
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Existence, structure, and robustness of ground states of a NLSE in 3D with a point defect / Adami, Riccardo; Boni,
Filippo; Carlone, Raffaele; Tentarelli, Lorenzo. - In: JOURNAL OF MATHEMATICAL PHYSICS. - ISSN 0022-2488. -
63:7(2022). [10.1063/5.0091334]

Original

Existence, structure, and robustness of ground states of a NLSE in 3D with a point defect

AIP postprint/Author's Accepted Manuscript e postprint versione editoriale/Version of Record

Publisher:

Published
DOI:10.1063/5.0091334

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970828 since: 2022-08-31T09:28:11Z

AIP Publishing



ar
X

iv
:2

20
3.

06
70

2v
2 

 [
m

at
h.

A
P]

  1
0 

Ju
n 

20
22

EXISTENCE, STRUCTURE, AND ROBUSTNESS OF GROUND

STATES OF A NLSE IN 3D WITH A POINT DEFECT

RICCARDO ADAMI, FILIPPO BONI, RAFFAELE CARLONE, AND LORENZO TENTARELLI

Abstract. We study the ground states for the Schrödinger equation with a focusing
nonlinearity and a point interaction in dimension three. We establish that ground states
exist for every value of the mass; moreover they are positive, radially symmetric, de-
creasing along the radial direction, and show a Coulombian singularity at the location
of the point interaction. Remarkably, the existence of the ground states is independent
of the attractive or repulsive character of the point interaction.

AMS Subject Classification: 35Q40, 35Q55, 35B07, 35B09, 35R99, 49J40, 49N15.

Keywords: standing waves, nonlinear Schrödinger, ground states, delta interaction, radially symmetric

solutions, rearrangements.

1. Introduction

The standard Nonlinear Schrödinger Equation (NLSE) perturbed by a point interaction

i
∂ψ

∂t
= (−∆+ αδ0)ψ ± |ψ|p−2ψ, α 6= 0, p > 2, (1)

has been recently proposed as an effective model for a Bose-Einstein Condensate (BEC)
in the presence of defects or impurities (see e.g. [21, 31, 32]).

While in dimension one the delta interaction is a bounded perturbation of the Laplacian
in the sense of the quadratic forms and the corresponding solutions are widely studied (see
e.g. [2, 8, 9, 10, 13, 16, 29]), the analogous problem in higher dimension has been addressed
only recently. In particular, well-posedness has been studied in dimensions two and three
([18]), whereas properties of the standing waves have been investigated in dimension two
([1, 24]) only.

Here we extend the results obtained in [1] to the three-dimensional setting. In particular,
we establish the existence and some qualitative properties of the ground states, and show
that such features are insensitive of the sign of the parameter α. This is in contrast with
the case of a particle subject to a point interaction in the absence of a nonlinearity, for
which ground states exist only for negative α. This contrast persists even if the point
interaction itself bears a nonlinearity, namely it is of the form α|ψ|p−2δ0, with 2 < p < 4
(see [3, 4, 5, 6, 7, 11, 12, 14, 19, 20, 27, 28]).

1.1. Setting and main results. Here we treat equation (1) in R3 in the focusing case.
Like in dimension two ([1]), in three dimensions equation (1) is formal since the delta
interaction is not a bounded perturbation of the Laplacian. The operator −∆ + αδ0
is then constructed through the theory of self-adjoint extensions of hermitian operators,
which guarantees (see e.g. [15]) the existence of a family (Hα)α∈R of self-adjoint operators
that realize all point perturbations of −∆. As a result, the domain of Hα is

D(Hα) = {v ∈ L2(R3) : ∃q ∈ C s.t.

v − q

4π|x| = φ ∈ Ḣ2(R3), ∇φ ∈ H1(R3) and φ(0) = αq}

and its action reads
Hαv = −∆φ.
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The complex number q is called the charge of the function v, and represents the size of
the Coulombian singularity at the origin.

It proves convenient to represent the domain of Hα in an alternative way. One chooses
an arbitrary positive number λ and, denoted by Gλ the Green’s function of −∆+λ, namely

Gλ(x) :=
e−

√
λ|x|

4π|x| , (2)

one gets

D(Hα) :=

{
v ∈ L2(R3) : ∃q ∈ C : s.t.

v − qGλ =: φλ ∈ H2(R3) and φλ(0) =

(
α+

√
λ

4π

)
q

}
,

and

Hαv := −∆φλ − qλGλ.

Note that Gλ is not in H1(R3) and belongs to Lp(R3) if and only if 1 6 p < 3. This
entails D(Hα) ⊂ Lp(R3) only if 2 6 p < 3, which is one of the major differences with the
two-dimensional case where the embedding holds for p > 2.

In addition, one can see that functions in D(Hα) consist of a regular part φλ, on which
the operator Hα acts as the standard Laplacian, and a singular part qGλ, on which the
operator acts as the multiplication by −λ. The two components are connected by the

boundary condition φλ(0) =
(
α+

√
λ

4π

)
q. We stress that λ is a dumb parameter that

does not affect the definition of Hα, since for every λ > 0 any function in D(Hα) can be
equivalently decomposed in regular and singular part.

The quadratic form associated with Hα has domain

D :=
{
v ∈ L2(R3) : ∃q ∈ C, λ > 0 s.t. v − qGλ =: φλ ∈ H1(R3)

}
, (3)

and action

Q(v) := 〈Hαv, v〉 = ‖∇φλ‖22 + λ
(
‖φλ‖22 − ‖v‖22

)
+

(
α+

√
λ

4π

)
|q|2, ∀v ∈ D, (4)

where we denoted by 〈·, ·〉 the hermitian product in L2(R3) and by ‖ · ‖p the usual norm
in Lp(R3). The value of Q(v) is independent of the choice of λ. Notice that in the form
domain no boundary condition is prescribed.

Finally, we denote by −ωα the bottom of the spectrum of Hα, so

−ωα := inf
v∈D\{0}

Q(v)

‖v‖22
=

{
−(4πα)2, if α < 0,
0, if α > 0.

(5)

Therefore the continuous spectrum of Hα is [0,+∞), while the point spectrum of Hα is
empty if α > 0 and has the sole negative eigenvalue −(4πα)2 if α < 0.

