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ABSTRACT
In the last decades, the adoption of offset carrier modulations represented one of the main aspects in the modernization of Global
Navigation Satellite System (GNSS) signals. Offset carrier modulations provide indeed specific signal characteristics and
guarantee the desired performance trade-off in terms of bandwidth utilization and tracking jitter at the receiver. In light of this,
ongoing signal design proposals for modernized GNSS, Low-Earth Orbit and navigation services cannot neglect fundamental
findings in this direction. At the same time, the theoretical bounds governing time delay and frequency offset estimation have a
direct impact on receivers state estimation when this task rely on the inference of signal-derived observables. In this context, the
aim of this work is to investigate the inherent relationship between offset carrier modulation, i.e., spreading code chip shaping,
and the bounds set by uncertainty principle about time delay and frequency offsets estimation of GNSS signals. The research
addresses a surveying analysis of currently-adopted offset carrier modulations and the evaluation of their theoretical bounds
associated to the respective analytical ambiguity functions. The study offers a methodology to synoptically compare different
chip shaping and to characterize how this influences signals’ time-frequency localization precision and estimation errors at the
receiver, which has a direct impact on delay and frequency lock loops performance at the receiver tracking stage.

I. INTRODUCTION
In the domain of Global Navigation Satellite System (GNSS), the precise acquisition of code phase and frequency offset
measurements is crucial. This process involves minimizing the peak region of the Cross-Ambiguity Function (CAF) across both
time and frequency domains (Pratap and Per, 2010), which is essential for accurately determining pseudorange and Doppler
observables. Sharper peaks in these domains correlate with enhanced precision, thereby improving state estimation performance.
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The uncertainty principle, formalized in the late 1920s within the framework of quantum mechanics by Heisenberg, Kennard,
Weyl, and Robertson, imposes fundamental limits on the precision with which pairs of conjugate variables, such as position
and momentum, can be simultaneously determined (Heissenberg, 1930; Kennard, 1927; Robertson, 1929). According to Gabor
theory, this has significant implications for signal processing, particularly in the simultaneous analysis of time and frequency
signals. This principle highlights the inherent trade-off between time and frequency resolutions in radar and radionavigation
theory, impacting the joint estimation of signal time delay and frequency offset relative to a local signal replica. A more localized
signal in the time domain will have a broader bandwidth, and vice versa, affecting the uncertainties in time delay and frequency
offset estimation within GNSS receivers.

Various optimization algorithms have been investigated to design offset carrier modulation schemes that minimize time delay
uncertainty (Zhang et al., 2011a,b), often neglecting the precision of frequency offset estimation. Despite the significance of these
findings, the authors have overlooked important theoretical relationships, particularly the well-established Gabor time-frequency
localization principle and the fundamental limits set by Gaussian pulses (Haddad et al., 1993).

Accurate frequency offset estimation is crucial for proper carrier wipe-off during the conventional tracking stage of GNSS
and for inferring Doppler shifts to estimate receiver velocity. Despite several works provided practical evidence about the
independence of pseuodorange and frequency offset observables (Zocca et al., 2022), an accurate velocity estimation is tightly
related to position state estimate in Bayesian estimation approach such as Kalman and particle filters. Error contributions from
poorly designed signals are hence significant in positioning, navigation, and timing applications.

This study focuses on analytical aspects to reveal fundamental bounds as early indicators of suitable signal design. We introduce a
semi-analytic methodology to evaluate offset carrier modulation performance based on the time-frequency localization principle
and its relationship to precise code time delay and frequency offset estimation. To generalize the use of comprehensive trade-off
metrics, we disregard the periodicity of the signal and codes, treating fundamental offset carrier modulation shapes as waveforms
of finite duration, akin to radar impulsive signal analysis.

