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ABSTRACT: 

Several advancements are going with Unmanned Aerial Systems (UAS) with the addition of multiple sensors and simultaneous data 

acquisition to obtain detailed geo-data for various applications. However, simultaneous data acquisition with multiple sensors, namely 

camera, and LiDAR, will also result in possible discrepancies associated with them, and they need to be solved to use a reliable and 

accurate final product. Several errors can be associated with both camera and LiDAR datasets due to the different characteristics of the 

sensors and terrain conditions. This research paper aimed to minimize the errors between LiDAR and the image datasets simultaneously 

acquired with an Unmanned Aerial System (UAS) by implementing a hybrid adjustment approach with a criterion for the roughness 

and threshold angle between surface normals. The initial trajectory of the UAS, raw LiDAR measurements, and image observations 

were the inputs used for the hybrid adjustment. The hybrid adjustment workflow minimizes the discrepancies with a least-squares-

based simultaneous adjustment for both LiDAR and image datasets. For the hybrid adjustment process, three types of correspondences 

were established, namely: between image pairs, overlapping LiDAR strips, and between Image tie points and LiDAR strips. For quality 

control, mean Cloud-to-Cloud distances (C2C) were compared between both LiDAR and camera point clouds before and after hybrid 

adjustment. The surface-level analysis of the results was also carried out to analyze the errors before and after hybrid adjustment at a 

surface level for different types of surfaces. The results showed that the alignment between the point clouds has significantly improved 

from the range of meters to a centimeter-level after implementing the hybrid adjustment process. The proposed hybrid adjustment 

workflow can be used in mapping applications where a centimeter-level accuracy is requested. 

1. INTRODUCTION

In the last decade, there have been significant advances in 

Unmanned Aerial Systems (UAS) based data acquisition. It has 

been an efficient acquisition method these days to simultaneously 

collect multi-sensor data onboard a UAS platform. The technical 

progressions in UAS-based sensor technology and data 

acquisition have led to the emergence of high-resolution data 

availability. The multi-sensor platform-based applications are 

highly flexible for data acquisition (Baltsavias, 1999). The 

different sensors, namely LiDAR, and camera, are emerging 

technologies for 3D topographic mapping, especially when used 

onboard low-cost UAS platforms. The LiDAR point cloud 

provides accurate 3D surface information in the form of the 

scattered point cloud, whereas aerial photogrammetry provides 

information through stereo vision directly in the form of spectral 

imagery (Yang and Chen, 2015). Optical imagery has been 

known for providing high-quality details along the object 

boundaries with variations in elevation (Kim et al., 2006). 

Numerous studies have been carried out for the reconstruction of 

3D surfaces using LiDAR data and aerial photogrammetry 

simultaneously due to their complementary characteristics 

(Habib et al., 2005). The main advantage of using the LiDAR 

system is the direct acquisition of the 3D coordinates from the 

ground objects and the better vertical positional accuracy when 

using an airborne platform. In contrast, camera images provide 

dense spatial information with better horizontal accuracy (Choi 

et al., 2011). The datasets acquired from the UAS-based LiDAR 

system have low-cost, denser point clouds and shorter response 

times than traditional aircraft or helicopter-based LiDAR data 

acquisition (Nex et al., 2022). In the case of multi-sensor data 

acquisition, the advantage of the complementary characteristics 

of different sensors can be utilized and hence combining the data 

from multiple techniques would give us accurate, high-quality, 

and detailed surface information (Baltsavias, 1999).   The use of 

multi-sensor platforms with a LiDAR unit and a single/multi-

view camera for synchronized data acquisition has represented a 

market trend for the 3D reconstruction of the earth’s surface 

(Toschi et al., 2018). The accurate coregistration of hybrid UAS-

based camera images and LiDAR data can positively influence 

several applications in the sector of mapping, 3D city modeling, 

the AEC sector (Alsadik et al., 2022). 

