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Abstract
The purpose is to use Shannon entropy measures to develop classification techniques and an
index which estimates the separation of the groups in a finite mixture model. These measures
can be applied to machine learning techniques such as discriminant analysis, cluster analysis,
exploratory data analysis, etc. If we know the number of groups and we have training samples
from each group (supervised learning) the index is used to measure the separation of the
groups. Here some entropy measures are used to classify new individuals in one of these
groups. If we are not sure about the number of groups (unsupervised learning), the index can
be used to determine the optimal number of groups from an entropy (information/uncertainty)
criterion. It can also be used to determine the best variables in order to separate the groups.
In all the cases we assume that we have absolutely continuous random variables and we use
the Shannon entropy based on the probability density function. Theoretical, parametric and
non-parametric techniques are proposed to get approximations of these entropy measures in
practice. An application to gene selection in a colon cancer discrimination study with a lot
of variables is provided as well.
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1 Introduction

Themeasure of the uncertainty associated to a randomvariable is a task of great and increasing
interest. Since the pioneering work of Shannon (1948), in which the concept of Shannon
entropy was defined as the average level of information or uncertainty related to a random
event, several measures of uncertainty with different purposes have been defined and studied.
The Shannon (differential) entropy associated to a random vector X with an absolutely
continuous distribution is a good way to measure the uncertainty of the data from X. It
is defined by

H(X) = E(− log f (X)),

where f is the probability density function ofX and log is the natural log, see Shannon (1948).
Several generalizations and extensions of the Shannon entropy have been proposed in the
literature with the scope of better analyzing the uncertainty in different scenarios. Among
them we recall the weighted entropy (Di Crescenzo and Longobardi 2006), the cumulative
entropies (Balakrishnan et al. 2022; Rao et al. 2004), Tsallis entropy (Tsallis 1988) and Rényi
entropy (Rényi 1961).

In many applications, the distribution of X is a finite mixture of s distributions with some
probabilities p1, . . . , ps ≥ 0 such that p1 + · · · + ps = 1. Maybe, the main application
nowadays is the assessment of differential expression from high dimensional genomic data.
There are a lot of other applications. For example, some applications to information of additive
noise models in communication channels or thermodynamic of computations can be seen in
Melbourne et al. (2022) and in the references therein. Results for Gaussian (normal) mixtures
in several scenarios where the transmitters utilize pulse amplitude modulation constellations
can be seen in Moshksar and Khandani (2016).

Several criteria are available in the literature to determine the optimal number of groups in
a mixture model. An entropy criterion called NEC (normalized entropy criterion) to estimate
the number of clusters arising from a mixture model was proposed in Celeux and Soromenho
(1996). There it is compared with other popular indices such as the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion (BIC). A recent modification was
proposed in Biernacki et al. (1999). The main advantage of the entropy indices is that they do
not depend on the number of unknown parameters in the mixture model (as AIC and BIC do).

In this paper we propose a new index based on Shannon entropy to measure the separation
of the groups in amixture. As theNEC, this index does not depend on the number of unknown
parameters and it can be estimated by using non-parametric techniques. This index can be
used to determine the optimal number of groups in a mixture model both in discriminant
(supervised methods) or cluster analysis (unsupervised methods). This approach is also used
to propose discriminant criteria to classify new individuals in one of these groups. The
procedures are illustrated by using simulated examples (which show the accuracy of the
empirical measures) and real data examples. A real case study dealing with the selection of
discriminant variables in a colon cancer data set is provided as well.

The rest of the paper is organized as follows. In Sect. 2, we introduce the notation, themain
definitions and the preliminary results. The new index and the applications to discriminant
analysis are placed in Sect. 3. The examples are in Sect. 4. The application to the colon cancer
data set is done in Sect. 5. Finally, Sect. 6 contains the conclusions and some tasks for future
research projects.
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2 Notation and Preliminary Results

First, we present the notions for the univariate case. The Shannon entropy associated to a
random variable X with probability density function (PDF) f is defined by

H(X) = E(− log f (X)) = −
∫
R

f (x) log f (x)dx,

where log represents the natural log and, by convention, 0 log 0 = 0. The value H(X) is used
to measure the uncertainty (dispersion) in the values of X , see Shannon (1948). The random
variable − log( f (X)) is called information content of X in Di Crescenzo et al. (2021). For
other entropy measures see Balakrishnan et al. (2022), Buono and Longobardi (2020), Di
Crescenzo and Longobardi (2006), Rao et al. (2004), Rényi (1961), Tsallis (1988) and the
references therein.

If X1, . . . , Xn is a sample of independent and identically distributed (IID) random vari-
ables from X , then H(X) can be estimated with

Ĥ(X) = −1

n

n∑
i=1

log f̂n(Xi ), (1)

where f̂n is an estimator for the PDF f based on X1, . . . , Xn . Herewe can use both parametric
and non-parametric estimators. In the first case, we assume a known functional form for f
(e.g. exponential or Gaussian) with some unknown parameters (mean, variance, etc.) that are
estimated from the sample. In the second case, an empirical estimator for f is used (e.g. a
kernel density estimator).

If we fix a value t and we consider the values of X below and above t , that is, we consider
the conditional random variables (X |X ≤ t) and (X |X > t), then the entropy of X can be
rewritten (see Proposition 2.1 in Di Crescenzo and Longobardi 2002) as

H(X) = F(t)H(X |X ≤ t) + F̄(t)H(X |X > t) + H(G), (2)

where F(t) = Pr(X ≤ t) is the distribution function of X , F̄(t) = 1− F(t) = Pr(X > t) is
the reliability (or survival) function of X ,

H(X |X ≤ t) = −
∫ t

−∞
f (x)

F(t)
log

f (x)

F(t)
dx

is the entropy of the past lifetime (X |X ≤ t),

H(X |X > t) = −
∫ ∞

t

f (x)

F̄(t)
log

f (x)

F̄(t)
dx

is the entropy of the residual lifetime (X − t |X > t), and

H(G) = −F(t) log F(t) − F̄(t) log F̄(t)

is the entropy of the discrete (Bernoulli) random variable necessary to distinguish between
the two groups. A similar representation holds for any partition of the support of X with s
disjoint sets (groups). A bivariate version of (2) was obtained in Ahmadi et al. (2015).

If X contains two groups G = 1 and G = 0 with respective PDF f1 and f0, then
f = p f1 + (1 − p) f0, where p = Pr(G = 1). Hence the entropy with the two groups
together (i.e. the entropy of the mixture) is

123
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H(X) = −
∫
R

(p f1(x) + (1 − p) f0(x)) log(p f1(x) + (1 − p) f0(x))dx . (3)

Expression (2) can be used to define the entropy in X with the two groups as follows.