The objective of this work is twofold: to provide an analytical methodology for evaluating chip shaping performance concerning
the time-frequency localization principle and to survey current state-of-the-art modulations in modern GNSS systems, bounding
their performance against ideal pulse shaping. Furthermore, we introduce the concept of the uncertainty product as a metric for
signal design trade-offs, offering a holistic perspective on GNSS subcarrier performance characterization. This methodology
enhances the understanding of subcarrier chip shaping’s impact on radionavigation signals’ performance and establishes
a foundation for informed decision-making in signal design and system optimization, thereby advancing radionavigation
technology.

It is important to note that a similar analysis is lacking in the current literature. The increasing demand for new systems, such as
LEO PNT and Lunar PNT, as well as the modernization of existing GNSS constellations, necessitates a detailed understanding
of the most significant trade-off metrics. The authors are well-aware that signal design trade-offs must also contemplate for
correlation ambiguity, resilience to interference and multipath, and several other key performance parameters (Yao and Lu, 2021;
Hegarty, 2012). However, this work mostly address signal related aspects, with the discussion of receiver-side considerations
deferred to complementary, future research.

The reminder of this paper is as follows. Section II revisit and formalize key theoretical concepts from signal theory, with
a particular focus on time-frequency signal localization. Section III presents the simulation environment utilized for the
synoptical analysis of the various offset carrier modulation. Section IV collects fundamental limits for state-of-the-art offset
carrier modulation schemes and generalizes these results for extended trade-offs. Section V summarizes the main conclusions
of the study.

II. BACKGROUND
1. Uncertainty principle in signal theory
The uncertainty principle in signal theory is tightly related to its counterpart in quantum mechanics. It is often referred to as
the Gabor uncertainty principle, named after Dennis Gabor’s 1946 article on the subject (Gabor, 1946). Gabor’s uncertainty
principle states that a signal cannot be localized simultaneously in the time and frequency domains with arbitrary precision.
If the signal support is constrained in one domain, it must be broadened in the other. This highlights a fundamental trade-off
between time and frequency resolution in signal processing.

The time-frequency localization of a signal pertains to its distribution across these respective domains. Mathematically, this
relationship can be characterized by the variance, which quantifies the dispersion of a probability density function (pdf) around
its mean.

Consider a generic signal in the time domain s(t) ∈ L2(R). The signal s(t) is a square-integrable function over the real



numbers. Let S(ω) be its Fourier transform, which also belongs to L2(R). We define

ps(t) = |s(t)|2∫ +∞
−∞ |s(t)|2dt

= |s(t)|2

Es
(1)

where Es is the energy of the signal s(t). The function ps(t) can be interpreted as a pdf over time, describing the distribution
of the signal’s energy in this domain. A dual formulation holds in the frequency domain. We can define

pS(ω) = |S(ω)|2∫ +∞
−∞ |S(ω)|2dω

= |S(ω)|2

Eω
(2)

where, Eω represents the energy of the signal in the angular frequency domain. The function pS(ω) is the distribution of the
signal’s energy across angular frequency. Relying on (1) and (2) it is possible to define the second-order central moment, i.e.,
the variance of the signal in the respective domains, as

σ2
t =

∫ +∞

−∞
(t− t0)2 ps(t) dt = 1

Es

∫ +∞

−∞
(t− t0)2 |s(t)|2 dt (3)

σ2
ω =

∫ +∞

−∞
(ω − ω0)2 pS(ω) dω = 1

Eω

∫ +∞

−∞
(ω − ω0)2 |S(ω)|2 dω (4)

where t0 and ω0 identify the mean in time and angular frequency domain respectively and can be written as shown below.

t0 =
∫ +∞

−∞
t ps(t)dt = 1

Es

∫ +∞

−∞
t|s(t)|2 dt (5)

ω0 =
∫ +∞

−∞
ω pS(ω) dω = 1

Eω

∫ +∞

−∞
ω2|S(ω)|2 dω (6)

In signal and radar theory (Levanon, 1988), the square roots of (3) and (4) are referred to as the root-mean-squared (RMS)
duration and RMS bandwidth, respectively, with the latter also known as the Gabor bandwidth. These quantities determine
the concentration of signal energy around its mean, serving as indicators of how localized the signal is in either the time or
frequency domain.

