
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A novel abstraction for security configuration in virtual networks / Bringhenti, Daniele; Sisto, Riccardo; Valenza, Fulvio. -
In: COMPUTER NETWORKS. - ISSN 1389-1286. - ELETTRONICO. - 228:(2023), pp. 1-13.
[10.1016/j.comnet.2023.109745]

Original

A novel abstraction for security configuration in virtual networks

Publisher:

Published
DOI:10.1016/j.comnet.2023.109745

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978000 since: 2023-04-19T06:32:40Z

Elsevier

Computer Networks 228 (2023) 109745

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

A novel abstraction for security configuration in virtual networks
Daniele Bringhenti ∗, Riccardo Sisto, Fulvio Valenza
Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy

A R T I C L E I N F O

Keywords:
Virtual computer networks
Automatic network security
Security function selection

A B S T R A C T

The incessant growth of network virtualization determined the proliferation of Virtual Network Functions
(VNFs), software programs that can run on general-purpose servers and that can also integrate security controls
for protection from cyber-attacks. However, a high availability of VNFs may be counterproductive for the
network administrators who have to select the most suitable ones to establish the security configuration of their
network. On the one hand, the vendor-dependent technicalities of each VNF may cloud the security controls it
can actually perform. On the other hand, VNF selection traditionally occurs before the synthesis of the virtual
network graph, so it does not employ any network information and it may outcome unoptimized results. In light
of these shortcomings, this paper proposes a novel security configuration workflow, based on new abstractions
that we call projections. They represent the security-related operations that VNFs should perform to enforce a
security policy. Thanks to these abstractions, the actual selection of the VNFs can be postponed to the moment
their deployment in the physical network is actually required. In fact, projections are enough for the synthesis
of the virtual security graph. This paper also proposes a two-step algorithm for computing projection chains as
candidate solutions for graph synthesis. The proposed approach has been implemented as a Java framework
and a set of tests have validated its applicability to real-world VNFs, correctness, scalability and optimization.
These tests showed that the new security configuration workflow can achieve a significant reduction for the
number of selected VNFs and their deployment cost. Specifically, in the analyzed scenario, the improvement
percentages for these two parameters are 79% and 90% with respect to the worst-case strategy, while 68%
and 77% with respect to a traditional more optimized configuration strategy.
1. Introduction

Virtualization has profoundly changed the traditional vision of net-
working. Agility and dynamism have become decisive factors in enforc-
ing security in modern computer networks by leveraging ideas deriving
from Network Functions Virtualization (NFV) and Software-Defined Net-
working (SDN). On the one hand, new security functions can be easily
deployed on the fly to face an attack as soon as it is detected. On
the other hand, state-of-the-art orchestrators can update a function
configuration in real time, without stopping it and temporarily pausing
the protection it provides. The benefits of these innovations have
led to continuous development of virtual functions, which network
administrators have at their disposal for enforcing the required security.

Network administrators are commonly in charge of enforcing Net-
work Security Policies (NSPs) that describe how the communications
should be protected in their networks. For example, NSPs describe
which traffic flows must be encrypted, which endpoints can commu-
nicate with each other, or which packets must be logged [1]. For
each NSP, network administrators must select one or more concrete
virtual function implementations, commonly known as Virtual Network

∗ Corresponding author.
E-mail addresses: daniele.bringhenti@polito.it (D. Bringhenti), riccardo.sisto@polito.it (R. Sisto), fulvio.valenza@polito.it (F. Valenza).

Functions (VNFs). For example, if there is the requirement to block
some traffic flows, they may decide to use iptables, ipfirewall or an
alternative VNF. However, the higher the freedom of choice is, the
more complex making decisions is. A large number of VNFs is currently
available for each security function type, as it is easy for each vendor to
release their branded version as software product. Therefore, multiple
ones may be suitable to enforce the same security property [2].

1.1. Motivation

The just mentioned high availability of VNFs turns out to be
counter-productive in the usual workflow followed by administrators
to apply security. Such workflow is composed of three operations [3]:
(i) selection of a suitable set of VNFs for enforcing the desired NSPs;
(ii) synthesis of the virtual network graph, by deciding where VNF
instances should be placed in the logical network, and by defining
their configuration rules; (iii) embedding of all the virtual nodes of
the logical network, inclusive of the security VNFs, in the physical
infrastructure (e.g., a network composed of general-purpose servers).
vailable online 29 March 2023
389-1286/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2023.109745
Received 17 January 2023; Received in revised form 17 March 2023; Accepted 25
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

March 2023

Computer Networks 228 (2023) 109745D. Bringhenti et al.
In this sequence of operations, the first stage, i.e., VNF selection,
lays the foundations to satisfy both security and network demands
when enforcing user-requested policies. Nevertheless, in the current
form, it may satisfy these different requirements only partially, and
often in an unsatisfactory way. On the one hand, as the VNFs that are
selected are full-fledged software implementations, they contain many
technicalities that often cloud the fact that they share the same security
operations. On the other hand, as the selection occurs so early in
the configuration workflow, it does not consider network information,
such as the topology of the network, or the configuration of other
network service functions like load balancers, or the characteristics of
the servers composing the physical infrastructure.

Without that information, a premature selection of the VNFs, among
the several ones that share the same security functionalities but with
different implementation technicalities, may produce non optimized
results. Two main sub-optimizations that may derive from early VNF
selection concern deployment cost and energy efficiency. For example,
if there is the requirement to block two different types of traffic
(e.g., the web traffic to some domain and the mail traffic to some
other domain), an early selection may end up with choosing a distinct
VNF to satisfy each requirement (e.g., a web application firewall for
the first type and a packet filter for the second one), without real-
izing that a single VNF instance could provide the security logic to
implement both functionalities. Deploying more VNFs than required
entails consuming more resources than necessary in the servers where
the VNFs are deployed, and more energy for keeping them active. Even
though virtualized networks are characterized by high flexibility and
operational efficiency, deployment and energy optimizations are still
open problems [4].

These issues are even more relevant in virtualized networks based
on Internet-of-Things (IoT). The multitude and heterogeneity of IoT
devices are constantly pushing the size of modern computer networks,
characterized by more and more interconnections among those de-
vices [5,6]. This context magnifies the importance of optimization,
whose application has been already discussed in literature to address
problems such as service scheduling [7], task planning [8] and attack
identification [9]. In contrast, the problem of optimizing the selection
of security VNFs and avoiding redundant decisions in the security
configuration process has been scarcely investigated at the moment,
even though the problem is as relevant as the ones optimization has
already been applied to.

1.2. Contributions of the paper

The paper aims to allow optimum VNF selection by proposing a
novel security configuration workflow. The objective is to split the two
purposes of VNF selection occurring in the traditional configuration
workflow, i.e., enforcement of security requirements and physical re-
source consumption minimization. To achieve it, the novel workflow is
based on abstract representations of the NSPs, called projections. The
projection of an NSP against a concrete function expresses the security-
related operation that the VNF should perform to enforce the NSP,
independently of all the specific details of its implementation, such
as how the operation is configured in the function and the resources
the function requires for its operation. Projections are computed before
synthesizing the virtual security graph, and they are used to generate
it instead of their concrete VNF counterparts. Then, the actual VNF
selection is postponed to be performed jointly with their embedding
into the physical infrastructure in a last stage. Thus, only the VNFs that
are strictly required are selected and deployed, depending on how the
virtual service has been generated to fulfill the NSP projections.

The idea of this novel security configuration workflow, where the
VNF selection is postponed with respect to traditional approaches,
has been presented preliminarily in [10]. This work improves and
2

completes that preliminary idea with the following main contributions:
(i) This paper enriches the preliminary description of the security
configuration workflow, presented in [10], by explaining with
greater detail how each step works, and how the different work-
flow steps must be linked to each other so as to provide a full
automated security configuration to a computer network. This
description is also paired with a clarifying use case, which guides
the readers in understanding the novelty provided by postponing
VNF selection to the end of the workflow.

(ii) A complete formalization of the projection abstraction is pre-
sented. This formalization captures all the essential informa-
tion required for the synthesis of the virtual security graph
in a compact form, and abstracts from vendor-dependent VNF
technicalities.

(iii) The two-step algorithm, in charge of computing all the possible
projection chains that should be used to decide how to enforce
a user-specified NSP in the virtual network, was only briefly
mentioned in [10]. Here, the complete algorithm is formalized.
This paper focuses on the initial stage of the proposed work-
flow, which represents a major novelty in literature. In fact, for
the last two stages, our proposal can be easily integrated with
already existing approaches, which can be re-used with minor
modifications.

(iv) Differently from the first prototype discussed in [10], which only
implemented the first stages of the workflow, a new, complete
framework has been developed to demonstrate the feasibility of
the proposed approach. This new framework includes the inter-
action with other tools that carry out the remaining operations
of the security workflow (i.e., synthesis of the virtual security
graph, VNF selection and embedding) in a fully automated way.

(v) An extensive validation of this framework has been carried out
on a state-of-the-art computing machine to assess model gener-
ality, correctness, scalability and optimization. This validation
showed that the choice of postponing VNF selection led to an
improvement in terms of number of selected VNFs and their
deployment cost. For example, in the analyzed scenario, the
improvement percentages for these two parameters are 79% and
90% with respect to the worst-case strategy, while 68% and
77% with respect to a traditional more optimized configuration
strategy.

1.3. Organization

The remainder of this paper is structured as follows. Section 2
discusses related work. Section 3 illustrates the novel proposed security
configuration workflow, it formalizes the projection abstraction, and
it presents the two-step algorithm for projection chain computation.
Then, Section 4 describes the PoC implementation of the proposed
approach, and it discusses the results of the validation carried out on
it. Finally, Section 5 concludes the paper and discusses future work.

2. Related work

This section discusses the state of the art about security configura-
tion (Section 2.1) and VNF abstraction models (Section 2.2), underlin-
ing their main limitations with respect to our proposal.

2.1. Security configuration

Security configuration has been widely researched in literature,
also in relation to the new threats that have been emerging in vir-
tualized networks. This topic is quite broad, as security configuration
encompasses multiple operations: VNF selection, synthesis of the virtual
security graph (i.e., deciding where the functions should be allocated in
the virtual service) and definition of their operational rules. However,
for all these operations, almost all the studies focused on concrete VNFs
as the starting point for the design of new configuration approaches.

Computer Networks 228 (2023) 109745D. Bringhenti et al.

