DM is the second moment of the probability density function \psi of the speeds.
We assume that it is constant, as it is reasonable to assume that all the cells are
affected with the same degree of stochastic variation.
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S438 M. CONTE AND N. LOY

Remark . If we want to implement the dynamics (2.6), then the gain term is\Bigl\langle 
B(Yt  - Xt)\phi 

\Bigl( 
Xt, V

\prime 
t , \^V

\prime 
t

\Bigr) \Bigr\rangle 
=

\int 
\Omega 

\int 
\BbbR 

\int 
\scrV 

\int 
\BbbS d - 1

\phi (x, v\prime , \^v\prime )d\^v\prime dv\prime \gamma (\lambda )p(t,x, v, \^v)m(x+ \lambda \^vm, \^vm)d\^vmd\^vdvd\lambda dx,

with v\prime , \^v\prime given by (2.6), so that the kinetic equation is the Boltzmann--Povzner
equation [35, 13]

d

dt

\int 
\scrV 
\varphi (v, \^v)p(t,x, v, \^v)dvd\^v+\nabla x \cdot 

\int 
\scrV 
\varphi (v, \^v)vp(t,x, v, \^v)dvd\^v

= \eta 

\biggl\langle \int 
\scrV 
(\varphi (v\prime , \^v\prime ) - \varphi (v, \^v))p(t,x, v, \^v)dvd\^v

\biggr\rangle 
.(2.20)

In the case B = 1, choosing

I(v, \^v, \^vm) = \=v(M), D=DM  - \=v(M)2, \^I(v, \^v, \^vm) =\BbbE q, \^\BbbD =\BbbD T
q \BbbD q(2.21)

in (2.6), then the evolution of the average and second moment of p prescribed by
the model (2.20)--(2.6) is the same as if its evolution was ruled by (2.17)--(2.18)--
(2.16). It is worth mentioning that the average and second moment of p are the
ones that are involved in the hydrodynamic description of the system. Moreover, the
microscopic model (2.5)--(2.6)--(2.8)--(2.10) with the choice (2.21) instead of (2.7) may
be particularly useful in the case in which q and \psi are not easy to sample.

2.3. Macroscopic behavior. In order to investigate the overall trend of the
system, the behavior of the statistical moments is typically analyzed. This is typ-
ically done through the derivation of evolution equations for at least \rho (t,x) in the
emerging regime of the system, which may result from a proper nondimensionaliza-
tion. Formally, we introduce a small parameter \epsilon \ll 1 and we assume that up to a
nondimensionalization the spatial variable x can be re-scaled as

\bfitxi = \epsilon x,(2.22)

\bfitxi being the nondimensional spatial variable. According to the other characteristic
quantities of the system and up to an appropriate nondimensionalization, the long
time scale \tau will be

\tau = \epsilon 3 - \alpha t.(2.23)

The appropriate scaling of the system can be done by analyzing its dominant behavior,
which can be investigated by measuring the mean squared displacement (MSD)

MSD(t) := \langle | | x| | 2\rangle (2.24)

and determining its growth with respect to time, i.e.,

\langle | | x| | 2\rangle \sim t\alpha ,(2.25)

where the following hold:
\bullet \alpha = 1 indicates a diffusion dominated phenomenon (purely diffusive);
\bullet \alpha = 2 indicates a drift dominated phenomenon (purely directed).
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KINETIC MODEL: CONTACT GUIDANCE \& STERIC HINDRANCE S439

The two choices correspond to a parabolic scaling (\tau = \epsilon 2t) and to a hyperbolic scaling
(\tau = \epsilon t), respectively.

Remark . In the present case, we want to derive the evolution equation for the
statistical moments at the same spatial scale of the experiments, i.e., at the micro-
scopic spatial scale. Hence, the formal diffusive/hyperbolic scaling is meant as the
result of a nondimensionalization classically leading to

St\partial tp+ v \cdot \nabla xp=
1

Kn
\scrJ [p],

where St is the Strouhal number defined as St =
\~l
\~v\~t
, where \~l, \~v, \~t are reference length,

velocity, and long time scale, respectively, while Kn = \~v
\~l\eta 

is the Knudsen number.