We are ready to introduce the rigorous version of equation (1), namely

i
∂ψ

∂t
= Hαψ − |ψ|p−2ψ, α ∈ R, 2 < p < 3. (6)

Through the paper we shall refer to such equation as to δ-NLSE. It is well-known ([18])
that its flow shows two conservation laws: mass, i.e. L2-norm, and the energy

E(v) :=
1

2
Q(v)− 1

p
‖v‖pp, (7)

defined for any v in the form domain D.
Hereafter we focus on the ground states of equation (6), according to the following

definition.
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Definition 1.1. Given α ∈ R, 2 < p < 3, µ > 0, we call ground state at mass µ every global
minimizer of the δ-NLS energy functional defined in (7), among the functions belonging
to

Dµ := {v ∈ D : ‖v‖22 = µ}.

The main result of the paper is the following

Theorem 1.2 (δ-NLS ground states). Let p ∈ (2, 3) and α ∈ R. Therefore, for every
µ > 0,

(i) there exists a ground state for the δ-NLS at mass µ;
(ii) if u = φλ + qGλ is a ground state, then:

(a) there does not exist λ > 0 such that φλ or qGλ are identically zero;
(b) u is positive, radially symmetric, and decreasing along the radial direction,

up to multiplication by a constant phase; moreover, φλ is nonnegative if λ =
ω := µ−1(‖u‖pp −Q(u)), and positive if λ > ω.

Ground states are particular cases of bound states, i.e. functions that satisfy

u ∈ D(Hα), (8)

Hαu+ ωu− |u|p−2u = 0. (9)

Bound states are the spatial profiles of standing waves, in the sense that u is a bound state
if and only if ψ(t,x) = eiωtu(x), is a solution to equation (6).

In order to prove the qualitative features (iia) and (iib) in Theorem 1.2, we will study
a class of bound states larger than that of ground states, namely the set of the minimizers
of the action functional Sω defined as

Sω : D → R such that Sω(v) := E(v) +
ω

2
‖v‖22, (10)

among the functions belonging to the Nehari’s manifold

Nω := {v ∈ D \ {0} : Iω(v) = 0}, (11)

where Iω : D → R is given by

Iω(v) := 〈S′
ω(v), v〉 = ‖∇φλ‖22 + λ‖φλ‖22 + (ω − λ)‖v‖22 +

(
α+

√
λ

4π

)
|q|2 − ‖v‖pp.

The result on the minimizers of the action functional reads as follows.

Theorem 1.3 (δ-NLS action minimizers). Let p ∈ (2, 3), α ∈ R Then,

(i) a minimizer of the action of the δ-NLS at frequency ω does exist if and only if
ω > ωα (defined in (5));

(ii) if u = φλ + qGλ is a minimizer of the action of the δ-NLS at frequency ω > ωα,
then:
(a) there does not exist λ > 0 such that φλ or qGλ are identically zero;
(b) u is positive, radially symmetric, and decreasing along the radial direction, up

to multiplication by a constant phase factor; in particular, φλ is nonnegative
when λ = ω, and positive when λ > ω.

Through the following Lemma (whose proof can be found in [1, Appendix B] and is an
adaptation of what has been established in [23] for the standard NLSE) we can connect
minimizers of the action with ground states.

Lemma 1.4. Let p ∈ (2, 3), α ∈ R and µ > 0. If u is a ground state of mass µ, then it is
also a minimizer of the action at the frequency ω = µ−1(‖u‖pp −Q(u)).
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In view of this and of Lemma 1.4, one can see that point (ii) of Theorem 1.2 is a
straightforward consequence of Theorem 1.3. We also mention that establishing (ii)(b) of
Theorem 1.3 requires an equivalent formulation of the problem of the minimization of the
action. We shall in fact minimize

Qω(v) := Q(v) + ω‖v‖2

among the functions in D with fixed Lp norm. This technique is purely variational and
does not retraces the classical ones used for the standard NLSE.

Finally, from Theorem 1.2 and Theorem 1.3 it appears that the sign of α does not
affect the behavior of the ground states and of the minimizers of the action. As mentioned
at the beginning, this robustness is, at first sight, surprising. More precisely, while in
dimension two this is natural as the sign of α does not even affect the existence of ground
states for the linear problem, in dimension three ground states of the linear problem exist
only for negative values of α. In other words, the intuitive idea that ground states are
deformations of the linear ground state due to the ignition of a nonlinearity, is misleading.
Such description is inspired by the fact that minimizers of the action exist if and only if the
frequency exceeds the bottom of the spectrum of Hα, which in dimension two coincides
with its only eigenvalue. Yet in dimension three the analogy fails since when α > 0
the eigenvalue disappears, but the minimizers of the action still exist if and only if the
frequency exceeds the bottom of the spectrum of Hα.

An intuitive explanation of this phenomenon can be drawn by describing the problem
from another point of view. If one interprets the model as a delta perturbation of the
NLSE, then one immediately sees that D ⊃ H1(R3) and so, even perturbing the standard
NLSE with a repulsive delta interaction, the infimum of the action gets lower with re-
spect to the infimum of unperturbed action. Thus, the perturbed problem is in any case
energetically convenient with respect to the standard one.

Notation. In the following, we use the expressions δ-NLS ground states and NLS
ground states to refer to the global minimizers of the δ-NLS energy and the standard NLS
energy, respectively. We use δ-NLS action minimizers and NLS action minimizers in an
analogous way.

Organization of the paper.

· Section 2 introduces some preliminary results that are useful throughout the paper;
more precisely:

– in Section 2.1 we recall some well-known features of the Green’s function of
−∆+ λ,

– in Section 2.2 we establish two extensions of the Gagliardo-Nirenberg inequal-
ity (Proposition 2.1),

· Section 3 addresses the existence of ground states (Theorem 1.2–(i));
· Section 4 addresses the existence of action minimizers (Theorem 1.3–(i));
· Section 5 establishes the main features both of the ground states and of the action
minimizers (Theorem 1.2 –(ii)/Theorem 1.3–(ii)).

2. Preliminary results

In this section we collect some preliminary results, that will be exploited in the proofs
of Theorem 1.2 and Theorem 1.3.

