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On the Separability of Functions and Games
Laura Arditti, Giacomo Como, Member, IEEE, and Fabio Fagnani, Member, IEEE

Abstract—We study the notion of (additive) separability of a
function of several variables with respect to a hypergraph (H-
graph). We prove the existence of a unique minimal H-graph
with respect to which a function is separable and show that
the corresponding minimal decomposition of the function can
be obtained through a recursive algorithm. We then focus on
(strategic form) games and propose a concept of separability for
a game with respect to a forward directed hypergraph (FDH-
graph). This notion refines and generalizes that of graphical game
and is invariant with respect to strategic equivalence. We show
that every game is separable with respect to a minimal FDH-
graph. Moreover, for exact potential games, such minimal FDH-
graph reduces to the minimal H-graph of the potential function.
Our results imply and refine known results on graphical potential
games and yield a new proof of the celebrated Hammersely-
Clifford Theorem on Markov Random Fields.

Index terms: Separable Functions, Network Games, Hy-
pergraphical Games, Potential Games, Hammersley-Clifford
Theorem

I. INTRODUCTION

In many fields of data science, statistical physics, network
economics, optimization, and control, we deal with functions
defined on highly dimensional configuration spaces (i.e., large
product spaces) representing the global state of a multi-agent
system. It is often the case that such functions decompose
as sums of simpler local functions each only depending on
a relatively small subset of variables. We refer to functions
exhibiting this feature generically as separable functions.1

Instances are the target functions of many problems in com-
binatorial optimization (e.g., graph coloring), the log of the
distribution functions of Markov Random Fields or of the
Hamiltonian of an interacting particle system (e.g., Ising
model).

An important area where separable functions naturally arise
is that of network games, which have recently emerged as a
unified framework for modeling interactions in many social
and economic settings [1]–[5]. In such models, players are
each affected by the actions of a typically small subset of
the other players (e.g., friends, colleagues, and peers in a
social network, or costumers and competitors in an economic
network) and their utility function can be typically represented

L. Arditti was with the Department of Mathematical Sciences “G.L. La-
grange,” Politecnico di Torino, Italy. She is now with UBS, Zürich, Switzer-
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1Notice that in some of the literature (particularly in econometrics) the term
additively separable function is used in a stricter sense to indicate a function
of n variables that can be split into the sum of n functions each depending
on just a single variable.

as the superimposition of various terms each depending on the
actions of a specific subset of players only. The most common
formalization is through the notion of graphical game [6] (see
also [7, Chapter 7]), where players are identified with the
nodes of a graph and each player’s utility depends only on
her own action and the actions of players that are neighbors
in such graph. Another instance is represented by polymatrix
games [8], where each player perceives a utility as if she was
simultaneously playing a two-player game with possibly every
other player and playing in all games the same action: in this
case, the utility of a player is expressed as the sum of all these
pairwise contributions. Hypergraphical games [9] encompass
both these classes. Hyperlinks determine the group of players
participating in local games and the utility of a player is
expressed as the sum of utilities of all local games in which she
is involved. In the case when hyperlinks are all of cardinality
two so that the hypergraph reduces to a graph, hypergraphical
games reduce to polymatrix games. We refer to such games as
pairwise separable: examples include network coordination or
anti-coordination games. Hypergraphical versions have been
studied in [10], under the name of synchronization games.

A key observation is that the representation of a separa-
ble function in terms of local expressions is typically not
unique. Expressions can be reassembled in various ways
and may lead to substantially different decompositions. For
many computational techniques involving separable functions
the size of the subsets of variables that show up in the
local functions is a crucial complexity parameter. This is the
case, e.g., for distributed inference and learning algorithms
for Markov Random Fields, such as Belief Propagation and
Iterative Proportional Fitting [11]. Similar considerations apply
to many algorithms proposed to compute Nash and correlated
equilibria in graphical games [6], [12], polymatrix games
[13], or hypergraphical games [9] [10]. This indicates that
finding parsimonious representations of separable functions is
a crucial problem. To the best of our knowledge, the problem
of existence, uniqueness, and characterization of a minimal
decomposition of a separable function has not been addressed
in the literature.

As a first contribution, we prove that every function defined
on a product space admits a unique minimal decomposition.
We also propose a constructive way to find such a minimal
decomposition of a separable function. We then consider
games up to strategic equivalence, meaning that we are only
concerned with variations of the utility of a player when she
modifies her action rather than their absolute values: in fact,
most classical game-theoretic concepts such as domination,
Nash equilibrium, correlated equilibrium, best-response dy-
namics or the logit dynamics are invariant with respect to
strategic equivalence. While this brings in even more freedom
in decomposing the utility functions, we show that a minimal

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3314552

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

decomposition exists also in this setup, that it is unique,
and that it can be found applying the techniques developed
for single functions. Finally, for the class of exact potential
games, we establish an direct correspondence between the
separability property of a game and the separability of the
potential function. As a corollary, we generalize a result on
graphical games [14], as well as provide an alternative proof
of the Hammersley-Clifford Theorem for Markov Random
Fields.

The rest of the paper is organized as follows. Section II
introduces some basic notions on hypergraphs and the formal
definition of separability of a function with respect to a
hypergraph. The main result of this section is Theorem 1 that
proves, for every function defined on a product space, the
existence of a minimal hypergraph with respect to which it
is separable. The following Section III is devoted to defining
a constructive way to compute such minimal decomposition.
This is based on two factors: a technique that reformulates
separability in terms of difference equations and leads to the
identification of the minimal hypergraph, and a projection
technique that then explicitly constructs the decomposition.
In Section IV, we extend the concept of separability to games
defined up to strategic equivalence. The natural graph-theoretic
object here is a directed version of a hypergraph, which is
called forward directed hypergraph (FDH-graph). The main
result of this section is Theorem 2 that proves the existence
of a minimal FDH-graph with respect to which a game is
separable. Section V is devoted to potential games and it
contains Theorem 3 that describes the relation between the
minimal FDH-graph associated with the game and the minimal
H-graph capturing the separability structure of the potential
function. We then show how this result implies results on
graphical potential games and on Markov Random Fields. The
paper ends with a conclusive Section VI.

II. MINIMAL SEPARABILITY OF FUNCTIONS

In this section, we first introduce the notion of separability
of a function of several variables with respect to a hypergraph.
We then prove existence and uniqueness of a minimal hyper-
graph with respect to which a function is separable.

A. Hypergraphs and separable functions

A hypergraph (shortly, a H-graph) is the pair H = (V,L) of
a finite node set V and of a set L of hyperlinks, each of which
is a nonempty subset of nodes [15]. A H-graph H = (V,L)
is called simple if no hyperlink J in L is strictly contained
in another hyperlink K in L. The simple closure of a H-graph
H = (V,L) is the simple H-graph H = (V,L) with set of
hyperlinks L = {J ∈ L : @K ∈ L s.t. K ) J }.