T
t
i
a

d
t

About the two operations of VNF selection and synthesis of the
virtual security graph, which are usually challenged jointly in liter-
ature, relevant studies are [11–15]. Specifically, Scheid et al. [11]
propose the k-means clustering algorithm for VNF selection, according
to which groups of VNFs are created according to the level of security
they can provide. Then, service graphs are generated by selecting
VNFs from those groups (e.g., if a high security level is requested in
attack detection, an implementation of IDS will be chosen from the
VNF cluster labeled with ‘‘high security’’). Hao et al. [12] employ
a composition algorithm based on Trie trees for the synthesis of a
security service, in a way that can automatically manage changes of
the IP addresses of VNF instances. The objectives of these studies were
then extended by the other ones, by pairing them with optimization
purposes. On the one hand, Liu et al. [13] employ a greedy iterative
algorithm to compose chains of VNFs, with the aim to find a function
combination with the highest total throughput and the minimum con-
sumption of physical resources. On the other hand, both Liu et al. [14]
and Sendi et al. [15] propose an ILP formulation of the selection
problem and a heuristic, so that users can choose either one depending
on whether they prioritize optimization or performance. In particular,
the heuristic described by Liu et al. [14] is a breadth-first search
algorithm, through which function chains are composed to minimize
CPU, storage, bandwidth and latency. Instead, the heuristic algorithm
proposed by Sendi et al. [15] partitions the network into areas, and
for each one of them it solves the selection problem with the aim
to provide high scalability. Despite the relevance of these studies, all
of them work on concrete implementations of VNFs, and they still
adhere to the traditional security configuration workflow. Differently
from these studies, the projection abstraction proposed in this paper
separates security-related operations from networking parameters and
implementation details in the definition of VNF models. As such, the
main advantages of the proposed approach are the benefits already
discussed in Section 3.1, i.e., better optimization of VNF selection and
resource consumption.

About the computation of operational rules, almost all the automatic
approaches that have been presented in literature address the configu-
ration of a single type of virtual functions, except the study by Basile
et al. [16], which we will analyze later. Specifically, these approaches
simply focus on either packet filtering firewalls [17–20], or channel
protection systems such as VPN gateways [21,22], or IoT devices [23,
24], or SDN switches [25,26]. While each of these techniques focuses
on a single function type, our vision is to provide a global security
configuration, considering several function types.

Instead, as previously mentioned the approach proposed by Basile
et al. [16] can automatically configure multiple function categories
(packet filter, URL filter, HTTP filter, VPN gateway, anti-virus, anti-
malware, content filter, monitoring, anonymity proxy). However, even
this technique is limited with respect to our proposed approach. On the
one hand, this approach can be applied only to function chains, while
our approach can be applied to graph topologies that are more common
in modern networks. On the other hand, in that study, VNF selection
is carried out according to the usual workflow, while our approach
benefits from the postponement of VNF selection.

2.2. VNF abstraction models

The findings derived from this analysis of the state of the art
about security configuration are not surprising. After all, in literature,
concepts similar to the projection abstraction proposed in our paper
have barely been investigated. The only exception is represented by a
series of IETF RFC drafts, of which [27] is the most recent one. These
RFC drafts propose the Capability Information Model (CapIM) as a cen-
tral component of a more complete architecture, designed to provide
standard interfaces for managing VNFs in an efficient manner [28].
3

This model associates each VNF with a set of capabilities, representing s
the security controls they can enforce (e.g., packet filtering, detec-
tion), in a way that is vendor-neutral and implementation-independent.
Such a representation avoids referring to a specific technology or
vendor-dependent function when defining a security service, as for the
projection abstraction. CapIM represents the foundation for a limited
number of studies. Giotis et al. [29] employ the capability model as
a means to abstract VNFs, but it just applies it to access control and
forwarding virtual functions. Hyun et al. [30] enhance the CapIM-
based architecture to make it compliant with the SDN technology.
Zarca et al. [31] use a tailored version of the model for the dynamic
management of authentication, authorization, and accounting.

At the moment, CapIM (alongside with its aforementioned exten-
sions and customizations) represents the first and last effort in the
literature to provide a higher abstraction of security-related operations
that can be performed by VNFs. It also has several limitations. Differ-
ently from our proposal, the capabilities that can be associated with
VNFs are fixed and represent all the possible operations that the VNF
might do. Instead, in our vision, a projection is a flexible representation,
because it expresses the security-related operation that a VNF should
perform to enforce a specific NSP. With this definition, it gets rid of
redundant descriptions, and it provides high adaptability to the user-
specified policies. Besides, CapIM is almost never used to innovate the
security configuration workflow, with the exception of the intent-based
technique presented by Basile et al. [16]. However, their approach has
limitations that have been already discussed in Section 2.1.

In conclusion, the contributions of this paper represent an impor-
tant step in improving conventional ways for security configuration,
opening the path for an additional level of abstraction that is becoming
essential to answer the high productivity of software development in
network security.

3. The proposed approach

This section describes the proposed workflow for improving secu-
rity configuration (Section 3.1), which represents the starting point
for designing the projection abstraction concept (Section 3.2). It also
formalizes the two-step algorithm designed to identify and compute the
projection chains that are required to enforce the user-specified NSPs
(Sections 3.3 and 3.4).

3.1. The new workflow

As reported in [3], where a Security Orchestrator module is intro-
duced in the ETSI NFV Reference Architecture, the traditional workflow
for security configuration is composed of three sequential stages. First,
the most suitable VNFs are selected for the enforcement of the NSPs
in the network. For example, in order to block all the packets having
102.10.3.88 as source IP address and 8080 as destination TCP port,
firewalling VNFs as iptables or ModSecurity may be selected. This
decision is exclusively dependent on conditions related to security, as
it does not consider other factors as network topology. Second, the
allocation scheme and configuration for the VNFs in the logical network
topology is computed. The logical topology, also called Virtual Network
Graph (VNG), is an abstract representation of how traffic flows cross the
network. This second stage must also compute the configuration rules
for each VNF positioned in the VNG, so that they fulfill the original
NSPs. The result of this operation is a VNG enriched with security
functions and is commonly known as Virtual Security Graph (VSG).

hird, the VNF embedding on the general-purpose servers composing
he physical network infrastructure is established. This final operation
s constrained by physical limitations, such as the CPU and RAM
vailability of the servers.

This traditional workflow can lead to sub-optimizations related to
eployment cost and energy efficiency, as already explained in Sec-
ion 1. Instead, the workflow that we are proposing postpones VNF

election to be done jointly with VNF embedding, with the aim to

Computer Networks 228 (2023) 109745D. Bringhenti et al.

p
h
I
(

w
H
t
p
a
c
V
a
w
t
a
i
o
i
i
r
i

b
(
T
t
p
i
w

c
N
i
V
t
b

s
r
b
V
s
i
s
w

t
N
V
o
g
a
i
t
g
a
P

L
V
(
1
m

t
e
p
o
V
G
e
n

Fig. 1. The proposed workflow for security configuration.

Fig. 2. Projection IDentification: the two tasks.

roduce a more optimized result. To achieve this purpose, the workflow
as been structured with three stages, as shown in Fig. 1: the Projection
Dentification (PID) stage, the Allocation and Configuration Generation
ACG) stage and the Selection and EMbedding (SEM) stage.

PID – The objective of the PID stage is to identify all the possible
ays a set of NSPs may be enforced by using the available VNFs.
owever, the PID stage does not consist in the common VNF selec-

ion. Instead, it employs abstract representations of the NSPs, called
rojections. A projection consists in mapping the elements composing
n NSP (i.e., the actions that must be performed and under which
onditions) onto what a VNF can offer to enforce the NSP (i.e., the
NF configuration settings). In this mapping operation of an NSP,
ll the implementation-dependent technicalities of each VNF against
hich the NSP is projected are omitted. For example, let us suppose

hat an NSP specifying that all the traffic going from node with IP
ddress 117.0.3.2 to node with IP address 33.21.1.1 must be blocked
s mapped onto iptables. The result projection would be the following
ne: ‘‘({IPSrc = 117.0.3.2, IPDst = 33.21.1.1}, {deny})’’ This projection
s expressed with a vendor-independent formulation, as it does not
nvolve the specific commands to set up the actual iptables configu-
ation. The formalization of the projection abstraction will be detailed
n Section 3.2.

Starting from the VNF manifests and the NSPs, the projections can
e computed with a two-step algorithm, called Projection IDentification
PID). The two steps are executed sequentially as also shown in Fig. 2.
he first step directly works on the input NSPs and VNFs to compute
he corresponding projections, whereas the second one combines the
rojections into chains that can fully enforce all the NSPs. As shown
n Fig. 2, if the algorithm fails, it produces a non-enforceability report
ith the reason of the failure.

In greater detail, the first step of the algorithm is to compute the
orresponding projection for each pair composed of a VNF and an
SP. In doing so, it employs some optimizations. On the one hand,

t may happen that the projections of the same NSP against different
NFs are identical. For example, the result of projecting an NSP against

wo packet filter implementations as iptables and ipfirewall would
4

e the same, as they would share the same manifest. In that case, a
ingle instance of that projection is simply used, thus avoiding useless
edundancy. On the other hand, it may occur that a projection cannot
e defined for a pair composed of a VNF and an NSP, e.g., when a
NF does not have any configuration field corresponding to the ones
pecified in the conditions of an NSP. The consequence is that the VNF
s excluded for the NSP enforcement, and will not be used by the next
tages of the workflow. This step, called Projection EX traction (PEX),
ill be detailed in Section 3.3.

The second step of the algorithm is to combine the computed projec-
ions into chains that can fully enforce all the actions requested by the
SP they derive from. In fact, mapping an NSP onto the manifest of a
NF may result into a projection that contains only partial information
f the original NSP. In case no valid chain is identified for an NSP, the
lobal process immediately halts. An early non-enforceability report is
lso produced, notifying the network administrator why the projection
dentification failed. Otherwise, the valid combinations are passed on
o the next stage of the process, for the synthesis of the virtual security
raph. In this way, the security configuration will be performed in
way that is agnostic to the VNF implementation. This step, called
rojection CHaining (PCH), will be detailed in Section 3.4.