Definition 1 If X has a mixture PDF f = p f1 + (1 − p) f0, then the entropy of the two
groups is

H (2)(X) = pH(X |G = 1) + (1 − p)H(X |G = 0), (4)

where

H(X |G = 1) = −
∫
R

f1(x) log f1(x)dx

is the entropy of the first group and

H(X |G = 0) = −
∫
R

f0(x) log f0(x)dx

is the entropy of the second group. The efficiency in the division made by the groups is
defined as

E f f (2)(X) = H(X) − H (2)(X),

where H(X) is given in (3).

The efficiency is also called the concavity deficit in Melbourne et al. (2022) and can be
interpreted as a generalization of the Jensen-Shannon divergence measure (see Briët and
Harremoës 2009).

If Si = {x : fi (x) > 0}, i = 0, 1 are the supports of the two groups and S1 ∩ S0 = ∅ (the
two groups are completely separated), then p = Pr(X ∈ S1),

H (2)(X) ≤ pH(X |G = 1) + (1 − p)H(X |G = 0) + H2(G) = H(X)

and E f f (2)(X) = H2(G) ≥ 0, that is, the efficiency coincides with the entropy to distinguish
between the two groups given by

H2(G) = −p log(p) − (1 − p) log(1 − p) ≥ 0.

Even more, if 0 < p < 1, then H (2)(X) < H(X) and the division in two groups is effective
since it decreases the uncertainty (the entropy).

Another extreme case is when f1 = f0 (identically distributed groups), where

H (2)(X) = pH(X |G = 1) + (1 − p)H(X |G = 0) = pH(X) + (1 − p)H(X) = H(X)

for any p ∈ [0, 1]. Here, H (2)(X) = H(X) and E f f (2)(X) = 0 tell us that it is not a good
idea to consider two groups since the uncertainty does not change.

Thus, we can say that the division in two groups is efficient if H(X) > H (2)(X) since, in
this case, it decreases the uncertainty in X . This is always the case when H(X) > H(X |G =
i) for i = 0, 1, that is, when the uncertainties in the groups are smaller than the uncertainty
in the mixed population (a reasonable property).

The following proposition shows that the efficiency is related with the Kullback–Leibler
(KL) divergence measure between the densities. If f and g are two PDF, the KL-divergence
measure (or the relative entropy) is defined as

K L( f |g) =
∫

f (x) log

(
f (x)

g(x)

)
dx,

see e.g. Melbourne et al. (2022). It can be proved that K L( f |g) ≥ 0 and that K L( f |g) = 0
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if and only if f = g (a.e.). This proposition also shows that the efficiency is non-negative
and bounded by H2(G). This bound can be traced back to Grandvalet and Bengio (2005) and
Cover and Thomas (2006). Some improvements of this bound were obtained in Melbourne
et al. (2022) and in Moshksar and Khandani (2016) (Gaussian mixtures). The relationship
with KL divergencemeasure can be seen in, e.g., (22) ofMelbourne et al. (2022). To get a self
contained paper, we provide a proof in the Appendix since it is a key result for our purposes.

Proposition 1 Let f = p f1 + (1 − p) f0 be the PDF of X, then

0 ≤ E f f (2)(X) = pK L( f1| f ) + (1 − p)K L( f0| f ) ≤ H2(G). (5)

Moreover, if f1 �= f0 (a.e.) and 0 < p < 1, then E f f (2)(X) > 0.

Equation (5) implies that H(X) ≥ H (2)(X) under a mixture model with two groups.
A straightforward calculation leads to the generalization to the mixture model with s

groups, stated in the following relationship:

H(X) − H (s)(X) =
s∑

i=1

pi K L( fi | f ), (6)

where H (s)(X) = ∑s
i=1 pi H(X |G = i). Therefore, E f f (s)(X) = H(X) − H (s)(X) can

be formulated as a weighted sum of K L divergences between the class conditional PDF
of the groups and the PDF of the mixture. Expression (6) proves the non-negativeness of
E f f (s)(X) whenever there exists an underlying group structure for the variable X . It can
also be used to assess the overlapping of the class structure. An investigation is needed
in order to elucidate the usefulness of the quantity E f f (s)(X) in the statistical practice.
Some applications would include: its use as an auxiliary tool that may help to determine the
number of groups in clustering analysis or its application in genomic studies for the selection
of genomic variables having the potential to discriminate a clinical outcome, just to name a
couple of applications.

The next proposition proves that the efficiency increases when we divide a group in two
subgroups. The proof is given in the Appendix.

Proposition 2 Let f = p1 f1 + (1 − p1) f0 be the PDF of X and let us assume that f0 =
q f2 + (1 − q) f3 for some q ∈ [0, 1]. Then H (2)(X) ≥ H (3)(X) and

0 ≤ E f f (2)(X) ≤ E f f (3)(X) ≤ H3(G),

where H3(G) = −∑3
i=1 pi log pi , p2 = (1 − p1)q and p3 = (1 − p1)(1 − q).

Now we can state the results for the k-dimensional case. Let X = (X1, . . . , Xk) be a
random vector with an absolutely continuous joint distribution and joint PDF f . Then the
(multivariate) Shannon entropy is defined by

H(X) = E(− log f (X)) = −
∫
Rk

f (x) log f (x)dx. (7)

The estimator for H(X) is defined as in the univariate case. An expression similar to (2) can
be obtained for H(X) when the support of X is divided in s disjoint sets (groups).

The results for this general case are stated below. They are completely analogous to the
results for the univariate case, so we omit the proofs.
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Definition 2 If X has a joint PDF f = ∑s
i=1 pi fi , the entropy of the s groups is

H (s)(X) =
s∑

i=1

pi H(X|G = i), (8)

where
H(X|G = i) = −

∫
Rk

fi (x) log fi (x)dx

is the entropy of the i th group for i = 1, . . . , s. The efficiency in the division made by the s
groups is defined as

E f f (s)(X) = H(X) − H (s)(X),

where H(X) is given in (7).
Proposition 3 Let f = ∑s

i=1 pi fi be the PDF of X, then

0 ≤ E f f (s)(X) =
s∑

i=1

pi K L( fi | f ) ≤ Hs(G), (9)

where Hs(G) = −∑s
i=1 pi log pi ≥ 0. Moreover, if, for some i, fi �= f (a.e) and 0 < pi <

1, then E f f (s)(X) > 0.

3 New Results

Following the idea of the normalized entropy criterion (NEC) defined in Celeux and
Soromenho (1996) and Biernacki et al. (1999), we can define the following index to measure
the relative efficiency of the division made by the s groups. This index can be used to decide
about the optimal number of groups (clusters) in a finite mixture model (including the case
of no groups).