Throughout the paper, we shall work with a fixed nonempty
finite set V and, for every i in V , a set of states Ai. We then
refer to the product set X =

∏
i∈V Ai as the configuration

space. For a subset J ⊂ V , we put XJ =
∏
i∈J Ai. The

restriction of a configuration x in X to a subset J ⊂ V
is denoted by xJ in XJ . Following a standard convention
in game theory, we use the notation −i = V \ {i} and
correspondingly write X−i for XV\{i} and x−i for xV\{i}.

Moreover, given a function f : X → R we sometimes use the
notation f(xi, x−i) for its value f(x) in a configuration x.

Definition 1: A function2 f : X → R is H-separable, where
H = (V,L) is a H-graph, if there exist functions fJ : XJ →
R, for J in L, such that

f(x) =
∑
J∈L

fJ (xJ ) , ∀x ∈ X . (1)

Separability of a function f : X → R with respect to a H-
graphH thus consists in the possibility of representing f(x) as
a sum of functions each depending exclusively on the variables
xJ associated to a hyperlink J of H. Clearly, a function f is
H-separable if and only if it is H-separable. We shall refer to
(1) as a decomposition of f with respect to H.

Remark 1: Notice that Definition 1 does not require hyper-
links in L to be disjoint, i.e., we do not require that J ∩K = ∅
for J 6= K in L, as is done on some of the existing literature.

Example 1: Consider a finite-valued random vector X =
(Xi)i∈V , with positive probability distribution

P(X = x) ∝ ef(x) , ∀x ∈ X .

Let H = (V,L) be a H-graph. Then, the function f is H-
separable if and only if the distribution of X factorizes as

P(X = x) =
1

Z(f)

∏
J∈L

efJ (xJ ) , ∀x ∈ X , (2)

where Z(f) =
∑
x∈X e

f(x). In the special case when H has
disjoint hyperlinks, the factorization above reduces to

P(X = x) =
∏
J∈L

P(XJ = xJ ) ,

i.e., mutual independence of the subvectors XJ = (Xi)i∈J ,
for J in L.

Definition 2: Let H1 = (V,L1) and H2 = (V,L2) be two
H-graphs with the same node set. Then:

(i) H1 is finer that H2 (shortly, H1 � H2) if, for every J1

in L1, there exists J2 in L2 such that J1 ⊆ J2;
(ii) H1 is strictly finer than H2 (shortly, H1 ≺ H2) if H1 �
H2 but H2 6� H1;

(iii) the intersection of H1 and H2 is the H-graph H1uH2 =
(V,L) with

L = {J = J1 ∩ J2 : J1 ∈ L1, J2 ∈ L2} ;

(iv) the union of H1 and H2 is the H-graph H1 t H2 =
(V,L1 ∪ L2).

Remark 2: Both � and ≺ are transitive relations and H �
H � H for every H-graph H. Moreover, for two H-graphs H1

and H2, we have that

H1 � H2 ⇔ H̄1 � H̄2 , H1 ≺ H2 ⇔ H̄1 ≺ H̄2 ; (3)

H1,H2 simple and H1 � H2 � H1 ⇒ H1 = H2 . (4)

2Every statement and reasoning in this subsection continues to hold true
for function f : X → Z , where Z is an arbitrary Abelian group.
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B. Minimal separability of functions

Notice that every function f : X → R is H-separable with
respect to the trivial H-graph H = (V, {V}) having an unique
hyperlink consisting of all nodes. Moreover, given two H-
graphs H1 and H2 such that H1 � H2, we have that if f is
H1-separable, then it is also H2-separable. In the rest of this
section, we shall prove that, for every function f : X → R
there exists a H-graphHf that is the minimal one (with respect
to the transitive relation �) among all those H-graphs H such
that f is H-separable.

We start by proving the following fundamental technical
result that will be instrumental to our future derivations.

Proposition 1: Let a function f : X → R be both H1-
separable and H2-separable for two H-graphs H1 and H2.
Then, f is also H-separable, where H = H1 uH2.

Proof: Let Σf be the family of all H-graphs H such that
f is H-separable and, for i = 1, 2, let Hi = (V,Li) in Σf be
an H-graph such that f is Hi-separable. We can then write

f(x) =
∑
J∈L1

g
(1)
J (xJ ) =

∑
K∈L2

g
(2)
K (xK) , (5)

for every x in X . Then, for every J in L1, we have that

g
(1)
J (xJ ) =

∑
K∈L2

g
(2)
K (xK)−

∑
I∈L1\{J}

g
(1)
I (xI) . (6)

Now, observe that, since the lefthand side of (6) is independent
from xV\J , so is its righthand side. Therefore, we may rewrite
(6) as

g
(1)
J (xJ ) =

∑
K∈L2

h
(2)
K∩J (xK∩J )−

∑
I∈L1:
I6=J

h
(1)
I∩J (xI∩J ) , (7)

where, for i = 1, 2 and an arbitrarily chosen y in X ,

h
(i)
K∩J (xK∩J ) = g

(i)
K (xK∩J , yK\J ) , (8)

for every K in L1 ∪L2 and x in X . It then follows from (5),
(7) and (8) that

f(x) =
∑
J∈L1

∑
K∈L2

h
(2)
K∩J (xK∩J )−

∑
J∈L1

∑
I∈L1:
I6=J

h
(1)
I∩J (xI∩J ) .

(9)
Observe that (9) is not yet the desired separability decom-

position because of the presence of the second term in its
righthand side. However, a suitable iterative application of
(9) allows us to prove the claim. To formally see this, it is
convenient to first introduce the following definition. Given a
H-graph H = (V,L), let the H-graphs ukH = (V,Lk) be
defined by

Lk = {J1 ∩ · · · ∩ Jk | Js ∈ L ,Js 6= Jt ∀s 6= t} , (10)

and notice that u2(ukH) � uk+1H. We can now interpret (9)
as saying that

(H1 uH2) t (u2H1) ∈ Σf . (11)

We now prove by induction that, for every k ≥ 2,

(H1 uH2) t (ukH1) ∈ Σf . (12)

Indeed, assume that (12) holds true for a certain k and let us
prove it for k + 1. Considering that (11) is true for any pair
of H-graphs H1,H2 in Σf , if we apply it replacing H1 with
(H1 uH2) t (ukH1), we obtain that

(((H1uH2)t(ukH1))uH2)t(u2((H1uH2)t(ukH1))) ∈ Σf .
(13)

Notice now that

((H1 uH2) t (ukH1)) uH2 � H1 uH2 , (14)

and

u2((H1 uH2) t (ukH1)) � I(H1 uH2) t (u2(ukH1))

� (H1 uH2) t (uk+1H1) .
(15)

Relations (13), (14), and (15) imply (12) for k + 1. There-
fore, (12) holds true for every value of k. Finally, notice
that, for k > |L|, ukH is the H-graph with an empty set
of hyperlinks. This proves that H1 uH2 ∈ Σf .