An alternative formulation for (3) and (4) that is popular in literature (McDonough and Whalen, 1995) is as

σ2
t = 1

Es

∫ +∞

−∞
t2|s(t)|2 dt−

[
1
Es

∫ +∞

−∞
t|s(t)|2 dt

]2

(7)

σ2
ω = 1

Eω

∫ +∞

−∞
ω2|S(ω)|2 dω −

[
1
Eω

∫ +∞

−∞
ω|S(ω)|2 dω

]2

(8)

This approach intuitively aligns the aforementioned definitions with the statistical definition of variance. It highlights that these
quantities can be quantified as the expected value of the random variables squared minus the square of their expected value
(Ross, 2010).

For the sake of completeness, Appendix VI.1 shows the equality between (3) and (7) and (4) and (8), respectively.

As demonstrated in the literature, tailoring signals for enhanced performance in either the time or frequency domain is a common
practice in signal design (Zhang et al., 2011a,b). Specifically, it is feasible to design a signal with a small σt or σω . However,
when both domains are considered equally relevant, the limitations imposed by the uncertainty principle must be taken into
account. In this case, instead of considering (3) and (4) separately, one can consider the time-bandwidth product, which is
defined as the product of the two.

σ2
t σ

2
ω =

∫ +∞
−∞ (t− t0)2 |s(t)|2 dt

Et

∫ +∞
−∞ (ω − ω0)2 |S(ω)|2 dω

Eω

(9)



Figure 1: Time-bandwidth product hyperbola for the Gaussian pulse. Pulse observed over an interval Tc = 9 × 10−5 s, with the parameter
α varying from 1 × 10−8 to 9.78 × 10−6.

By assuming t0 and ω0 equal to 0 in (9) we can assume independence of the time-bandwidth product from time or frequency
shift, respectively. As per Appendix VI.2, it can be shown that this assumption can be made without loss of generality because
the time-bandwidth product is invariant to shifts in time or frequency. Its value solely depends on the signal’s shape.

Furthermore, it can be proved (Boggess and Narcowich, 2015; Luise and Vitetta, 2009) that the product in (9) cannot be
arbitrarily small; rather, a lower bound can be identified. Given the specific formulation of σ2

t and σ2
ω , this lower bound has

been formalized in (Papoulis, 1977), as
σtσω ≥ 1

2 (10)

where σt and σω are the standard deviation in the two domain, obtained taking the square root of (3) and (4) respectively.

It is important to note that various formulations of this fundamental lower bound can be found in the literature, each presenting
different constants in the second term. These discrepancies mainly arise from the different methods used to measure RMS
bandwidth and RMS duration. For example, if the signal is characterized by a one-sided bandwidth and not expressed in angular
frequencies, the constant becomes 1

8π instead of 1
2 (Luise and Vitetta, 2009). Nonetheless, despite the differences in these

constants, the underlying principle remains consistent. Additionally, it can be demonstrated that (10) holds with equality only
if s(t) is a Gaussian signal of the form s(t) = Ae−(t/α)2 (Papoulis, 1977; Luise and Vitetta, 2009).

When equality holds, (10) describes a hyperbola in the first quadrant of a Cartesian plane, with the x-axis representing σt and
the y-axis representing σω . This hyperbola defines the performance in terms of the time-frequency localization of the Gaussian
signal. For other signals, the points describing their time-frequency localization will lie within the region of the plane that is
lower bounded by the hyperbola, as illustrated in Figure 1. Here, the hyperbola describes the points σt and σω of a Gaussian
signal observed over an interval Tc = 9×10−5 s, generated by varying the parameter α (ranging from 1×10−8 to 9.78×10−6).
The parameter α influences the width of the Gaussian bell in the time domain and inversely affects the dispersion of the signal
energy in the frequency domain.

2. Performance Limits in time delay and frequency offset estimation
While the uncertainty principle presented in Section II.1 provides a natural theoretical lower bound on the localization of a signal
in the time and frequency domains, the Cramér-Rao Lower Bound (CRLB) provides a practical lower bound on the variance of
unbiased estimators.