The LiDAR point cloud and the derived point cloud from camera 

images have some misalignments during their coregistration due 

to systematic errors in the multi-sensor UAS system (Glira et al., 

2019). The primary source of these systematic errors is 

GNSS/INS navigation systems and the boresight alignment from 

mounting calibration. These misalignments and distortions 

compromise the coregistration quality of the datasets. The 

possible errors between LiDAR and camera point clouds can be 

attributed to the different data acquisition sensors and their 

characteristics. It is not easy to get a highly accurate 

coregistration between LiDAR point clouds and camera point 

clouds using only hardware synchronization and bore-sight 

calibration (Skaloud and Lichti, 2006). The initial UAS trajectory 

data also needs to be considered for the precise coregistration of 

both datasets. To solve this geometric state of art problem, many 

strategies exist to minimize the discrepancies between the 

LiDAR and camera datasets, but very few focus on the 

simultaneous adjustment of both LiDAR and camera datasets. 

The combined advantage of LiDAR data and images can be fully 

utilized after eliminating geometric inconsistency between both 

datasets, i.e., geometric registration, which arises due to the 

systematic errors of a multi-sensor system (Habib et al., 2005) 

There are numerous supporting reasons for the applications of 

multi-sensor data, including the complementary characteristics of 

two sensors and the detailed multispectral information offered in 

combination with photogrammetry (Toschi et al., 2021). Their 

use is limited to concurrent flights and finds its place in exploring 

the fusion of data collected at different timestamps. 

† This article is based on the Master’s thesis of the first author Yogender Yadav (2022).
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 The two primary approaches for registering multi-sensor 

datasets, especially LiDAR, and camera, can be classified as 

area-based registration and feature-based registration 

(Palenichka and Zaremba, 2010). Area-based registration 

methods focus on optimizing exterior orientation parameters of 

the images by maximizing the statistical or grayscale 

comparations of the similar area in both datasets. On the other 

hand, data-driven feature-based fusion approaches perform the 

integration by fetching out the features from LiDAR and images 

to generate correspondences to estimate the camera poses. The 

area-based registration approaches are based on the statistical 

dependence of LiDAR and imagery and are mainly dependent on 

the quality and correctness of image intensity which is interpreted 

with intensity calibration effectiveness (Yang and Chen, 2015). 

However, the feature-based method extracts geometric features 

from a scene to register the datasets (Zhou et al., 2021). 

Generally, the methods used for extracting the features from the 

datasets depend on the characteristics of the individual source 

data, which can vary if different datasets are used.  

Built upon Glira et al. (2019), the proposed hybrid adjustment 

methodology includes additional constraints on parameters like 

surface roughness and threshold on the surface normal of the 

corresponding points from LiDAR point cloud and image tie 

points, which affect the overall performance of the hybrid 

adjustment. In our hybrid adjustment approach, the LiDAR strips 

were adjusted along with the camera images with an estimation 

of camera orientation parameters. In the methodology, a uniform 

sampling was also considered to select the corresponding points 

more effectively for the hybrid adjustment of LiDAR and camera 

data. In summary, the main contributions of the paper are: 

• A workflow for the hybrid adjustment of UAS-based 

LiDAR and camera data without the use of any ground truth 

data; 

• Use of uniform data sampling LiDAR and camera to 

establish the correspondences between LiDAR and image 

data from the entire dataset area; 

• Involving the criteria for the roughness and threshold angles 

between the surface normal for the hybrid adjustment. 

 

2. RELATED WORKS 

Many potential research works have been carried out for the 

combined processing of LiDAR and imagery to get a detailed and 

accurate end product, e.g., an integrated approach to generate the 

orthophotos, LiDAR, and image data integration for building 

modeling (Brenner, 2005), combining image and LiDAR data for 

automatic reconstruction of railroad centreline (Beger et al., 

2011), and fusion of image and LiDAR point clouds for the 

derivation of Digital Surface Model (DSM)(Mandlburger et al., 

2017). Toschi et al. (2021) has formulated a process based on 

aggregating the features and evaluating all 3D points sensor-

specific and pointwise. Their integration approach has proven to 

work well with georeferenced point clouds without any flight 

trajectories, but it has some limitations with point density 

variation, misalignment within a point cloud, or point clouds 

acquired from different platforms. Acquisition of data from 

different UAS or terrestrial platforms would lead to point clouds 

with diverse quality and requires the selection of the most 

suitable quality features (Toschi et al., 2021). 