The need of this second step can also be explained with an example.
et us suppose that a network administrator can use two VPN gateway
NFs (Strongswan and OpenConnect) and a intrusion detection VNF
Suricata) to enforce an NSP requesting that, when a packet from
27.0.3.4 to 45.66.10.2 crosses the network of the administrator, it
ust be encrypted and a notification must be produced: ‘‘({IPSrc =

127.0.3.4, IPDst = 45.66.10.2}, {encrypt, alert})’’. If the NSP is pro-
jected against each of the two VPN gateways, the resulting projection
maintains only the information of the encryption operation of the
original policy, as the used VNFs cannot work as intrusion detec-
tion systems: ‘‘({IPSrc = 127.0.3.4, IPDst = 45.66.10.2}, {encrypt})’’.
Nonetheless, the projection is the same for both VNFs, as they can
offer the same security-related operations. Consequently, a single in-
stance of that projection can be used in the security workflow, thus
avoiding useless redundancy. Similarly, if the NSP is projected against
the intrusion detection system, the resulting projection maintains only
the information of the alerting operation: ‘‘({IPSrc = 127.0.3.4, IPDst =
45.66.10.2}, {alert})’’. In this example, at the end of the identification
of the NSP projections, none of them is a full representation of the
original NSP. Therefore, in this case, the PID stage must combine
them into a projection chain where all the actions requested by the
original NSP are supported. However, there may be cases where a single
projection still contains all the original information, depending on the
features of the VNF against which the NSP is projected.

ACG - The objective of the ACG stage is to synthesize the VSG so
hat for each NSP a projection combination that represents it is fully
nforced. It works on the logical level of the virtual network, which
rovides information about the network topology and the configuration
f the functions composing the service (e.g., NATs, load balancers). The
NG is internally represented in the ACG stage as a Virtual Allocation
raph (VAG). A VAG is a graph derived from the VNG so that, for
ach link connecting a pair of nodes of the original VNG, a node
amed Allocation Place (AP) is included in the corresponding position

of the VAG. An AP is a placeholder position where the ACG stage may
decide to allocate an implementation-independent representation of the
function configurations, called functionality, which may be needed to
enforce at least a projection. For example, the VNG depicted in Fig. 3(a)
is represented as the VAG depicted in Fig. 3(b). The solution that the
ACG stage computes is a VSG, where some APs are filled with the
computed functionalities. An example of VSG is depicted in Fig. 3(c),
where 𝑓18 and 𝑓19 are functionalities introduced in the VAG.

The creation of the functionalities from a corresponding projection
requires a refinement operation, because the projections were com-
puted in the PID stage overlooking information related to the VNG.
The need of refinement is motivated by two reasons. First, not always

a one-to-one relationship exists between input projections and output

Computer Networks 228 (2023) 109745D. Bringhenti et al.
Fig. 3. Function graphs employed in the ACG stage.
functionalities. For example, let us suppose that a projection requires
to block all traffic flows coming from 154.66.0.2 to any IP address:
‘‘({IPSrc = 154.66.0.2}, {deny})’’. If these traffic flows do not have any
common AP in their paths, multiple APs must be used by the ACG stage.
In each one of them, a functionality that is equal to the projection is
allocated. This shows how it is possible that multiple functionalities,
derived from the same projection, are needed to enforce an NSP.
Second, even though the functionality has an abstract representation
that resembles the projection, the content is different because it must
takes into account how traffic may be altered by the VNG configuration.
For example, let us suppose that all the packets going from the source
port 88 of 123.4.5.6 to 44.5.6.7 must be logged: ‘‘({IPSrc = 123.4.5.6,
IPDst = 44.5.6.7, pSrc = 1337}, {log})’’. It may happen that the only
APs where this projection may be fulfilled are after a NAT, with a
configuration which establishes that the source IP address each packet
having 123.4.5.6 as original value for that field must be modified into
44.5.9.2. Consequently, a functionality that is generated and allocated
in that AP would have the following configuration: ‘‘({IPSrc = 44.5.9.2,
IPDst = 44.5.6.7, pSrc = 1337}, {log})’’. Therefore, this example shows
that the fields of a functionality may have different values with respect
to the ones of the corresponding projection.

In summary, the main difference with respect to the VSG synthesis
of the traditional workflows is that the VSG is not composed of VNFs,
but of an abstract representation of their configuration (i.e., the func-
tionalities derived from the projections). However, refinement methods
that have been already proposed in literature for specific types of
VNFs may be reused in the ACG stage of this novel workflow with
minor adjustments. Studies were proposed in literature about packet
filtering firewalls (e.g., [19,20,32,33]) and VPN gateways (e.g., [21,
34]). Inspired from them, in [10] we specifically proposed to formulate
the functionality allocation and configuration problem as a Maximum
Satisfiability Modulo Theories problem in order to achieve both a-
priori formal correctness and optimization. This problem formulation
is specifically thought to work with our proposed PID stages, but the
other existing studies may be extended to be compliant with them.

SEM - The ACG does not provide a clear indication on which VNFs
must be used for the NSP enforcement or on which servers they should
be deployed. Therefore, the objective of the final stage, the SEM stage,
is dual. The first one is to select the best subset of VNFs, among
the available ones, that supports the functionalities allocated and con-
figured in the ACG stage. The second objective is to compute the
deployment scheme of the selected VNFs, i.e., to decide on which node
of the physical network each VNF should be installed. Traditionally,
these two objectives are achieved separately. In literature, some studies
(e.g., [35–37]) propose smart algorithms for identifying the optimal set
of VNFs to enforce security intents, while other ones (e.g., [38–41])
exhaustively researched the problem of virtual network embedding. On
the one hand, methods that have been proposed for different objectives
can be paired and sequentially executed. On the other hand, a single
method can be formulated. For example, in [10] we propose the idea
to formulate the selection and embedding problem as a multi-objective
Integer Linear Programming (ILP) problem. If there are hundreds of
available VNFs that implement the same functionalities, then a manual
5

decision would have been troublesome and error-prone to be taken,
Table 1
VNFs available in the use case.

VNF VNF type Deployment cost

𝑣1 Packet filter firewall 3
𝑣2 Packet filter + web-application firewall 5
𝑣3 Packet filter + web-application firewall + logger 6
𝑣4 Intrusion detection system 5
𝑣5 Logger 3
𝑣6 Anti-spam filter 4

Table 2
NSPs defined for the use case.

NSP NSP requirement Projection set

𝑛1 Block ‘‘youtube.com’’ from 124.10.0.0/16 (𝑒4) {𝑝1,1, 𝑝2,1, 𝑝3,1}
𝑛2 Block traffic from 124.10.0.2 (in 𝑒4) to 87.4.2.3 (𝑒2) {𝑝1,2, 𝑝2,2, 𝑝3,2}
𝑛3 Log traffic from 87.4.2.3 (𝑒2) {𝑝3,3, 𝑝5,3}
𝑛4 Detect traffic anomalies from 98.8.8.0/24 (𝑒3) {𝑝4,4}
𝑛5 Block ‘‘linkedin.com’’ from 42.0.10.4/24 (𝑒5) {𝑝1,5, 𝑝2,5, 𝑝3,5}
𝑛6 Block traffic from 42.0.10.4/24 (𝑒5) to 42.0.10.8/24 (𝑒6) {𝑝1,6, 𝑝2,6, 𝑝3,6}

even overlooking all the other degrees of freedom (e.g., number of
physical hosts, etc.).

As anticipated before, the stage that will be formalized in the
reminder of the paper is the PID stage, as for that one no existing
approaches can be leveraged at the moment.

3.1.1. Clarifying use case
The definition of the projection concept for abstracting the security-

related operation that a VNF should perform to enforce an NSP and
the reorganization of the full configuration workflow bring manifold
advantages. These benefits are illustrated by means of a clarifying use
case, where the novel proposed approach is applied and compared to
the traditional security configuration workflow.

In this example, Table 1 lists the VNFs that are available to deploy
in the physical infrastructure, it briefly describes their function type,
and it shows their deployment cost, expressed in numeric format. This
cost representation is a simplification of the real deployment costs,
that are commonly known by the network administrators and that
derive from multiple parameters (characteristics of the servers, energy
efficiency, etc.). Table 2 presents the NSPs that must be enforced in
the network, providing a short description of the traffic that is object
of the corresponding policy action. This table also compactly shows
against which VNFs each NSP can be successfully projected (𝑝𝑖,𝑗 is the
projection of 𝑛𝑖 against the manifest of 𝑣𝑗). Fig. 4 represents the VAG
derived from a network topology that is a simplified version of a real
one, i.e., the network of our University Department.

A first advantage of the novel security configuration workflow is
that it prevents redundant solutions. Thanks to the projection abstrac-
tion, the VNF selection occurs after knowing which projections of the
original policies are needed to enforce them and how the functional-
ities associated with such policies have been allocated in the virtual
graph. With the traditional workflow, instead, the administrators are
commonly prone to making redundant and unoptimized decisions. For

Computer Networks 228 (2023) 109745D. Bringhenti et al.

r
t
o
a
i
𝑣
1

s
f
a
f
t
b
t
N
w
a
o
N
a
a
c

m
a
e
f
o
o
j
C
m
p
b
s
(
i
o
b

3

b
t

3

t
t
i
t
c
c

s

(
c

m
p

example, they may select three VNFs – the packet filter 𝑣1, the web-
application firewall 𝑣2 and the logger 𝑣5 – to enforce 𝑛1, 𝑛2 and 𝑛3
espectively. However, in this case, a single VNF is enough, because
he traffic flows related to these three NSPs converge to the same AP
f the VAG, i.e., 𝑝12. The novel workflow can produce the minimum
llocation scheme of functionalities, so avoiding redundancies, which
n this case means selecting just 𝑣3 instead of the three VNFs 𝑣1, 𝑣2 and
3. In terms of deployment cost, this solution costs only 6, instead of
1.

A second advantage is that this workflow more easily leads to the
election of VNFs with a lower cost, when more than one offer the
unctionalities necessary to enforce the NSPs. For example, the NSPs 𝑛5
nd 𝑛6 can be enforced by both a packet filter and a web-application
irewall. Intuitively, the deployment cost of a packet filter is less than
he one for a web-application firewall. However, a packet filter may
e selected only under specific circumstances, e.g., when an AP where
he firewall may be allocated is only crossed by flows related to the
SPs 𝑛5 and 𝑛6. These cases are difficulty identified with the traditional
orkflow. There, the administrator usually decides to select the web-
pplication firewall, as it is function that works at the highest level
f the ISO/OSI stack and thus guarantees the satisfaction of both the
SPs. Instead, if VNF selection occurs after the VSG synthesis, it is
lready clear where the functionalities derived from the projections are
llocated and which traffic flows they must block or allow. This allows
hoosing a packet filter whenever it is possible.