Proposition 2 proves that the efficiency is not a good value if we want to determine the
optimal number of groups since it is always increasing when a group is divided in two. So
we use the upper bound in (9) to propose a relative efficient measure.

Definition 3 If f = ∑s
i=1 pi fi is the PDF of X, then we define the relative efficiency of the

division in s groups, shortly denoted as RED(s), by

RED(s) = E f f (s)(X)

Hs(G)
= H(X) − H (s)(X)

Hs(G)
.

Note that 0 ≤ RED(s) ≤ 1 and that we should choose the value of s which leads to a
maximum of RED(s). If this value is close to zero, then we should consider just one group
(i.e. no groups). In practice, these values will be replaced with their estimations (see next
section). Note that the indices RED(2), RED(3), . . . are not necessarily ordered.

Theorem 1 in Melbourne et al. (2022) provides an upper bound for RED(s) based on
f1, . . . , fs written as

0 ≤ RED(s) ≤ Ts

where Ts = max j=1,...,s
∥∥ f j − f̂ j

∥∥
T V , ‖g‖T V = 1

2

∫
R

|g(x)|dx is the Total Variation (TV)
distance and

f̂ j (x) =
∑
i �= j

pi
1 − p j

fi (x)

is the mixture complement of f j . Note that f = p j f j + (1 − p j ) f̂ j .
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Let us see now how to apply this approach to classify new individuals in one of these
groups.Asmentioned above let us assumehere that our population is divided into s groups and
that we want to use the numerical random variables X1, . . . , Xk to classify new individuals
into one these groups. To simplify the notation let us assume that k = 1 and s = 2 but the
same techniques can be applied for k > 1 and s > 2 (see Example 3).

Let us assume first that the PDF of the two groups f1 and f0 are known. Then we need
to determine two disjoint regions R1 and R0 such that R1 ∪ R0 = R in order to classify an
individual with a value X in the first (second) group when X ∈ R1 (X ∈ R0). Two typical
(classical) solutions are the maximum likelihood criterion which defines R1 as

RML
1 = {x : f1(x) ≥ f0(x)}

and the maximum posterior probability criterion with

RMPP
1 = {x : p f1(x) ≥ (1 − p) f0(x)},

where p = Pr(G = 1). We want to provide an alternative option based on entropy.
The ideal case is when the respective supports of the groups S1 = {x : f1(x) > 0} and

S0 = {x : f0(x) > 0} are disjoint sets. In that case, the entropy can be written from (2) as

H(X) = pH(X |G = 1) + (1 − p)H(X |G = 0) + H2(G) = H (2)(X) + H2(G),

where p = Pr(G = 1) = Pr(X ∈ S1), 1 − p = Pr(G = 0) = Pr(X ∈ S0),

H(X |G = 1) = −
∫
S1

f1(x) log f1(x)dx,

H(X |G = 0) = −
∫
S0

f0(x) log f0(x)dx

and H2(G) = −p log p − (1 − p) log(1 − p). In this case RED(2) = 1.
This case is unrealistic since usually the populations have values in common regions. So

we might try to determine the region R1 that minimizes

H(R1) := −p1

∫
R1

f1(x) log f1(x)dx − p0

∫
R0

f0(x) log f0(x)dx, (10)

where p1 = Pr(X ∈ R1) and p0 = 1 − p1 = Pr(X ∈ R0).
In the ideal case with S1 ∩ S0 = ∅, the optimal region is Ropt

1 = S1 and we have

H(X) − H(Ropt
1 ) = H2(G) ≥ 0.

Clearly, for R1 = R we get p1 = 1 and H(R1) coincides with the entropy of group 1.
For R1 = ∅, p1 = 0 and we get the entropy of group 0. Hence, H(Ropt

1 ) ≤ H(X |G = i) for
i = 0, 1. So, from (4) and for the optimal region Ropt

1 we get

H (2)(X) = pH(X |G = 1) + (1 − p)H(X |G = 0)

≥ pH(Ropt
1 ) + (1 − p)H(Ropt

1 )

= H(Ropt
1 ).

Hence H(X) ≥ H (2)(X) ≥ H(Ropt
1 ). Thus, if we define the effectiveness of R1 as

E f f (R1) = H(X) − H(R1)

we get E f f (Ropt
1 ) ≥ E f f (R1) and E f f (Ropt

1 ) ≥ E f f (2)(X) ≥ 0.
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We must say that it is not easy to solve the theoretical problem that leads to the optimal
region Ropt

1 . In the univariate case, if the mean of the first group is bigger than the one of the
second, we might assume R1 = [t,∞) and then H(R1) is just a function of t that could be
plotted (numerically) in order to find its minimum value.

In order to simplify the calculations in practice, ifwehave two IID samples X1, . . . , Xn and
Y1, . . . , Ym from f1 and f0, respectively, the entropies in the groups can be approximated by

H(X |G = 1) = E(− log f1(X)|G = 1) ≈ Ĥ(X |G = 1) := −1

n

n∑
i=1

log f1(Xi )

and

H(X |G = 0) = E(− log f1(X)|G = 0) ≈ Ĥ(X |G = 0) := − 1

m

m∑
i=1

log f0(Yi )

when the PDF f1 and f0 are known. If they are unknown, they will be replaced by parametric
or non-parametric estimations. Therefore, H (2)(X) can be estimated with

Ĥ (2)(X) := − p

n

n∑
i=1

log f1(Xi ) − 1 − p

m

m∑
i=1

log f0(Yi ), (11)

when f1, f0 and p are known.
The entropy determined by the region R1 = [t,∞) can be written as,

H(t) = H(R1) = −p1

∫ ∞

t
f1(x) log f1(x)dx − p0

∫ t

−∞
f0(x) log f0(x)dx,

where p1 = Pr(X ∈ R1) = Pr(X > t). Hence, it can be approximated with

Ĥ(t) = − p̂1
1

n + m

(
n∑

i=1

1(Xi > t) log f1(Xi ) +
m∑
i=1

1(Yi > t) log f1(Yi )

)

− p̂0
1

n + m

(
n∑

i=1

1(Xi < t) log f0(Xi ) +
m∑
i=1

1(Yi < t) log f0(Yi )

)
,

(12)

where p̂1 = (∑n
i=1 1(Xi > t) + ∑m

i=1 1(Yi > t)
)
/(n + m) and p̂0 = 1 − p̂1.