Let us consider the estimation of the unknown time delay θ from a noisy signal observation

x(t) = s(t− θ) + n(t) (11)

where s(t− θ) is the delayed version of the transmitted signal s(t) and n(t) is a zero-mean additive white Gaussian noise.

In the presence of a sufficiently high signal-to-noise ratio (SNR), the CRLB proposed in (McDonough and Whalen, 1995)
defines a lower bound for the uncertainty on the time delay estimation

σ2
Θ ≥ 1

2 SNRσ2
ω

. (12)

where σ2
ω is the square of the RMS bandwidth defined in (4). It is important to highlight the inversely proportional relationship

between the CRLB and the square of the RMS bandwidth. This means that a greater RMS bandwidth, indicating a signal that
is less localized around its mean in the frequency domain, reduces the lower bound on the variance of the time delay estimator,
allowing for more precise estimates. This aligns with the fact that increasing the RMS bandwidth results in the signal being
more localized in time. For radionavigation signals, this translates to higher ranging accuracy.

For what concerns the estimation of frequency offset ωo, let us consider a noisy observation

x(t) = s(t)e(jωot) + n(t) (13)

where s(t) e(jωot) is the version of the transmitted signal affected by the frequency offset and n(t) is a zero mean additive
white Gaussian noise. Following the derivation found in (McDonough and Whalen, 1995), under the assumption of having a
sufficiently high SNR we obtain that the variance on the frequency offset estimate is lower bounded by:

σ2
Ω ≥ 1

2 SNRσ2
t

. (14)

From (14) it is possible to see the dual form with respect to (12). In this case in the denominator is the square of the RMS duration
expressed as in (3). In this case, it can be observed that the estimation performance improves as the frequency localization of
the signal improves.

Moreover, it is worth noting that in the GNSS domain, it is possible to substitute the value of SNR for the value of Carrier-to-
Noise-density ratio (C/N0) in (12) and (14) without affecting the consistency of the formula (Angelo, 2010).

III. METODOLOGY
1. Simulation framework
In this study, we focused on the impact of chip shape on the fundamental limits presented in Section II. To investigate this
impact, we adopted a semi-analytical method, applying the limit formulas to numerically generated signals. To achieve this,
we considered an observation time equal to Tc centered at zero. Figure 2 illustrates the chip shapes of the various modulations
examined. To ensure a fair analysis, we normalized each chip to have unit energy by dividing the signal over time by the square
root of its own energy.

Our research focused on Binary Offset Carrierr (BOC) subcarrier modulations, which are widely used by various GNSS, and
corresponding Sinusoidal Offset Carrier (SOC) modulations. The modulations under investigation are listed in Table 1.

a) BOC modulation
BOC is the most popular offset carrier modulation employed in the definition of GNSS subcarriers. It involves modulating a
binary signal onto an offset carrier, creating a signal with two symmetrical frequency components relative to the central carrier.
BOC is a binary modulation with two levels, [+1,−1], derived from a sinusoidal waveform (Ávila Rodrı́guez, 2008).

This modulation is commonly referred to in the time domain as BOC(m,n), where m and n define the subcarrier frequency
fsc = m × 1.023 MHz, and the chip rate Rc = n × 1.023 MHz, respectively. A key parameter in this modulation is the number
of subcarrier periods within a chip, given by ξ = m

n . More information on the BOC modulations analyzed is given in Table 1.