Finally, security administrators usually struggle in selecting the
ost appropriate VNF for the enforcement of security policies, even

mong the VNFs that perform similar operations. Each VNF is a differ-
nt implementation, developed by a different developer team. There-
ore, it has different configuration languages, networking parameters,
r performance. A VNF that can decide if a packet must be dropped
n the basis of its 5-tuple may require a more complex technical
argon for writing the filtering rules, another one may require more
PU and RAM for the set-up in the physical network, another one
ay take more time for being installed and be ready to filter network
ackets. All these networking and performance factors are important,
ut they do not directly influence the outcome of decisions concerning
ecurity. If abstract representations of NSPs and VNF configurations
i.e., respectively, the projection and the functionality) may temporar-
ly discard that information and allow using it in the next stages of the
rchestration (e.g., during the VNF deployment), security decisions can
e taken more easily, quickly and with better results.

.2. The projection abstraction

The definition of the projection abstraction requires modeling two
asic elements: the VNFs that can be instantiated in the network and
he NSPs that must be enforced by them.

.2.1. VNF model
Each VNF model is characterized by configuration fields that define

he security properties it can enforce (e.g., the conditions expressing
he layer of the ISO/OSI stack where the VNF can work, the algorithms
t can execute, or the actions it can perform on the traffic). With
he objective to provide a comprehensive view on all the parameters
haracterizing a VNF, they are grouped into a single representation,
alled VNF manifest.

For a VNF 𝑣, the corresponding manifest 𝑀𝑣 is composed of two
ets, i.e., 𝑀𝑣 = (𝐹𝑣, 𝐴𝑣):

• 𝐹𝑣 is the set of all the features for which the VNF can take
a decision and/or which can be configured on it. This set in-
cludes packet fields (e.g., source and destination IP addresses,
web-application fields as domain or url) and other configuration
elements that determine the working modes of the VNF (e.g., the
encryption algorithm and the key length if a VNF is a VPN
gateway);
6

h

• 𝐴𝑣 is the set of all the actions that the VNF can enforce.

In turn, the field set 𝐹𝑣 is organized into two subsets, i.e., 𝐹𝑣 =
𝐹+
𝑣 , 𝐹 ∗

𝑣), because it is important to discriminate the fields that a VNF
an configure on itself from those it can only use to take decisions:

• 𝐹+
𝑣 is the set of all the features for which the VNF can take a deci-

sion and which it can configure (e.g., for a packet filtering firewall
such as iptables, all the fields of the IP 5-tuple belong to this set,
because the configuration rules are composed of conditions based
on IP addresses, ports and transport-level protocol);

• 𝐹 ∗
𝑣 is the set of all the features for which a VNF can take a

decision, but without configuring them, i.e., by configuring other
fields which may allow to reach the same security property
(e.g., if a specific web domain must be blocked, iptables might
be used, however it cannot configure a ‘‘domain’’ field, but only
a corresponding IP address).

Below, three examples are presented to clarify the concept of VNF
anifest. In these manifests, only a subset of all the fields that are
resent in the 𝐹+

𝑣 and 𝐹 ∗
𝑣 sets are reported for the sake of conciseness.

VNF 𝑣1: iptables

𝐹+
𝑣1

= {IPSrc, IPDst,pSrc,pDst, tProto}

𝐹 ∗
𝑣1

= {domain,url,mailAddress,payload,…}

𝐴𝑣1 = {allow,deny}

(1)

VNF 𝑣2: Squid

𝐹+
𝑣2

= {IPSrc, IPDst,pSrc,pDst, tProto,domain,url,…}

𝐹 ∗
𝑣2

= {mailAddress,payload,…}

𝐴𝑣2 = {allow,deny, log}

(2)

VNF 𝑣3: MyLogger

𝐹+
𝑣3

= {domain,url}

𝐹 ∗
𝑣3

= {mailAddress,payload,…}

𝐴𝑣3 = {allow, log, alert}

(3)

The manifest of a packet filtering VNF such as iptables, ipfirewall or
equivalent firewall implementations, which can only work at layers 3
and 4 of the ISO/OSI stack, is shown in (1). These VNFs can decide
if a received packet should be allowed to be forwarded to the next
hop or denied depending on the values of the IP 5-tuple. However, this
does not mean that a packet filtering firewall cannot take decisions for
packets having fields such as web domain and url.

Instead, web application firewalls such as Squid have a manifest
similar to the one presented in (2). With respect to a packet filter, this
type of firewall can also configure rules based on web domains, urls,
HTTP methods (e.g., POST, GET), Content-Type, etc. All the other fields
which were present in 𝐹 ∗

𝑣1
are in 𝐹 ∗

𝑣2
as well, since Squid is a firewall

as iptables, but it simply works on a different level. Nonetheless, both
of them do not have in their 𝐹 ∗

𝑣1
and in 𝐹 ∗

𝑣2
sets any parameter related

to encryption (e.g., algorithm, encryption key length).
Finally, the virtual functions that can be used to enforce some

security properties do not have to be well-known implementations such
as iptables or Squid, but they can be software programs developed
by any developer, running on a Virtual Machine or Docker. As it is
possible to see from (3), the manifest description is flexible enough to
support also this type of functions. In this example, the VNF that has
been developed and is available for the network administrator is named
‘‘MyLogger’’. It cannot block packets, but it can only log the receiving of
specific kinds of traffic and notifying the network administrator about
that event. Additionally, it has been developed in such a way that the
only fields which are present in the configuration rules are web domain
and url. Therefore, the fields of the IP 5-tuple itself are absent from the
𝐹+
𝑣3 set. They are not in the 𝐹 ∗

𝑣3 set either, because domain and url are
igher level information.

Computer Networks 228 (2023) 109745D. Bringhenti et al.

s
F
V
c
w
t
s
t
n
s
a
a

D
𝑠
I
p
f
V
f
b

r
h
b
b
T
p
d
s
m
t
r
p

3.2.2. NSP model
An NSP 𝑛 is modeled as 𝑛 = (𝐶𝑛, 𝑆𝑛):

• 𝐶𝑛 expresses the conditions that determine the traffic on which
the policy actions must be applied;

• 𝑆𝑛 expresses the actions that must be applied and the enforcement
modes (e.g., the packet fields on which an action must be applied,
or the algorithm to be used).

𝐶𝑛 is an (unordered) set, and it can be represented as 𝐶𝑛 =
{𝑐1, 𝑐2,… , 𝑐𝑚}. Each 𝑐 ∈ 𝐶𝑛 is defined over a field 𝑓 , that can be
accessed with the 𝑐.𝑓 notation. The condition can specify a single value
for the field (e.g., IPSrc = 10.0.0.1), a range of values (e.g., pSrc = [80–
100]) or the special symbol ∗, meaning that each possible value that
can be assigned to that field is valid (e.g., domain =∗).

𝑆𝑛 can be a set (i.e., an unordered collection) {𝑠1, 𝑠2,… , 𝑠𝑙} or a
list without repetitions (i.e., an ordered collection) [𝑠1, 𝑠2,… , 𝑠𝑙]. Each
𝑠 ∈ 𝑆𝑛 is modeled as (𝑎𝑠, 𝐵𝑠), where:

• 𝑎𝑠 is the action that must be enforced (e.g., block, encrypt);
• 𝐵𝑠 is a set of bindings ‘‘field – (optional) value’’, specifying

additional information about how the action must be enforced
(e.g., the binding ‘‘IPSrc = 20.1.2.4’’ might specify how the source
IP address must be changed by a network address translator,
whereas ‘‘algorithm = AES-128-CBC’’ might specify the encryp-
tion algorithm a VPN gateway must use to provide confidential-
ity). If no binding is specified (e.g., when the action is applied on
the whole packet satisfying the conditions), 𝐵𝑠 = ∅.

The actions in 𝑆𝑛 can be optionally grouped into multiple subsets
𝐾1, 𝐾2, . . . , 𝐾𝑟, . . . , 𝐾𝑝, where each subset must contain at least two
actions. If two or more actions belong to 𝐾𝑟, that means they must be
enforced by the same VNF. This formalization is introduced to support
the cases where the actions cannot be managed by different VNFs.
For example, a network administrator may require that all the packets
satisfying certain conditions are logged and blocked by the same VNF,
because they are dangerous and must be discarded as soon as possible
avoiding any further hop.

An example of NSP 𝑛 is shown in (4). This policy requires that,
for each packet satisfying all the conditions, firstly its source and
destination IP addresses are logged, and then the whole packet is
blocked so that it cannot reach the destination.

NSP 𝑛

𝐶𝑛 = {IPSrc = 125.10.2.0∕24, IPDst = 20.20.20.1,pSrc =∗,

pDst = 80, tProto = TCP,domain = dangerousSite.com}

𝑆𝑛 = [(log, {IPSrc, IPDst}), (deny, ∅)]

(4)

The proposed VNF and NSP models are general enough to support
both real-world concrete implementations of security functions and the
policies that a network administrator may really request. In fact, their
actual generality has been validated with some tests, which will be
presented in Section 4.

3.2.3. Projection model
A projection 𝑝 represents the security-related operation that a VNF

𝑣 should perform to enforce an NSP 𝑛. A projection 𝑝 consists in
mapping the elements composing an NSP 𝑛 (i.e., the actions that
must be performed and the conditions under which the NSP must be
fulfilled) onto what a VNF 𝑣 can offer to enforce the NSP (i.e., the
VNF configuration settings). In this mapping operation of an NSP,
all the implementation-dependent technicalities of each VNF against
which the NSP is projected are omitted. Consequently, if the same
NSP is projected against different VNFs that fulfill the same security
objectives, the resulting projections are presumably the same.

As a projection directly derives from an NSP, it is modeled similarly.
Specifically, 𝑝 is modeled as 𝑝 = (𝐶 , 𝑆) where:
7

𝑝 𝑝
• 𝐶𝑝 expresses the conditions that determine the traffic on which
the corresponding actions must be applied;

• 𝑆𝑝 expresses the actions that the VNF against which the NSP is
projected can enforce to fulfill it.