Let us consider \~l = \scrO (1) so that we are actually looking at the microscopic spatial
scale and the sensing radius does not need to be rescaled, and let us suppose that
the Knudsen number is small, i.e., Kn = \epsilon . Therefore, if St = \epsilon , this corresponds to
\~t= \epsilon  - 2

\mu (diffusive), while if St = 1, this corresponds to \~t= \epsilon  - 1

\mu (hyperbolic).
There are a number of limit techniques relying on Hilbert expansions for transport

equations with velocity jump processes that have been widely treated in [19, 20, 25,
26, 30]. They are based on expansions of the transition probability up to the re-scaling
(2.22) as

T (\bfitxi , v, \^v) = T0(\bfitxi , v, \^v) + \epsilon T1(\bfitxi , v, \^v) +\scrO (\epsilon 2)

and, consequently, of its average Ui
T in (SM2.2), of the variance-covariance matrix

\BbbD i
T in (SM2.3), and of the distribution function p in (SM2.4). In particular, the

fundamental property for performing the diffusive limit requires that the leading order
of the drift vanishes, i.e.,

U0
T = 0.(2.26)

Carrying out the asymptotic procedure leads to

\partial 

\partial \tau 
\rho +\nabla \cdot 

\bigl( 
U1

T \rho 
\bigr) 
=\nabla \cdot 

\biggl[ 
1

\eta 
\nabla \cdot 

\bigl( 
\BbbD 0

T \rho 
\bigr) \biggr] 
,(2.27)

\BbbD 0
T being the diffusion motility tensor given by leading order of the variance-covariance

matrix in (SM2.3). Equation (2.27) is a diffusion-advection equation, where U1
T is

the drift velocity of first order.
If (2.26) does not hold, as typically happens if the sensing radius R is large with

respect to the length of variation of the external field m, but the nondimensionaliza-
tion of the system or experimental observations prescribe a diffusive regime, we can
consider a drift-diffusion limit, as was done in [24]. Setting p(\tau ,\bfitxi ,v) = u(\tau , z,v), with
z = \bfitxi  - UT \tau , we have

\partial 

\partial \tau 
p+ v \cdot \nabla p=\scrL [p] \Leftarrow \Rightarrow \partial 

\partial \tau 
u+\nabla \cdot ((v - UT )u) =\scrL [u]

\partial 

\partial \tau 
\rho +\nabla \cdot (UT \rho ) =\nabla \cdot 

\biggl( 
1

\eta 
\nabla \cdot (\BbbD T \rho )

\biggr) 
.(2.28)

If, instead, a hyperbolic scaling is required, we can use the results presented in
[19], which gives

\partial 

\partial \tau 
\rho +\nabla \cdot (\rho UT ) = \varepsilon \nabla \cdot 

\biggl( 
1

\eta 
\nabla \cdot (\BbbD T \rho ) +

1

\eta 
\rho UT\nabla \cdot UT

\biggr) 
.(2.29)
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S440 M. CONTE AND N. LOY

This is the equation with the first-order correction in which we can recover the de-
pendency on the ECM through the frequency \eta in the correction term.

For the reader's convenience, more details about the well-known techniques re-
quired for the asymptotic procedures are reported in section SM2.

3. Numerical investigations. In this section, we present some numerical tests.
In particular, we shall integrate numerically

\bullet the microscopic model (2.5)--(2.8)--(2.10) with (2.6)--(2.21) or, equivalently,
with (2.7), with Monte Carlo methods as in [28];

\bullet the kinetic model (2.17)--(2.18)--(2.16) with the same method used in [9, 25,
26];

\bullet the macroscopic diffusion and drift-diffusion models (2.27) or (2.28) with a
continuous Galerkin finite element scheme [41], while the drift model (2.29)
with a Donor-cell advection scheme [23].

We shall consider no flux boundary conditions. In particular, four numerical tests are
presented.
Test 1 In section 3.1, we validate the microscopic model (2.5)--(2.8)--(2.10) with the

choice (2.7) (with B = 1, as we are on a spatially homogeneous setting)
by comparing our simulations with the experimental results presented in [34],
where the authors investigate the phenomenon of steric hindrance on collagen
gel. We remark that, as we are in a homogeneous setting, the microscopic
model (2.5)--(2.8) with the choice (2.6) forecasts the same mass and average
velocity for a large number of particles and a small \Delta t.

Test 2 In section 3.2, we consider an application of our microscopic model to the
invasion of breast cancer cells from an aggregate into the collagen according to
the experiments presented in [50]. We compare the results of the microscopic
and kinetic models, and we also provide comparisons with the corresponding
macroscopic limits.