2.1. Properties of the Green’s function. First, by (2) one can easily check that Gλ ∈
Lr(R3) for every r ∈ [1, 3), with

‖Gλ‖22 =
1

8π
√
λ

and ‖Gλ‖rr =
‖G1‖rr
λ

3−r
2

, when r ∈ [1, 3), (12)
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and that

‖Gλ − Gν‖22 =
1

8π

(
1√
λ
+

1√
ν
− 4√

λ+
√
ν

)
. (13)

We recall that Gλ is positive, radially symmetric, decreasing along the radial direction,
exponentially decaying at infinity and smooth up to the origin. Moreover, Gλ 6∈ H1(R3)
and

‖∇(Gλ − Gν)‖22 =
1

8π

(
3λ

√
ν − 3ν

√
λ+ ν

√
ν − λ

√
λ

ν − λ

)
. (14)

Finally, whenever ν < λ,

Gλ(x) =
e−

√
λ|x|

4π|x| <
e−

√
ν|x|

4π|x| = Gν(x), ∀x ∈ R
3 \ {0}. (15)

2.2. Gagliardo-Nirenberg inequalities. Here we aim at finding a version of Gagliardo-
Nirenberg inequality for the energy space D, defined by (3).

First, recall the standard three-dimensional Gagliardo-Nirenberg inequality (see e.g.
[22, Theorem 1.3.7]): for every p ∈ (2, 6) there exists Cp > 0 such that

‖v‖pp 6 Cp‖∇v‖
3(p−2)

2
2 ‖v‖

6−p
2

2 , ∀ v ∈ H1(R3). (16)

Second, every function with q 6= 0 can be decomposed into a regular and a singular part

according to the choice λ = ε
|q|4
‖u‖42

, with ε > 0 arbitrarily chosen, i.e.

u = φ+ qG
ε

|q|4

‖u‖4
2

, φ ∈ H1(R3) (17)

Using such decomposition, one can prove the following result.

Proposition 2.1 (Gagliardo-Nirenberg inequalities). For every p ∈ (2, 3), there exists
Kp > 0 such that

‖v‖pp 6 Kp

(
‖∇φλ‖

3(p−2)
2

2 ‖φλ‖
6−p
2

2 +
|q|p

λ
3−p
2

)
, ∀v = φλ + qGλ ∈ D, ∀λ > 0. (18)

Moreover, there exists Mp,ε > 0 such that

‖v‖pp 6Mp,ε

(
‖∇φ‖

3(p−2)
2

2 ‖v‖
6−p
2

2 + |q|3(p−2)‖v‖2(3−p)
2

)
,

∀v = φ+ qG
ε

|q|4

‖v‖42

∈ D \H1(R3). (19)

Proof. If we fix v = φλ + qGλ ∈ D, for some λ > 0, then (16) and (12) yield

‖v‖pp = ‖φλ + qGλ‖pp 6 2p−1
(
‖φλ‖pp + |q|p‖Gλ‖pp

)
6 Kp

(
‖∇φλ‖

3(p−2)
2

2 ‖φλ‖
6−p
2

2 +
|q|p

λ
3−p
2

)
,

that is (18). On the other hand, if we also assume that q 6= 0 and set λ = λq,ε := ε
|q|4
‖v‖42

,

form some ε > 0, then by (12), (18) and the triangle inequality there results

‖v‖pp 6 2
p−2
2 Kp


‖∇φ‖

3(p−2)
2

2 ‖v‖
6−p
2

2 + ‖∇φ‖
3(p−2)

2
2

|q| 6−p
2

λ
6−p
8

q,ε

+
|q|p

λ
3−p
2

q,ε




6Mp,ε

(
‖∇φ‖

3(p−2)
2

2 ‖v‖
6−p
2

2 + |q|3(p−2)‖v‖2(3−p)
2

)
,

which concludes the proof. �
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Remark 2.2. Note that, whenever q = 0, i.e. v ∈ H1(R3), (18) reduces to (16). Note also
that, in contrast to the standard Gagliardo-Nirenberg inequality, we must limit ourselves
to the powers p < 3 since Gλ 6∈ Lp(R3) when p > 3. Finally, we highlight that Mp,ε :=

2
p−2
2 Kpmax

{
1, ε

p−p
8 , ε

p−3
2

}
and, thus, Mp,ε → +∞, as ε ↓ 0.

3. Existence of ground states

Here we prove point (i) of Theorem 1.2, which is the existence of ground states of mass
µ for every µ > 0. To this aim, some further notation is required: we denote by E(µ) the
δ-NLS energy infimum at mass µ, i.e.

E(µ) := inf
v∈Dµ

E(v),

with E defined in (7), and by E0(µ) the NLS energy infimum at mass µ, i.e.

E0(µ) := inf
v∈H1

µ(R
3)
E0(v),

where

E0(v) :=
1

2
‖∇v‖22 −

1

p
‖v‖pp and H1

µ(R
3) := {v ∈ H1(R3) : ‖v‖22 = µ}.

As a preliminary step we establish boundedness from below of E restricted to Dµ,
whenever p ∈ (2, 3). By the decomposition introduced in (17), the functional E reads

E(u) =




1

2
‖∇φ‖22 +

ε|q|4‖φ‖22
2‖u‖42

+
α|q|2
2

+
|q|4

2‖u‖22

(√
ε

4π
− ε

)
− ‖u‖pp

p
, if u ∈ D \H1(R3),

1

2
‖∇u‖22 −

1

p
‖u‖pp, if u ∈ H1(R3).

(20)

In addition, if one fixes ε < 1
16π2 , then the coefficient in front of |q|4

2‖u‖22
is positive. For

instance, we choose ε = 1
64π2 , so that

E(u) =
1

2
‖∇φ‖22 +

|q|4‖φ‖22
128π2‖u‖42

+
α|q|2
2

+
|q|4

128π2‖u‖22
− ‖u‖pp

p
, ∀u ∈ D \H1(R3). (21)

Proposition 3.1. For any fixed p ∈ (2, 3) and α ∈ R,

E(µ) > −∞, ∀µ > 0.

Proof. Let u ∈ Dµ. We manage separately the cases u ∈ H1
µ(R

3) and u ∈ Dµ \H1
µ(R

3). In
the former case, combining (20) and (16), there results

E(u) >
1

2
‖∇u‖22 −

Cp

p
‖∇u‖

3(p−2)
2

2 µ
6−p
4 ,

and thus E is bounded from below on H1
µ(R

3) as p ∈ (2, 3) by assumption. In the latter

case, combining (19) and (21) and denoting by Mp the constant Mp,ε for ε = 1
64π2 , there

results

E(u) >
‖∇φ‖22

2
− Mp‖∇φ‖

3(p−2)
2

2 µ
6−p
4

p
+

|q|4‖φ‖22
128π2µ2

+
α|q|2
2

+
|q|4

128π2µ
− Mp|q|3(p−2)µ3−p

p
,

and thus E is bounded from below also on Dµ\H1
µ(R

3) as, again, p ∈ (2, 3) by assumption.
�
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In the following proposition we compare the infima of the energy of the δ-NLS and of
the NLS.