Proposition 1 implies that there exists a finest simple H-
graph with respect to which f is separable, as stated below.

Theorem 1: Given a function f : X → R, there exists a
unique simple H-graph Hf such that:
• f is Hf -separable;
• Hf � H for every H-graph H for which f is H-

separable.
Proof: Consider the u-intersection uH of all H-graphs

H = (V,L) such that f is H-separable and then take the
simple closure Hf = uH. By Lemma 1, f is Hf -separable.
Moreover, if f is H′-separable for some H-graph H′, neces-
sarily uH � H′ and thus also Hf � H′. Uniqueness follows
from the fact that if H′ is another simple H-graph for which
the two properties above are true, necessarily,Hf � H′ � Hf .
As both Hf and H′ are simple H-graphs, this and (4) yield
that Hf = H′.

The H-graph Hf whose existence and properties are deter-
mined by Theorem 1 is called the minimal H-graph for f .

III. MINIMAL REPRESENTATIONS

While the results of Section II guarantee existence of a
minimal H-graph for a function f , they are not constructive.
In this section, we show how minimal representations can
be indeed computed. We first focus on how to construct
the minimal H-graph of a function. Then, we show how to
compute the minimal decomposition by meas of orthogonal
projections.

A. Construction of the minimal H-graph

To start with, we introduce some useful background on
difference operators. For i in V and yi in Ai, define the linear
operator D(yi)

i : RX → RX as

(D
(yi)
i f)(x) = f(x)− f(yi, x−i) , ∀x ∈ X .

Notice that for every i and j in V , yi in Ai, and yj in
Aj , the operators D(yi)

i and D
(yj)
j commute. Therefore, for
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a nonempty subset J ⊆ V and yJ in XJ , we can define the
operator D(yJ )

J on RX as the composition

D
(yJ )
J = D

(yJ )j1
j1

· . . . ·D(yJ )js
js

. (16)

where (j1, j2, . . . , js) is an arbitrary ordering of J . Finally,
we define the operator DJ : RX → RX×XJ as

(DJ f) (x, yJ ) :=
(
D

(yJ )
J f

)
(x) . (17)

For i in V we denote Di := D{i}. When J = V we often
drop the index and simply write Df for DVf . E.g., when
V = {1, 2}, we get the formula

Df(x, y) = f(x1, x2)− f(x1, y2)− f(y1, x2) + f(y1, y2) .

Remark 3: In general, the computation of Df may prove
computationally heavy as the number of variables n = |V|
grows large. However, such complexity con be significantly
reduced if the function f has symmetries. This is especially
the case when f is permutation invariant. E.g., if Ai = {0, 1}
for every i, so that X = {0, 1}V , and f : X → R is such that

f(x) = g
(∑
i∈V

xi

)
, (18)

for a function g : {0, 1, . . . , n} → R, then a direct recursive
argument, leads to the following version of the inclusion-
exclusion principle:

Df(0,1) =

n∑
k=0

(
n

k

)
(−1)n−kg(k) . (19)

We now present two preparatory results.
Lemma 1: Let a function f : X → R admit the decomposi-

tion
f(x) =

∑
J∈L

fJ (xJ )

with respect to some H-graph H = (V,L). Then,
(i) DJ0f = 0 for every J0 ⊆ V such that J0 6⊆ J for all
J in L;

(ii) if H is simple, then

DJ f(x, y) = DJ fJ (xJ , yJ ) , ∀J ∈ L . (20)

Proof: Define the immersion operator ιJ : RXJ → RX
as (ιJ g) (x) = g(xJ ), and simply write DifJ for DiιJ fJ .
Then, notice that DifJ = 0 for J in L and i in V \ J .
This yields (i). If H is simple, then every J in L is such that
J 6⊆ K for all K 6= J in L. Hence, DJ fK = 0 for all K 6= J
and (20) follows.

Lemma 2: For a function f : X → R, the following
conditions are equivalent:

(a) Df = 0;
(b) there exist functions f−i : X−i → R for i in V such that

f(x) =
∑
i∈V

f−i(x−i) . (21)

Proof: We prove more general statement (a’)⇔(b’), of
which (a)⇔(b) is a special case. Let J ⊂ V , J 6= ∅. The
following conditions are equivalent:

(a’) DJ f = 0;
(b’) there exist functions f−i : X−i → R for i in J such

that
f(x) =

∑
i∈J

f−i(x−i) (22)

(a’)⇒(b’) We prove it by induction on n = |J |. If n = 1,
J = {k} for some k ∈ V . We fix an arbitrary action x̄k ∈ Ak
and write

0 = D
(x̄k)
k f(x) = f(x)− f(x−k, x̄k) = 0 .

If we define f−k(x−k) = f(x−k, x̄k) we have the thesis. We
now assume the result to be true for some n ≥ 1 and we prove
it for n + 1. We take any k ∈ J and fix an arbitrary action
x̄k ∈ Ak. We define g = D

(x̄k)
k f . By assumption, we have

that DJ\{k}g = 0 and |J \ {k}| = |J |− 1 = n. Then, by the
inductive hypothesis, we can decompose g as

g(x) =
∑

i∈J\{k}

g−i(x−i) = f(x)− f(x−k, x̄k).

By defining

f−i(x−i) =

{
g−i(x−i) if i 6= k

f(x−k, x̄k) if i = k ,

we obtain the claim, as we can express

f(x) =
∑
i∈J

f−i(x−i) .

(b’)⇒(a’) is a direct consequence of the fact that the
difference operators commute and that Dif−i = 0 for every i
in V .

The following result is at the basis of our construction of
minimal decompositions.

Proposition 2: For every function f : X → R there exists a
simple H-graph H̃f = (V, L̃f ) such that DJ f 6= 0 for every
J in L̃f and f is H̃f -separable. Moreover, such H-graph is
unique and coincides with the minimal H-graph of f , i.e.,
H̃f = Hf .

Proof: Consider a simple H-graph H = (V,L) such that
f is H-separable:

f(x) =
∑
J∈L

fJ (xJ ) , (23)

for some functions fJ : XJ → R. Suppose there exists J0 in
L such that DJ0

f = 0. Using (1) we deduce that

DJ0
fJ0

(xJ0
, yJ0

) = DJ0
f(x, y) = 0 .