Test 3 In section 3.3, we apply our model to investigate and make predictions on the
dynamics of cells moving on collagen fibers with different densities and fiber
alignment.

Test 4 In section 3.4, we use the kinetic model to investigate heterogeneous envi-
ronments with an interface dividing regions with different collagen densities
and/or fiber alignment. This is a more qualitative analysis, which shows the
potential applicability of the proposed approach.

Major details for each test are presented in section SM3.

3.1. Steric hindrance on collagen gel. First, we consider the experimental
results presented in [34]. Here, the authors track every 20 minutes for 24 hrs 50
NSCLC (Non-Small Cell Lung Cancer) cells moving on a 3D collagen-based matrix,
made up of a collagen type I from bovine skin media of different densities. In par-
ticular, time-lapse images are acquired from the focal plane located in the middle of
the z-axis, while out-of-focus cells are not quantified. Thus, the performed analy-
sis on cell motility is substantially quantified in a 2D scenario. These experiments
show how collagen density affects the strength of the physical barrier. Precisely, it
interferes with cell migration by trapping single metastatic NSCLC cells and pre-
venting their dissemination through the matrix. The authors find that for increasing
values of the ECM density, the cell mean speed decreases and, correspondingly, the
MSD becomes lower. They consider fixed collagen concentrations of 2.5 mg/mL,
4 mg/mL, and 6 mg/mL and measure the corresponding mean speeds, given by
\=v(M) = [0.1696,0.104,0.063]\mu m/min. Looking at the cell tracking graphs reported
in [34], we observe a clear difference in the cell spreading when the value of M in-
creases, showing reduced motility for higher values of the matrix density and a greater
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KINETIC MODEL: CONTACT GUIDANCE \& STERIC HINDRANCE S441

spreading along the horizontal direction. We use the presented modeling framework
to perform in silico tests and replicate the in vitro experiments of [34], looking at the
minimal combination of ingredients that would allow us to obtain comparable results.

To this aim, we analyze three different settings:
i) M -dependent frequency \eta for the cell turning, a uniform speed distribution,

and a random fiber network;
ii) M -dependent frequency \eta and speed distribution \psi (v| M), combined with a

random fiber network;
iii) M -dependent frequency \eta , speed distribution \psi (v| M), and aligned fiber net-

work.
As we expect from theoretical results [31], in this simplified case, using the kinetic
model implementing the prescribed microscopic dynamics, we can compute the explicit
form of the mean square displacement (MSD) that is proportional to the quadratic
speed and inversely proportional to the re-orientation frequency, which, in the present
case, is proportional to the matrix densityM . Therefore, we expect an increasing MSD
when decreasing the matrix density or increasing the mean speed. Considering the
same experimental settings proposed in [34], for each case, we investigate the MSD
of the cells and report the cell tracking in case iii), obtained with the integration of
(2.5)--(2.8)--(2.10) with (2.7) (see Figure 1). Moreover, we evaluate the variation of
cell mean and effective speed in relation to the ECM density.

In our in silico experiments (Figure 1), we observe that only choosing a non-
uniform speed distribution (cases ii) and iii)), where we impose the measured mean
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Fig. 1. Test 1. Cell MSD (first row) in the cases i), ii), iii) and tracking (second row) in the
domain \Omega in the case iii), with aligned fibers in the direction \theta q = 0. For the MSD, the macroscopic
densities M = [2.5, 4, 6]mg/mL are considered in the following cases: i) uniform speed and random
fibers in (a); ii) M-dependent speed and random fibers in (b); iii) M-dependent speed and aligned
fibers in (c). For cell tracking, we consider a Gaussian distribution for the speed. The parameter
k describing the alignment strength is here set to k = 1.2. Simulations are run for 24 h with
\Delta t= 0.0167 h.
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S442 M. CONTE AND N. LOY

speeds \=v(M), allows us to recover the appropriate reduced motility for higher values
of the ECM density. Instead, the mere dependence of the frequency \eta on the ECM
density M is not enough for recovering the MSD behavior observed experimentally
(Figure 1, first line). A non-uniform speed distribution is also necessary to get the
different behavior of the mean speed reported in the experiments (see Table SM1).
Moreover, if the probability density function \psi is a truncated Gaussian distribution,
we also recover the effective speeds (see Table SM2). We can observe a comparable
directionality between the tracking when also an aligned fiber network is included. To
reproduce cell alignment along a specific direction, a non-random description of the
fiber network is necessary, i.e., case iii). Figure 1 shows the results of the cell tracking
when fibers aligned along the direction indicated by \theta q = 0 are included (tracking
results related to the case ii) are shown in Figure SM3).