BOCsin(1,1) BOCsin(5,2.5) BOCsin(10,5) BOCsin(5,2) BOCsin(15,2.5)

SOCsin(1,1) SOCsin(5,2.5) SOCsin(10,5) SOCsin(5,2) SOCsin(15,2.5)

Figure 2: Offset carrier modulation under test definedin time domain over a support ±Tc/2

b) SOC modulation
SOC modulation, like BOC, is used to modulate a binary signal and shift the spectrum. However, while BOC is a binary
modulation derived from a sinusoidal waveform, SOC is not binary (Ávila Rodrı́guez, 2008). Similar to BOC, SOC modulation
is described by two parameters, m and n. The value of m represents the subcarrier frequency fsc in multiples of the base
frequency 1.023 MHz, while the value of n represents the chip rate Rc in multiples of the base frequency 1.023 Mcps. Again,
it is possible to identify the number of subperiods as ξ = m

n . More information on the SOC modulations analyzed is given in
Table 1.

c) Gaussian Pulse
The Gaussian pulse was generated to serve as a benchmark for comparing the theoretical bounds we analyzed. It is defined as:

s(t) = e−(t/α)2
(15)

where α is a parameter that influences the pulse width in the time domain. To have a comparable pulse with the other chips, a
Tc consistent with the others is chosen. The parameter α can have an arbitrary value, but it is generally set to a fraction of Tc to
ensure the pulse is mostly contained within Tc. We refer to the Gaussian pulse in the time domain as Gaussian(γ, n), where γ
is the fraction of Tc we want to consider and n affects the duration of the chip, similar to the BOC and SOC cases.

d) Time and frequency axes
Defined Tc according to the chosen modulation, we set the time axis nt as:

nt =
{
tn | tn = −Tc

2 + nTs, n = 0, 1, 2, . . . , N − 1
}

(16)

where Ts represents the sampling period, defined as the inverse of the sampling frequency Fs, which is set to Fs = 40 MHz in
the simulation. N represents the number of samples and is defined as Tc/Ts.

As for the frequency domain, each s(t) signal was transformed using the FFT function of MATLAB. The frequency axis was
generated by calculating the frequency resolution ∆f = Fs/N . This resulted in an axis ranging from − Fs

2 to Fs

2 with increments
of ∆f .

kf =
{
fk | fk = −Fs

2 + k · ∆f, k = 0, 1, 2, . . . , N − 1
}

(17)

This frequency axis was then converted to the angular frequency axis kω = 2πkf .



Table 1: Selected BOC and SOC modulations.

Modulation (m, n) fsc (MHz) Rc (Mcps) ξ (m/n)

BOCsin(1, 1) (1)

1.0230 1.023 1
SOCsin(1, 1) (2)

BOCsin(5, 2.5) (1)

5.1150 2.5575 2
SOCsin(5, 2.5) (2)

BOCsin(10, 5) (1)

10.2300 5.1150 2
SOCsin(10, 5) (2)

BOCsin(5, 2) (1)

5.1150 2.0460 2.5
SOCsin(5, 2) (2)

BOCsin(15, 2.5) (1)

15.3450 2.5575 6
SOCsin(15, 2.5) (2)

1 BOCsin: s(t) = sign[sin(2πfsct)]
2 SOCsin: s(t) = sin(2πfsct)

2. Calculation of theoretical limits
To evaluate theoretical bounds, we applied

σ2
t = 1

Es

∫ +∞

−∞
(t− t0)2 |s(t)|2 dt → σ2

nt
= 1
Esn

∑
(nt − nt0)2 |s(nt)|2 Ts (18)

where
Es =

∫ +∞

−∞
|s(t)|2dt → Esn

=
∑

|s(nt)|2 Ts (19)

t0 = 1
Es

∫ +∞

−∞
t |s(t)|2dt → nt0 = 1

Esn

∑
nt |s(nt)|2 Ts (20)

As for the frequency domain, a similar conversion was made. Where instead of Ts the summation is multiplied by ∆ω = 2π∆f ,
and instead of s(nt), s(kω) is used. The discrete formulations of the various limits were tested and validated using numerical
methods for calculating integrals.

As for the analyses on CRLB, they depend on the values of C/N0. For the analyses conducted, we selected a range of C/N0
from 0 to 50 dB-Hz with a step of 5 dB-Hz.