Here we intuitively show how a projection is expressed with an
example. Considering the three VNFs 𝑣1, 𝑣2 and 𝑣3 whose manifests
have been presented in (1), (2) and (3), the projection deriving from
mapping the policy 𝑛 presented in (4) onto those manifests are:

Projection 𝑝1, derived by mapping the NSP 𝑛 onto the VNF 𝑣1
𝐶𝑝1 = {IPSrc = 125.10.2.0∕24, IPDst = 20.20.20.1,pSrc =∗,

pDst = 80, tProto = TCP}

𝑆𝑝1 = [(deny, ∅)]

(5)

Projection 𝑝2, derived by mapping the NSP 𝑛 onto the VNF 𝑣2
𝐶𝑝2 = {IPSrc = 125.10.2.0∕24, IPDst = 20.20.20.1,pSrc =∗,

pDst = 80, tProto = TCP,domain = dangerousSite.com}

𝑆𝑝2 = [(log, {IPSrc, IPDst}), (deny, ∅)]

(6)

Projection 𝑝3, derived by mapping the NSP 𝑛 onto the VNF 𝑣3
𝐶𝑝3 = {domain = dangerousSite.com}

𝑆𝑝3 = [(log, {IPSrc, IPDst})]

(7)

3.3. PEX: Projection EXtraction

The Projection EXtraction (PEX) operation aims to compute the
projection of an NSP against a VNF, if it exists. Algorithm 1 has been
designed for accomplishing this goal.

First, given a policy 𝑛 and the manifest 𝑚𝑣 of a VNF 𝑣, the condition
et 𝐶𝑝 of the corresponding functionality 𝑝𝑣,𝑛 is computed (lines 1–9).
or each policy condition 𝑐 ∈ 𝐶𝑛 based on a field 𝑓 , the manifest of the
NF should include that field in the 𝐹+

𝑉 set or in the 𝐹 ∗
𝑉 . In the former

ase, the condition 𝑐 simply becomes a condition of the projection as
ell (line 5), as the VNF can configure that field with specific values. In

he latter, a new condition 𝑓 =∗ is created and included in the condition
et of the projection, because the VNF can only take decisions regarding
hat field, but it cannot configure it (line 7). If the NSF manifest does
ot support any condition field of the policy, the resulting condition
et of the projection remains empty. The algorithm immediately stops,
nd an early non-enforceability report is produced to inform the user
bout this event (line 9).

Second, the action set of the projection is computed (lines 10–25).
ifferently from the condition case, it is not enough that a policy action
∈ 𝑆𝑛 is included in the action set 𝐴𝑣 of the VNF manifest (line 12).

t is possible that the action 𝑠 must be enforced on some fields and
arameters (e.g., the packet source address must be modified). All the
ields on which the action 𝑠 is applied must belong to the 𝐹+

𝑉 set of the
NF, because the function must be able to directly operate on those

ields (line 15). If one of them is not supported, then the action cannot
e part of the output projection.

The creation of the action set requires an additional check with
espect to the condition set. In the policy specification, the user may
ave requested that two or more actions must be necessarily applied
y the same function (e.g., a packet satisfying certain conditions must
e logged and then discarded avoiding any other hop in the network).
herefore, either all those actions are included in the action set of the
rojection, or none of them. After generating the 𝐴𝑣 set as previously
escribed, if the algorithm notices that only a subset of actions that
hould be applied by the same function is present in it, they are re-
oved (lines 19–23). At that point, if the produced action set is empty,

hat would again trigger the generation of an early non-enforceability
eport to the user (lines 23–24). Otherwise, the projection is finally
roduced with the computed condition and action sets (line 26).

Computer Networks 228 (2023) 109745D. Bringhenti et al.

p

c
𝐶
c
e
i
𝑠
a
𝑆
c

i
a
a
s
t

𝑥

Algorithm 1 computation of 𝑝𝑣𝑛

Input: a policy 𝑛, a VNF manifest 𝑚𝑣
Output: 𝑝𝑣,𝑛

1: 𝐶𝑝 ← ∅ ⊳ Creation of the condition set
2: for each 𝑐 ∈ 𝐶𝑛 do
3: if ∃𝑓 ∈ 𝐹𝑣 | 𝑓 = 𝑐.𝑓 then
4: if 𝑓 ∈ 𝐹 +

𝑣 then
5: 𝐶𝑝 ← 𝐶𝑝 + {𝑐}
6: else
7: 𝐶𝑝 ← 𝐶𝑝 + {𝑓 =∗}

8: if 𝐶𝑝 = ∅ then
9: exit(no field is supported)

10: 𝑆𝑝 ← ∅ ⊳ Creation of the action set
11: for each 𝑠 ∈ 𝑆𝑛 do
12: if 𝑠.𝑎𝑠 ∈ 𝐴𝑣 then
13: supported(𝑠.𝑎𝑠) ← true
14: for each 𝑏 ∈ 𝑠.𝐵𝑠 do
15: if 𝑏.𝑓 ∉ 𝐹 +

𝑣 then
16: supported(𝑠.𝑎𝑠) ← false
17: if supported(𝑠.𝑎𝑠) = true then
18: 𝑆𝑝 ← 𝑆𝑝 + {𝑠}

19: for each 𝑠 ∈ 𝑆𝑝 do
20: for each 𝑠′ ∈ 𝑆𝑛 do
21: if 𝑠 ≠ 𝑠′ ∧ 𝑠′ ∉ 𝑆𝑝 ∧ (∃𝐾𝑙|𝑠, 𝑠′ ∈ 𝐾𝑙) then
22: 𝑆𝑝 ← 𝑆𝑝 ⧵ {𝑠}
23: break
24: if 𝑆𝑝 = ∅ then
25: exit(no action is supported)
26: return 𝑝𝑣,𝑛 = (𝐶𝑝, 𝑆𝑝)

Fig. 4. VAG employed in the use case.

The worst-case time complexity of Algorithm 1, used for the com-
utation of 𝑝𝑣,𝑛 = (𝐶𝑝, 𝑆𝑝), can be estimated as the sum of the time

complexities of three sequential code blocks. Lines 1–9 have 𝑂(|𝐶𝑝|)
omplexity, because 𝑂(1) operations are performed on each element of
𝑝. Lines 10–18 have 𝑂(|𝑆𝑛| ⋅ max𝑠∈𝑆𝑛

(𝑠.𝐵𝑠)) complexity because that
ode block consists of two nested loops. The external one iterates on
ach element of 𝑆𝑛, whereas the internal one requires a number of
terations that in the worst case is equal to the cardinality of the largest
.𝐵𝑠 set, with 𝑠 ∈ 𝑆𝑛. Lines 19–26 have 𝑂(|𝑆𝑛|

2) complexity, because
lso that code block is made of two nested loops, both iterating on the
𝑛 set. Summing up, the overall worst-case time complexity for the
omputation of 𝑝𝑣,𝑛 is 𝑂(|𝐶𝑝| + |𝑆𝑛| ⋅ max𝑠∈𝑆𝑛

(𝑠.𝐵𝑠) + |𝑆𝑛|
2). However,

by considering the NSPs that are commonly defined in studies related
to security policy refinement [1,16], the condition set commonly is
much larger than the action set (e.g., just by imposing conditions on
the IP 5-tuple, five conditions are included in the 𝐶𝑝 set). Therefore,
the dominant term among those appearing in the notation of asymptotic
complexity is |𝐶𝑝|.

A visual example is shown in Fig. 5. Each projection denoted by
the 𝑝 symbol derives from mapping policy 𝑛 against a different VNF
manifest. For instance, 𝑝1 derives from a simple packet filter that cannot
manage fields related to domain or time interval, 𝑝 derives from a VNF
8

3

Table 3
Symbol table.

Symbol Explanation

𝑛 Network security policy that must be enforced
𝑆𝑛 Action set of 𝑛
𝑠𝑖 𝑖th action in 𝑆𝑛, with 𝑖 = 1,… , |𝑆𝑛|

𝐾𝑙 ℎth subset of actions of 𝑆𝑛, including the same function should be in
charge of, with 𝑙 = 1,… , 𝑚

𝑎𝑠𝑖 Operation of 𝑖th action
𝐵𝑠𝑖 Enforcement mode set of 𝑖th action
𝑏𝑖ℎ ℎth enforcement mode of 𝑖th action, with ℎ = 1,… , |𝐵𝑠ℎ |

𝑃𝑣 Projection set
𝑝𝑗 𝑗th projection of 𝑃𝑣, with 𝑗 = 1, 2,… , |𝑃𝑣|

𝑥𝑖𝑗 Binary variable, whose value is set to 1 by the solver if the 𝑗th
projection is chosen as responsible for the 𝑖th action of 𝑝, otherwise it
is set to 0

𝑦𝑖𝑗 Binary variable, whose value is set to 1 before launching the solver if
the 𝑗th projection supports the 𝑖th action, otherwise it is set to 0

𝑧𝑖𝑗ℎ Binary variable, whose value is set to 1 before launching the solver if
the 𝑗th projection supports the 𝑖th action with ℎth enforcement mode
of 𝑝, otherwise it is set to 0

that may fully enforce the NSP, and 𝑝4 from a VNF that can only log
the IP 5-tuple of the received traffic.

Given an NSP, the algorithm is repeated for each VNF that is
available. The resulting projections may not contain all the information
of the original NSP, e.g., they may support a partial set of all the actions
requested by the NSP. Therefore, the PEX task is not sufficient, but a
projection chaining operation is still required.

3.4. PCH: Projection Chaining

The Projection CHaining (PCH) operation aims to compute all the
possible chains of the projections output by the PEX operation. As
the PID stage is topology-independent and it works on each policy
independently from the other ones, it cannot decide if a chain is more
suitable than the others.