3.2. The influence of steric hindrance on human breast cancer cell mi-
gration. We now consider the experimental results obtained in [50], where the au-
thors investigate how the physical properties of the ECM affect cancer cells' escape
and invasion, using a microfluidic-based strategy (similar to the experiments in [34])
on human breast cancer cells within a type I collagen gel. This culture model was de-
veloped to observe the invasion of breast cancer cells from an aggregate into a collagen
gel under interstitial flow, which mimics the initial stage of breast tumor progression.
Precisely, they consider tumors that are formed adjacent to empty cavities (mimicking
the blind end of a lymphatic vessel) and observe how tumor cell behavior changes in
response to different ECM density values. By altering the stiffness, the pore size---
and hence the density of the collagen gel---and the magnitude of the interstitial flow
through the gel, they find that the pore size is the main physical factor that deter-
mines the rate at which cells escape from their initial aggregate and invade the cavity.
In particular, the movement of 400 cancer cells through the collagen for two different
collagen densities has been tracked over a period of 16 days, showing how a lower
collagen concentration promotes a faster tumor escape towards the empty cavity.

We perform in silico tests in order to replicate the in vitro experiments performed
in [50], where the authors measure the temporal evolution of the distance between
the tumor and the cavity (details in section SM3.2). The in silico experiments are
performed by running numerical simulations of the microscopic model (2.5)--(2.8)--
(2.10) with the choice (2.7) (with B = 1, as we are on a spatially homogeneous
setting) where \psi is given by (SM3.2) and q is the unimodal von Mises distribution
with \theta q = 0. This choice of q mimics the presence of an oriented interstitial flow.
We set k = 0.5 in order to recover the experimental results reported in [50]. Results
of the microscopic simulations are shown in Figure 2. In particular, the distance is
defined as the distance between the cavity and the first, closer to the cavity, cell of
the advancing cell aggregate. We report a graphical illustration of the setting used
for the numerical simulations in Figure SM4.

We observe how the microscopic model, with a unique alignment parameter k, is
able to reproduce the trend in both collagen densities. The experimental results and
the 25th and 75th percentiles are reported not for a direct comparison but for showing
that the difference in the rates of invasion in the two collagen densities is quite well
reproduced.

In order to investigate more accurately the statistical evolution of the cells under
the dynamics imposed by the microscopic model, we consider the kinetic model (2.17)--
(2.18)--(2.16) and try to perform the same experiment. In this case, as we cannot track
single cells, we need to impose a threshold for \rho in order to compute the distance of
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KINETIC MODEL: CONTACT GUIDANCE \& STERIC HINDRANCE S443

Fig. 2. Test 2. Tumor-to-cavity distance as a function of time in low-density (left plot) and
high-density (right plot) collagen. Light green solid lines represent the median values of the exper-
imental setting, while light green dashed lines represent the 25th and 75th percentiles. Purple solid
lines represent the median values of the microscopic numerical experiments, while blue solid lines
represent the results of the kinetic model. We set \mu = 0.00031/min, while the mean speeds are the
ones measured in [50]: \=v(M) = 0.0166\mu m/min for M= 2.5mg/mL, while \=v(M) = 0.0137\mu m/min
for M= 3.9mg/mL. Simulations are run for 10 days with \Delta t= 7 \cdot 10 - 3 days.

the advancing cell aggregate from the cavity. In particular, we choose \rho th = 1
400 =

2.5 \cdot 10 - 3, 400 being the number of cells used in the experiment. In particular, in
Figure 2, we remark a good agreement with the microscopic model, even though we
cannot observe a perfect superposition. This, of course, corresponds to what we
know from the theory, as the kinetic model (2.17)--(2.18)--(2.16) is derived from the
microscopic model (2.5)--(2.7)--(2.8)--(2.10) in the limit N \rightarrow \infty and \Delta t\rightarrow 0+, while
here the simulation is run for 73\times 400 and 55\times 400 particles. This aspect also shows
the convenience of using the kinetic model instead of the microscopic one. In fact,
it allows us to obtain a complete statistical portrait with only one simulation, thus
gaining a lower computational cost, instead of performing multiple simulations of the
microscopic model or a simulation with a high N and very small \Delta t, which may be
computationally challenging.