Most of the research in this field is focused on the independent 

adjustment of LiDAR block adjustment and aerial triangulation 

for camera images. As per the integration framework by 

Abayowa et al. (2015), the Iterative Closest Point algorithm 

(ICP) was implemented to optimize the discrepancies between 

the Digital Surface Models (DSMs) obtained from LiDAR and 

image data. This approach was based on relative orientation by 

matching invariant and salient features in DSMs from LiDAR 

and imagery point clouds. 

The adjustments of the LiDAR strips (Strip Adjustment, SA) and 

the Bundle Block Adjustment (BBA) for image rays with the 

same GNSS/INS trajectory have also led to an acceptable 

coregistration of the multi-sensor datasets. Ground Control 

Points (GCPs) enable the refinement of the internal camera 

parameters, boresight calibration, and image orientations. (Yang 

and Chen, 2015) presented a sophisticated approach to 

integrating the image sequences and LiDAR data from a UAV, 

minimizing the discrepancies between two-point clouds. The 

approach was based on matching building outlines without any 

rigorous modelling of the measurements. In this approach, only a 

rigid body transformation was applied to match the images and 

LiDAR block, resulting in a moderate georeferencing accuracy.  

 The method of integrating point clouds from LiDAR with the 

camera images point cloud on the criterion of bias detection after 

adjustments had been a compelling method with the optimal need 

of GCPs collection for BBA (Toschi et al., 2018). The similar 

geometric features (points, surfaces, and edges) create a 

transformation between different LiDAR reference frames and 

camera coordinate systems (Habib et al., 2005; Peng et al., 2019; 

Yang and Chen, 2015).  

The GNSS/INS-assisted LIDAR integration approach by (Zhou 

et al., 2021)initiates with the point cloud generation with point 

positioning equation, and LiDAR/GNSS-assisted SfM followed 

by iterative identification of correspondences from both point 

clouds and integrated bundle adjustment. SIFT algorithm-based 

tie points are also established in this process to derive the sparse 

image point cloud after refining system calibration parameters 

from bundle adjustment. It also considers the planar constraint to 

the seed point to identify the corresponding patches from LiDAR 

data. Another target-based image and LiDAR data integration 

approach was conducted by (Pentek et al., 2020), employing 

LiDAR strip adjustment (LSA) in the initial step, followed by 

using LiDAR point cloud from the initial step as a reference for 

the camera system calibration. 3D coordinates were estimated 

with the intersection between light rays from images and LiDAR 

points, minimizing the distance between these correspondences 

for every corresponding pair of image points from image 

matching. However, this integration approach did not consider 

the probable errors in the trajectory of data acquisition.    

Another efficient approach is the hybrid adjustment which 

considers the simultaneous adjustment of both LiDAR and 

camera datasets. A unified process inclusive of the strip 

adjustment and bundle block adjustment was found to be more 

robust and efficient than the existing multi-sensor data 

integration approaches. Glira et al. (2019) framed a method for 

hybrid orientation with a rigorous and iterative determination of 

the correspondences between the image tie points and LiDAR 

points. However, this hybrid adjustment method optimizes the 

multi-sensor block stability and integrates the sensors with the 

possible inclusion of the UAS trajectory and ground truth data. 

In (Haala et al. (2020) authors have also developed an approach 

for generating ultra-high accurate LiDAR point clouds from 

UAVs by combining image measurements from block 

adjustments and trajectory corrections at the different 

photogrammetric processing steps. In this hybrid adjustment 

approach, the flight trajectory was adjusted in a LiDAR strip 

adjustment with the addition of observations from the 

photogrammetry. The authors aimed to enhance the accuracy of 

LiDAR strips with the use of imagery, and the accuracies with 

this approach were achieved to the range of Ground Sampling 

Distance (GSD) of the imagery without using any ground-based 

inputs. In Haala et al. (2022), the hybrid georeferencing of UAV-

based LiDAR and camera images was implemented using image 
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space tie points, checkerboard targets, and LiDAR control planes 

as additional inputs to improvise the accuracy of the adjustment.  