We can now apply (2) to fJ0 and conclude that

fJ0(xJ0) =
∑
i∈J0

fJ0\i(xJ0\i) , (24)

for some functions fJ0\i : XJ0\i → R. Inserting (24) inside
(23) we obtain another H-graph H′ = (V,L′) with

L′ = (L \ {J0})
⋃
i∈J0

{J0 \ i} ,

with respect to which f is also separable. Notice that, by
construction, H′ � H while H 6� H′, as J0 is not contained
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in any hyperlink of H′. Hence, H′ ≺ H and, by (3), also
H̄′ ≺ H̄ = H. Hence, starting from H, we have found
a strictly finer simple H-graph with respect to which f is
decomposable. As there are finitely many H-graphs with node
set V , this implies that there must exist a simple H-graph
H̃f = (V, L̃f ) such that DJ f 6= 0 for all J in L̄ and f is
H̃f -separable.

We now prove the remaining part of the statement. Consider
the minimal H-graph Hf = (V,Lf ) of f and the correspond-
ing decomposition

f(x) =
∑
J∈Lf

fJ (xJ )

We prove that H̃f � Hf . If not, there would exist Jo in L̃f
such that Jo 6⊆ J for every J in Lf . By Lemma 1(i), we
obtain that DJof = 0. This contradicts the fact that DJof 6=
0, by the way H̃f was constructed. Hence, H̃f � Hf . Since
Hf is the minimal H-graph of f , we have that Hf � H̃f , so
that property (4) implies the claim.

The proof of Proposition 2 suggests an algorithm to find
the minimal H-graph for every function f :

Algorithm 1:
0. Start from any simple H-graph H = (V,L) for which f

is H-separable
1. If there exists J0 in L such that DJof = 0, then

• L ← (L \ {J0}) ∪
⋃
i∈J0

{J0 \ i}

• Go to 1.
2. Otherwise Hf = H

Notice that our procedure determines the minimal H-graph
of a function, but does not yield an explicit decomposition
of the function with respect to this H-graph. This can be
achieved by a projection technique that is illustrated in the
next subsection.

B. Minimal decompositions of square integrable functions

Minimal decompositions can be explicitly computed by
means of orthogonal projections. In the case when the con-
figuration space X is not finite, the price to pay to use this
approach is a restriction of the original space of functions RX .
Specifically, we equip each state set Ai with a σ-algebra Bi
and a probability measure µi on Bi. Then, we consider the
usual product probability space (X ,B, µ) where

B =
⊗
i∈V
Bi, µ =

∏
i∈V

µi .

From now on, we consider functions in the Hilbert space
S = L2(X ,B, µ) equipped with the usual inner product. For
a subset J ⊆ V , let

BJ =
⊗
i∈J
Bi

⊗
i∈V\J

{∅,Ai} ,

be the sub-σ-algebra of cylinders in B. The subset of functions
SJ = L2(X ,BJ , µ) coincides with those functions in S that
only depend on the variables in J : it is a closed subspace
of S. We denote by PJ the orthogonal projection onto SJ .

It is a well known fact that such operator coincides with the
conditional expectation given the σ-algebra BJ and takes the
following explicit form:

(PJ f)(x) =

∫
XJc

f(xJ , y)dµJ c(y) , ∀f ∈ S , (25)

where
µJ c =

∏
i∈V\J

µi

denotes the product probability measure on XJ c .
Remark 4: In the special case when Ai is finite for every i

in V , we can chose µi as the uniform probability measure on
Ai. In this particular case, we have that S = RX and formula
(25) reduces to

(PJ f)(x) =
1

|XJ c |
∑

y∈XJc
f(xJ , y) . (26)

Given an H-graph H = (V,L), the H-separable functions
inside S form a linear subspace SH that can be represented
as the sum of subspaces

SH =
∑
J∈L
SJ .

We denote by PH the orthogonal projector onto SH with
respect to the inner product in S . Since SH is the finite sum
of the (possibly intersecting) subspaces SJ as J varies in L
and since the individual projectors PJ commute (as is evident
from (25)), the orthogonal projector PH can be expressed as
an alternating sum of projectors PJ . Precisely, we have the
following result.

Proposition 3: Given an H-graphH = (V,L) and a function
f in S,

fH = PHf =
∑
K⊂L
K6=∅

(−1)|K|+1P∩Kf. (27)

where we are indicating by ∩K the intersection of all subsets
contained in K.

Proof: See Appendix A.

Formula (27) allows one to construct the best H-separable
approximation, in the L2 metric, of any given function f in S.
In situations where it is a priori known that f is H-separable,
this formula provides a decomposition of f with respect to
H. In particular, this fact can be used to complement our
Algorithm 1 to find minimal decompositions. If the minimal
H-graph Hf = (V,Lf ) of a function f in S is known, we
can build a decomposition of f with respect to Hf simply
applying the above projection:

f = PHf f =
∑
K⊂L
K6=∅

(−1)|K|+1P∩Kf (28)

computing the terms P∩Kf using formula (25).
Example 2: Let V = {1, 2, 3}, Ai = {0, 1} for i in V , and

consider the permutation-invariant function

f(x1, x2, x3) = log
(
1 + 2(x1 + x2 + x3) + x2

1 + x2
2 + x2

3

+ 3(x1x2 + xx3 + x2x3) + x2
1x2 + x1x

2
2 + x2

1x3

+ x3x
2
1 + x2

2x3 + x2x
2
3 + 2x1x2x3

)
.
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First, one can verify that Df = 0, so that f admits a non
trivial decomposition. Applying Algorithm 1, we then set

L ← {V} \ {V} ∪ {V \ {i} : i ∈ V} =
{
{1, 2}, {1, 3}, {2, 3}

}
.

To rule out the possibility that f admits an even finer separa-
tion, we compute DJ f for J in L. E.g., for J = {2, 3} we
get

0 6= log 3/4
= f(0, 0, 0)− f(0, 0, 1)− f(0, 1, 0) + f(0, 1, 1)
= D{2,3}f((0, 0, 0), (1, 1)) ,

and similarly for the other hyperlinks due to the permutation
invariance of f . It then follows that the minimal H-graph of
f is indeed Hf = (V,L) where L =

{
{1, 2}, {1, 3}, {2, 3}

}
.