In Figure 3 (right plot), we plot a section of the cell density evolution along the
x-axis. In particular, we plot the solution of the kinetic model (in blue), which we
recover from the definition (2.1), and the solution of the microscopic model \rho MC(x, t),
which we have run with N = 106 particles and \Delta t = 0.001 days. We construct the
solution \rho MC(x, t) building the corresponding histograms both with 20 points (purple
circles) and 1000 points (light green circles) over the interval [0,1000]\mu m. We remark
that there is an excellent agreement, as expected, between the solution \rho MC(x, t) of
the microscopic model (2.5)--(2.7)--(2.8)--(2.10) and the solution \rho (x, t) of the kinetic
model (2.17)--(2.18)--(2.16). Always intending to reduce the computational effort, we
look for the appropriate macroscopic model. To this aim, we observe the MSD shown
in Figure 3 (left plot). For completeness, we look at both the microscopic and the
kinetic models and we also report the lines y = t (dashed green) and y = t2 (dotted
green) for direct comparison. We observe that the MSD prescribed by the microscopic
(and, consequently, by the kinetic) model does not correspond to either a diffusive
or a purely directed behavior. Diffusive or purely directed limits appear relevant on
smaller time windows of cell evolution (early or late stages, respectively) without being
able to reproduce the overall cell dynamics. Therefore, these limits cannot be used for
predicting accurately the behavior of the macroscopic quantities. Instead, microscopic
and kinetic models appear to be more accurate in predicting such behaviors, showing
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Fig. 3. Test 2. Mean squared displacement (MSD) and profile solutions for a fixed collagen
density M = 2.5mg/mL. On the left, we compare the mean squared displacements prescribed by the
microscopic (purple), kinetic (blue), hyperbolic (orange), and diffusive (green) limits, respectively.
We also report the lines y= t (light green dashed), y= t2 (light green dotted). On the right, we plot a
one-dimensional section of the solution along the x-axis for the microscopic, kinetic, hyperbolic, and
diffusive models, with the same choice of colors done for the MSD. In particular, for the microscopic
model we build the corresponding histograms over both 20 points in [0,1000]\mu m (purple circles) and
1000 points (light green circles) and we construct the solution from them.

the relevant and the major levels of detail that these approaches are able to take into
account. As a consequence, in Figure 3 (right plot), the solution of the hyperbolic
model (2.29) (in orange) and the diffusive model (2.28) (in green) done with \varepsilon = 10 - 3

do not reproduce accurately the solution of the kinetic model (2.17)--(2.18)--(2.16).

3.3. The interplay of steric hindrance and fiber alignment. We now use
our model to investigate the interplay between steric hindrance and fiber alignment.
Precisely, we analyze how cell migration on collagen fibers varies with respect to dif-
ferent combinations of matrix densities and fiber alignment. The main motivation
for this test comes from a series of biological experiments that study separately the
impact of stromal collagen concentration [40] and collagen alignment [38] on tumor
local formation and invasion, where quantifications of the combined effects are un-
derinvestigated. In particular, in [38], the authors use mouse breast tumor models
to observe and define three tumor-associated collagen signatures (TACS), which are
considered markers to locate and characterize tumor invasion. Specifically, TACS-1
refers to the presence of locally dense collagen randomly disposed fibers within the
globally increased collagen concentration surrounding tumors; TACS-2 is defined as
straightened collagen fibers stretched around the tumor and constraining its volume;
TACS-3 identifies radially aligned collagen fibers that facilitate local invasion. These
observations allow the use of collagen alignment to quantify local invasion. Further-
more, in [40], the authors extend the analysis, looking at the influence of the ECM on
breast carcinoma development using a tumor model with increased stromal collagen in
mouse mammary tissue. They demonstrate how this increased collagen, coupled with
the different collagen-associated signatures, significantly increases tumor formation
and results in a more invasive phenotype. Directed cell migration by contact guid-
ance in aligned collagenous ECM has been also observed in [43], where the authors
propose a method to align collagen gels, providing a controlled microenvironment for
in vitro experiments. They quantify breast cancer cell behavior in these anisotropic
constructs, showing how motility is enhanced in aligned collagen matrices and for
a subpopulation of carcinoma cells, namely cancer stem cells (CSCs). In particu-
lar, these cells are characterized by smaller cell size and a high degree of phenotypic
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KINETIC MODEL: CONTACT GUIDANCE \& STERIC HINDRANCE S445

