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Abstract: In 2020, Sala, Sogiorno and Taufer were able to find the private keys of some Bitcoin
addresses, thus being able to spend the cryptocurrency linked to them. This was unexpected since the
recovery of non-trivial private keys for blockchain addresses is deemed to be an infeasible problem.
In this paper, we widen this analysis by mounting a similar attack on other small subsets of the
set of private keys. We then apply it to other blockchains as well, examining Ethereum, Dogecoin,
Litecoin, Dash, Zcash and Bitcoin Cash. In addition to the results, we also explain the techniques we
have used to perform this exhaustive search for all the addresses that have ever appeared in these
blockchains, and we give an estimate of the time needed to perform all the computations. Finally, we
also examine the possibility of mounting a similar attack on other elliptic curves used in blockchains,
i.e., Curve25519 and NIST P-256.

Keywords: cryptography; blockchain; Bitcoin; elliptic curves; subsets analysis; addresses; wallet
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1. Introduction

The impact that Bitcoin has had on modern society hardly needs to be explained. In
just a few years since the publication of Satoshi Nakamoto’s white paper [1], blockchain
technology has taken hold all over the world. Its main objective is the creation of an open,
public, decentralised and immutable ledger whose reliability is not based on a trusted third
party. It is natural that a tool with these features could find use in several other fields
besides transaction validation. Some references on the various fields where blockchain
technology has been employed can be found in [2].

The blockchain that has caught most of the interest after Bitcoin is perhaps Ethereum,
which was theorised in 2013 by Vitalik Buterin [3]. The aim of Ethereum is to be a versatile
world programmable computer in which smart contracts—i.e., decentralised programs
written in a Turing-complete programming language—can be executed. A mathematical
description of Ethereum’s blockchain has been published by Gavin Wood in the yellow
paper [4].

In a blockchain, the security of transactions is guaranteed by public-key cryptography
and, in particular, by the difficulty of solving the discrete logarithm problem over suitable
elliptic curves. Using the best-known algorithms, it is practically impossible, in a general
case, to recover the private key starting from the knowledge of the public address. For all
these reasons, it was quite unexpected when, in 2020, Sala, Sogiorno and Taufer [5] found
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the private keys of some existing Bitcoin addresses, being able to spend cryptocurrencies on
their behalf. They mounted an attack on a small multiplicative subgroup of a group that is
mapped to the group of points of Bitcoin’s elliptic curve secp256k1. For this small set, a brute-
force attack was feasible and, against any odds, four of those addresses coincided with some
actually used in Bitcoin’s history. The same authors left open the problem of understanding
the reasons for such pathological behavior and the analysis of other cryptocurriencies
together with other small algebraic structures. Brute-force Bitcoin address generation has
also been the object of study in [6].

In this paper, we widen the range of the inspection to seven other subsets of the
same order, obtained as cosets of the subgroup used in [5]. Furthermore, we perform the
same examination for Ethereum addresses and for some other famous cryptocurrencies
that share the same elliptic curve: Dogecoin [7], Litecoin [8], Zcash [9], Dash [10] and
Bitcoin Cash [11]. We apply this analysis to all the different encodings used so far by these
blockchains. We also explain why this peculiarity may have occurred in Bitcoin, and we
discuss the possibility of performing a similar analysis on other important elliptic curves
for blockchains, e.g., Curve25519 and NIST P-256. Moreover, we describe, in detail, the
techniques we have developed to extract data from the full history of these blockchains and
to perform all the queries in a feasible time. To the best of our knowledge, no information
on how to efficiently perform such an exhaustive analysis is present in the literature or on
any website. We have given public access to all the programming scripts at [12]. Finally, we
also provide an estimation of the computational cost, in terms of time and space, needed to
perform the inspection.

The paper is organised as follows: in Section 2, we recap some basic definitions from
algebra, and we introduce the secp256k1 curve. In Section 3, we define the small subsets we
have decided to analyse, and in Section 4, we summarise the address generation algorithms
for both compressed and uncompressed public keys. In Section 5, we describe the strategies
employed to extract the complete list of addresses in the shortest possible time, while in
Section 6, we report the results we have obtained, and we make a comparison with other
elliptic curves that we have found particularly interesting. Finally, in Section 7, we provide
some information about the computational time and the space required to perform this
analysis, making a comparison between the use of two different computers with different
computational power.

2. Preliminaries

Let us recall some basic definitions from algebra and, in particular, from group theory
and elliptic curves over finite fields.

2.1. Group Theory

Lemma 1. Let us consider a cyclic group G = 〈g〉 of order n ∈ N. Then, for each divisor d of n
there exists a unique subgroup H of order d, and one of its generators is g

n
d .