The problem of finding the projection chains has been formulated
as an Enumeration Problem (EP) over a set of Constraint Satisfaction
Problem (CSP)-like formulas. A chain is a solution for the EP if it
contains a projection responsible for each action of the original NSP.
Among all the projections that support a certain NSP action, the solver
chooses a single one as responsible with the aim to avoid redundancy.
Eqs. (8)–(11) represent the problem constraints, and Table 3 describes
the symbols used for their formulation. Among them, the output binary
variable appearing in the formulas, 𝑥𝑖𝑗 , expresses if a certain projection
𝑝𝑗 is chosen as responsible for action 𝑠𝑖 (when 𝑥𝑖𝑗 = 1) or this task
s assigned to another projection (when 𝑥𝑖𝑗 = 0). If 𝑆𝑛 is a set, the
ssignment of index 𝑖 to each policy action is random. Instead, if 𝑆𝑛 is
list, the assignment naturally follows the ordering of the actions in it,

o that index 1 is assigned to the first action, and index |𝑆𝑛| is assigned
o the last one.
|𝑃𝑣|
∑

𝑗=1
𝑥𝑖𝑗 = 1,∀𝑖 = 1,… , |𝑆𝑛| (8)

𝑖𝑗 ≤ 𝑦𝑖𝑗 ,∀𝑖 = 1,… , |𝑆𝑛|,∀𝑗 = 1,… , |𝑃𝑣| (9)

|𝐵𝑠𝑖 | ⋅ 𝑥𝑖𝑗 ≤
|𝐵𝑠𝑖 |
∑

ℎ=1
𝑧𝑖𝑗ℎ,∀𝑖 = 1,… , |𝑆𝑛|,∀𝑗 = 1,… , |𝑃𝑣| (10)

|𝐾𝑙| ⋅ 𝑥𝑖𝑗 ≥
∑

𝑖′|𝑠𝑖′𝑗∈𝐾𝑙

𝑥𝑖′𝑗 ,∀𝑖 = 1,… , |𝑆𝑛|,∀𝑗 = 1,… , |𝑃𝑣| (11)

The four quantified CSP-like formulas can be explained as follows:

1. According to formula (8), one and only one projection 𝑝𝑗 is
responsible for action 𝑠𝑖. Even though multiple projections may
fulfill this task, in each enumerated solution only one is chosen.

Computer Networks 228 (2023) 109745D. Bringhenti et al.
Fig. 5. Projection EXtraction: a visual example.

2. According to formula (9), a projection 𝑝𝑗 can be chosen as
responsible for action 𝑠𝑖 only if it supports the operation 𝑎𝑠𝑖 ,
i.e., if ∃𝑠𝑘 ∈ 𝑆𝑝 such that 𝑎𝑠𝑘 = 𝑎𝑠𝑖 . This constraint is required
as the PEX operation may have extracted projection that only
partially support the actions required by the corresponding NSP.

3. According to formula (10), a projection 𝑝𝑗 can be chosen as
responsible for action 𝑠𝑖 only if it supports all the enforcement
modes defined in 𝐵𝑠𝑖 . This constraint is included in the formula-
tion of the EP problem only if 𝐵𝑠𝑖 ≠ ∅, otherwise constraint (9)
is enough as condition of choice.

4. According to formula (11), if a projection 𝑝𝑗 is chosen as respon-
sible for action 𝑠𝑖 and if 𝑠𝑖 belongs to a set 𝐾𝑙 of actions that must
be applied by the same projection, then 𝑝𝑗 must be responsible
also for all the other actions in 𝐾𝑙 as well. This constraint is
included in the formulation of the EP problem only if there is
the specification of at least a 𝐾𝑙 set.

Each assignment for the 𝑥𝑖𝑗 variables represents a possible pro-
jection chain, as 𝑥𝑖𝑗 = 1 implies that the 𝑖th action requires an
instance of the 𝑗th projection for its enforcement. However, the solu-
tion set computed by solving this EP problem may not be complete,
and two post-processing operations may be required under specific
circumstances.

First, if 𝑆𝑛 is an (unordered) set, the assignment of index 𝑖 to each
policy action does not follow any strict ordering guideline. Therefore,
only a possible permutation of the actions out of the |𝑆𝑛| possible ones
is established. This deficiency is easily overcome, by computing all the
other permutations.

Second, it may happen that two variables having consecutive values
for the 𝑖 index have the same 𝑗 index, i.e., the actions require the same
projections to be enforced. On the one hand, if the two actions are not
part of a 𝐾𝑙 set, then either a single instance or a pair of instances
of the 𝑗th projection may be used to enforce those actions. Therefore,
both solutions must be derived from the single assignment computed
by solving the EP problem. On the other hand, if the two actions are
part of a 𝐾𝑙 set, then the only possible solution is that one where a
single projection is used.

A visual example of the PCH operation is shown in Fig. 6. The
projections that are input to the EP characterizing this operation are
the same ones that were presented in Fig. 5. They are combined in
three different chains, which can enforce all the actions of the requested
NSP 𝑛. As it can be seen, Chain 1 is composed of a single projection,
𝑝3, because it can perform both the requested operations, i.e., logging
the source and destination IP addresses of the packets identified by
the policy conditions, and then block those packets from reaching their
destination. Instead, the other chains require more projections, because
each one of them is not enough to enforce all the actions.

After the completion of the post-processing operations, the compu-
tation of the VSG starting from the projection chains is left to the ACG
9

Fig. 6. Projection CHaining: a visual example.

stage. As explained in Section 3.1, this stage works on information
coming from the network, and having complete visibility on all the
requested policies, so it is a complex operation by itself. Nonetheless,
the way it can take decisions is simplified by the fact that the possible
projection chains have been already computed, and they can be rep-
resented as constants in the definition of the problem instead of open
variables.

4. Implementation and validation

As this paper focuses on the first stage of the proposed security
configuration workflow, this section describes how the models defined
for the projection abstraction and the algorithms designed for their
computation have been implemented and validated.

4.1. Implementation

The PID stage of the security configuration workflow has been
implemented as a Java framework. The code is publicly available in the
GitHub repository at the following link: https://github.com/netgroup-
polito/verefuse.

The input VNF manifests and the NSPs can be specified by the user
in XML or JSON format. The same format is used for the representation
of the output, i.e., the automatically computed projection chains. The
framework exposes a set of REST APIs, so that it can interact with the
user or with other applications. As both the PEX and PCH tasks can
work on each NSP independently from the others, the code of both has
been parallelized. The implementation allows the user to specify the
number of threads which must be used in the execution of the program.
If the user does not specify the thread number, then eight threads are
used by default.

Besides, the formulation and resolution of the enumeration problem
of the PCH task are internally managed by employing the mathematical
programming solver Gurobi1 (version 8.1.1). This solver can work on
different types of problems, e.g., linear programming, mixed-integer
linear programming, quadratic programming. Gurobi offers simple APIs
in multiple high-level programming languages, including Java, which
have been used in the PID’s implementation for the definition of the
problem constraints and the resolution.

4.2. Validation

4.2.1. Experimental setup and validation objectives
The experimental setup used for the framework validation consists

in a machine with an Intel i7-6700 CPU running at 3.40 GHz and 32 GB
of RAM.

This setup has been used to fulfill four validation objectives, whose
aims are to check:

1 Link: https://www.gurobi.com/. Last accessed: February 20th, 2023.

Computer Networks 228 (2023) 109745D. Bringhenti et al.
• the generality of the models defined for the VNF manifests (Sec-
tion 4.2.2);

• the correctness of the algorithms employed for the projection
extraction and chaining (Section 4.2.3);

• the scalability of the PID stage and its superiority with respect to
the state of the art solutions (Section 4.2.4);

• the optimization provided by the proposed security configuration
workflow (Section 4.2.5).

4.2.2. Validation of model generality
We have analyzed 30 VNFs that are currently available for enforcing

security requirements, and we have tried to model their manifests.
Among the considered VNFs, there are packet filtering firewalls (ipt-
ables, ipfirewalls, nftables, PfSense), web-application firewalls (Mod-
Security, IronBee, NAXSI, WebKnight), anti-spam filters (SpamAssas-
sin, MailCleaner, Rspamd), VPN gateways (Strongswan, Openswan,
SoftEther, OpenConnect), intrusion detection systems (Suricata, Snort,
Zeek). For each VNF, we have identified the actions that can be
performed (i.e., the 𝐴 set) and the fields that can be configured (i.e., the
𝐹+ set) by carefully analyzing their configuration guides and examples.
Then, we have identified the fields for which the VNFs may take
decision but they cannot be configured (i.e., the 𝐹 ∗ set) by reasoning
about what security properties each VNF can enforce, also by referring
to the classical ISO/OSI protocol stack. For example, all the fields
related to web application (e.g., URL, domain) belong to the 𝐹 ∗ set for
each analyzed packet filtering VNF. The analysis of such a high number
of open-source functions shows how our model is general enough to
support their representation as manifest. Therefore, it is also suitable
for similar functions, and it can be easily extended for future VNFs by
introducing new actions and fields in the 𝐴, 𝐹+ and 𝐹 ∗ sets.

4.2.3. Validation of correctness
The correctness of the framework has been validated by applying

it on several use cases. We have written multiple NSPs, and we have
run the framework to create the projection chains. For each NSP, we
have run it multiple times, changing the VNF manifests that may be
used, with the aim to create particular cases that could test specific
characteristics of the algorithms used in the PID stage. For example,
the following scenarios have been considered:

• VNFs with the same manifest are used to enforce an NSP, to check
that the framework creates the same projection for them and uses
it once in creating the projection chains;

• an inadequate number of VNFs is used to enforce an NSP, to check
that the framework produces a non-enforceability report stating
that a feasible solution for the security configuration problem
does not exist;

• NSPs with unordered actions have been written, to check that the
framework can consider also the more complex case where all
the chains derived from the solution of the enumeration problem
are subject to a post-processing step to consider all the possible
permutations of the projections;

• NSPs with actions that must be applied on packet fields have been
written, to check that the framework uses only the VNF manifests
having all those fields in the 𝐹+ for creating a projection.

After the computation of the projections, tools for automatic secu-
rity configuration (e.g., [20] for firewalls, [21] for VPN gateways) have
been fed with the result of the PID stage. With the aim to verify that
the NSPs are correctly enforced by the configuration computed by the
tools when using the projections generated by our framework, we have
used the Mininet emulator to instantiate the related network topologies
in a controlled environment. The tests made on the Mininet emulation
confirmed that all NSPs are satisfied, as expected.

Both the VNF manifests and the NSPs used for the generality and
correctness tests are available in the GitHub repository, so that they
can be used to reproduce the tests and can be extended to consider
other scenarios.
10
Fig. 7. Scalability versus number of network security policies.

4.2.4. Evaluation of scalability
A series of scalability tests have been done on the framework. The

two parameters against which scalability has been evaluated are the
numbers of NSPs and of VNFs from which the projections must be
derived. The scenarios employed for these scalability tests are extended
versions of the problem inputs used for the description of the clarifying
use case in Section 3.1, i.e., the network topology shown in Fig. 4, the
VNF database of Table 1 and the NSPs of Table 2.