These sample entropy measures can be used to define a new classification criterion. Thus,
if we have a new individual with value Z = t , we can compute this entropy by considering
that Z belongs to the group 1

Ĥ1(t) = Ĥ (2)(X |Z ∈ G1) = − p

n + 1

(
log f1(t) +

n∑
i=1

log f1(Xi )

)
−1 − p

m

m∑
i=1

log f0(Yi )

or to group 0,

Ĥ0(t) = Ĥ (2)(X |Z ∈ G0) = − p

n

⎛
⎝ n∑
i=1

log f1(Xi )

⎞
⎠ − 1 − p

m + 1

⎛
⎝log f0(t) +

m∑
i=1

log f0(Yi )

⎞
⎠ .

It should be classified into the group with the minimum entropy. If p = 0.5, n = m and we
replace n + 1 = m + 1 with n, then this criterion is equivalent to the maximum likelihood
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criterion. For an arbitrary probability p, if we are still replacing n + 1 and m + 1 with n and
m, respectively, Ĥ1(t) ≤ Ĥ0(t) holds if and only if

− p

n
log f1(t) ≤ −1 − p

m
log f0(t).

This is also a reasonable criterion to determine R1 similar to that based on the posterior
probabilities.Asmentioned above, in practice, the unknownPDF f1 and f0 should be replaced
with parametric or non-parametric estimations. If p is unknown and it is estimated with
p̂ = n/(n + m), then this criterion is again equivalent to the maximum likelihood criterion.
The same can be done in the k-dimensional case or when we have more than two groups. Let
us see some examples.

4 Examples

In the first example we consider a population having amixture of two (univariate) exponential
distributions. The purpose is to show the accuracy of the empirical measures.

Example 1 Let us assume that the two groups have exponential distribution functions Fi (t) =
1 − exp(−t/μi ) for t ≥ 0 and i = 0, 1 with means μ1 = 1 and μ0 = 0.5. The entropy of
the exponential model is

H(μ) = −
∫ ∞

0

1

μ
e−t/μ log

(
1

μ
e−t/μ

)
= 1 + logμ.

As expected, it is increasing with μ since its variance is μ2. Hence, the entropy of the groups
are H(X |G = 1) = H(1) = 1 and H(X |G = 0) = H(0.5) = 1 − log 2 = 0.3068528. The
values of the first group are more dispersed (i.e. X has a bigger uncertainty in that group).

Let us consider a fifty-fifty mixture of these two groups, that is,

f (t) = 0.5 f1(t) + 0.5 f0(t) = 0.5e−t + e−2t

for t ≥ 0. A straightforward calculation shows that its entropy is H(X) = 0.7072083. This
value is between the values of the entropies in the two groups. This is due to the facts that
the first group has a big uncertainty (comparing with the other) and that the two groups share
similar values (the supports are not disjoint sets). So, when we mix them, the uncertainty
decreases. The entropy with two groups defined by (4) is then

H (2)(X) = 0.5H(X |G = 1) + 0.5H(X |G = 0) = 0.5 + 0.5 · 0.3068528 = 0.6534264.

In this case, the division in two groups is effective H(X) > H (2)(X) and the RED index is

RED(2) = H(X) − H (2)(X)

H2(G)
= 0.7072083 − 0.6534264

log 2
= 0.07759088.

Its closeness to 0 confirms that the two groups are really mixed (as mentioned above).
Now we simulate two samples X1, . . . , Xn and Y1, . . . , Yn from these distributions with

n = m = 50 IID data in each group. The approximations of the entropies obtained with these
samples and the exact PDF are

H(X |G = 1) = 1 ≈ Ĥ(X |G = 1) = − 1

50

50∑
i=1

log f1(Xi ) = 1.130371

123

Page 9 of 24 78



Methodology and Computing in Applied Probability (2023) 25:78

and

H(X |G = 0) = 0.3068528 ≈ Ĥ(X |G = 0) = − 1

50

50∑
i=1

log f0(Yi ) = 0.2679194.

The entropy in the mixed population can be estimated in a similar way with

H(X) = 0.7072083 ≈ Ĥ(X) = − 1

100

(
50∑
i=1

log f (Xi ) +
50∑
i=1

log f (Yi )

)
= 0.7816074.

The entropy with two groups H (2)(X) can be approximated (by assuming p = 0.5) with

H (2)(X) = 0.6534264 ≈ Ĥ (2)(X) = 0.5 · 1.130371 + 0.5 · 0.2679194 = 0.6991452.

The RED index is then approximated as

RED(2) ≈ 0.7816074 − 0.6991452

log 2
= 0.1189678.

These approximations can be improved by increasing n and m. Note that p can also be
estimated from the sample sizes (if we have a sample from the mixed population).

If we assume that the means of the exponential distributions are unknown and we estimate
them with the sample means X̄ = 1.130371 and Ȳ = 0.4805333, we get the approximations
H(X |G = 1) = 1 ≈ 1.122546 and H(X |G = 0) = 0.3068528 ≈ 0.2671412. The
values H(X) and H (2)(X) can be approximated in a similar way obtaining 0.7822224 and
0.6948435, respectively. Then the approximation of the RED index is 0.1260611. If we do
not know that they come from exponential models, we can use empirical kernel estimators
for f1 and f0 based on the respective samples.

Let us determine now the optimal regions to separate these two groups. In this example
we can assume R1 = [t,∞) since μ1 = 1 > μ0 = 0.5. The value of t for the optimal region
under themaximum likelihood (or themaximumposterior probability) criterion is obtainedby
solving f1(t) = f0(t) for t > 0. This equation leads to the value tML = log 2 = 0.6931472.
The exact misclassification probabilities are

Pr(X < tML |G = 1) = F1(log 2) = 1 − e− log 2 = 1 − 0.5 = 0.5,

Pr(X > tML |G = 0) = 1 − F0(log 2) = e−2 log 2 = 0.25

and the total misclassification probability with (known) prior probabilities p = 0.5 and
1 − p = 0.5 is

p Pr(X < tML |G = 1) + (1 − p)Pr(X > tML |G = 0) = 3

8
= 0.375.