Proposition 3.2. For any fixed p ∈ (2, 3) and α ∈ R,

E(µ) < E0(µ) < 0, ∀µ > 0. (22)

The proof of such proposition requires the following well-known result about the NLS
ground states (see e.g. [30] and [25]).

Proposition 3.3. Let p ∈
(
2, 103

)
. There exists an NLS ground state of mass µ for every

µ > 0. In addition, such minimizer is unique, positive, radially symmetric and decreasing
along the radial direction, up to multiplication by a constant phase and translations.

Throughout the paper, we denote the positive symmetric NLS ground state of mass µ,
usually called soliton, by Sµ.

Proof of Proposition 3.2. For any µ > 0, Sµ cannot be a δ-NLS ground state of mass
µ. Indeed, a δ-NLS ground state has to satisfy the boundary condition in (8), namely

φλ(0) = (α +
√
λ

4π )q; but, since Sµ ∈ H1(R3), q = 0 and Sµ ≡ φλ so that Sµ(0) = 0, which
contradicts the positivity of Sµ. As a consequence, there must exists v ∈ Dµ such that
E(v) < E(Sµ) = E0(µ), which concludes the proof of the former inequality in (22).

Concerning the latter inequality, fix µ > 0 and consider v ∈ H1
µ(R

3). Using the mass-
preserving transformation

vσ(x) = σ
3
2 v(σx),

one obtains

E0(vσ) =
σ2

2
‖∇v‖22 −

σ
3(p−2)

2

p
‖v‖pp

and thus, since p ∈ (2, 3), choosing a small enough σ one gets E0(µ) 6 E0(vσ) < 0, and
the proof is complete. �

The last two preliminary tools necessary for the proof of point (i) of Theorem 1.2 are
provided by the next two lemmas and concern the minimizing sequences at mass µ of the
δ-NLS energy.

Lemma 3.4. Let p ∈ (2, 3) and α ∈ R. For every minimizing sequence un = φλ,n + qnGλ

of the δ-NLS energy at mass µ, there exist n̄ ∈ N and C > 0, such that

|qn| > C, ∀n > n̄.

Proof. Assume by contradiction that there exists a minimizing sequence for the δ-NLS
energy at mass µ such that qn → 0. Then, ‖φλ,n‖22 is bounded since it converges to µ.
Moreover, combining (7) and (18), one obtains

E(un) >
1

2
‖∇φλ,n‖22 +

λ

2
(‖φλ,n‖22 − µ) +

(α+
√
λ

4π )

2
|qn|2

− Kp

p

(
‖∇φλ,n‖

3(p−2)
2

2 ‖φλ,n‖
6−p
2

2 +
|qn|p

λ
3−p
2

)

=
1

2
‖∇φλ,n‖22 −

Kp

p
‖∇φλ,n‖

3(p−2)
2

2 ‖φλ,n‖
6−p
2

2 + o(1), as n→ +∞.

Thus, as E(un) is bounded from above and p < 3, ‖∇φλ,n‖2 is bounded.

Now, define the sequence ξn :=
√
µ

‖φλ,n‖2φλ,n, so that ‖ξn‖22 = µ, for every n ∈ N , and

‖∇ξn‖22 = µ

‖φλ,n‖22
‖∇φλ,n‖22 is bounded. Then, as φλ,n−un → 0 in Lr(R3), for all r ∈ [2, 3),
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using the properties of ξn, we find that

E(un) = E0(φλ,n) + o(1) = E0(ξn) + o(1)

> E0(Sµ) + o(1), as n→ +∞,

where Sµ denotes again the soliton of mass µ. Hence, passing to the limit,

E(µ) > E0(µ),

which contradicts (22), thus implying that qn 6→ 0. Since this is true for every subsequence
of any minimizing sequence of the δ-NLS energy, this concludes the proof. �

Lemma 3.5. Let p ∈ (2, 3), α ∈ R, µ > 0, (un)n a minimizing sequence of the δ-NLS
energy at mass µ. Then, (un)n is bounded in Lr(R3) for every r ∈ [2, 3), and there exists
u ∈ D \H1(R3) such that, up to subsequences,

· un ⇀ u in L2(R3),
· un → u a.e. in R3.

Moreover, if one fixes λ > 0 and considers the decomposition un = φn,λ + qnGλ, then
(φn,λ)n and (qn)n are bounded in H1(R3) and C, respectively, and there exist φλ ∈ H1(R3)
and q ∈ C \ {0} such that u = φλ + qGλ such that up to subsequences,

· φn,λ ⇀ φλ in L2(R3),
· ∇φn,λ ⇀ ∇φλ in L2(R3),
· qn → q in C,

as n→ +∞.

Proof. The proof follows from classical arguments and retraces that of [1, Lemma 3.5].
We sketch it here for the sake of completeness only.

By Banach-Alaoglu Theorem, un ⇀ u in L2(R3) up to subsequences. Moreover, owing
to Lemma 3.4, it is not restrictive to assume that |qn| > C > 0, for every n ∈ N. As a
consequence, we can use the decomposition introduced by (17), namely un = φn + qnGνn

with λ = νn := 1
64π2

|qn|4
‖un‖42

, and (19).

Now, arguing as in [1, Lemma 3.5] and using (19) and (21), one gets that φn is bounded
in H1(R3) and qn is bounded in C. Finally, in order to prove the thesis for every λ > 0
fixed, we argue again as in [1, Lemma 3.5] recalling that φλ,n := φn + qn(Gνn − Gλ), using
(13), (14) and that qn is bounded from above and away from zero, and distinguishing the
cases λ > 1 + (8πµ)−2 supn |qn|4 and λ < 1 + (8πµ)−2 supn |qn|4. �

Eventually, we can prove the existence of the δ-NLS ground states.

Proof of Theorem 1.2-(i). Let (un)n be a minimizing sequence of the δ-NLS energy at
mass µ. As we saw before, it is not restrictive to assume that un = φn,λ + qnGλ, with
qn 6= 0 and λ > 0. Hence Lemma 3.5 applies.