Definition 1 (Coset). Let us consider a subgroup H ≤ G of a commutative group G. A coset of H
is the set

gH = Hg = {gh : h ∈ H},

where g ∈ G.

It is straightforward to verify that |gH| = |H| and that gH = H if and only if g ∈ H.

Theorem 1. Let F be a field. Then the multiplicative group

F∗ = F\{0}

is a cyclic group.
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2.2. Elliptic Curves and the secp256k1

Definition 2 (Elliptic Curve). Let F be a field with a characteristic different from two and three.
Let A, B ∈ F such that ∆ = 4A3 + 27B2 6= 0. Then, we define an elliptic curve E(F) as the
following subset of the affine plane over F:

E(F) = {(x, y) ∈ F× F : y2 = x3 + Ax + B} ∪ {O},

where O denotes the point at infinity.

It is possible to give an additive group structure to the set of points of an elliptic curve
E(F) with the inner chord-tangent point-addition (see Section 2 of [13] for more details).

Let us now introduce the most relevant elliptic curve for our purposes, which is the
one used by all the cryptocurrencies that we are going to consider.

Definition 3 (The secp256k1 curve). Let us consider the prime number

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.

The elliptic curve
E(Fp) : Y2 = X3 + 7

is called secp256k1.

The number of rational points of the curve secp256k1 over Fp is the prime number

q = 1157920892373161954235709850086879078528375642790749043

82605163141518161494337,

so that the additive group E = E(Fp) is isomorphic to Fq(+). A generator of this group is
the point P = (Px, Py), where

Px = 55066263022277343669578718895168534326250603453777594

175500187360389116729240,

Py = 32670510020758816978083085130507043184471273380659243

275938904335757337482424.

Given two points P and Q = kP (obtained by summing k times the point P), it is,
in general, very hard to recover the integer k. This is known as the Discrete Logarithm
Problem over Elliptic Curves (ECDLP).

3. The Small Subsets

As we have seen in Section 2, the group E(Fp) of the curve secp256k1 has prime order

q = 1157920892373161954235709850086879078528375642790749043

82605163141518161494337,

and it is then isomorphic to the additive group Fq(+). Hence, the private key can be
chosen among the non-zero elements of Fq(+), which are q− 1. The set of all private keys,
then, is in bijection with the multiplicative group F∗q(·), which also has order q− 1 and, by
Theorem 1, is a cyclic group. Therefore, by Lemma 1, it has a unique cyclic subgroup of
order d for any divisor d of q− 1. Its factorisation is

q− 1 = h · p1 · p2 · p3,
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where

h = 18051648 = 26 · 3 · 149 · 631,

p1 = 107361793816595537,

p2 = 174723607534414371449,

p3 = 341948486974166000522343609283189.

In [5], the authors examined the multiplicative subgroup H ≤ F∗q , whose order is

|H| = h = 18051648,

since it can be fully investigated in a short time. As pointed out in the same paper, it is
also worth analysing some other structures of the same order, for example, the cosets of G.
Let us consider the generator g = 7 of the group F∗q(·). In this way, using Lemma 1 and
denoting by

g0 = 7p1 p2 p3 , g1 = 7hp2 p3 , g2 = 7hp1 p3 , g3 = 7hp1 p2 ,

g4 = 7hp1 , g5 = 7hp2 , g6 = 7hp3 , g7 = 7h,

we have that

|〈g0〉| = |H| = h, |〈g1〉| = p1, |〈g2〉| = p2,

|〈g3〉| = p3, |〈g4〉| = p2 p3, |〈g5〉| = p1 p3,

|〈g4〉| = p1 p2, |〈g7〉| = p1 p2 p3.

The cosets that we investigate in this paper are gi H, for i ∈ {0, . . . , 7}. Notice that
g0H = H, which is the same subgroup considered in [5].

Remark 1. What the authors have done in [5] is to search among the multiplicative subgroups of
F∗q(·), even though the private key space is (E(Fp),+) ∼= Fq(+), hence additive. This observation
makes the result (four keys detected) even more surprising since it has been considered a subgroup
that is far from the actual nature of group E(Fp). This very curious fact makes us think that the
cause is some implementation error that has occurred during the practical design of the wallets.

4. Address Generation

In this section, we examine how the addresses are generated starting from the choice
of the private key.