If we want to use the criterion based on the entropy given in (10) for R1 = [t,∞), we get

H(t) := H(R1) = −p1

∫ ∞

t
f1(x) log f1(x)dx − p0

∫ t

0
f0(x) log f0(x)dx,

where

p1 = Pr(X ∈ R1) = Pr(X > t) = 1

2
F̄1(t) + 1

2
F̄0(t) = 1

2
e−t + 1

2
e−2t

and p0 = 1 − p1 = Pr(X ∈ R0) = Pr(X < t). A direct calculation leads to

H(t) = p1 (t + 1) e−t + p0
(
1 − log 2 + (−1 + log 2 − 2t)e−2t ) .
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Fig. 1 Entropy function H(t) (left, red) for R1 = [t, ∞). The red dashed line represents the entropy of the
group G = 0. Empirical entropy function Ĥ(t) (left, black) for the exponential distributions in Example 1.
Empirical entropy functions Ĥ1(t) (right, black) and Ĥ0(t) (right, red) in this example

The plot can be seen in Fig. 1 (left, red). As stated above H(∞) = 0.3068528 = 1−log(2) =
H(X |G = 0) and H(0) = 1 = H(X |G = 1). The optimal value with the minimum entropy
criterion is tME = 1.115213 getting H(tME ) = 0.1776504. With this value, the exact
misclassification probabilities are

Pr(X < tME |G = 1) = F1(1.115213) = 0.6721546,

Pr(X > tME |G = 0) = 1 − F0(1.115213) = 0.1074826

and 0.3898186. The total misclassification probability is greater than that obtained with the
ML criterion. By using the approximated version of this criterion given in (12), we obtain
t̂ME = 0.86534. The plot can be seen in Fig. 1 (left, black). With this value, the exact
misclassification probabilities are

Pr(X < t̂ME |G = 1) = F1(0.86534) = 0.57909,

Pr(X > t̂ME |G = 0) = 1 − F0(0.86534) = 0.17716

and 0.37813 which is again a little bit greater than the error obtained with the ML criterion.
If we use the criterion based on the empirical entropy (with known means) for the sam-

ples obtained above by replacing n + 1 with n, we get the functions Ĥ1 and Ĥ0 plotted
in Fig. 1, right. In this case the values that lead to a classification in group 1 belong to
R1 = [0.6931472,∞). It coincides with the region determined by the maximum likelihood
criterion since p = 0.5 = n/(n + m).

In the second example we consider a mixture of two univariate normal (Gaussian) distri-
butions. In this case, we replace the exact calculations with approximations.

Example 2 In the first case we consider a population obtained by mixing two normal distri-
butions with means μ1 = 2 and μ0 = −2 and a common variance σ 2 = 1. To approximate
the entropy functions we simulate two samples X1, . . . , Xn and Y1, . . . , Ym from these dis-
tributions with n = m = 50 IID data in each group. The approximations of the entropies
obtained with these samples and the exact PDF are

Ĥ(X |G = 1) = − 1

50

50∑
i=1

log f1(Xi ) = 1.339576
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Fig. 2 Probability density function (left) of the mixture of two normal distributions considered in Example 2.
Entropy function Ĥ(x) (right) for R1 = [x, ∞)

and

Ĥ(X |G = 0) = − 1

50

50∑
i=1

log f0(Yi ) = 1.331375.

The (common) exact value is 0.5 + 0.5 log(2π) = 1.418939. The entropy in the mixed
population can be estimated in a similar way with

Ĥ(X) = − 1

100

(
50∑
i=1

log f (Xi ) +
50∑
i=1

log f (Yi )

)
= 1.992107,

where f = 0.5 f1 + 0.5 f0. In this case, the mixed population has more uncertainty than the
subpopulations, that is, H(X) > H(X |G = i) for i = 0, 1. So we can consider the entropy
with two groups approximated from (11) as

Ĥ (2)(X) = − 1

100

(
50∑
i=1

log f1(Xi ) +
50∑
i=1

log f0(Yi )

)
= 1.335475.

Therefore, the division is effective H(X) > H (2)(X) and the approximated RED index is

RED(2) ≈ 1.992107 − 1.335475

log 2
= 0.9473197.

This value close to 1 indicates that the groups are well separated (as expected).
As μ1 > μ0 we can consider again the region R1 = [t,∞) for the classification in the

first group. Clearly, by using the maximum likelihood criterion, we get the optimal region
R1 = [0,∞) (see Fig. 2, left). To apply the minimum entropy criterion, we consider the
function H(t) approximated with (12), obtaining the plot given in Fig. 2, right. Theminimum
of this function is t̂ = −0.01138, a value close to the expected one (t = 0).

However, if we use the criterion based on the empirical entropies Ĥ1 and Ĥ0 with known
means and variances, we get t = −0.00205, which is very close to the value obtainedwith the
maximum likelihood criterion. Their plots can be seen in Fig. 3, left. If we replace n+1 with
n we get t = 0. If the exact means and variances are replaced by their estimations from the
samples we get t = 0.06873. We omit the plot since it is very similar to the one in Fig. 3, left.
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Fig. 3 Empirical entropy functions Ĥ1(t) (left, black) and Ĥ0(t) (left, red) for the normal distributions in
Example 2 with known parameters. Empirical entropy function Ĥ(t) (right) for R1 = [−t, t]

In the second case, we considerμ1 = μ0 = 0 and σ 2
1 = 1 < σ 2

0 = 4. Then we can use the
region R1 = [−t, t] for the classification in the first group. The estimations of the entropies
in the groups and in the mixed populations are H(X |G = 1) ≈ 1.339576, H(X |G = 0) ≈
2.024522 and H(X) ≈ 1.762427. As in the first example, the entropy (uncertainty) in the
second group is bigger than that in the mixed population (since the first population reduces
uncertainty). The approximation for the entropy with two groups is H (2)(X) ≈ 1.682049. It
reduces a little bit the global entropy H(X) in the mixed population and the RED index is
0.1159609. By using Ĥ(t) we get the region R1 = [−1.02890, 1.02890], see Fig. 3, right.

If we estimate H1(t) and H0(t), we obtain the plots given in Fig. 4 by using n (left) or n+1
(right). Note that in this case the results are very different. In the first case the optimal region is
R1 = [−1.35956, 1.35956] (that coincides with the region of the maximum likelihood crite-
rion)while in the second R1 = [−0.14788, 0.14788]. The totalmisclassification probabilities
are 0.3386627 and 0.4706897, respectively. The first value is actually the minimum error.

In the next examplewe show how toworkwith a real data set with four numerical variables
and three groups.

Fig. 4 Empirical entropy functions Ĥ1(t) (black) and Ĥ0(t) (red) for the normal distributions in Example 2
by using n (left) or n + 1 (right) with known parameters
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Example 3 Let us consider the iris data set available in the statistical program R. It con-
tains the values in four variables (Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
measured in 150 iris flowers from three different species: setosa (G = 1), versicolor (G = 2),
and virginica (G = 3). There are 50 data from each specie with X1, . . . ,X50 ∈ G1,
X51, . . . ,X100 ∈ G2, and X101, . . . ,X150 ∈ G3. For another analysis of this data set using
Deng extropy see Buono and Longobardi (2020).

Let us assume a Normal (Gaussian) distribution for these data in each group. As we know
that there are three groups, we proceed as follows:

• We estimate the means and variance-covariance matrices in each group (by using only
the data in each group).