C/N0dB-Hz =
{

C/N0dB-Hzi
| C/N0dB-Hzi

= 0 + i · 5, i = 0, 1, 2, . . . , 50
}

(21)

IV. RESULTS
1. Analysis of the time-bandwidth product
Figure 3 illustrates the distribution of time-bandwidth product (σt × σω) of the various modulation chip shapes analyzed with
respect to uncertainty principle.

The black hyperbola represents the theoretical lower bound imposed by uncertainty principle, (10), achievable only by the
Gaussian impulse. By adjusting the parameter α, the Gaussian impulse can be expanded or contracted in the time domain,
encompassing all points along the solid hyperbola

Above the hyperbola, the highlighted area indicates where the time-bandwidth product exceed the lower bound, defining the
region that satisfies uncertainty principle. Each point placed in this area corresponds to a pair of values (σt, σω) associated with
a specific modulation chip shape.



(a) BOC chip shape (b) SOC chip shape

Figure 3: Time-bandwidth product computed semi-analytically for different carrier offset modulations.

The points highlighted by square, triangular, circular, and rhomboidal markers in Figure 3a and 3b are generated with constant
ξ parameter of BOC and SOC modulations. Specifically four values of ξ were selected and are the one shown in table 1. For
each values of ξ, modulations of the form BOC(m = ξn, n) and SOC(m = ξn, n) were generated with n ranging from 1 to 10
in steps of 0.5. Markers such as black rhombus (ξ = 1), square (ξ = 2), triangle (ξ = 2.5) and circle (ξ = 6) denote different ξ
values. Among all the points, the five corresponding to the reference modulations shown in Table 1 are highlighted.

Eventually, for each point included in the graph, a hyperbola of equation σti
×σωi

= TBPi is drawn, where i identifies the i-th
tested chip shape and TBPi denotes its corresponding time-bandwidth product.

Table 2 shows the values of σt, σω , the time-bandwidth products, and the Loss in dB (ΛdB). The Loss is defined as the ratio
between the time-bandwidth product of the selected modulation (TBPi) and that of the Gaussian pulse used as a benchmark
(TBPG), calculated as ΛdB = 10 log10

(
T BPi

T BPG

)
.

From Figure 3, it is evident that points associated with the BOC(ξin, n) and SOC(ξin, n) modulations, (i.e., with the same ξ
parameter) tend to align on the same hyperbola as n varies. This indicates consistent behavior of the time-bandwidth product
with varying chip rates.

Moreover, an increase of the parameter m = ξn , results in an improvement of temporal localization which in graphical terms
translates into a point moving to the left on the corresponding hyperbola.

Table 2 and Figure 3 also suggest that time-bandwidth product increases with an increasing ξ. Consequently, points a on the
hyperbola associated with the modulations having a higher ξ will always exhibit worse performance as shown by the loss values
Λ (dB) reported in Table 2. Λ (dB) for the selected modulations. It is important to note that the loss values shown in the table do
not apply only to specific modulations, but represent the entire class of modulations with the same ξ parameter. This highlights
how modulations within the same family and with the same value of ξ, for a given sampling frequency Fs, exhibit a constant
loss with respect to the benchmark set by the Gaussian pulse, regardless of the value of the chip rate.

2. Analysis of the Cramér-Rao Lower Bound
In the analysis of the CRLB, Figures 4 display the values obtained by applying the square root to the CRLB formulas from (12)
and (14). Tables 4 and 3 present the C/N0 values for both σΘ and σΩ.

The results reveals a clear decreasing trend in CRLB values as the C/N0 increases, consistent with the (12) and (14) formulas.

As observed in Figure 3,since we are focusing on a time extension limited to Tc, the spread in the time domain is relatively
small. This directly influences the σΩ values reported in Table 3.



Table 2: Parameters associated with the selected modulations.