3. METHODOLOGY

The hybrid adjustment has been implemented in the stripAdjust 

module in Orientation and Processing of Airborne Laser 

Scanning data (OPALS) software (Pfeifer et al., 2014). The 

hybrid adjustment methodology involves the initial pre-

processing of raw LiDAR data, camera images, and initial UAS 

trajectory to be used as inputs for stripAdjust. The UTM zone, 

hemisphere, time lag between the platform and LiDAR sensor, 

and orientation of the sensors on the platform are also used as 

inputs in the hybrid adjustment along with the constraints on the 

roughness and surface normal of the corresponding points from 

LiDAR and camera datasets. After the implementation of the 

hybrid adjustment, the quality check has been done to evaluate 

the performance by computing the mean cloud-to-cloud distances 

(c2c) between LiDAR and the camera point cloud. 

3.1 Data Pre-Processing 

For the hybrid adjustment, raw LiDAR measurements (.rdbx) in 

Scanner Coordinate System (SCS) were used as inputs. The 

camera images were processed in Agisoft Metashape with the 

initial orientation parameters. Further, the processed Metashape 

project was exported to the exterior orientation of images, tie 

object points, and image point observations as inputs to the 

hybrid adjustment using a Python script. The sensor orientation 

of the scanner on the UAS platform and the time lag between the 

UAS platform and sensor observations were also determined 

using visualization and functions in MATLAB. The data pre-

processing workflow has been represented in Figure 1. 

Figure 1: Data pre-processing for the hybrid adjustment. 

3.2 Implementation of Hybrid Adjustment 

The hybrid adjustment was implemented with the stripAdjust 

module in OPALS software. The hybrid adjustment of UAS-

based camera data and LiDAR strips can be possible with two 

types of image inputs: one is loose images, and another is coupled 

images. In the case of hybrid adjustment with loose images, their 

relation to flight trajectory cannot be established because of the 

unavailability of timestamps for images. In this case, the exterior 

orientation parameters are directly estimated by the adjustment.   

The coupled images are tied to the flight trajectory, and their 

exterior orientation can be estimated through the direct 

georeferencing equation as a function of UAS trajectory and 

camera mounting calibration parameters. The positional and 

rotational parameters obtained through the direct georeferencing 

equation can be inaccurate if the timestamps of images are 

inaccurate or residuals show systematic errors. Therefore, the 

exterior orientation is corrected by the three coordinate correction 

parameters and three rotational angle correction parameters in 

case of hybrid adjustment with coupled images. In Figure 2, it is 

evident that for the loose images, the mounting of the camera is 

not coupled to the trajectory whereas in the case of coupled 

images, the camera is coupled to the trajectory. Figure 2 shows 

the difference between loose and coupled images in relation to 

UAS trajectory. 

Figure 2: Hybrid adjustment with the loose and coupled images. 

As the trajectory correction also has a significant role in the 

hybrid adjustment, the tests were carried out with the bias and 

linear trajectory correction models in combination with the 

adjustment using loose and coupled images. The original 

trajectory of the UAS system establishes the basis for the direct 

georeferencing of UAS-based LiDAR strips and camera images. 

However, in (Skaloud et al., 2010) it was concluded that GNSS 

and INS trajectory measurements are strongly affected by 

external influences like flight maneuvers and satellite 

constellations. The accuracy in the measurements cannot be 

treated as constant w.r.t. time, leading to the time-dependent 

errors of the estimated trajectory, to be corrected by adjustment.  

The six trajectory elements of the original position [ 𝑔𝑥0 𝑒 (𝑡), 
𝑔𝑦0 𝑒 (𝑡), 𝑔𝑧0 𝑒 (𝑡)] and original orientation [ 𝜙0 (𝑡), 𝜃0(𝑡), 
𝛾0(𝑡)] are corrected in the hybrid adjustment for each LiDAR 

strip by a correction function ∆(. )[𝑠](𝑡). The simplest trajectory 

correction model is the Bias Trajectory Correction Model 

(BTCM) and Linear Trajectory Correction Model (LTCM), 

which correct a bias by a 0-degree polynomial and corrects the 

trajectory with a 1-degree polynomial respectively for each of the 

six trajectory elements, individually for each strip. Figure 3 and 

Figure 4 represent the corrections from BTCM and LTCM used 

in the hybrid adjustment. The correction coefficients for the 

respective trajectory correction model have been estimated in the 

hybrid adjustment process. Figure 3 represents the concept of a 

BTCM where a constant is added for bias correction whereas 

Figure 4 shows for LTCM in which corrects the trajectory with a 

single degree polynomial. 