Fig. 7 shows the results for the scalability tests related to the number
of NSPs. For these tests, the number of VNFs is fixed to 100, whereas
the number of NSPs is progressively increased from 1000 to 10 000.
Each dotted plot in the charts composing Fig. 7 represents the average
value computed over 100 repetitions of the test. Initially, the behavior
of the framework has been analyzed when also varying the number of
threads used for the execution of the internal algorithms, and supposing
that the NSP actions are ordered. The results depicted in Fig. 7(a)
show that, for the machine we have used, the least computation time
is almost always achieved when eight threads are used. If a higher
number of threads is employed, the performance gets worse, because
thread creation overhead is not adequately compensated by our ma-
chine’s CPU capacity of running so many threads simultaneously. Then,
the difference in computation time that occurs if the NSPs do not
impose an ordering to the actions has been evaluated. It is presented
in Fig. 7(b). As it was expected, the behavior of the tool gets worse
if the actions requested by each NSP are unordered. In the worst case
that has been analyzed, less than one minute is enough to compute the
solutions when the actions are ordered, whereas almost three minutes
are required for unordered actions. This is easily explained by the fact
that, in the PCH algorithm, all the possible permutations of the actions
must be considered. Two remarks are worth mentioning, though. First,
the case where all 10 000 NSPs require unordered actions has been
artificially created to put our system under great stress. In reality, the
NSPs that must be enforced in a network have a mixed nature, i.e., some
require ordered actions while others do not. Second, the result achieved
for the worst case is significant by itself, if compared with what human
users may do manually. Manual approaches would struggle in dealing
with such a huge number of NSPs without the aid of an automated
tool, and they would take a much higher time than only three minutes
to identify all the possible projections.

Similar considerations apply to the tests carried out for checking
the framework scalability for increasing numbers of VNFs. The results
of these tests are depicted in Fig. 8. Differently from the previous tests,
the number of NSPs is fixed to 100, whereas the number of VNFs is
progressively increased from 1000 to 10 000. Again, each dotted plot
in the charts composing Fig. 8 represents the average value computed
over 100 repetitions of the test. On the one hand, from the analysis
of those results, the creation of eight threads is confirmed to be the
best choice for our machine. On the other hand, again the cases where
policy actions are unordered require more time than those where
actions are ordered. An interesting consideration is that the scalability
for increasing number of VNFs is even better than the one for NSPs.
This result can be explained by the fact that for each NSP the whole

Computer Networks 228 (2023) 109745D. Bringhenti et al.
Fig. 8. Scalability versus number of virtual network functions.

Fig. 9. Validation under two peculiar scenarios.

PID process must be executed, whereas each additional VNF simply
represents an additional decision variable, but the number of times the
PID process is executed stays the same.

Two additional scenarios where the framework scalability has been
validated are shown in Fig. 9. First, we have tested the implementation
by equally increasing the numbers of VNFs and NSPs, until each of
them is 10 000. Even though the computation time is higher than the
ones shown in Figs. 7(b) and 8(b), 9(a) shows that the trend is not
exponential, but it follows the same growth of the previously analyzed
scenarios, both for NSPs having ordered or unordered actions. Second,
we have considered a stressing scenario, where the administrator of a
big-sized network has 500 VNFs available for enforcing a huge number
of NSPs, i.e., from 10 000 to 100 000 NSPs. Even though such high
numbers may be rare, the fast growth of modern virtual networks may
soon create circumstances where they are not so uncommon. Anyway
the framework is able to manage this case as well, as shown in Fig. 9(b).
The time required for computing the projection chains is surely higher,
as for the worst case (i.e., the one characterized by 100 000 NSPs and
500 VNFs) more than 10 min are required. But again the trend is
not exponential, and the algorithm surely performs better than what
a human user may achieve.

The results of these tests show that our framework has better
scalability than state-of-the-art tools that are used for VNF selection.
On the one hand, the algorithm proposed in [12] is able to select the
most suitable VNFs among at most 50 ones in 1.5 s. On the other
hand, the approach pursued in [13] computes the solution to the VNF
selection problem for 1500 NSPs in 20 s. In both cases, our solution can
reach the solution for projection identification in faster times (e.g., it
takes 12 s to solve the problem for 1500 NSPs), but it can manage a
much larger set of VNFs — Fig. 8(b) shows its scalability till 10 000
VNFs, Fig. 9(b) shows its scalability till 100 000 NSPs. Moreover, the
computation time required by this implementation of the PID stage
is much lower than the time required by algorithms that may be
employed in the next stages of the security configuration workflow. For
example, the heuristic method employed in [16] to manage the ACG
stage for 20 VNFs takes 4 s, the optimization strategy proposed in [20]
requires around 3 min to configure 100 packet filtering firewalls, and
the embedding algorithm illustrated in [40] takes up to 4 min to define
11
Fig. 10. Evaluation of optimization.

the embedding scheme of 30 VNFs in a physical network. With respect
to them, our implementation of the PID stage is in line with the strict
timing requirements of virtual networks, and can manage scenarios
with higher numbers of VNFs and NSPs.

4.2.5. Evaluation of optimization
The optimization that the novel security configuration workflow can

achieve in terms of two main metrics (i.e., selected VNFs and deploy-
ment cost) has been evaluated varying the size of the configuration
problem. This validation is based on similar scenarios as those used
for the scalability evaluation. Indeed, also these scenarios are extended
versions of the problem inputs used for the description of the clarifying
use case in Section 3.1.

In order to show how our approach behaves with respect to the state
of the art, we compare it with two strategies based on the traditional
configuration workflow. We consider: (a) the worst-cost strategy that
selects a different VNF instance for enforcing each NSP, and that always
chooses VNFs whose manifest includes the NSP condition fields of the
highest level in the ISO/OSI stack (e.g., to block packets going to a web
server, a web-application firewall is always chosen instead of a packet
filter); (b) a more optimized strategy that performs a pre-analysis of the
NSRs to understand if for some of them a single VNF can be selected
(e.g., when the policy conditions are the same for two NSPs). For
these workflows, the algorithms that are used for the configuration and
embedding stages are those presented respectively in [20,40].

Figs. 10(a) and 10(b) show the optimization that our approach
can provide with respect to the two traditional strategies. Strategy
(a) clearly fails in optimizing both the number of selected VNFs and
the deployment cost, as its only aim is to provide a solution to the
configuration problem without looking for optimization. Strategy (b)
improves the result with respect to the worst case, but it suffers from
the way the traditional workflow is organized. In fact, as VNF selection
occurs earlier than virtual network synthesis, strategy (b) cannot know
where the security functionalities must perform their operations in the
network topology. Therefore, it redounds them so as to consider all the
possible ways in which the network may be synthesized. Instead, our
approach achieves a considerable gain in both number of selected VNFs
and deployment cost, as it benefits from all the advantages illustrated
in Section 3.1. In fact, selecting the VNFs after their functionalites
avoids redundant allocation schemes and chooses VNFs with a lower
cost, as the VNF selection stage has all the required information about
how security must be enforced in the network. The impact of these
benefits can by quantified by estimating the improvement percentages
of our approach with respect to the worst-cost strategy (a) and the more
optimized strategy (b), when the three techniques are applied to the
validation scenario where 100 NSPs must be enforced. On the one hand,
postponing VNF selection in this scenario allows the selection of 79%
fewer VNFs than the worst-case strategy (a), and 68% fewer VNFs than
strategy (b). On the other hand, the savings in terms of deployment cost
provided by our novel configuration workflow in this scenario is 90%
with respect the worst-case strategy (a), and 77% with respect strategy
(b).

Computer Networks 228 (2023) 109745D. Bringhenti et al.
5. Conclusions and future work

This paper presented the projection abstraction, aiming to abstract
the security-related operations that VNFs can perform to enforce secu-
rity policies, in a way that is independent from the specific characteris-
tics of their implementations. This abstraction allowed us to reorganize
the traditional configuration workflow, in such a way that projections
are used for the synthesis of the virtual security graph instead of their
VNF counterparts, whose selection is postponed to the moment their
deployment is required in the physical network. A formalization for
this abstraction has been proposed, alongside with an algorithm to
compute projection chains as candidate solutions that fully support the
user-specified network security policies.

A Java-based framework has been developed to implement this
algorithm, and validation tests have been carried out on a state-of-
the-art computing machine to assess model generality, correctness,
scalability and optimization. These tests showed that the proposed
approach can optimize both VNF selection and embedding thanks to
their different position in the new workflow. In fact, they showed
that the developed framework can reduce both the number of selected
VNFs and their deployment cost. For example, in the analyzed scenario,
the improvement percentages for these two parameters are 79% and
90% with respect to the worst-case strategy, while 68% and 77% with
respect to a traditional more optimized configuration strategy. These
benefits can be particularly relevant for scenarios such as virtualized
IoT networks, where energy efficiency and resource consumption are
problems that must comply with the limited resources provided by
constrained devices.

As future work, we are planning to integrate the security configu-
ration workflow based on the projection abstraction with reaction and
mitigation techniques. The objective of that work is to create a fully
autonomous system, where network security is periodically updated in
accordance with policies defined by human users, and also with the
identification of on-going cyber attacks.

CRediT authorship contribution statement

Daniele Bringhenti: Conceptualization, Methodology, Software.
Riccardo Sisto: Conceptualization, Methodology. Fulvio Valenza:
Conceptualization, Methodology, Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] R. Boutaba, I. Aib, Policy-based management: A historical perspective, J. Netw.
Syst. Manag. 15 (4) (2007) 447–480.

[2] C. Islam, M.A. Babar, S. Nepal, A multi-vocal review of security orchestration,
ACM Comput. Surv. 52 (2) (2019) 37:1–37:45.

[3] B. Jäger, Security orchestrator: Introducing a security orchestrator in the
context of the ETSI NFV reference architecture, in: Proc. of the IEEE
TrustCom/BigDataSE/ISPA, 2015.

[4] C. Pham, N.H. Tran, S. Ren, W. Saad, C.S. Hong, Traffic-aware and energy-
efficient vNF placement for service chaining: Joint sampling and matching
approach, IEEE Trans. Serv. Comput. 13 (1) (2020).

[5] I. Farris, T. Taleb, Y. Khettab, J. Song, A survey on emerging SDN and NFV
security mechanisms for IoT systems, IEEE Commun. Surv. Tutor. 21 (1) (2019)
812–837.