In order to conclude the proof we argue as follows (note that all the limits below have
to be meant up to subsequences). Set m := ‖u‖22. Weak lower semicontinuity of the
L2(R3)-norm implies m 6 µ, while q 6= 0 implies m 6= 0. Then suppose, by contradiction,
that m ∈ (0, µ). Since p > 2 and µ

‖un−u‖22
> 1 for n sufficiently large, there results that

lim inf
n

E(un − u) >
µ−m

µ
E(µ). (23)

On the other hand, it is possible to show in an analogous way that

E(u) >
m

µ
E(µ). (24)
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Moreover, recalling that un ⇀ u, φn,λ ⇀ φλ, ∇φn,λ ⇀ ∇φλ in L2(R3) and qn → q and
using the Brezis-Lieb lemma ([17]), we have that

E(un) = E(un − u) + E(u) + o(1) as n→ +∞ (25)

Combining (23), (24) and (25), one can see that

E(µ) = lim inf
n

E(un) = lim inf
n

E(un − u) + E(u) >
µ−m

µ
E(µ) + m

µ
E(µ) = E(µ),

which is a contradiction. Therefore, m = µ, which means that u ∈ Dµ and that un → u,
φn,λ → φλ in L2(R3). Finally, by (18), un → u in Lp(R3) and thus

E(u) 6 lim inf
n

E(un) = E(µ),

which completes the proof. �

4. Existence of the minimizers of the action

In this section we prove (i) of Theorem 1.3, which is the existence/nonexistence of
the minimizers of the δ-NLS action at frequency ω. It is convenient to introduce some
notation. First, we denote by d(ω) the infimum of the δ-NLS action at frequency ω, i.e.

d(ω) := inf
v∈Nω

Sω(v),

where Sω, Nω are given by (10) and (11), and define

Qω(v) := Q(v) + ω‖v‖22,
where Q is given by (4), so that

Sω(v) =
1

2
Qω(v) −

1

p
‖v‖pp and Iω(v) = Qω(v)− ‖v‖pp.

On the other hand, we denote by d0(ω) the infimum of the NLS action at frequency ω, i.e.

d0(ω) := inf
v∈N0

ω

S0
ω(v),

where

S0
ω(v) := E0(v) +

ω

2
‖v‖22,

N0
ω := {v ∈ H1(R3) \ {0} : I0ω(v) = 0}, I0ω(v) := 〈S0

ω

′
(v), v〉.

Preliminarily, we note that

Sω(v) = S̃(v) > 0, ∀v ∈ Nω, with S̃(v) :=
p− 2

2p
‖v‖pp. (26)

As a consequence, since Sω |
H1(R3)

= S0
ω and Nω ∩H1(R3) = N0

ω, there results

0 6 d(ω) 6 d0(ω), ∀ω ∈ R. (27)

Furthermore, since d0(ω) = 0 for every ω 6 0 ([23, Lemma 2.4 and Remark 2.5]), it is
straightforward that d(ω) = 0, for every ω 6 0, so that there are no minimizers of the
δ-NLS action at ω 6 0. As a consequence, we only address the case ω > 0.

The former step of our proof is to investigate when inequalities (27) are strict. We
introduce the set

N̂ω := {qGλ : λ > 0, q ∈ C \ {0}, Iω(qGλ) = 0},
which is the subset of Nω of the functions that admit a representation with the sole singular

part for a value of λ > 0. We can characterize N̂ω as follows.
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Lemma 4.1. Let p ∈ (2, 3), α ∈ R and ω > 0. Then, qGλ ∈ N̂ω if and only if

ω√
λ
+ 8πα +

√
λ > 0 (28)

and

|q| = λ
3−p

2(p−2)

κp

[
ω√
λ
+ 8πα+

√
λ

] 1
p−2

, (29)

with κp = (8π‖G1‖pp)
1

p−2 .

Proof. Let q 6= 0 and λ > 0. By (12), Iω(qGλ) = 0 if and only if

ω − λ

8π
√
λ
|q|2 +

(
α+

√
λ

4π

)
|q|2 − κ

λ
3−p
2

|q|p = 0,

with κ := ‖G1‖pp, so that

|q|p−2 =
λ

3−p
2

κ

(
ω − λ

8π
√
λ
+ α+

√
λ

4π

)
=
λ

3−p
2

8πκ

(
ω√
λ
+ 8πα+

√
λ

)
.

Since |q|p−2 > 0, (28) and (29) follow. �

Lemma 4.2. Let p ∈ (2, 3), α ∈ R and ω > 0. Then

(i) if α < 0 and ω ∈ (0, ωα), then there exists λ1(ω) ∈ (0, ωα) and λ2(ω) > ωα such
that

N̂ω = {qGλ : λ ∈ (0, λ1(ω)) ∪ (λ2(ω),+∞) and q ∈ C \ {0} and satisfies (29)};
in particular, λ1(ω) and λ2(ω) are the sole solutions of the equation

ω√
λ
+ 8πα+

√
λ = 0;

(ii) if α < 0 and ω = ωα, then

N̂ω = {qGλ : λ > 0, λ 6= ωα, and q ∈ C \ {0} and satisfies (29)};
(iii) if ω > ωα, then

N̂ω = {qGλ : λ > 0 and q ∈ C \ {0} and satisfies (29)}
(We recall that ωα was defined in (5))

Remark 4.3. We highlight that, in the previous result, the case α > 0 is always taken into
account by (iii), since in this case ωα = 0.

Proof of Lemma 4.2. Let ω > 0 and

g(λ) :=
1

λ
p−2
2

(
λ+ 8πα

√
λ+ ω

)
.

Recall that, in view of Lemma 4.1, qGλ ∈ N̂ω if and only if g(λ) > 0 and q satisfies (29),

namely |q| = κ−1
p g

1
p−2 (λ). First, we observe that, when α > 0, ωα = 0 so that g is strictly

positive on R+, for any ω > ωα. Thus (iii) is straightforward in this case.
We focus then on α < 0. One can easily check that, as p ∈ (2, 3),

lim
λ→0+

g(λ) = +∞ , lim
λ→+∞

g(λ) = +∞.