Figure 3: Bias Trajectory Correction Model (BTCM). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-633-2023 | © Author(s) 2023. CC BY 4.0 License.

 
635



Figure 4: Linear Trajectory Correction Model (LTCM). 

In the adopted hybrid adjustment, the least squares adjustment 

minimizes the weighted square sum for the following mentioned 

types of correspondences:  

• IMG-IMG: reprojection errors of image tie points in

the image space

• STR-STR: signed perpendicular point-to-plane

distances between overlapping LiDAR strips

• IMG-STR: signed perpendicular point-to-plane

distances between image tie points and overlapping

LiDAR strips

The implementation of the hybrid adjustment process starts with 

the image-based processing step. Initially, correspondences 

between the image pairs (IMG-IMG) are established in the first 

step. Then, aerial triangulation is implemented in the subsequent 

step to estimate the 3D coordinates of the image tie points from 

the initial step. The IMG-IMG correspondences established in 

this step are used in the next steps of the hybrid adjustment. 

Further, the overlap between pairs of the LiDAR strips (STR-

STR) and between image tie points and LiDAR strips (IMG-

STR) are determined for the correspondence. After finding 

overlap, the query points are selected from STR-STR and IMG-

STR correspondences with a uniform sampling technique, which 

selects the points from both datasets in the object space as 

consistently as possible. The uniform sampling technique ensures 

that the uniform distribution of points in the correspondences and 

equal-area regions are weighted equally within the hybrid 

adjustment.  

 The primary iteration loop in the hybrid adjustment starts with 

the direct georeferencing of the LiDAR strips (with the initial 

parameters in the first loop and estimated parameters from the 

hybrid adjustment in the subsequent loops). The potential 

correspondences are matched, i.e., the nearest neighbour of a 

query point in the overlapping point cloud. The false 

correspondences are rejected and removed in the subsequent step 

based on roughness criteria, the distance between the 

corresponding points, and the threshold angle between the 

normals of the corresponding points. The correspondences that 

remained after the rejection step are weighted based on their 

surface roughness and angle between respective surface normals. 

It is worth mentioning that the correspondences are also newly 

established in each iteration of hybrid adjustment. After a given 

number of iterations are completed, the LiDAR strips are 

georeferenced with the estimated parameters in the final iteration 

loop of the hybrid adjustment. Figure 5 represents the main 

hybrid adjustment workflow after performing data-processing. 

The data outputs from the hybrid adjustment are as follows:  

• Calibrated LiDAR strips

• Undistorted images

• Estimated orientation parameters of the images

• Adjusted flight strip trajectories w.r.t. INS / Scanner

Coordinate System

• Hybrid Adjustment Report

• Log file

Figure 5: Hybrid adjustment workflow. 

The undistorted images and estimated orientation parameters 

from the hybrid adjustment are used for the post-processing of 

the camera images. The purpose of this step is to generate Dense 

Image Matching (DIM) point cloud from the distortion-free 

images and parameters post hybrid adjustment. The main factor 

considered here is that calibration was restricted to the accurate 

geolocations estimated by hybrid adjustment The hybrid 

adjustment in Opals stripAdjust module was implemented with 

different parameters as it was originally designed for the 

adjustment of ALS-based datasets. The difference in the case of 

the UAS-based datasets is that the correspondences/planes 

extracted for the matching of the LiDAR and camera datasets 

would be larger as compared to ALS-based datasets. 

3.3 Quality Check (QC) 

To assess the results from the implementation of the hybrid 

adjustment, mean cloud-to-cloud (C2C) distances were treated as 

a measure of the misalignment between LiDAR and camera point 

clouds. Figure 6 represents the workflow for the Quality Check 

(QC) of the hybrid adjustment methodology. The distortion free 

images from the hybrid adjustment were processed with Dense 

Image Matching (DIM) with adjusted orientations to obtain a 

point cloud. The mean C2C distances between point clouds from 

adjusted camera images and adjusted LiDAR strips were 

computed in CloudCompare using a ‘Compute Cloud/Cloud 

distance’ tool with a “quadric” model to measure the 

misalignment between the two-point clouds. This C2C distance 

method gives the distance differences between two-point clouds 

based on the nearest neighbor distance between two-point clouds. 