We then compute the various projections P∩Kf for K ⊂ L,
K 6= ∅. For instance, we get

P{1,2}f(x) =
1

2
(f(x1, x2, 0) + f(x, x2, 1))

= log (x1 + x2 + 1) +
1

2
log ((x1 + 1)(x1 + 2))

+
1

2
log ((x2 + 1)(x2 + 2)) ,

P{1}f(x) =
1

4
(f(x, 0, 0)+f(x, 0, 1)+f(x, 1, 0)+f(x, 1, 1))

= log ((x1 + 1)(x2 + 1))+
1

4
log(12) ,

while P{1,3}f , P{2,3}f , P{2}f , and P{3}f can be obtained by
symmetry. Finally, (28) gives the minimal decomposition

f(x) =
∑
K⊂L
K6=∅

(−1)|K|+1P∩Kf(x)

= log(x1+x2+1) + log(x2+x3+1) + log(x1+x3+1) .

IV. ON THE SEPARABILITY OF GAMES

In this section, we introduce the concept of separable game
and we apply the results of the previous sections to derive
minimal decompositions.

A. Separable games

We consider strategic form games with finite nonempty
player set V and a nonempty action set Ai for each player
i in V . Recall the standing notation X =

∏
i∈V Ai. We shall

refer to two configurations x and y in X as i-comparable and
write x ∼i y when x−i = y−i, i.e., when x and y coincide
except for possibly in their i-th entry.

Assume we have equipped X with a product σ-algebra B
and product probability measure µ as described in (III-B)
and consider the space S = L2(X ,B, µ) of square-integrable
functions on the product probability space (X ,B, µ). We
let each player i in V be equipped with a utility function
ui : X → R in S. We shall identify a game with player set
V and strategy profile space X with the vector u assembling
all the players’ utilities. Notice that, in this way, the set of all
games with player set V and strategy profile space X , to be
denoted as U , is isomorphic to the Hilbert space SV .

A game u is referred to as non-strategic if the utility of
each player i in V does not depend on her own action, i.e., if

ui(x) = ui(y) , ∀x, y ∈ X s.t. y ∼i x . (29)

Two games u and ũ are referred to as strategically equivalent if
their difference is a non-strategic game. Strategic equivalence
is an equivalence relation on U . In the rest of this paper, we
will focus on properties of a game that are invariant with
respect to strategic equivalence.

To describe the separability property of a game, we intro-
duce a new type of H-graph. A forward directed hypergraph
(FDH-graph) [16] is a pair F = (V,D) consisting of a
finite node set V and of a finite hyperlink set D, where each
hyperlink d = (i,J ) in D is an ordered pair of a node i in V
(to be referred to as its tail node) and a nonempty subset of
head nodes J ⊆ V \ {i} (to be referred to as the hyperlink’s
head set).

A directed graph G = (V, E) where V is the set of nodes
and E ⊆ V × V is the set of links, can naturally be seen as
a FDH-graph on V whose hyperlinks are the original links
in the graph (i, j) interpreted as (i, {j}); with slight abuse
of notation in the following we will identify such FDH-graph
with the original graph G. There is also a different FDH-graph
that can be naturally associated to a directed graph G = (V, E).
This is the FDH-graph FG = (V,DG) where DG consists of
the hyperlinks (i,Ni) for i in V , where Ni indicates the out-
neighborhood of node i.

The following definition models the way the utility of a
player in a multi-player game depends on the actions of the
remaining players and incorporates the notion of strategic
equivalence.

Definition 3: Given a FDH-graph F = (V,D), a game u in
U is F-separable if the utility of each player i in V can be
decomposed as

ui(x) =
∑

(i,J )∈D

uJi (xi, xJ ) + ni(x−i) , (30)

where uJi : Ai ×
∏
j∈J Aj → R are functions that depend

on the actions of player i and of players in the subset J of
head nodes of hyperlink (i,J ) only, while ni : X−i → R is
a non-strategic component that does not depend on the action
of player i.

Definition 3 captures not only locality of the relative influ-
ences among players in the game, but also the fact that players
may have separate interactions with different groups of other
players. Up to a non-strategic component, this grouping of the
player set is modeled as a FDH-graph with node set coinciding
with the player set V and where each group jointly influencing
player i corresponds to a directed hyperlink with tail node i.
This notion of separability, albeit based on an undirected H-
graph and not considering strategic equivalence, was originally
introduced in [9].

A special case is when the FDH-graph is a graph G =
(V, E). A game u in U that is G-separable admits a represen-
tation of the following type:

ui(x) =
∑
j∈Ni

uij(xi, xj) + ni(x−i) ∀x ∈ X , (31)
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where uij : Ai × Aj → R for (i, j) in E . We refer to such
games as pairwise-separable. Apart for the possible presence
of nonstrategic terms, these games are instances of polymatrix
games. In the special case when G is undirected, such games
can be interpreted as if each pair of players i, j connected by
a link were involved in a two-player game having utility func-
tions, respectively, uij(xi, xj) and uji(xj , xi). Each player i
in V chooses the same action xi in Ai for all the two-player
games she is engaged in and gets a utility that is the aggregate
of the utilities of all such games.

The following is a popular example of a pairwise-separable
game.

Example 3 (Network coordination games): For a graph G =
(V, E), a network coordination game on G is a game u where
every player i in V has binary action set Ai = {0, 1} and
utility function

ui(x) =
∑
j∈Ni

ζ(xi, xj) , (32)

where ζ(xi, xj) = ζ(xj , xi) is a symmetric function such that
ζ(0, 0) ≥ ζ(0, 1) = ζ(1, 0) and ζ(1, 1) ≥ ζ(0, 1) = ζ(1, 0).
Clearly, every network coordination game with utilities (32)
is a pairwise-separable game on G.

The concept of separable game encompasses that of graph-
ical game. Given a graph G, games that are separable with
respect to the FDH-graph FG are called graphical with respect
to G, or simply G-games. Pairwise-separable games with
respect to G are an example of such games. An example of
a graphical game that is not pairwise-separable is reported
below.

Example 4 (Best-shot public good game): Consider a graph
G and the game where every player i in V has binary action
set Ai = {0, 1} and utility:

ui(x) =

 1− c if xi = 1
1 if xi = 0 and xj = 1 for some j ∈ Ni
0 if xi = 0 and xj = 0 for every j ∈ Ni .

(33)
The game u constructed in this way is an instance the so called
“public good games” [4]. It models a more complex behaviour
for the population V compared to simple coordination: players
benefit form acquiring some good, represented by taking action
1 and which is public in the sense that it can be lent from one
player to another. Taking action 1 has a cost c, so players
would prefer that one of their neighbors takes that action, but
taking the action and paying the cost is still the best choice
if no one of their neighbors does. The best-shot public good
game is a graphical game on G but it is not pairwise-separable.

B. Normalized games and minimal representations

As for functions, also for games we can define the concept
of minimal representations. The idea is to reformulate separa-
bility for a game as separability of the single utility functions.