Modulation σt σω TBP ΛdB

Gaussian - - 0.5 -

BOCsin(1, 1) 2.821e-07 2.1531e+07 6.073 10.844

BOCsin(5, 2.5) 1.1284e-07 7.6206e+07 8.599 12.354

BOCsin(10, 5) 5.6419e-08 1.5241e+08 8.599 12.354

BOCsin(5, 2) 1.4105e-07 7.4578e+07 10.519 13.230

BOCsin(15, 2.5) 1.1284e-07 1.3361e+08 15.076 14.793

SOCsin(1, 1) 2.5986e-07 6.4277e+06 1.670 5.237

SOCsin(5, 2.5) 1.1071e-07 3.2138e+07 3.558 8.522

SOCsin(10, 5) 5.5354e-08 6.4277e+07 3.558 8.522

SOCsin(5, 2) 1.4245e-07 5.2998e+07 7.549 11.789

SOCC(15, 2.5) 1.1262e-07 9.6415e+07 10.858 13.367

(a) Time delay CRLB (b) Frequency offset CRLB

Figure 4: CRLBs for time delay and frequency offset estimation of the selected offset carrier modulations.

The relationship between localization in the time and frequency domains and the variances in the estimation is clearly evident
when observing the σΘ values. Comparing SOC modulations with BOC modulations, we observe that σΘ is smaller for SOC
than for its BOC counterparts.

Figure 3 illustrates that SOC modulations not only have smaller time-bandwidth product compared to BOC but are also more
localized in frequency. This translates into a lower variance in the time delay estimation for BOC compared to SOC.

V. CONCLUSIONS
In this paper, we developed a semi-analytical methodology to evaluate chip shaping performance based on the time-frequency
localization principle. We analyzed several state-of-the-art modulations in GNSS by comparing them to reference Gaussian
pulses, that theoretically achieve the best performance according to the uncertainty principle. The results suggest that SOC
modulations achieve better performance in terms of the time-bandwidth product, but in terms of delay estimation, for the same
ξ parameter, they perform worse than the corresponding BOC modulations. Moreover, the proposed semi-analytical analysis
demonstrates that the relative performance of various offset carrier modulation schemes remains invariant with respect to the
chip duration, thus to the code chip rate. This implies that the fundamental performance bounds, established through comparison
against the Gaussian pulse, are consistent and reliable regardless of the chosen chip rate. Consequently, our findings suggest



Table 3: Time delay CRLB (σΘ) values for 6 values of C/N0 (dB-Hz)

Time delay CRLB (ns)
C/N0 (dB-Hz) 5 10 20 30 40 50

BOCsin(1, 1) 18.468 10.386 3.2842 1.0386 0.3284 0.1038

SOCsin(1, 1) 61.863 34.788 11.001 3.4788 1.1001 0.3478

BOCsin(5, 2.5) 5.2179 2.9342 0.9278 0.2934 0.0927 0.0293

SOCsin(5, 2.5) 12.373 6.9576 2.2002 0.6957 0.2200 0.0695

BOCC(10, 5) 2.6089 1.4671 0.4639 0.1467 0.0463 0.0146

SOCC(10, 5) 6.1863 3.4788 1.1001 0.3478 0.1100 0.0348

BOCC(5, 2) 5.3318 2.9983 0.9481 0.2998 0.0948 0.0299

SOCC(5, 2) 7.5029 4.2192 1.3342 0.4219 0.1334 0.0422

BOCC(15, 2.5) 2.9762 1.6736 0.5292 0.1674 0.0529 0.0167

SOCC(15, 2.5) 4.1242 2.319 0.7334 0.2319 0.0733 0.0232

Table 4: Frequency offset CRLB(σΩ) values for 6 values of C/N0 (dB-Hz)

Frequency offset CRLB (rad/s)