For the computation, one point cloud is to be defined as a 

“reference” point cloud and the other as “compared” for which 

the distances have to be computed. For every point in the 

“compared” point cloud, the algorithm search for its nearest point 

in the “reference” point cloud, and the Euclidean distances 

between the nearest neighbor points are computed ((Ahmad Fuad 

et al., 2018; Yadav et al., 2022)). Figure 7 represents the basic 

idea of C2C distances computation.  The “Quadric” local surface 

model was used in C2C distance computations to get a better 

approximation of the distances between the point clouds. The 

basic concept of C2C distances computation with local surface 

modelling has been represented in Figure 8.  

The mean C2C distances have been computed between the 

LiDAR point cloud after hybrid adjustment and the camera point 

cloud generated from the undistorted images and orientation 

parameters estimated from the hybrid adjustment. For mean C2C 

distances calculation LiDAR point cloud has been considered as 

‘reference’ entity and camera point cloud as ‘compared’ entity. 

This C2C distance method gives the distance differences between 

two-point clouds based on the nearest neighbor distance between 

two-point clouds.   
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Figure 6: Quality check (QC) of the point clouds before and after 

hybrid adjustment. 

Figure 7: Basic concept of Cloud to Cloud (C2C) distance 

computation. 

Figure 8: Principle of C2C distances computation with the local 

surface modeling. 

4. TEST AREA AND DATASET ACQUISITION

SYSTEMS 

Three datasets were collected over an area that comprises 

features like buildings, bare land, roads, and vegetation surfaces. 

The ground coverage of the three datasets is ca 0.2 km2, ca 0.2 

km2, and ca 0.15 km2 respectively. The datasets were acquired 

with a hybrid UAS-based camera and LiDAR sensors as shown 

in Figure 5 flying at ca 100 m, 90 m, and 85 m, respectively. A 

SONY ILCE-7RM3 camera. With a resolution of 7952 × 5304 

pixels, a pixel size of 4.5 micrometers, and a focal length of 21 

mm was used to acquire camera images with a GSD of around 2 

cm, For the laser scanning data acquisition, a RIEGL miniVUX-

3UAV scanner was used to collect the laser point cloud of 51.39 

pts/m2, with a scanning rate of up to 100 scans per sec and up to 

360 degrees of field of view. 

Figure 9: Dataset acquisition systems. 

Image exposure stations were recorded precisely with integrated 

GNSS/IMU systems at an interval of 5 milliseconds (frequency 

= 200 Hz) for all the images acquired with the camera. The 

characteristics of the three datasets acquired are listed in Table 1. 

Table 1: Description of the datasets used. 

Data type Description 

(dataset_1) 

Description 

(dataset_2) 

Description 

(dataset_3) 

Raw LiDAR 

measurements 

50 M points 61 M points 41 M points 

Camera 

images 

277 images 328 images 224 images 

Initial UAS 

trajectory 

Trajectory file (.txt) 

5. RESULTS

The initial camera point cloud was generated from the images 

and initial orientations to compare with LiDAR point cloud to 

check the extent of misalignment before the adjustment. After the 

hybrid adjustment, the point cloud was generated from the 

undistorted images and estimated orientations for comparison 

with the adjusted LiDAR point clouds. 

5.1 Mean cloud-to-cloud distances between LiDAR and 

Camera point clouds at the dataset level 

In this research, the hybrid adjustment was tested with loose and 

coupled images using bias and linear trajectory correction 

models. For the quality checks of the performance of the hybrid 

adjustment, the mean cloud-to-cloud (C2C) distances were 

computed between the LiDAR point cloud and the camera point 

cloud before and after the hybrid adjustment. The c2c distances 

were computed with the LiDAR point cloud as “reference” and 

the camera point cloud as a “compared” entity for all the 

comparisons due to the reliability and higher number of points in 

LiDAR point clouds. The local modeling strategy with a versatile 

“quadric” model was used to compute the C2C distances along 

the smooth and curvy edges in the point clouds. The higher 

standard deviation in the statistics is due to the higher number of 

points for the surfaces in the LiDAR point cloud for which there 

are very few or no corresponding points in the camera point cloud 

for the computation of the C2C distances. Table 2 summarizes 

the mean C2C distances before and after hybrid adjustment with 

loose and coupled images using a BTCM. 