• We use them to estimate the PDF fi in each group by using normal PDF with these
parameter values. The estimations of the respective PDF are represented by f̂i for i =
1, 2, 3.

• We approximate the entropies in the groups from (7) and in analogy with (1) for the
multivariate case.

By using this procedure we obtain the following entropy values:

H(X|G = 1) ≈ Ĥ(X|G = 1) := − 1

50

50∑
i=1

log f̂1(Xi ) = −0.897926,

H(X|G = 2) ≈ Ĥ(X|G = 2) := − 1

50

100∑
i=51

log f̂2(Xi ) = 0.1985916,

and

H(X|G = 3) ≈ Ĥ(X|G = 3) := − 1

50

150∑
i=101

log f̂3(Xi ) = 1.172225.

These entropies show that the values of the flowers from the third group are more dispersed.
Analogously, we can estimate the PDF of themixed populationwith f̂ = ( f̂1+ f̂2+ f̂3)/3.

We use this function to estimate the entropy of all the data (mixed population) with

H(X) ≈ Ĥ(X) := − 1

150

150∑
i=1

log f̂ (Xi ) = 1.219902.

Note that Ĥ(X) > Ĥ(X|G = i) for i = 1, 2, 3 (although it is closed to Ĥ(X|G = 3)). This
may confirm the existence of the three groups.

We can also compare this entropy with the entropy without groups estimated as

Hwg(X) ≈ − 1

150

150∑
i=1

log f̂wg(Xi ) = 2.532809,

where fwg is the normal PDF with the mean and the variance-covariance matrix estimated
with all the data together. As Ĥwg(X) >> Ĥ(X), this fact confirms the existence of the
three groups.

Next we compare it with the entropy with three groups defined as in (4) with

H (3)(X) = p1H(X|G = 1) + p2H(X|G = 2) + p3H(X|G = 3), (13)
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where pi = Pr(G = i) for i = 1, 2, 3 are the prior probabilities. By assuming pi = 1/3 for
i = 1, 2, 3, we estimate it as

Ĥ (3)(X) = 1

3
Ĥ(X|G = 1) + 1

3
Ĥ(X|G = 2) + 1

3
Ĥ(X|G = 3) = 0.1576302.

As Ĥ (3)(X) < Ĥ(X), this fact might also confirm that the uncertainty is reduced by consid-
ering three groups. Hence

0 < E f f (3)(X) ≈ Ĥ(X) − Ĥ (3)(X) = 1.062272 ≤ H3(G) = log(3) = 1.098612

and RED(3) = 0.9669213. This value confirms that the three groups can be separated.
We might wonder what happen if we just consider two groups. Note that in this case the

estimation for Ĥ(X) also changes (since we estimate f in different ways). The most efficient
option is to join the groups two and three. The entropy of the new group is then 1.638049,
obtaining Ĥ (2)(X) = 0.7927237, Ĥ(X) = 1.429234 and

0 < E f f (2)(X) ≈ 0.6365099 < E f f (3)(X) ≈ 1.062272 ≤ 1.098612.

Hence RED(2) = 0.9182897 < RED(3) = 0.9669213. With the other groups we get
E f f (2)(X) ≈ 0.5660699 (join groups one and two) or 0.5355315 (join groups one and
three). Therefore it is not a good idea to join these groups and it is better to consider the three
initial groups.

We could also study what happens by considering just the two first groups (which are the
least dispersed) by including the data of group 3 in groups 1 or 2. By applying the maximum
likelihood criteria to do so, all the data from group 3 go to group 2 and so the result is the
same as that stated above with E f f (2)(X) ≈ 0.6365099.

If we just consider the first 100 data, that belong to groups 1 and 2, then we get Ĥ(X) =
0.34348, Ĥ (2)(X) = −0.3496672 and RED(2) = 1. Therefore, these two groups are
completely separated. This is not the case if we just consider the data from groups 2 and 3.
In this case we get Ĥ(X) = 0.8302966, Ĥ (2)(X) = 0.6854083 and RED(2) = 0.2090297.
Therefore, these two groups are mixed.

The PCA plot with the two first principal components for these three groups can be seen
in Fig. 5. Note that our conclusions based on the RED index are consistent with the different
groups in that figure.

If we want to use these entropy functions to classify a new flower with measures z =
(z1, z2, z3, z4), we just compute the entropy Ĥ (3) by assuming that z belongs to each group.
Then it is classified in the group with the minimum entropy. However, it is not easy to
determine the classification regions in R4 obtained with this criterion for each group.

For example, for the first flower in this data set with z = (5.1, 3.5, 1.4, 0.2) and replacing
n + 1 with n, we get the approximations

H (3)(X |z ∈ G1) ≈ Ĥ(X |G = 1) + Ĥ(X |G = 2) + Ĥ(X |G = 3)

3

− log( f̂1(z))
150

= 0.1400744,

H (3)(X |z ∈ G2) ≈ Ĥ(X |G = 1) + Ĥ(X |G = 2) + Ĥ(X |G = 3)

3

− log( f̂1(z))
150

= 0.5285691,
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Fig. 5 PCA plot of the iris data
set studied in Example 3

and

H (3)(X |z ∈ G3) ≈ Ĥ(X |G = 1) + Ĥ(X |G = 2) + Ĥ(X |G = 3)

3

− log( f̂1(z))
150

= 0.7621647.

Hence with the minimum entropy criterion it is classified (correctly) in the first group. As
the sample sizes of the groups in the training sample coincide and the prior probabilities are
equal, this classification criterion is equivalent to the maximum likelihood criterion (under
normality) and to the classical Quadratic Discriminant Analysis (QDA) since we have used
the normal PDF. This is not the case if the prior probabilities are unequal. It is also different
if the PDF of the groups are estimated with nonparametric techniques.

If we do not replace n with n + 1, we get the estimations

H (3)(X |z ∈ G1) ≈ Ĥ(X |G = 2) + Ĥ(X |G = 3)

3

+ 50Ĥ(X |G = 1) − log( f̂1(z))
153

= 0.1462874,

H (3)(X |z ∈ G2) ≈ Ĥ(X |G = 1) + Ĥ(X |G = 3)

3

+ 50Ĥ(X |G = 2) − log( f̂2(z))
153

= 0.5199978,

and

H (3)(X |z ∈ G3) ≈ Ĥ(X |G = 1) + Ĥ(X |G = 2)

3

+ 50Ĥ(X |G = 3) − log( f̂3(z))
153

= 0.7426495,

where z is not used to compute f̂i (i.e. to compute the mean and the covariance matrix of
group i). Again, it is classified correctly in the first group. These entropy values play a role
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similar to the role played by the posterior probabilities in the classical QDA showing the
“reliability” (margins) of these classifications. Note that by adding just one data in a wrong
groupmight increase the entropy considerably.We do the samewith all the 150 flowers of the
data set. If we replace n + 1 with n, the classification is correct in 147 cases. In particular, it
fails for two flowers in the second group (classified in the third group) and one in the third one
(classified in the second group). If we do not replace n + 1 with n, 147 flowers are classified
correctly and the three failures occur for flowers in the second group that are classified in the
third one. In this case, the group with the biggest entropy may attract more data (since their
values are more dispersed).