plasticity, which makes them more able to adapt to contact-guided migration. We
focus on the results in [43] concerning cell motility with respect to the alignment of
the fibers and the density of the ECM. In particular, for our analysis we translate
the differences in the cell size between cancer cells and CSCs as a difference in the
matrix pore size, meaning that we expect to observe enhanced migration in less dense
regions (where the pore size is bigger). We consider three different values of the ECM
density, as given in [50], and the corresponding mean speeds. The values of the mean
speeds are marked by the three blue stars in Figure SM6, where the black straight
line represents the interpolating polynomial of degree two that may be considered
to approximate the mean speed behavior as a function of the ECM density [4, 51].
We remark that, as in [50], we have an optimal matrix density corresponding to the
maximum possible speed, while for smaller values of the ECM density the speed is
lower because this corresponds to larger pores and to less efficient cell migration, as
shown in [51]. The value of the mean speed also decreases for higher values of the
ECM density because of the effect of the physical limit of migration [51]. We study
the effects of matrix density and fiber alignment on cell mean speed \=v(M) and cell
motility \Upsilon in the direction of the alignment, defining cell motility as

\Upsilon (t) :=
MSD(t)

t
.

Following [43], we compare the values of cell motility and mean speed after
\=T = 16h. We report a graphical illustration of the setting used for the numerical
simulations in Figure SM5. Results of the simulations of the kinetic model (2.17)--
(2.18)--(2.16) in this setting are shown in Figure 4.

In agreement with the results in [43], we observe how, for the same value of
collagen density M , a stronger alignment of the fibers enhances the cell mean speed
along the fiber tracks and this determines increased motility in the same direction,
compared with the control case k= 0. In particular, the differences in both \=v(M) and
\Upsilon are more evident for M = 2.5mg/mL and 3.2mg/mL, while for M = 3.9mg/mL
the matrix density seems to be a greater obstacle for cell migration, even in strongly
aligned environments. Comparing, instead, the cell behavior for the fixed value of the
fiber alignment, we notice how the results about both mean speed and motility are in
accordance with the relation \=v(M) illustrated in Figure SM6 and we obtain a greater
mean speed and motility for M = 3.2mg/mL. In particular, comparing the left and
right plots of Figure 4, we notice that the effect of the alignment on the mean speed
seems to be lower than its effect on the cell motility, as was also observed in [43].

k=0 k=5 k=10

0

2

4

6

k=0 k=5 k=10

0

0.4

0.8

1.2

Fig. 4. Test 3. Cell motility (\Upsilon ) and cell mean speed (\=v(M)) in the direction \theta q = 0 at \=T = 16h
for three different values of the collagen density M = 2.5,3.2,3.9mg/mL and three different values
of the fiber alignment strength k= 0,5,10.
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S446 M. CONTE AND N. LOY

Concerning the interplay between contact guidance and steric hindrance, this shows
a prominent role of contact guidance in the overall dynamics.

3.4. The interplay of steric hindrance and fiber alignment in heteroge-
neous environments. In this test, we want to show the potential of the proposed
model to study cell behavior in heterogeneous environments with both the effects of
fiber alignment and steric hindrance on cell migration. We propose this test because
non-locality is of the utmost importance in the presence of strongly heterogeneous
environments. The heterogeneity can be related to both the fiber structure [18], as
it may occur in the presence of different TACS or at the tumor-stroma interface
[2, 38], and the presence of interfaces between different ECM density/porosity regions
[45].

Experimentally, the main motivation for this test comes from [18], where the
authors use a composite ECM made up of collagen of type I and matrigel to determine
the influence of the local collagen fiber orientation on the collective intravasation
ability of breast cancer cells. They build a controllable and heterogeneous landscape
with a homogeneous distribution of fibers inside the collagen and fibers vertically
orientated near the interface between the collagen and the matrigel regions. They
show how cells follow the local fiber alignment direction during the intravasation
into rigid matrigel and how an oriented fiber network could lead to a significantly
enhanced infiltration potential. These results allow them to suggest the possibility of
manipulating the ECM fiber structure orientation in the tumor microenvironment in
order to alter and minimize the intravasation rate. The framework that we propose
allows us to actually analyze not only the impact of a heterogeneous landscape of
fibers, but also to combine it with the effects of different collagen densities.