Table 2: Comparison of mean C2C distances after hybrid 

adjustment implementation with a bias trajectory correction 

model. 

Parameter Before 

hybrid 

adjustment 

After hybrid 

adjustment 

with loose 

images 

After hybrid 

adjustment 

with coupled 

images 

Mean C2C 

distances (m) 

1.172 0.091 0.088 

Standard 

deviation (m) 

0.194 0.271 0.269 
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The results from the hybrid adjustment with a LTCM in 

combination with loose and coupled images has been compiled 

in Table 3. 

 

Table 3: Comparison of mean C2C distances after hybrid 

adjustment implementation with a linear trajectory correction 

model. 

Parameter Before 

hybrid 

adjustment 

After hybrid 

adjustment 

with loose 

images 

After hybrid 

adjustment 

with coupled 

images 

Mean C2C 

distances 

(m)  

1.172  0.090 0.089 

Standard 

deviation 

(m) 

0.194 0.275 0.271 

 

Initially, the mean C2C distances between LiDAR and camera 

point cloud were 1.172 m, and after hybrid implementation with 

loose and coupled images using bias and linear trajectory 

correction models, the mean C2C distances came down to the 

range of few centimeters range. Out of all the hybrid adjustment 

experimentations, we found that the hybrid adjustment with 

coupled images and bias trajectory correction model resulted in 

the least mean C2C distances, i.e., the orientation of LiDAR and 

camera dataset was adjusted with the least errors by hybrid 

adjustment with coupled images using a bias trajectory correction 

model. The higher standard deviation in the mean c2c distances 

can be attributed to different point densities of LiDAR and 

camera point clouds, noise in the point clouds, and possible 

differences in the exact coverage of the point clouds. The other 

reason can be given by the penetration capability of LiDAR 

through some surfaces like vegetation and transparent surfaces 

where LiDAR would have points, and the camera point cloud 

would not have any points. So, the absence of corresponding 

points would lead to a higher standard deviation in c2c distances. 

Figure 10 represents the improvements in the alignment of the 

camera and LiDAR point cloud before and after hybrid 

adjustment. It is evident that there are more green regions with 

lower misalignments post-hybrid adjustment as compared to pre-

hybrid adjustment implementation. 

The hybrid approach was also tested on another H3D benchmark 

dataset acquired with different sensors and UAS platform (Kölle 

et al., 2021). The results from this experimentation were also 

found to be in similar range of centimeters as from the dataset 

used in this research. From Figure 11, it is evident that very few 

points or regions with C2C distances are within 10 cm, and after 

hybrid adjustment, there were relatively higher points with C2C 

distances within the 10 cm range. 10 cm range implies the C2C 

distances between 0 and 10 cm. The value of 10 cm was chosen 

for the comparison because the average mean C2C distances after 

hybrid adjustment were ~ 10 cm, and this value would give a 

better visual interpretation of the performance of the hybrid 

adjustment approach. The regions or the points in RGB are those 

where mean C2C distances between LiDAR and DIM point 

clouds are less than 10 cm, whereas for the regions in grey, mean 

C2C distances are higher than 10 cm.  

 

 
 

 
 

Figure 10: Mean cloud-to-cloud (C2C) distances between 

LiDAR and camera point cloud before (a) and after (b) hybrid 

adjustment. 

 

 
a) 

 
b) 

Figure 11: Mean C2C distances between LiDAR and camera 

point cloud within 10 cm range of errors before (a) and after (b) 

hybrid adjustment. 
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5.2 Mean cloud-to-cloud distances between LiDAR and 