4.1. Private and Public Key

The private key is an arbitrary 256-bit integer k. Using k, it is possible to compute
the point

K = kP = (Kx, Ky)

over the elliptic curve, from which the public key is derived. We have two different ways
to represent the public keys:

(i) PK1 = 0x04 ||Kx ||Ky,

(ii) PK2 =

{
0x02 ||Kx if Ky is even,
0x03 ||Kx if Ky is odd,

where we have denoted with || the string concatenation. In the first case, the public key
—also known as the uncompressed public key—consists of 65 bytes (32 bytes for Kx and Ky,
plus the byte 0x04), while in the second case, the public key is called the compressed public
key and consists of 33 bytes. The ways of obtaining the addresses for each cryptocurrency
are discussed in the following paragraphs.
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4.2. Bitcoin Addresses

There are three manners to generate Bitcoin addresses starting from the point
K = (Kx, Ky).

First of all, two hash functions appear in Bitcoin address generation, which are SHA-
256 [14] and RIPEMD-160 [15]. Let us compute, for i ∈ {1, 2} :

Wi = 0x00 ||RIPEMD-160(SHA-256(PKi)),

checksumi = (SHA-256(SHA-256(Wi)))[1 . . . 4],

where [1 . . . 4] denotes the first four bytes of that string. The first byte 0x00 is a prefix called
version byte. Then, the first two ways to generate Bitcoin addresses are, for i ∈ {1, 2},

Base58(Wi || checksumi),

where Base58 [16] is an encoding scheme.
The addresses of the third kind were introduced in 2017, and they are called segwit

addresses [17]. These addresses are computed starting only from compressed public keys.
First of all, it is computed

W = RIPEMD-160(SHA-256(PK2)),

Then it is encoded using Bech32 [18], and it is concatenated to the prefix bc1 in order
to obtain the final address format

bc1 ||Bech32(W).

4.3. Ethereum Addresses

Ethereum addresses are generated starting from the uncompressed public key; that is

PK = 0x04||Kx||Ky.

However, a different hash function is used: KECCAK-256 [19]. The address is com-
puted as

KECCAK-256(PK)[1 . . . 20],

where [1 . . . 20] denotes the first 20 bytes of that string.
After this computation, the addresses are encoded following the rules described in

the EIP-55 document [20]. In short, the capitalisation of certain alphabetic characters in the
address is changed to obtain a checksum that can be used to protect the integrity of the
address from typing or reading errors.

4.4. Dogecoin Addresses

Dogecoin address generation is similar to the first two methods described for Bitcoin;
thus we can use uncompressed or compressed public keys. It only changes the version byte
0x00 of Bitcoin into 0x1E. In this way, the final Base58 encoding gives a D as the first letter
for each address. Dogecoin does not generate addresses following the segwit standard.

4.5. Litecoin Addresses

Litecoin can generate addresses using all the three methods described for Bitcoin. In
the first two cases, the prefix is the version byte 0x30 instead of 0x00. In this way, all the
addresses start with the letter L. In the segwit case, the Bech32 encoding of the address is
concatenated with the prefix ltc1; that is

ltc1 ||Bech32(RIPEMD-160(SHA-256(PK2))).
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4.6. Dash Addresses

The address generation is similar to Bitcoin, but in this case, the version byte is changed
into 0x4c, so that all the addresses start with the letter X. Dash does not generate addresses
following the segwit standard.

4.7. Zcash Addresses

The address generation is similar to Bitcoin, but in this case, the version byte is changed
into [0x1c, 0xb8]. Zcash addresses can either start with the letter t if they are transparent, or
z if they are shielded. Zcash does not generate addresses following the segwit standard.

4.8. Bitcoin Cash Addresses

Bitcoin Cash (BCH) is the result of a Bitcoin hard fork that happened in 2017 when some
Bitcoin nodes did not share the segwit soft fork. BCH addresses are encoded two times:

• first, an address with the same encoding of Bitcoin is obtained,
• second, the address is encoded again with an encoding scheme called CashAddr [21],

which is used by Bitcoin Cash only. This encoding is similar to Bech32.

BCH addresses that are encoded twice start with the string bitcoincash:q, or just with
the letter q. It comes natural that Bitcoin Cash does not generate addresses following the
segwit standard.

5. Experimental Environment and Development

In this section, we describe our experimental environment, which led us to the results
shown in the following. In order to perform a deep investigation for the existence of the
addresses generated, we filled a database with all addresses that had ever appeared on the
blockchains of our interest, exploiting the MySQL Laragon tool for the search operation [22].

5.1. Blockchain Addresses Extraction

The extraction of all the addresses ever appeared on a blockchain can be performed
in different ways, depending on the time availability. Generally, the most common meth-
ods are:

• setting up a full node containing a complete local copy of the relative blockchain and
reading data from it,

• getting data through public Application Programming Interfaces (APIs), available on
the web.