As a first scenario, we consider a domain \Omega divided into two subregions \Omega 1 and \Omega 2.
In \Omega 1, we consider an isotropic distribution of fibers, while in \Omega 2 we assumed that the
fibers are oriented in the direction \theta q = 0. Moreover, we consider two different values
of matrix density M1 = 2.5mg/mL and M2 = 9.9mg/mL and the corresponding
values for the mean speeds \=v(M1) = 0.1696\mu m/min and \=v(M2) = 0.01\mu m/min. The
cells are initially placed at the interface between the two regions \Omega 1,\Omega 2. We analyze
the behavior of the cells in two different cases. In the first one, we assume that in \Omega 1

we have the matrix density M1, while in \Omega 2 we have the matrix density M2. In the
second one, instead, we invert the values of the matrix density, setting M2 in \Omega 1 and
M1 in \Omega 2. The initial configuration of fibers and cells used in this setting is shown in
Figure SM7. Concerning the sensing function \gamma in (2.16), we preliminarily choose for
this test a Delta function. The qualitative evolution of the macroscopic cell density
obtained by solving the kinetic model (2.17)--(2.18)--(2.16) in this setting is shown in
Figure 5. The first row represents the case in which we set M1 in \Omega 1 and M2 in \Omega 2,
while the second row represents the case M2 in \Omega 1 and M1 in \Omega 2. In both cases, we
observe how in the region with collagen density M2 (subregion \Omega 2 for the first row
setting while subregion \Omega 1 for the second row setting) the migration of the cells is
highly reduced, while it is promoted toward the region where the collagen density
is set to M1. Moreover, we can observe that the way cells invade this region differs
between the two experiments due to the underlying distribution of the fibers. In fact,
the isotropic fiber distribution in \Omega 1 determines a more homogeneous spreading of the
cells, while the anisotropic fiber distribution in \Omega 2 determines a stronger cell alignment
along the direction \theta q = 0. Furthermore, we notice the effect of non-locality in the
cell sensing of the microenvironment. In fact, in both cases, cells that are initially
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(d) t = 1.875 (e) t = 3.75 (f) t = 7.5

(g) t = 1.875 (h) t = 3.75 (i) t = 7.5

Fig. 5. Test 4. Qualitative evolution of the macroscopic cell density obtained from (2.17)--
(2.18)--(2.16) with an initial Gaussian distribution of cells with mean (x0, y0) = (0.5,0.5) and vari-
ance \sigma 2 = 10 - 3. The sensing function is \gamma = \delta (R - \lambda ). The first row refers to the case M1 in \Omega 1

and M2 in \Omega 2, while the second row refers to the case M2 in \Omega 1 and M1 in \Omega 2.

located in the region with the highest matrix density, but that are close enough (i.e.,
located at a distance lower than the sensing radius RM (t,x, \^v) from the interface)
to sense the environment in the more favorable region, move towards it, instead of
getting stuck due to the physical obstacle determined by the dense matrix. This is
particularly clear if we compare these results with the evolution of the nonlocal kinetic
model (2.17)--(2.18)--(2.16) with \gamma = \delta (\lambda  - 0), shown in Figure SM8, in which cells
in the unfavorable region are not actually able to escape from it and their migration
results are highly limited.

As a second scenario (Figure 6), we consider a different \Omega divided into two
subregions \Omega 1 (above the red line) and \Omega 2 (below the red line). Starting from
the central point (x0, y0) = (0.5,0.5), we consider radially distributed fibers, while
we consider two different values of matrix density: in \Omega 1, M1 = 6mg/mL, while
in \Omega 2, M2 = 10.35mg/mL. The corresponding values for the mean speeds are
\=v(M1) = 0.0630\mu m/min and \=v(M2) = 0.0002\mu m/min. The cells are initially placed
at the interface between the two regions \Omega 1 and \Omega 2, and the initial configuration of
fibers and cells used in this setting is shown in Figure SM7. The qualitative evolution
of the macroscopic cell density is shown in Figure 6. We observe how in the region
with collagen density M2 (i.e., \Omega 2) the migration of the cells is almost nullified, while
it is highly enhanced in the region where the collagen density is set to M1 (i.e., \Omega 1).
Moreover, the way cells invade this region is driven by the underlying distribution
of the fibers. In fact, their radial distribution is reflected in the radial spreading of
the cells. Furthermore, as observed in the previous case, we notice the effect of non-
locality in cell sensing of the microenvironment. In fact, cells initially located in the
region \Omega 2, but that are close enough to sense the environment in \Omega 1, move towards
it, instead of getting stuck due to the dense matrix M2.
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(j) t = 5 (k) t = 10 (l) t = 12.5

Fig. 6. Test 4. Qualitative evolution of the macroscopic cell density obtained from (2.17)--
(2.18)--(2.16) with an initial Gaussian distribution of cell with mean (x0, y0) = (0.5,0.5) and variance
\sigma 2 = 10 - 3. The sensing function is \gamma = \delta (R - \lambda ).