To this aim, it is useful to introduce the ‘local’ H-graphs
associated to an FDH-graph F = (V,D)

HFi = (V,LFi ), LFi = {{i} ∪ J : (i,J ) ∈ D}, i ∈ V .
(34)

If the terms ni(x−i) in expression (30) were not present,
then, effectively, the F-separability of u would be equivalent
to each utility function ui to be HFi -separable in the sense
of Definition 1. To maintain this equivalence in presence of
the non-strategic terms ni(x−i), we would need to augment
each local H-graph HFi with the hyperlink (i,V−i). We take a
slightly different road and prove that, for every game u, there
always exists a game strategically equivalent to u for which
a decomposition like (30) holds without the presence of the
non-strategic terms ni(x−i).

The space U = SV of all games is a natural Hilbert space
with respect to the inner product3

〈u, v〉U =
∑
i∈V

∫
X
ui(x)vi(x)dµ(x) . (35)

We indicate with U• the subspace of non strategic games.
Notice that u belongs to U• if and only if ui belongs to S−i
for every i in V . Consequently, the orthogonal space of U• is
described by

u ∈ U⊥• ⇔ ui ∈ S⊥−i ∀i ∈ V

⇔
∫
Xi
ui(yi, x−i)dµi(yi) = 0, ∀x ∈ X , ∀i ∈ V .

(36)
Games in Ū = U⊥• are called normalized [17]. In every
class of strategically equivalent games there exists a unique
normalized game u in Ū . As u belongs to Ū if and only if ui
belongs to S⊥−i for all i, we can use formula (25) to represent
the orthogonal projection onto Ū . Precisely, for every finite
game u, the normalized strategically equivalent game u can
be obtained as

ui(x) = ui(x)−(P−iui)(x) = ui(x)−
∫
Xi
ui(yi, x−i)dµi(yi) ,

(37)
for all x in X and i in V .

It turns out that studying the separability of a game u is
equivalent to studying that of its normalized projection ū.
Indeed, we have the following result.

Proposition 4: For every game u and FDH-graph F =
(V,D) the following conditions are equivalent:

(i) u is F-separable;
(ii) ū is F-separable;

(iii) ūi is HFi -separable for every i in V .
Moreover, if any of the above is satisfied, ū admits a repre-
sentation of type

ūi(x) =
∑

(i,J )∈D

ūJi (xi, xJ ) , (38)

where ūJi are normalized in the sense that∫
yi∈Xi

ūJi (yi, xJ )dµi(yi) = 0 , ∀xJ ∈ XJ .

Proof: Conditions (i) and (ii) are equivalent by the
definition of separability that is invariant over strategically
equivalent games. Suppose now that (i) holds and that u admits

3We acknowledge that the same inner product (35) has been used to analyze
different decompositions of games [17], [18].
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a representation as in (30). By applying the normalization
operator, we obtain for ū a representation as (38). Finally,
notice that (38) is equivalent to requiring that each ūi is HFi -
separable.

Two remarks are in order concerning the previous result.
First, Proposition 4 establishes that for normalized games, sep-
arability can be expressed in the stronger form (38). Second,
it reduces the separability of a game to the separability of the
single utility functions. This paves the way to apply the results
of Section II that yield the existence of minimal separable
representations and algorithms to construct it.

We first notice that using local H-graphs, we can extend
to FDH-graphs most of the concepts that we introduced for
H-graphs. In particular, given two FDH-graphs Fk = (V,Dk)
for k = 1, 2, we write F1 � F2 if HF1

i � HF2
i for every

i in V . We say that an FDH-graph F = (V,D) is simple if
HFi is simple for every i in V . The simple closure is similarly
obtained closing each single local H-graph:

F̄ = (V, D̄), D̄ = {(i,J ) | i ∈ V, J ∪ {i} ∈ L̄Fi } .

We have the following result.
Theorem 2: Given a game u in U , there exists a unique

simple FDH-graph Fu such that:

• u is Fu-separable;
• Fu � F for every FDH-graph F for which u is F-

separable.

Proof: Proposition 4 implies that it is sufficient to prove
the statement for normalized games. In this case, by virtue
of Theorem 1, the result follows if we define Fu = (V,Du)
where Du = {(i,J ) | i ∈ V, J ∪ {i} ∈ Lui}.

For pairwise-separable games, the definition of minimality
implies the following.

Corollary 1: The minimal FDH-graph of a pairwise-
separable game u in U is a graph Gu = (V, E).

The following examples show how to check for minimality
of a given separable representation and how to obtain the
minimal representation for specific games.

Example 5 (Best-shot public good game cont.): Consider
the best-shot public good game u with respect to a graph G,
as illustrated in Example 4. The minimal FDH-graph for u is
F = (V,D) where

D = {(i,Ni), i ∈ V} . (39)

Since u is G-graphical, it follows that it is F-separable. To
prove the minimality of F we exploit Proposition 4. Precisely,
we show that DN•i ūi(0,1) = DN•i ui(0,1) 6= 0 for all i,
where the first equality follows from the fact that Di(ui −
ūi) = Dini = 0 since the non-strategic term ni does not
depend on i. To this aim, we first denote by fai : {0, 1}Ni → R
defined by fai (x) = ui(a, x) the utility of player i in V when
she plays a and her neighbors play x. Notice that

f0
i (x) =

{
1 if x 6= 0
0 if x = 0

f1
i (x) = 1−c , ∀x ∈ X .

This shows, in particular, that the two functions only depend
on the cardinality of players in Ni that are playing 1. We can
thus apply formula (19) in Remark 3 and we obtain

DNif
0
i (0,1) =

m∑
k=1

(
m

k

)
(−1)m−k = (1− 1)m − 1 = −1 ,

DNif
1
i (0,1) =

m∑
k=0

(
m

k

)
(−1)m−k(1− c) = 0 .

Therefore

DN•i ui(0,1) = DNif
1
i (0,1)−DNif0

i (0,1) = −1 6= 0 .

This shows that all utility functions do not admit a finer
decomposition. As a result, the FDH-graph described by (39)
is the minimal one for u.