In the last example, as in Biernacki et al. (1999), we consider bivariate Gaussian distribu-
tions to study the evolution of the RED index when we change the means.

Example 4 Let us consider a mixture model with equal proportions of two Gaussian distri-
butions. We simulate a sample of size 100 from a bivariate normal distribution with mean
μ1 = (0, 0) and variance-covariance matrix �1 = I2, that is X1, . . . ,X100 ∈ G1, and
samples of size 100 frombivariate normal distributionswithmeansμ2 = (d, 0) and variance-
covariancematrix�2 = I2, by varyingd from0 to 5 in steps of 0.1, i.e.,X101, . . . ,X200 ∈ G2.
We use the data in each group to estimate the means and the variance-covariance matrices
and then to obtain the estimated PDF f̂1 and f̂2 by using normal distributions with these
parameters. Then, we estimate the PDF f̂ of the mixed population by the arithmetic mean of
the estimated PDF (since we are assuming a mixture model with equal proportions). Thus,
we can estimate the entropies in the groups by

H(X|G = 1) ≈ Ĥ(X|G = 1) := − 1

100

100∑
i=1

log f̂1(Xi ),

H(X|G = 2) ≈ Ĥ(X|G = 2) := − 1

100

200∑
i=101

log f̂2(Xi )

and the entropy of the mixed population with

H(X) ≈ Ĥ(X) := − 1

200

200∑
i=1

log f̂ (Xi ).

Then, we estimate H (2)(X) by

Ĥ (2)(X) = Ĥ(X|G = 1) + Ĥ(X|G = 2)

2

and the relative efficiency of the division in two groups as

RED(2) ≈ Ĥ(X) − Ĥ (2)(X)

log 2
.

The results are shown in Fig. 6, left, as a function of d (black points). Moreover, we can
estimate the mean and the variance-covariance matrix without assuming the existence of
groups and then obtain an estimate of the entropy without groups as

Hwg(X) ≈ Ĥwg(X) := − 1

200

200∑
i=1

log f̂wg(Xi ).
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Fig. 6 Relative efficiency of division (left) in two (black) and three (red) groups for simulated fifty-fifty
mixtures from bivariate normal distributions with means μ1 = (0, 0), μ2 = (d, 0) and variance-covariance
matrices �1 = �2 = I2. In the right plot we can see the sample values for d = 3 with RED(2) = 0.7347749

Hence, we compare the values of Ĥwg(X) and Ĥ(X) and obtain that the former is lower
than the latter only for d equal to 0.1, 0.2, 0.4, 0.6 and 1.9 confirming the existence of two
groups with the increase of d . Further, we may suppose the existence of a third group and
divide the data of the second group in two groups of 50 data, that is X101, . . . ,X150 ∈ G2

and X151, . . . ,X200 ∈ G3. In analogy with what we have done above, we estimate the mean
and variance-covariance matrices of the new groups and then the entropies of the groups. In
the mixture, the second and the third group have a weight of 0.25, so the estimate of H (3)(X)

is given by

Ĥ (3)(X) = 0.5 · Ĥ(X|G = 1) + 0.25 · Ĥ(X|G = 2) + 0.25 · Ĥ(X|G = 3),

and the relative efficiency of the division in three groups is

RED(3) ≈ Ĥ(X) − Ĥ (3)(X)

0.5 log 2 + 0.25 log 4 + 0.25 log 4
.

In Fig. 6, left, we also plot the values of RED(3) (red points) as a function of d and we
can compare them with the values of RED(2) (black points). We note that, as expected, the
values of RED(3) are dominated by the values of RED(2) and the former is slightly higher
than the latter only for small choices of d (0, 0.1, 0.2, 0.3, 0.4 and 0.5). In Fig. 6, right, we
plot the samples for d = 3. Note that the value RED(2) = 0.7347749 for d = 3 allows us
to detect the existence of the two groups even when they are really close.

We repeat the same experiment by choosing μ2 = (d, d), varying d from 0 to 5 in steps
of 0.1. In this case, the value of the entropy without groups is lower than the value of the
entropywith two groups for d ∈ {0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7}. Moreover, we again consider
the possibility of dividing the second group in two groups and we obtain a value of RED(3)
higher than RED(2) only with d = 0.1. The results are shown in Fig. 7, left, where we also
plot the samples (right) for d = 2. Again the value RED(2) = 0.7930995 for d = 2 shows
the existence of the two groups even when they are really close.

By comparing the values of RED(2) in Fig. 7, left, and in Fig. 6, left, it is possible to
observe a faster tendency to one in the case in which μ2 = (d, d) due to the higher distance
between the means of the mixed populations.
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Fig. 7 Relative efficiency of division RED (left) in two (black) and three (red) groups for simulated fifty-fifty
mixtures from bivariate normal distributions with means μ1 = (0, 0), μ2 = (d, d) and variance-covariance
matrices �1 = �2 = I2. In the right plot we can see the sample values for d = 2 with RED(2) = 0.7930995

5 Application to Variable Selection in Omic Data

In this sectionwe study the performance of the proposed RED indexwhen applied to variable
selection in biological omic data. One of the main characteristics of omic data sources is
concerned with the high dimensionality of the data sets due to the development of high-
throughput technologies that allow the simultaneous monitoring of hundreds or thousands of
biological variables from different layers of biological information such as genes, proteins,
RNA and metabolites. Actually, the data sources generated by these technologies have given
rise to the so-called omic data sources as well as the need of ad hoc exploratory data analysis
tools for analyzing such high-dimensional data. One of the challenges settled by biologists
and geneticists is concerned with the identification of the most informative omic variables
for explaining a specific clinical outcome such as disease or the evolution of a disease in the
response of patients to a specific drug. Hence, the challenge is to carry out variable selection
for identifying those variables that discriminate the outcome and, as a result, eliminate the
noisy inputs. In this section we show how the RED index can be used as a tool for variable
selection when applied to a well-known microarray gene expression colon cancer data set.