camera point clouds at surface level 

At the whole study area or dataset level, there can be some 

uncertainties in the computations of the mean C2C distances 

between LiDAR and camera point clouds due to the different 

sensor characteristics of LiDAR and camera sensors. These 

uncertainties in the mean C2C distances can also be due to 

different point densities of LiDAR and camera point clouds. The 

primary reason for this is the higher number of points in LiDAR 

and its penetration capability through the surfaces. LiDAR 

sensors with their multiple pulse returns capabilities can also 

include points through the surfaces like grass, and transparent 

glass, whereas camera point clouds only cover the top part of the 

surfaces. So, the surface-level analysis can better interpret the 

mean C2C distances before and after hybrid adjustment. For this 

analysis, five different types of surfaces from the study area were 

identified from all the datasets. The identified surfaces were the 

flat roof, slant roof, road surface, bare land, and road surface. The 

mean C2C distances before and after hybrid adjustment were 

computed between the different types of surfaces from both the 

LiDAR and camera point cloud datasets for the surface-level 

analysis. The planar roof, slant roof, bare land, road, and 

vegetation surfaces represented in Figure 7 were segmented using 

the “segment” tool in Cloud Compare software. It is worth 

mentioning that similar surfaces with the same extent and 

coverage were compared here for the computation of the mean 

C2C distances before and after hybrid adjustment. From the 

surface level analysis results for different types of surfaces in the 

study area, the errors between LiDAR and camera point cloud for 

different surfaces were also found to be at sub-centimeter levels. 

It was observed that the mean C2C distances were smaller at the 

surface levels except for the vegetation surfaces as compared to 

the mean C2C distances for the complete dataset. The higher 

mean C2C distances for vegetation surfaces can be attributed to 

the penetration capability of LiDAR through the vegetation 

surfaces. Figure 12 represents the mean C2C distances 

computation for a selected vegetation surface after hybrid 

adjustment. 

Figure 12: Surface level mean C2C distances for a selected 

vegetation surface after hybrid adjustment. 

6. CONCLUSIONS

This research contribution aimed to realize a hybrid adjustment 

approach for UAS-based LiDAR and image data. The purpose of 

the hybrid adjustment was to minimize the errors between the 

LiDAR point cloud and the camera-based point clouds. In the 

hybrid adjustment approach, the LiDAR strips were adjusted 

along with the camera images with an estimation of camera 

orientation parameters.   

The hybrid adjustment approach was implemented within 

OPALS software with two cases for image data inputs: the loose 

and the couple images. In the case of loose images, the exterior 

orientations of the camera are estimated in the adjustment itself. 

In contrast, in the case of adjustment with coupled images, the 

images are indexed to a strip, and their orientations are derived 

from mounting calibration parameters and UAS trajectory. Three 

datasets have been collected with the same UAS platform and 

sensors. The implementation time was almost similar for hybrid 

adjustment with loose and coupled images.   

For the initial experimentation with dataset 1, the hybrid 

adjustment approach was implemented with a bias and linear 

trajectory correction model to see their effect on the results of the 

hybrid adjustment. Based on the hybrid adjustment approach 

results, it was found that the hybrid adjustment with coupled 

images and bias trajectory correction model resulted in the most 

accurate orientation between the LiDAR and camera point 

clouds. For the quality check, the mean C2C distance between 

LiDAR and camera point clouds was chosen as a measure of the 

errors where a lower mean C2C distances between point clouds 

indicate the better relative orientation of point clouds. The initial 

C2C distances between LiDAR and camera point clouds were in 

the range of meters (1.172 m), whereas, after hybrid adjustment, 

the mean C2C distances were reduced to a centimetre’s range 

(0.088 m/8.8 cm). Results from this experimentation indicated 

that the hybrid adjustment with a bias trajectory correction model 

gives a more accurate orientation of the point clouds. 

The mean C2C distances at the complete dataset level can give 

an inaccurate interpretation of the errors between the point clouds 

due to their different point density, penetration capability of 

LiDAR, different sensor characteristics, and different features 

present in the point cloud scene. So, the surface level analysis of 

mean C2C distance was done for five different surfaces, namely 

flat roofs, slant roofs, bare land, road, and vegetation for all three 

datasets. It was observed that the mean C2C distances were 

smaller at the surface levels except for the vegetation surfaces as 

compared to the mean C2C distances for the complete dataset.  

The results of the hybrid adjustment workflow in this research 

article indicate that it can minimize the errors between the 

LiDAR and image data from the range of meters to the centimeter 

range without using any ground truth inputs. This adjustment 

workflow can be used in the mapping applications where a 

centimeter level accuracy is acceptable. 
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