Example 6 (Two-level coordination game): We consider
the following variation of the network coordination game
presented in Example 3. We fix a set of players V and the
same action set for all players: A = Ai = {0, 1} for all
i in V . For every pair of players i, j we consider functions
uij : A2 → R defined as the pairwise utility function ζ
of the network coordination game (32). We now consider an
undirected graph G = (V, E) and, for every i in V , functions
ũi :

∏
j∈N•i

Aj → R given by

ũi(x) =

{
L if xi = xk ∀k ∈ Ni
0 otherwise,

where L > 0. We finally define the utility of player i as:

ui(x) =
∑
j 6=i

uij(xi, xj) + ũi(xN•i )

The interpretation is the following: each player has a benefit
that is in part linearly proportional to the number of individuals
playing the same action and, additionally, it has an extra value
L if the player’s action is in complete agreement with her
neighbors. This type of utility function models, for example,
the situation where players’ actions represent the acquisition
of a new technology and the benefit to a player comes from
two channels: the range of diffusion of the technology in the
whole population and the opportunity to use such technology
with her strict collaborators. By construction, u is separable
with respect to the FDH-graph F = (V,D) where

D = {(i, {j}) , j 6= i} ∪ {(i,Ni), i ∈ V} .

However, F is not simple and its simple closure is given by
F = (V,D) where

D = {(i, {j}) , j 6∈ N •i } ∪ {(i,Ni), i ∈ V} .

The FDH F is minimal for u as can be checked analogously
to what was done in Example 5.

V. SEPARABLE POTENTIAL GAMES

In this section, we focus on potential games and study
how their separability properties are intertwined with the
separability of the corresponding potential functions. This is
the content of our next result Theorem 3. We then derive, as a
corollary, results on graphical potential games first appeared in
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[14] and we provide an alternative proof of the Hammersley-
Clifford theorem for Markov Random Fields.

A game u in U is referred to as (exact) potential [19] if it
is strategically equivalent to a game where all utility functions
are identical (identical interest game), namely if there exists a
function φ : X → R —called potential— such that

ui(x) = φ(x) + ni(x−i) , ∀x ∈ X ,

for every i in V , where ni(x−i) is a non-strategic component.
In order to connect the separability of φ to the separability

of the game, we define an operation that associates an FDH-
graph to every H-graph H = (V,L) by putting

FH = (V,DH), DH = {(i,J ) | i ∈ V\J , {i}∪J ∈ L} .
(40)

We have the following result.
Theorem 3: Let u in U be a potential game with potential

function φ. Then, the minimal FDH-graph of u is the FDH-
graph associated to the minimal H-graph of φ, i.e.,

Fu = FHφ . (41)

Proof: For the sake of simplicity of notation, we put
F• = FHφ . Since φ is Hφ-separable, we have that the game
φ1 consisting of all utilities equal to φ is F•-separable by
construction. Since separability is by definition invariant over
strategically equivalence classes, also u is F•-separable.

It remains to be proven that if u is F-separable, for some
FDH-graph F = (V,D), then, F• � F . Notice that the
corresponding local H-graphs (34) of F• are given by

H•i = (V,L•i ) , L•i = {K ∈ Lφ | i ∈ K} , i ∈ V .

We denote by Hi = (V,Li) the local H-graphs associated
with F and by H+

i = (V,Li∪{V \{i}})) the ones augmented
of the hyperlinks relative to nonstrategic terms. Since also φ1
is F-separable, by definition of game separability, we have
that φ is H+

i -separable for every i in V . This implies that
Hφ � H+

i for every i in V . Since all hyperlinks of H•i are
hyperlinks of Hφ containing i by construction, they cannot be
contained inside V \ {i} and thus, necessarily, H•i � Hi for
every i in V . By definition, this says that F• � F .

The above result implies the following relation between the
minimal graph of a potential game and the separability of the
potential function. Given an undirected graph G we denote
by Cl(G) the set of maximal cliques in G, and let HClG =
(V, Cl(G)) be the cliques H-graph of G.

Corollary 2: Let u in U be a potential game with potential
function φ. Then, u is a G-game for an undirected graph G if
and only if its potential function φ is HClG -separable.

Proof: Consider the minimal FDH-graph Fu = (V,Du)
of u and the minimal H-graph Hφ = (V,Lφ) of φ. Recall that
they are related through formula (41).

Suppose that u is a G-game for some undirected graph G =
(V, E). Let K in Lφ. Then, for every i in K, (41) implies that
(i,K \ {i}) belongs to Du. Since Fu � FG , it must hold that
K \ {i} ⊆ Ni. As this is true for every i in K, we have that
K is a clique in G. Therefore, Hφ � HClG , thus showing that
φ is HClG -separable.

Conversely, if φ is HClG -separable, then necessarily Hφ �
HClG , so that every undirected hyperlink in Lφ is contained in a
clique of G. From formula (41), we obtain that every hyperlink
(i,J ) in Du is such that {i} ∪ J ⊆ K for some clique K of
G. This implies in particular that u is a G-game.

Remark 5: The second part of Corollary 2 is equivalent to
Theorems 4.2 and 4.4 in [14]. In that paper, the authors prove
their results relying on the Hammersley-Clifford theorem,
while our proofs are instead self-contained.

In fact, we wish to emphasize that Theorem 3 is more
informative than Corollary 2. Indeed, the latter does not relate
the minimal separability of a potential game with that of its
corresponding potential function. This is evident, e.g., in the
special case of a potential game u that is pairwise separable
with respect to an undirected graph G = (V, E). In this case,
(41) implies that the potential function φ is separable with
respect to the H-graph H coinciding with G, i.e., that it can
be decomposed in a pairwise fashion

φ(x) =
∑

(i,j)∈E

φij(xi, xj) ,

for some symmetric functions φij(xi, xj) = φji(xj , xi). This
is in general a much finer decomposition than the one on the
maximal cliques of G.

Example 7 (Synchronization games): Synchronization
games are a family of separable games [10] that model high-
order coordination behavior of players. They are an extension
of network coordination games on graphs presented in Ex-
ample 3 to the setting of H-graphs: players, corresponding
to nodes of an H-graph, aim at simultaneously coordinating
on some action with multiple groups of players, represented
by hyperlinks. When all members of an hyperlink choose the
same action, each player receives a positive payoff, which is
additively combined with the ones deriving from all hyper-
links the player participates in. Formally, given an H-graph
H = (V,L), an action space A and a weight function w that
associates to any action a in A and hyperlink K in L a positive
integer weight w(a,K) > 0, the synchronization game on H
with player set V is defined by the utility functions:

ui(x) =
∑
K∈L
i∈K

w̄(x,K), ∀i ∈ V,∀x ∈ X = AV , (42)

where

w̄(x,K) =

{
0 if ∃j, k ∈ K : xj 6= xk
w(xj ,K) for any j ∈ K, otherwise.