The genomic study consists of gene expression levels for 40 tumor and 22 normal tissue
samples collected by the Affymetrix oligonucleotide Hum-6000 array complementary to
more than 6500 human genes fromwhich only 2000 genes with the highest minimal intensity
across samples are retained, see Alon et al. (1999). Hence, we end up with data set containing
the expression levels for 2000 genes arranged in a matrix with 2000 columns and 62 rows,
alongwith a clinical outcome related to the status of each tissue sample: tumor versus healthy.
This gene expression data set is a classic in the literature and can be downloaded from the R
package colonCA, see Sylvia (2019).

Some data preprocessing about robust normalization of gene expression measures follow-
ing previous work by Arevalillo and Navarro (2013) is carried out. Then the RED index is
estimated for the two group case (tumor and healthy outcomes) in order to generate a ranking
that helps to sort the genes in accordance to their relevance for discriminating the clinical
outcome. The results are provided by the gene ranking appearing in Fig. 8 which displays the
whole ranking (left) and the top 13 genes with RED > 0.5 (right).
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Fig. 8 Ranking of the genes obtained according to the RED index (left) and top ranked genes (right)

The genes at the top of the ranking have been previously described as relevant biomarkers
of colon cancer. Table 1 shows the Hsa identifiers and the gene descriptions of the top genes
having RED greater than 0.5.

The genes with identifiers Hsa.8147, Hsa.692, Hsa. 692.1 and Hsa.692.2 exhibit a high
degree of co-expression as measured by correlation coefficients around 0.9. We now assess
the RED score that results by considering pairs of genes in order to elucidate whether
their joint behavior has a stronger impact than their marginal behavior at discriminating the
clinical outcome. As highly correlated genes convey redundant expression measures, we
only consider gene pairings having correlations below the 0.90 threshold for estimating their
RED scores; this is achieved by selecting pairwise gene associations corresponding to the
top RED parings having correlations lower than the 0.90 threshold.

The scatter plots depicted by Fig. 9 show the selected gene pairings; in all the cases the
RED score is higher than the individual RED values previously obtained for the genes
Hsa.36689, Hsa.692.1, Hsa.8147 and Hsa.2456 given by 0.605, 0.737, 0.739 and 0.513

Table 1 Hsa identifiers and gene description of the top genes selected from the RED rankingwhen RED(2) >

0.5

Hsa Id Gene description RED(2)

Hsa.8147 Human desmin gene, complete cds 0.739

Hsa.692.1 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.737

Hsa.692 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.686

Hsa.1832 Myosin regulatory light chain 2, smooth muscle isoform (human) 0.626

Hsa.36689 H.sapiens mRNA for GCAP-II/uroguanylin precursor 0.605

Hsa.692.2 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.570

Hsa.37937 Myosin heavy chain, nonmuscle 0.551

Hsa.831 Mitochondrial matrix protein P1 precursor (human) 0.550

Hsa.3305 Tropomyosin alpha chain, smooth muscle (human) 0.550

Hsa.2097 Single-strand binding protein (Escherichia coli) 0.521

Hsa.549 Transcription factor IIIA 0.515

Hsa.2456 Human MaxiK potassium channel beta subunit mRNA 0.513

complete cds

Hsa.3331 Nucleoside diphosphate kinase (human) 0.512
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Fig. 9 Gene pairings with the highest RED values

respectively. Note that with just two genes, Hsa.36689 and Hsa.692.1, we get a RED index
equal to 0.974 and a very good separation of these two groups. The other pairs also show
high RED indices which informed about the strong bivariate differential expression patterns
depicted by the scatter plots of Fig. 9.

6 Conclusions

We have provided new tools based on Shannon entropy to study data from a population with
groups. This paper is just a first step and the potential applications are countless. The main
one is the RED index. The illustrative examples show that this is a good tool to measure the
separation of the groups. The main advantage is that it does not depend on the number of
unknown parameters in the model. The new classification techniques also lead to promising
results (similar to the ones obtained with classical discrimination measures).

There are several tasks for future research. Maybe, the main one could be to apply these
tools to cluster analysis (unsupervised techniques) in order to determine the optimal number
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of clusters in a population. Applications to specific data sets in different research areas are
obvious chores to be done.

Appendix. Proofs

Proof of Proposition 1 If S1 and S0 are the respective supports of f1 and f0, the entropy of
the two groups can be written as

H (2)(X) = pH(X |G = 1) + (1 − p)H(X |G = 0)

= −p
∫
S1

f1(x) log f1(x)dx − (1 − p)
∫
S0

f0(x) log f0(x)dx

= −p
∫
S1

f1(x) log
f1(x)

f (x)
dx − p

∫
S1

f1(x) log f (x)dx

− (1 − p)
∫
S0

f0(x) log
f0(x)

f (x)
dx − (1 − p)

∫
S0

f0(x) log f (x)dx

= −p
∫
S1∪S0

f1(x) log
f1(x)

f (x)
dx − (1 − p)

∫
S0∪S1

f0(x) log
f0(x)

f (x)
dx

− p
∫
S1∪S0

f1(x) log f (x)dx − (1 − p)
∫
S0∪S1

f0(x) log f (x)dx

= H(X) − p K L( f1| f ) − (1 − p) K L( f0| f ).
Therefore

E f f (2)(X) = H(X) − H (2)(X) = p K L( f1| f ) + (1 − p) K L( f0| f ).
Hence E f f (2)(X) ≥ 0 since the KL-measure is non-negative.
To get the upper bound we note that

K L( f1| f ) =
∫
S1∪S0

f1(x) log
p f1(x)

p f (x)
dx

=
∫
S1∪S0

f1(x) log
p f1(x)

f (x)
dx −

∫
S1∪S0

f1(x) log(p)dx

≤ −
∫
S1∪S0

f1(x) log(p)dx = − log(p),

where the inequality holds since 0 ≤ p f1(x) ≤ f (x). Analogously, it can be proved that
K L( f0| f ) ≤ − log(1 − p). Hence, from (5), we get

E f f (2)(X) = pK L( f1| f ) + (1 − p)K L( f0| f )
≤ −p log(p) − (1 − p) log(1 − p) = H2(G).

Moreover, if the f1 �= f0 (a.e), then fi �= f (a.e) and K L( fi | f ) > 0 for i = 1, 2. Then
E f f (2)(X) > 0 for all p ∈ (0, 1).

Proof of Proposition 2 From the definition we have

H (2)(X) = p1H(X |G = 1) + (1 − p1)H(X |G = 0).
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On the other hand, from Proposition 1, we get

H(X |G = 0) ≥ qH(X |G = 2) + (1 − q)H(X |G = 3).

Replacing H(X |G = 0) with this expression we get H (2)(X) ≥ H (3)(X). Hence, the result
for the efficiency also holds. The bounds are obtained as in Proposition 1.
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