On the other hand, since

g′(λ) =
(4− p)λ+ 2(3 − p)πα

√
λ− (p − 2)ω

2λ
p
2

,
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g has a unique critical point on R+. Hence there exists λ∗ = λ∗(ω) such that g is strictly
decreasing for λ 6 λ∗ and strictly increasing for λ > λ∗, being g(λ∗) the global minimum
of g on R+. In particular, if ω > ωα, then g is strictly positive and (28) admits a solution
for every λ > 0, so that (iii) is proved. On the contrary, if ω = ωα, then g vanishes for
λ = ωα only, and (28) admits a solution whenever λ > 0 and λ 6= ωα, so that (ii) is

proved. Finally, if ω < ωα, then g vanishes at two points λ1,2(ω) =
(√
ωα ∓√

ωα − ω
)2
,

with λ1(ω) < ωα < λ2(ω), and is negative for λ ∈ [λ1(ω), λ2(ω)]. Hence, (28) does not
admits any solution if and only if λ ∈ [λ1(ω), λ2(ω)], so that (i) is proved. �

After this characterization of the set N̂ω, we can estimate the value of d(ω) for α < 0 and
ω ∈ (0, ωα] (note that, in view of Remark 4.3 and the comments after (27), the analogous
for α > 0 is trivial).

Proposition 4.4. Let p ∈ (2, 3) and α < 0. Then, d(ω) = 0 for every ω ∈ (0, ωα].

Proof. We give the proof in the cases ω ∈ (0, ωα) and ω = ωα separately. If ω ∈ (0, ωα),
then by Lemma 4.2

lim
λ→λ1(ω)− ,
qGλ∈Nω

|q| = lim
λ→λ1(ω)−

λ
3−p

2(p−2)

κp

[
ω√
λ
+ 8πα+

√
λ

] 1
p−2

= 0.

Hence, combining with (26) and (12),

0 6 d(ω) 6 inf
qGλ∈Nω

Sω(qGλ) 6 lim
λ→λ1(ω)−,
qGλ∈Nω

Sω(qGλ)

= lim
λ→λ1(ω)−,
qGλ∈Nω

S̃(qGλ) = lim
λ→λ1(ω)− ,
qGλ∈Nω

p− 2

2p
‖G1‖pp

|q|p

λ
3−p
2

= 0.

If, on the contrary, ω = ωα, then one finds the same chain of inequalities and concludes
by replacing the limits for λ→ λ1(ω)

− with the limits for λ→ ωα. �

The first consequence of this result if the following (again, the analogous for α > 0 is
omitted since it is trivial).

Corollary 4.5. Let p ∈ (2, 3) and α < 0. If ω ∈ (0, ωα], then there does not exist any
minimizer of the δ-NLS action at frequency ω.

Proof. The claim follows by Proposition 4.4 and (26). �

Before showing the proof of point (i) of Theorem 1.3, the last preliminary step is to
discuss the behavior of d(ω) when ω > ωα. We start by recalling the following relation

between Sω and S̃.

Lemma 4.6. For every p ∈ (2, 3), α ∈ R, and ω > ωα

d(ω) = inf
v∈Ñω

S̃(v),

with

Ñω := {v ∈ D \ {0} : Iω(v) 6 0}.
In addition,

{
S̃(u) = d(ω)

Iω(u) 6 0
⇐⇒

{
Sω(u) = d(ω)

Iω(u) = 0.
, ∀u ∈ D \ {0}.

Proof. The proof follows from classical arguments and is analogous to that of [1, Lemma
4.5]. �
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Remark 4.7. Note that this result implies that, searching for minimizers of the δ-NLS
action means searching for

u ∈ Ñω such that S̃(u) = inf
v∈Ñω

S̃(v) = d(ω).

Now, the former point is to prove that the left inequality of (27) is strict.

Proposition 4.8. For every p ∈ (2, 3), α ∈ R and ω > ωα, there results that d(ω) > 0.

Proof. We can start by assuming u ∈ Ñω ∩H1(R3). By the Sobolev inequality

0 > Iω(u) = ‖∇u‖22 + ω‖u‖22 − ‖u‖pp > Cp‖u‖2p + ω‖u‖22 − ‖u‖pp > Cp‖u‖2p − ‖u‖pp,
for some suitable Cp > 0 only depending on p. Therefore, ‖u‖p−2

p > Cp, so that

S̃(u) >
p− 2

2p
C

p
p−2
p ,

whence

inf
v∈Ñω∩H1(R3)

S̃(v) >
p− 2

2p
C

p
p−2
p > 0. (30)

It is then left to study the case u = φλ + qGλ ∈ Ñω \ H1(R3). Assume, without loss of

generality, λ ∈ (ωα, ω). Clearly α +
√
λ

4π > 0, and thus there exists a constant C > 0 such
that

‖∇φλ‖22 + λ‖φλ‖22 + (ω − λ)‖u‖22 + |q|2
(
α+

√
λ

4π

)
> C

(
‖φλ‖2H1 + |q|2

)
. (31)

In addition, by Sobolev inequality again,

‖u‖pp 6 Cp

(
‖φλ‖pp + |q|p

)
6 Cp

(
‖φλ‖pH1 + |q|p

)
6 Cp

(
‖φλ‖2H1 + |q|2

) p
2 ,

which implies

‖φλ‖2H1 + |q|2 > 1

Cp

‖u‖2p. (32)

Then, combining (31) and (32),

0 > Iω(u) > C
(
‖φλ‖2H1 + |q|2

)
− ‖u‖pp >

C

Cp
‖u‖2p − ‖u‖pp

and thus, as before, there exists Kp > 0, depending only on p, such that

S̃(u) > Kp,

whence
inf

v∈Ñω\H1(R3)
S̃(v) > Kp > 0. (33)

Finally, the claim follows by combining (30) and (33). �

The latter point is to prove that the right inequality in (27) is strict. To this aim, we
mention the following well-known result for the NLS action minimizers at frequency ω

(see, e.g., [22]).

Proposition 4.9. Let p ∈ (2, 6). For every ω > 0, there exists a minimizer of the
NLS action at frequency ω. Such minimizer is unique, positive, radially symmetric and
decreasing along the radial direction, up to the multiplication by a constant phase and
translations.

Proposition 4.10. For every p ∈ (2, 3), α ∈ R and ω > ωα, there results that d(ω) <
d0(ω).

Proof. The proof is analogous to that of the first part of Proposition 3.2. �
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Concluding the section, we prove the existence part of Theorem 1.3.