4. Conclusion. In this work, we have presented a mathematical model for the
description of contact guidance and steric hindrance, two fundamental mechanisms
related to cell migration on the ECM. This model relies on a non-local (in the physical
space) sensing of the ECM that allows us to take into account the role of cell protru-
sions, which may be extended up to several cell diameters, in heterogeneous environ-
ments. Considering the success of kinetic models for describing cell motion, especially
because of their genuine multiscale nature, we have transferred existing mathematical
methodologies of kinetic equations for multi-agent systems, already widely applied in
other fields [7, 33], to the context of cell migration. Starting from microscopic discrete
in time stochastic processes, which also involve non-local aspects, we have accurately
described the microscopic dynamics and, then, formally derived a kinetic model im-
plementing the chosen dynamics in the form of a collision-like Boltzmann equation.
In particular, we have established the parallelism between this class of models and the
velocity-jump processes, already commonly used to describe cell migration. This has
allowed us not only to give a more detailed microscopic description of the considered
dynamics, but also to obtain a microscopic algorithm for simulating them and, thus,
performing in silico experiments.

The kinetic model that we have formally derived gives the complete statistical
description of the system under study, and it implements exactly the prescribed mi-
croscopic dynamics, instead of postulating them at the mesoscopic scale. Moreover,
this kinetic formulation allows us to run a unique simulation instead of performing
multiple independent simulations.

We have shown how to derive from the mesoscopic level the macroscopic models
in different regimes according to the system parameters ruling the different involved
phenomena. In particular, this has allowed us to show how sometimes diffusive or
advective models cannot be reliable to make accurate predictions and, thus, models
directly stated at the macroscopic level could not be able to correctly describe cellular
behaviors. We also remark that the established parallelism with the collisional Boltz-
mann equation can be used in order to inherit all the analytical tools that are widely
used in the community of multi-agent systems and kinetic equations. In particular, it
is also used to tackle technical difficulties that may be encountered in more complex
models implementing velocity-jump processes, such as the determination of stationary
equilibria and the derivation of macroscopic limits.

We have applied our model to the study of steric hindrance and contact guidance
in several 3D scenarios related to breast cancer dissemination, which is a prominent
medical issue. In fact, many efforts have been done, especially in the medical and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

8/
24

 to
 1

88
.2

17
.5

4.
14

2 
by

 N
ad

ia
 L

oy
 (

na
di

a.
lo

y@
po

lit
o.

it)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



KINETIC MODEL: CONTACT GUIDANCE \& STERIC HINDRANCE S449

biological community, for the study of this process, but most of the difficulties are
still encountered in the design of effective experimental platforms. Thus, our approach
aims at providing a useful platform for performing in silico experiments. To this aim,
and especially for what concerns steric hindrance, we have first validated our micro-
scopic model studying the minimal and essential mechanisms that should be included
at the microscopic level in order to retrieve several experimental results [34, 50]. Then,
we have performed further experiments that couple the two mechanisms, namely steric
hindrance and contact guidance. This has allowed us to make some predictions on the
behavior of cells that undergo both mechanisms. In particular, the obtained results
can actually be supported by biological evidence.

For completeness, we have to highlight that we have focused our attention on
breast cancer dissemination, but the two considered mechanisms are involved in many
other processes. The fundamental point is that other phenomena could be described
by our modeling framework, which is formulated in a generic d dimension: the key
idea is to choose the phenomenon and experimental setting under investigation, and,
once they are fixed, then the appropriate modeling choice of dimension d and of the
microscopic mechanism and model can be done. In particular, the approach (2.6)
gives a higher possibility of describing the details of the microscopic mechanisms, in-
stead of imposing the appropriate average taken from experimental results, as done
here using the microscopic rule (2.7). For instance, our main goals in the near fu-
ture are the modeling of an independent sensing of multiple directional cues and the
modeling of the biphasic response of the cells to the ECM. Ongoing projects directly
implementable within the present framework include the description of a time-varying
ECM, because of remodeling, through the introduction of appropriate microscopic
rules for the dynamics of the fibers' direction.
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