C/N0 (dB-Hz) 5 10 20 30 40 50

BOCsin(1, 1) 1.4096e+06 7.9266e+05 2.5066e+05 7.9266e+04 2.5066e+04 7.9266e+03

SOCsin(1, 1) 1.5302e+06 8.6050e+05 2.7211e+05 8.6050e+04 2.7211e+04 8.6050e+03

BOCsin(5, 2.5) 3.5239e+06 1.9817e+06 6.2665e+05 1.9817e+05 6.2665e+04 1.9817e+04

SOCsin(5, 2.5) 3.5918e+06 2.0198e+06 6.3872e+05 2.0198e+05 6.3872e+04 2.0198e+04

BOCC(10, 5) 7.0479e+06 3.9633e+06 1.2533e+06 3.9633e+05 1.2533e+05 3.9633e+04

SOCC(10, 5) 7.1835e+06 4.0396e+06 1.2774e+06 4.0396e+05 1.2774e+05 4.0396e+04

BOCC(5, 2) 2.8191e+06 1.5853e+06 5.0132e+05 1.5853e+05 5.0132e+04 1.5853e+04

SOCC(5, 2) 2.7914e+06 1.5697e+06 4.9638e+05 1.5697e+05 4.9638e+04 1.5697e+04

BOCC(15, 2.5) 3.5239e+06 1.9817e+06 6.2665e+05 1.9817e+05 6.2665e+04 1.9817e+04

SOCC(15, 2.5) 3.5307e+06 1.9855e+06 6.2786e+05 1.9855e+05 6.2786e+04 1.9855e+04



that the evaluation of modulation schemes can be conducted without the necessity of considering the specific chip rate, thereby
simplifying the performance analysis and ensuring its applicability across different configurations. This insight has significant
implications for the design future navigation signals, as it allows for a more streamlined assessment of modulation techniques,
ensuring robust and predictable performance metrics across varying operational parameters.

VI. APPENDIX
1. Appendix A: Variance formulations
This appendix aims to show equality between (3) and (7) and (4) and (8), respectively. By expanding (3) we have:

σ2
t =

∫ +∞

−∞
(t− t0)2 pt(t) dt

=
∫ +∞

−∞
(t2 − 2 t t20 + t20) pt(t) dt

=
∫ +∞

−∞
t2 pt(t) dt− 2t0

∫ +∞

−∞
t pt(t) dt+ t20

∫ +∞

−∞
pt(t) dt

=
∫ +∞

−∞
t2 pt(t) dt− 2t20 + t20

=
∫ +∞

−∞
t2 pt(t) dt− t20

=
∫ +∞

−∞
t2 pt(t) dt−

[∫ +∞

−∞
t pt(t)dt

]2

By following similar steps starting from (4) it is possible to derive (8).

2. Appendix B: Invariance of the Time-Bandwidth Product to Time and frequency Shifts
This appendix aims to show the invariance of the product band time to time and frequency shift. Before seeing how the square
of RMS duration changes, let us focus on how the mean varies. Let the signal s(t) with mean t0 be shifted by a quantity τ . We
denote by t′0 the average of the shifted signal, which will have the form:

t′0 =
∫ +∞

−∞ t |s(t− τ)|2dt
Et

(22)

applying a change of variable and defining ψ = t− τ , the integral in (22) can be rewritten as:

t′0 =
∫ +∞

−∞ (ψ + τ) |s(ψ)|2 dψ
Et

=
∫ +∞

−∞ ψ |s(ψ)|2 dψ
Et

+
∫ +∞

−∞ τ |s(ψ)|2 dψ
Et

= t0 + τ

∫ +∞
−∞ |s(ψ)|2 dψ

Et

= t0 + τ

(23)

From the result in (23) it is possible to rewrite the expression for the RMS duration as:



σ
′2
τ = 1

Et

∫ +∞

−∞
(t− t0 − τ)2 |s(t− τ)|2 dt

= 1
Et

∫ +∞

−∞
(ψ − t0)2 |s(ψ)|2 dt

= σ2
τ

(24)

Furthermore, given that a time shift reflects in the frequency domain as a multiplication by a complex exponential, specifically
ejωτ , it is evident that the magnitude of the Fourier transform of the signal is unaffected, but only its phase changes. This phase
change does not impact our calculation. In other words, it can be concluded that the time-bandwidth product is invariant with
respect to a time shift.

Regarding the signal shift in frequency by an ω1 frequency, i.e., S(ω − ω1), one can proceed with a similar reasoning as that
done for the time domain and conclude that it does not affect the time-bandwidth product.
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