Proof of Theorem 1.3-(i). The case ω 6 ωα is a straightforward consequence of the re-
marks at the beginning of the section and of Corollary 4.5. On the other hand, in order
to treat the case ω > ωα it is sufficient to use Propositions 4.8 and 4.10 and follow the
steps of the proof of [1, Theorem 1.11]. We mention here a brief sketch for the sake of
completeness.

Step 1: weak convergence of the minimizing sequences. Let (un)n be a minimizing
sequence of the δ-NLS action at frequency ω > ωα. By Remark 4.7, it is not restrictive

to assume that (un)n ⊂ Ñω and S̃(un) → d(ω). Now, since ‖un‖pp → 2p
p−2d(ω), un is

bounded in Lp(R3). Hence, as Iω(un) 6 0, setting for instance λ = ω+ωα

2 , and using the

decomposition un = φn,λ + qnGλ, one gets that φn,λ and un are bounded in L2(R3) and
that qn is bounded in C. Thus, there exists φλ ∈ H1(R3), q ∈ C and u ∈ D such that
u = φλ + qGλ and

∇φn,λ ⇀ ∇φλ, φn,λ ⇀ φλ un ⇀ u in L2(R3) and qn → q in C.

Step 2: u ∈ D \H1(R3). Suppose, by contradiction, that u ∈ H1(R3), so that q = 0,
and define the sequence wn := σnφn,λ ∈ H1(R3) in such a way that I0ω(σnφn,λ) = 0. It is
possible to prove that (σpn)n is bounded from above by a sequence (an)n converging to 1.

Thus, as I0ω(wn) = 0 and S̃(un) → d(ω),

d0(ω) + o(1) = S̃(wn) = σpnS̃ (φn,λ) 6 an

(
S̃(un) + o(1)

)
= S̃(un) + o(1) = d(ω) + o(1),

that implies that d(ω) > d0(ω), which contradicts Proposition 4.10.

Step 3: u ∈ Ñω. In view of Step 2, it is left to prove that Iω(u) 6 0. Assume by
contradiction that Iω(u) > 0. Since un is bounded in Lp(R3), using Brezis-Lieb lemma,

S̃(un)− S̃(un − u)− S̃(u) → 0. (34)

Moreover, since qn → q, ∇φn,λ ⇀ ∇φλ, φn,λ ⇀ φλ and un ⇀ u in L2(R3) and Qω is
quadratic, we have also that

Iω(un)− Iω(un − u)− Iω(u) → 0. (35)

Let us prove now that Iω(un) → 0. Assume by contradiction that Iω(un) 6→ 0. Without
loss of generality, we can suppose that Iω(un) → −β, with β > 0. Consider, then, the
sequence vn := θnun such that Iω(vn) = 0. An easy computation shows that

θn → ℓ < 1.

As a consequence,

S̃(vn) = S̃(θnun) = θpnS̃(un) → ℓpd(ω) < d(ω),

which is a contradiction. Hence Iω(un) → 0. Finally, looking back at (35), since Iω(u) > 0
and Iω(un) → 0,

Iω(un − u) = Iω(un)− Iω(u) + o(1) = −Iω(u) + o(1),

entailing that Iω(un − u) → −Iω(u) < 0. Choose then n̄ such that Iω(un − u) < 0 for

every n > n̄. Since d(ω) 6 S̃(un − u) and S̃(u) > 0, (34) yields

d(ω) 6 lim
n
S̃(un − u) = d(ω)− S̃(u) < d(ω),

which is again a contradiction. Thus, Iω(u) 6 0.
Step 4: conclusion. By the boundedness in Lp(R3), un ⇀ u in Lp(R3), and so, by weak

lower semicontinuity

S̃(u) 6 lim inf
n→+∞

S̃(un) = d(ω),

which concludes the proof. �
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5. Further properties of ground states and action minimizers

This final section discusses point (ii) of Theorems 1.2 and 1.3. We start by proving
(ii)(a) of Theorem 1.3.

Proposition 5.1. Let p ∈ (2, 3), α ∈ R, ω > ωα and u be a minimizer of the δ-NLS
action at frequency ω. Then, q 6= 0 and φλ := u− qGλ 6= 0, for every λ > 0.

Proof. Consider the decomposition u = φλ + qGλ for a fixed λ > 0, and suppose by
contradiction that φλ = 0. As u 6= 0, it must be q 6= 0. In addition, u must also fulfil (8),

so that α +
√
λ

4π = 0. Now, whenever α > 0, this is a contradiction. On the other hand,
when α < 0, the previous equality entails that λ = ωα. However, since u must also satisfy
(9), easy computations yield

ω − ωα + |q|p−2|Gωα(x)|p−2 = 0, ∀x ∈ R
3 \ {0},

which is a contradiction.
It is then left to show that q 6= 0. Suppose by contradiction that q = 0. This would

imply that d(ω) = d0(ω), which denies Proposition 4.10. �

In order to prove point (ii)(b) of Theorem 1.3, we recall preliminarily that, up to the
multiplication by a phase factor, a δ-NLS action minimizer u = φλ + qGλ can be assumed
to display a charge q > 0 (for details see [1, Section 5]). In addition, we have to turn to
the following equivalent minimum problem (for details see [1, Proposition 5.3]).

Proposition 5.2. Let p ∈ (2, 3), α ∈ R and ω > ωα. Then,

inf
v∈Dp

C(ω)

Qω(v) = C(ω),

with C(ω) := 2p
p−2d(ω) and Dp

C(ω) := {v ∈ D : ‖v‖pp = C(ω)}, and there exists u ∈ D
p

C(ω)

such that Qω(u) = C(ω). In particular,
{
Qω(w) = C(ω)

w ∈ D
p

C(ω)

⇐⇒
{
Sω(w) = d(ω)

w ∈ Nω

.

Remark 5.3. The main consequence of this result is that we can study the properties of
δ-NLS action minimizers at frequency ω by studying the properties of the minimizers of
Qω on Dp

C(ω), with C(ω) = 2p
p−2d(ω).

Now we can prove the first part of (ii)(b), which states positivity up to multiplication
by a constant phase.

Proposition 5.4. Let p ∈ (2, 3), α ∈ R and ω > ωα. Then, every minimizer of the δ-NLS
action at frequency ω is positive, up to multiplication by a constant phase.