In our case, we decided to set up full nodes when it was impossible to retrieve data
from any public API. In this regard, we would like to point out that the availability of
public APIs, documentation and general support was very weak for any blockchain other
than Bitcoin and Ethereum.

5.2. Development

For some blockchains (Dogecoin, Litecoin, Bitcoin Cash and Ethereum), we developed
some Python scripts in order to use the public APIs provided by Tatum [23] and Ankr [24].
Differently, to analyse Dash and Zcash, we had to build our own full nodes to get the
block data from them. Finally, the list of Bitcoin addresses was taken from [25], which
offers some interesting information about the Bitcoin blockchain. For anyone interested in
learning more, our code is publicly accessible at [12]. We conclude this section by reporting
in Table 1 the number of addresses we have examined; that is, the totality of addresses that
have ever been used in the history of these blockchains.
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Table 1. Number of examined addresses.

Blockchain Addresses

Bitcoin 923,414,052
Ethereum 144,596,346
Dogecoin 69,817,509
Litecoin 134,530,241

Dash 92,456,113
Zcash 6,813,058

Bitcoin Cash 334,965,092

6. Cosets Examination

In this section, we list the results that we have obtained by inspecting the eight cosets
gi H, i ∈ {0, . . . , 7}, of order h = 18, 051, 648 for the seven blockchains we have chosen to
investigate. The eight cosets contain a total of 8h ≈ 144 million addresses. We have checked
if these addresses ever appeared in the blockchains mentioned above, i.e., if they have ever
held any amount of cryptocurrency.

More specifically, we have written some Python code that, starting from the list of
private keys, computes the resulting addresses in the right format and then checks if these
addresses ever appeared on the analysed blockchains. The code used in this analysis is
publicly accessible at [12]. In Table 2 we sum up all the results.

Table 2. Results of the subsets examination.

Addresses H gi H, i = 1, . . . , 7

Uncompressed Bitcoin 4 addresses No address
Compressed Bitcoin 3 addresses No address

Segwit Bitcoin 1 addresses No address
Ethereum 1 addresses No address
Dogecoin 3 addresses No address
Litecoin 2 addresses No address

Dash 2 addresses No address
Zcash No address No address

Bitcoin Cash 6 addresses No address

From this analysis, it turns out that only three addresses are non-trivial, i.e., they
do not have 1 or −1 as the private key. Notice that, for example, in Dogecoin, we have
found three trivial addresses since each private key can be associated with two different
encodings of the public key (compressed and uncompressed), for a total of four potential
trivial addresses. The three non-trivial addresses belong to the Bitcoin blockchain. The two
addresses already found by Sala et al. [5] were generated in 2013 and 2014, so they are
present in Bitcoin Cash as well, while the third one is the address

1H1jFxaHFUNT9TrLzeJVhXPyiSLq6UecUy,

and it was generated starting from a compressed public key. It was created on 15 October 2019,
after the Bitcoin Cash fork, which is dated 1 August 2017. The address has no cryptocur-
rency in it nowadays.

The story of the address

1PSRcasBNEwPC2TWUB68wvQZHwXy4yqPQ3,

already found by Sala et al., is somewhat interesting. That address was created on
15 March 2014, and the funds got removed in June 2018 only after the authors of the
previously cited papers contacted them (read [5] to know more). Hence, the address is old
enough to appear on BCH. It is indeed present:

qrmzrdndlfxpnkk3w5d5l7etnysnqfgk5yxsf6k0qq,
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after the new encoding with the CashAddress format.
However, the address is empty as someone moved the funds on that address on 1 May

2019. Furthermore, on 15 November 2018, Bitcoin Cash had yet another hard fork that led
to the birth of Bitcoin SV. Hence, this address must be present on that blockchain as well.
By examining a Bitcoin SV explorer, it turns out that the funds from that address also got
moved on 1 May 2019, two minutes earlier than the transaction on Bitcoin Cash. It seems
likely to assume that the funds got moved from the same entity.

Finally, notice that we were not able to find any addresses on the seven cosets we have
chosen to examine. This is interesting but not unexpected, as the probability of finding
an address with this brute-force method is really low, as already underlined in [5]. In this
way, the security of these blockchains is not threatened since it shows that it is way more
profitable to honestly mine the protocol than trying to generate random private keys with
the aim of stealing cryptocurrency [6]. This may also confirm that the non-trivial addresses
were generated due to poor implementation of some wallets. It would also be interesting
to try to understand which Bitcoin wallets generated these addresses.