An instance of synchronization game is the two-level coor-
dination game introduced in Example 6. As shown in [10,
Lemma 6], every synchronization game on an H-graph is a
potential game with potential function

φ(x) =
∑
K∈L

w̄(x,K) , (43)

whose minimal H-graph is Hφ = H̄. It can be directly
verified from the definition that, according to Theorem 3, a
synchronization game on a H-graph H is minimally separable
with respect to the FDH-graph Fu = FH̄.
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We conclude this section by showing how the celebrated
Hammersley-Clifford Theorem on the structure of Markov
Random Fields can be deduced from Corollary 2. Consider
an undirected graph G = (V, E) and a vector of finite-valued
random variables X = (Xi)i∈V indexed by the nodes of G.
Denote by Ai the set where the random variable Xi takes its
values. Put X =

∏
iAi. For every subset W ⊆ V , let XW

denote the subvector of X consisting of the random variables
Xi with i in W . We shall refer to the random vector X
as positive if its probability distribution is equivalent to the
product of the marginals, namely, if P(X = x) > 0 whenever
P(Xi = xi) > 0 for every i in V . We shall refer to the random
vector X as a Markov Random Field on G if, for every node
i in V , the random variables Xi and XV\N•i are conditionally
independent given XNi .

4

Theorem 4: Let X be a positive Markov Random Field on an
undirected graph G = (V, E). Then, its probability distribution
admits the following decomposition:

P(X = x) =
∏

C∈Cl(G)

ζC(xC), ∀x ∈ X , (44)

where Cl(G) is the family of maximal cliques of the graph G.
Proof: Without loss of generality we can assume that

P(Xi = xi) > 0 for every i in V and xi in Ai so that,
by the positivity assumption we have that P(X = x) > 0 for
every x in X . Let

φ(x) = logP(X = x) , ∀x ∈ X . (45)

Then, consider the identical interest game u = uφ in U with
utility functions ui(x) = φ(x) for every i in V . Clearly, u
is a potential game with potential function φ. We shall now
prove that u is G-graphical. Indeed, conditional independence
implies that

P(X = x) = P(XNi =xNi)P(XV\Ni =xV\Ni |XNi = xNi)

= P(XNi =xNi)P(Xi=xi |XNi =xNi) ·

·P(XV\N•i =xV\N•i |XNi =xNi)

= P(XN•i =xN•i )P(XV\N•i =xV\N•i |XNi =xNi) ,

for every i in V . We can then write

ui(x) = uNii (xi, xNi) + ni(x−i) ,

where

uNii (xi, xNi) = uNii (xN•i ) = logP(XN•i = xN•i )

only depends on the actions played by player i and her
neighbors in Ni, while

ni(x−i) = logP(XV\N•i = xV\N•i |XNi = xNi)

is a non strategic term. Thus u is G-graphical so that Corol-
lary 2 implies that its potential function φ is HClG -separable.
Together with (45), this yields the claim.

4In the literature on probabilistic graphical models, this is referred to as
the local Markov property [20, Ch. 3.1], which is known to be implied by the
so-called global Markov property and in turn to imply the so-called pairwise
Markov property [20, Proposition 3.4]. The three Markov properties are in
fact known to be all equivalent to one another for positive random vectors
[20, Theorem 3.7].

VI. CONCLUSION

In this paper, we have introduced the notion of separability
with respect to a H-graph for functions defined on product
spaces. We have proven, for every function, the existence of a
minimal H-graph yielding the most parsimonious decomposi-
tion for that function. We have proposed a constructive proce-
dure for computing the minimal H-graph of a function, based
on a characterization of it in terms of difference operators.
Furthermore, we have described how to explicitly obtain the
corresponding minimal decomposition by means of projection
operators onto spaces of separable functions.

We have then applied our results to games, encompassing
and refining the notion of graphical game. Our proposed defini-
tion of separability with respect to a FDH-graph characterizes,
up to a nonstrategic component, the way utility functions
can be minimally split as the sum of functions depending on
subgroups of players. By expressing separability of games in
terms of separability of their utility functions, we have derived
an algorithm to compute minimal separable representations
of games. In the special case of potential games, we have
shown that the separability of a game is intimately connected
to the separability of the corresponding potential function. This
result generalizes and refines one recently proved in [14] and,
interestingly, it implies the celebrated Hammersley-Clifford
Theorem for Markov Random Fields.

The potential implications of these results should be further
investigated in a variety of directions including: (i) studying
how information on the minimal separating FDH-graph of a
game can be used to reduce the complexity of learning algo-
rithms; and (ii) understanding the implications of separability
in the behavior of evolutionary and learning dynamics.
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APPENDIX A
SUM OF PROJECTORS

We start with a general fact of linear algebra. Let V be a
Hilbert space equipped with an inner product 〈·, ·〉. Given a
closed subspace H of V , we denote by PH : V → V the
orthogonal projection operator onto H . Two subspaces H and
K of V are called perpendicular if PHPK = PKPH .

Lemma 3: Let F be a finite family of closed subspaces of
V that are pairwise perpendicular. Given S ⊆ F , we denote
by
∑
S and by ∩S, respectively the sum and the intersection

of the subspaces in S. Then,

P∩F =
∏
H∈F

PH , P∑
F =

∑
K⊂F
K6=∅

(−1)|K|+1P∩K . (46)

Proof: We first prove that if H and K are two perpen-
dicular subspaces, then PHPK = PH∩K . Indeed notice that
T = PHPK is an orthogonal projector as

T 2 = PHPKPHPK = PHPHPKPK = T,

T ∗ = P ∗KP
∗
H = PKPH = PHPK = T .

Since T (V ) ⊆ H ∩K and T|H∩K coincides with the identity,
we conclude that T = PH∩K . A direct inductive argument
now proves the first identity in (46).

To prove the second identity in (46), first notice that

F⊥ = {H⊥ | H ∈ F}

is a family of pairwise perpendicular subspaces as the cor-
responding orthogonal projectors are PH⊥ = I − PH . Using
standard orthogonality properties and the first relation in (46),
we can now compute as follows

P∑
F = I − P∩F⊥ = I −

∏
H∈F

PH⊥ = I −
∏
H∈F

(I − PH) ,

from which the second relation in (46) directly follows.

Proof of Proposition 3 We first prove that {SJ | J ∈ L} is
a perpendicular family of subspaces. Indeed, taken J1,J2 ⊆ V
the composed application PJ1PJ2 can be described as follows.
Imagine configuration vectors split into four parts, correspond-
ing to the four subsets of labels:

I = J1 ∩ J2 , J̄1 = J1 \ J , J̄2 = J2 \ I , K = V \ I .

Then,

PJ1
PJ2

f(x) =∫
XJ̄1

∫
XJ̄2

∫
XK

f(xI , y1, y2, z)dµJ̄1
(y1)dµJ̄2

(y2)dµK(z) .

The form of the right hand side implies that PJ1
PJ2

=
PJ2

PJ1
. By definition, SH =

∑
J∈L SJ , so that (27) is a

direct consequence of Lemma 3. �
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