[6] I. Alam, K. Sharif, F. Li, Z. Latif, M.M. Karim, S. Biswas, B. Nour, Y. Wang, A
survey of network virtualization techniques for internet of things using SDN and
NFV, ACM Comput. Surv. 53 (2) (2021) 35:1–35:40.
12
[7] S. Javanmardi, M. Shojafar, R. Mohammadi, V. Persico, A. Pescapè, S-FoS: A
secure workflow scheduling approach for performance optimization in SDN-based
IoT-Fog networks, J. Inf. Secur. Appl. 72 (2023) 103404.

[8] A.V. Ventrella, F. Esposito, A. Sacco, M. Flocco, G. Marchetto, S. Gururajan,
APRON: an architecture for adaptive task planning of internet of things in
challenged edge networks, in: 2019 IEEE 8th International Conference on Cloud
Networking, CloudNet 2019, Coimbra, Portugal, November 4-6, 2019, IEEE,
2019, pp. 1–6.

[9] D. Mishra, B. Naik, J. Nayak, A. Souri, P.B. Dash, S. Vimal, Light gradient
boosting machine with optimized hyperparameters for identification of malicious
access in IoT network, Digit. Commun. Netw. (2022).

[10] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, A novel approach for security
function graph configuration and deployment, in: Proc. of the IEEE Inter. Conf.
on Network Softwarization, 2021.

[11] E.J. Scheid, C.C. Machado, M.F. Franco, R.L. dos Santos, R.J. Pfitscher, A.E.S.
Filho, L.Z. Granville, INSpIRE: Integrated NFV-based intent refinement envi-
ronment, in: Proc. of the IFIP/IEEE Symp. on Integrated Network and Service
Management, 2017.

[12] Z. Hao, Z. Lin, R. Li, A SDN/NFV security protection architecture with a function
composition algorithm based on trie, in: Proc. of the Inter. Conf. on Computer
Science and Application Engineering, 2018.

[13] Y. Liu, H. Zhang, J. Liu, Y. Yang, A new approach for delivering customized
security everywhere: Security service chain, Secur. Commun. Netw. 2017 (2017).

[14] Y. Liu, Y. Lu, W. Qiao, X. Chen, A dynamic composition mechanism of security
service chaining oriented to SDN/NFV-Enabled networks, IEEE Access 6 (2018).

[15] A.S. Sendi, Y. Jarraya, M. Pourzandi, M. Cheriet, Efficient provisioning of security
service function chaining using network security defense patterns, IEEE Trans.
Serv. Comput. 12 (4) (2019).

[16] C. Basile, F. Valenza, A. Lioy, D.R. López, A.P. Perales, Adding support for
automatic enforcement of security policies in NFV networks, IEEE/ACM Trans.
Netw. 27 (2) (2019).

[17] A. El-Hassany, P. Tsankov, L. Vanbever, M.T. Vechev, NetComplete: Practical
network-wide configuration synthesis with autocompletion, in: S. Banerjee, S.
Seshan (Eds.), Proc. of the USENIX Symp. on Networked Systems Design and
Implementation, 2018.

[18] C. Bodei, P. Degano, L. Galletta, R. Focardi, M. Tempesta, L. Veronese, Language-
independent synthesis of firewall policies, in: Proc. of the IEEE European Symp.
on Security and Privacy, 2018.

[19] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, J. Yusupov, Automated optimal
firewall orchestration and configuration in virtualized networks, in: Proc. of the
IEEE/IFIP Network Operations and Management Symposium, 2020.

[20] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, J. Yusupov, Automated firewall
configuration in virtual networks, IEEE Trans. Dependable Secur. Comput. 20 (2)
(2023) 1559–1576.

[21] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, Short paper: Automatic
configuration for an optimal channel protection in virtualized networks, in: Proc.
of the Work. on Cyber-Security Arms Race, 2020.

[22] L. Firdaouss, A. Bahnasse, B. Manal, Y. Ikrame, Automated VPN configuration
using DevOps, in: N. Varandas, A. Yasar, H. Malik, S. Galland (Eds.), The
12th International Conference on Emerging Ubiquitous Systems and Pervasive
Networks (EUSPN 2021), Leuven, Belgium, November 1-4, 2021, in: Procedia
Computer Science, vol. 198, Elsevier, 2021, pp. 632–637.

[23] A.M. Zarca, J.B. Bernabé, R. Trapero, D. Rivera, J. Villalobos, A.F. Skarmeta,
S. Bianchi, A. Zafeiropoulos, P. Gouvas, Security management architecture for
NFV/SDN-Aware IoT systems, IEEE Internet Things J. 6 (5) (2019) 8005–8020.

[24] M.A. Rahman, A. Datta, E. Al-Shaer, Automated configuration synthesis for
resilient smart metering infrastructure, EAI Endorsed Trans. Secur. Saf. 8 (28)
(2021) e4.

[25] D. Bringhenti, J. Yusupov, A.M. Zarca, F. Valenza, R. Sisto, J.B. Bernabé, A.F.
Skarmeta, Automatic, verifiable and optimized policy-based security enforcement
for SDN-aware IoT networks, Comput. Netw. 213 (2022) 109123.

[26] J. Kim, Y. Kim, V. Yegneswaran, P.A. Porras, S. Shin, T. Park, Extended data
plane architecture for in-network security services in software-defined networks,
Comput. Secur. 124 (2023) 102976.

[27] L. Xia, J. Strassner, C. Basile, D.R. Lopez, Information Model of NSFs Capabilities,
Rfc, RFC Editor, 2019.

[28] D.R. López, E. Lopez, L. Dunbar, J. Strassner, R. Kumar, Framework for Interface
to Network Security Functions, Vol. 8329, RFC.

[29] K. Giotis, Y. Kryftis, V. Maglaris, Policy-based orchestration of NFV services
in software-defined networks, in: Proceedings of the 1st IEEE Conference on
Network Softwarization, NetSoft 2015, London, United Kingdom, April 13-17,
2015, IEEE, 2015, pp. 1–5.

[30] S. Hyun, J. Kim, H. Kim, J. Jeong, S. Hares, L. Dunbar, A. Farrel, Interface to
network security functions for cloud-based security services, IEEE Commun. Mag.
56 (1) (2018) 171–178.

[31] A.M. Zarca, D.G. Carrillo, J.B. Bernabé, J.O. Murillo, R. Marín-Pérez, A.F.
Skarmeta, Enabling virtual AAA management in SDN-based IoT networks, Sensors
19 (2) (2019) 295.

[32] Y. Bartal, A. Mayer, K. Nissim, A. Wool, Firmato: A novel firewall management
toolkit, ACM Trans. Comput. Syst. 22 (4) (2004).

Computer Networks 228 (2023) 109745D. Bringhenti et al.
[33] J. García-Alfaro, F. Cuppens, N. Cuppens-Boulahia, S. Preda, MIRAGE: A manage-
ment tool for the analysis and deployment of network security policies, in: Proc.
of the Intern. Work. Data Privacy Management and Autonomous Spontaneous
Security, 2010.

[34] M. Rossberg, G. Schaefer, T. Strufe, Distributed automatic configuration of
complex ipsec-infrastructures, J. Netw. Syst. Manage. 18 (3) (2010).

[35] S. Jiao, X. Zhang, S. Yu, X. Song, Z. Xu, Joint virtual network function
selection and traffic steering in telecom networks, in: Proc. of the IEEE Global
Communications Conference, 2017.

[36] J. Pei, P. Hong, D. Li, Virtual network function selection and chaining based on
deep learning in SDN and NFV-enabled networks, in: Proc. of the IEEE Inter.
Conf. on Communications Workshops, 2018.

[37] J. Pei, P. Hong, K. Xue, D. Li, D.S.L. Wei, F. Wu, Two-phase virtual net-
work function selection and chaining algorithm based on deep learning in
SDN/NFV-Enabled networks, IEEE J. Sel. Areas Commun. 38 (6) (2020).

[38] L.E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G.T. Wilfong, Y.R. Yang, C.
Guo, PACE: Policy-aware application cloud embedding, in: Proc. of the IEEE
INFOCOM, 2013.

[39] X. Li, C. Qian, An NFV orchestration framework for interference-free policy
enforcement, in: 36th IEEE International Conference on Distributed Computing
Systems, ICDCS 2016, Nara, Japan, June 27-30, 2016, IEEE Computer Society,
2016, pp. 649–658.

[40] G. Marchetto, R. Sisto, F. Valenza, J. Yusupov, A. Ksentini, A formal approach
to verify connectivity and optimize VNF placement in industrial networks, IEEE
Trans. Ind. Inform. 17 (2) (2021).

[41] C. Basile, C. Pitscheider, F. Risso, F. Valenza, M. Vallini, Towards the dynamic
provision of virtualized security services, in: F. Cleary, M. Felici (Eds.), Cyber
Security and Privacy - 4th Cyber Security and Privacy Innovation Forum, CSP
Innovation Forum 2015, Brussels, Belgium, April 28-29, 2015, Revised Selected
Papers, in: Communications in Computer and Information Science, vol. 530,
Springer, 2015, pp. 65–76.
13
Daniele Bringhenti received the M.Sc. degree (summa cum
laude) and the Ph.D. degree (summa cum laude) in com-
puter engineering from the Politecnico di Torino, Torino,
Italy, in 2019 and 2022 respectively, where he is currently
a Postdoctoral Researcher. His research interests include
novel networking technologies, automatic orchestration and
configuration of security functions in virtualized networks,
formal verification of network security policies.

Riccardo Sisto received the Ph.D. degree in computer
engineering from the Politecnico di Torino, Italy, in 1992.
Since 2004, he has been a Full Professor of computer
engineering with the Politecnico di Torino. He has authored
and coauthored more than 100 scientific papers. His main
research interests include formal methods, applied to dis-
tributed software and communication protocol engineering,
distributed systems, and computer security. He is a Senior
Member of the ACM.

Fulvio Valenza received the M.Sc. degree (summa cum
laude) and the Ph.D. degree (summa cum laude) in com-
puter engineering from the Politecnico di Torino, Torino,
Italy, in 2013 and 2017, respectively, where he is currently
a Tenure-Track Assistant Professor. His research activity
focuses on network security policies, orchestration and man-
agement of network security functions in SDN/NFV-based
networks, and threat modeling.