Proof. Let u be a minimizer of the δ-NLS action at frequency ω. As mentioned before,
up to multiplication by a constant phase, we can assume q > 0. On the other hand, by
Proposition 5.2, it is also a minimizer of Qω on Dp

C(ω), with C(ω) = 2p
p−2d(ω). Now, set

λ = ω and Ω := {x ∈ R3 : φω(x) 6= 0}. By Proposition 5.1, |Ω| > 0. As a consequence

u(x) = φω(x) + qGω(x) = eiη(x)|φω(x)| + qGω(x), ∀x ∈ Ω \ {0},
for some η : Ω → [0, 2π). Hence, showing that η(x) = 0 for a.e. x ∈ Ω \ {0} implies that
φω(x) = |φω(x)| > 0 for every x ∈ R3, whence u(x) > 0 for every x ∈ R3 \ {0}.

Suppose by contradiction that η 6= 0 on Ω1 ⊂ (Ω \ {0}), with |Ω1| > 0 and define
ũ := |φω|+ qGω (which coincides with u in R3 \ Ω1). Easy computations yield

|u(x)|2 = |φω(x)|2 + q2G2
ω(x) + 2 cos(η(x))|φω(x)|Gω(x)

< |φω(x)|2 + q2G2
ω(x) + 2|φω(x)|Gω(x) = |ũ(x)|2, ∀x ∈ Ω1,
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so that, since |Ω1| > 0,

‖u‖pp =

∫

R3

(
|u|2
)p

2 dx <

∫

R3

(
|ũ|2
) p

2 dx = ‖ũ‖pp. (36)

On the other hand, one can simply verify that Qω(ũ) 6 Qω(u). Thus, from (36) and the
positivity of Qω, there exists β ∈ (0, 1) such that ‖βũ‖pp = ‖u‖pp = C(ω) and

Qω(βũ) = β2Qω(ũ) < Qω(u),

which contradicts the fact that u minimizes Qω on D
p

C(ω)
. As a consequence η = 0 a.e.

on Ω \ {0}, which concludes the proof. �

Note that the arguments before also imply that the regular part of a minimizer of the
δ-NLS action at frequency ω is nonnegative when λ = ω. In addition, we can prove that,
whenever λ > ω, it is in fact positive.

Corollary 5.5. Let p ∈ (2, 3), α ∈ R, ω > ωα and u be a minimizer of the δ-NLS action
at frequency ω. Then the regular part φλ := u − qGλ is positive for every λ > ω, up to
multiplication by a constant phase.

Proof. Let u be a positive minimizer of the δ-NLS action at frequency ω and consider the
decomposition u = φλ + qGλ for a fixed λ > ω. By (15), since q > 0, one obtains

φλ(x) = φω(x) + q(Gω(x)− Gλ(x)) > 0, ∀x ∈ R
3 \ {0}.

On the other hand, as

lim
x→0

(Gω − Gλ)(x) =

√
λ−√

ω

4π
,

the claim is proved. �

The last part of the section is devoted to the radially symmetric monotonicity of min-
imizers of the δ-NLS action. To this aim, we recall the definition and some important
properties of the radially decreasing rearrangement of a function.

Given a measurable A ⊂ R3 with finite Lebesgue measure, we denote by A∗ the open
ball centered at zero with Lebesgue measure equal to |A|, that is

A∗ :=

{
x ∈ R

3 :
4π

3
|x|3 < |A|

}
.

In addition, given f : R3 → R a nonnegative measurable function such that |{f > t}| :=
|{x ∈ R3 : f(x) > t}| < +∞, for every t > 0, its radially symmetric rearrangement
f∗ : R3 → R is defined as

f∗(x) =
∫ ∞

0
1{f>t}∗(x) dt,

with 1{f>t}∗ the characteristic function of {f > t}∗. Concerning such radially symmetric
rearrangement we need in the sequel the three properties below. First,

‖f∗‖p = ‖f‖p, ∀f ∈ Lp(R3), f > 0, ∀p > 1. (37)

Second, given two nonnegative functions f , g ∈ Lp(R3), with p > 1, there results
∫

R3

|f + g|p dx ≤
∫

R3

|f∗ + g∗|p dx (38)

and, in particular, if f is radially symmetric and strictly decreasing along the radial
direction, then the equality in (38) implies that g = g∗ a.e. on R3 (see [1, Proposition 2.3]
for the proof). Finally, if f ∈ H1(R3), then f∗ ∈ H1(R3) and

‖∇f∗‖2 6 ‖∇f‖2 (39)

(which is usually called Pólya-Szegő inequality).
Using these three properties, we can establish the following proposition.
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Proposition 5.6. Let p ∈ (2, 3), α ∈ R and ω > ωα. Then, every minimizer of the δ-NLS
action at frequency ω is radially symmetric and decreasing along the radial directions, up
to multiplication by a constant phase.

Proof. Assume, without loss of generality, that u is a positive minimizer of the δ-NLS
action at frequency ω and fix the decomposition u = φω + qGω, with λ = ω. We have
to show that φω = φ∗ω. Suppose by contradiction that φω 6= φ∗ω and define the function
ũ = φ∗ω + qGω. By (39) and (37), we have that ‖∇φ∗ω‖2 6 ‖∇φω‖2 and ‖φ∗ω‖2 = ‖φω‖2, so
that

Qω(ũ) 6 Qω(u).

Now, applying (38) with f = qGω and g = φω in the strict case, there results that
‖ũ‖pp > ‖u‖pp. Therefore, as Qω is positive, there exists β < 1 such that ‖βũ‖pp = ‖u‖pp and

Qω(βũ) = β2Qω(ũ) < Qω(ũ) 6 Qω(u),

but, via Proposition 5.2 (arguing as in the proof of Proposition 5.4), this contradicts that
u is a δ-NLS action minimizer, thus concluding the proof. �

Finally, we put together all the information we have obtained so far to prove point (ii)
of Theorems 1.2 and 1.3.

Proof of Theorems 1.2 and 1.3-(ii). Let u be a minimizer of the δ-NLS action at frequency
ω > ωα. Then, by Proposition 5.1, Proposition 5.4, Corollary 5.5 and Proposition 5.6, u
satisfies all the properties stated in item (ii).

Let, then, p ∈ (2, 3) and u be a δ-NLS ground state of mass µ. Combining Lemma 1.4
and point (i) of Theorem 1.3 one sees that u is also a minimizer of the δ-NLS action at
some frequency ω > ωα (in particular, ω = µ−1(‖u‖pp − Q(u))). Then, one concludes by
point (ii) of Theorem 1.3. �
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