6.1. Other Curves to Examine

The most used elliptic curve in blockchains, besides the secp256k1, is for sure the
Curve25519. It is employed in several blockchains, including Monero [26], Cardano [27],
Solana [28] and Algorand [29]. The defining curve is the Montgomery curve

E(Fp) : Y2 = X3 + 486662X2 + X,

where p = 2255 − 19 is a prime number. The number of rational points is n = 8l where

l = 2252 + 27742317777372353535851937790883648493.

Reasoning, as in the case of the curve secp256k1, the private key can be chosen among
the non-zero points, whose number is

l − 1 = 22 · 3 · 11 · q1 · q2,

where

q1 = 276602624281642239937218680557139826668747,

q2 = 198211423230930754013084525763697.

The private key space is then in bijection with Z∗l (·), it is cyclic, and it has a unique
subgroup for each divisor of its order l − 1, by Lemma 1. Notice that an analogue analysis
can not be performed since the small subgroup contains only 132 = 22 · 3 · 11 points.

Finally, another curve that might be worth analysing in the future is the NIST P-256
curve, defined in the specification [30]. It is actually used by NEO [31], Tezos [32] and
Ontology [33]. The curve is

E(Fp) : Y2 = X3 − 3X + B,

where

B = 410583637251521421293261297800472684091144410159937255

54835256314039467401291,

and p is the prime number

p = 2256 − 2224 + 2192 + 296 − 1.
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The order of this curve is

q = 115792089210356248762697446949407573529996955224135760

342422259061068512044369,

and q− 1 factorises as

q− 1 = 24 · 3 · 71 · 131 · 373 · 3407 · 17449 · 38189 · 187019741 · 622491383 · q1 · q2,

where

q1 = 2624747550333869278416773953,

q2 = 1002328039319.

This case is certainly more interesting than the previous one, since there are several
subgroups of order dividing q− 1 that can be inspected.

7. Computational Benchmarks

The analysis consists of three steps:

(1) The creation of the secp256k1_keys.txt file, in each row containing the information
about the private keys and the corresponding x and y coordinates of the public keys of
our special subsets. This file contains around 144 million rows, and it weights around
29 GB.

(2) The downloading of the lists of addresses and uploading of the same lists on the
MySQL Laragon tool. Information about the total number of addresses has already
been given in Section 5.

(3) The generation of blockchain addresses in our subsets starts from the file generated
during the first step, searching for some matches with the lists uploaded during the
second step.

To perform most of these computations, we used a desktop computer with processor
Intel Core i9-10900K and a Non-Volatile Memory with 1 TB of capacity. We then compared
the execution time with a laptop computer using a processor Intel Core i7-11370H and
16 GB of RAM.

Step 1 must be executed just once, and then the file can be used every time we need in
order to perform a different analysis. We generated this file using the laptop computer, and
it required around 25 h.

Step 2 is the most time-consuming operation. We uploaded all the lists on the desktop
computer. The time needed depends on the total number of addresses in each list. For
example, for Bitcoin, we needed around one week to upload the address list to Laragon,
while the same operation for Ethereum took about five days. The size of these lists ranges
from 58 GB to store the entire Bitcoin address list to just over 0.5 GB to store the entire
Zcash address list. We then repeated the same operations for the laptop computer, and, on
average, we needed around 15% more time.

Finally, Step 3 must be performed once per every different generation method, i.e.,
15 different scripts must be executed. On average, every script took around 17 h of time
on the computer mounting the i9 processor. On the laptop, the required time was around
12% longer.

8. Conclusions

In this paper, we have given an answer to two open questions left in [5]. It turns out
that the strange behaviour observed by Sala et al. is a peculiarity of Bitcoin and its hard
forks, where we have also found a new address not detected in [5]. Instead, we have not
been able to find any non-trivial private keys for the other analysed blockchains and for the
cosets of the starting subgroup. Another contribution of this work is the comprehensive
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analysis of the addresses we have extracted from some of the most important blockchains
to date. In fact, it is almost impossible to find relevant information on the web for any
blockchain other than Bitcoin and, to some extent, Ethereum. The interested readers
can extract addresses with the same methods using the scripts available in our GitHub
folder [12]. For future work, it might be interesting to analyse more thoroughly the wallets
used in the period these addresses were generated to try to confirm the hypothesis that this
behavior really comes from an incorrect implementation of the wallet itself. In addition, it
is possible to examine the small subgroups found in Section 6.1 to understand if the NIST
P-256 curve also presents some strange behaviour on those subsets.
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