POLITECNICO DI TORINO
Repository ISTITUZIONALE

A System-Level Test Methodology for Communication Peripherals in System-on-Chips

Original

A System-Level Test Methodology for Communication Peripherals in System-on-Chips / Angione, Francesco; Bernardi,
Paolo; DI GRUTTOLA GIARDINO, Nicola; Filipponi, Gabriele; Bertani, Claudia; Tancorre, Vincenzo. - In: IEEE
TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - 74:2(2025), pp. 731-739. [10.1109/TC.2024.3500375]

Availability:
This version is available at: 11583/2994527 since: 2024-11-18T15:20:26Z

Publisher:
Institute of Electrical and Electronics Engineers

Published
DOI:10.1109/TC.2024.3500375

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

23 February 2025

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

A System-Level Test Methodology for
Communication Peripherals in System-on-Chips

Francesco Angione
Nicola di Gruttola Giardino
Claudia Bertani

Abstract—This paper deals with functional System-Level Test
(SLT) for System-on-Chips (SoCs) communication peripherals.
The proposed methodology is based on analyzing the potential
weaknesses of applied structural tests such as Scan-based. Then,
the paper illustrates how to develop a functional SLT programs
software suite to address such issues. In case the communication
peripheral provides detection/correction features, the methodol-
ogy proposes the design of a hardware companion module to
be added to the Automatic Test Equipment (ATE) to interact
with the SoC communication module by purposely corrupting
data frames. Experimental results are obtained on an industrial,
automotive SoC produced by STMicroelectronics focusing on
the Controller Area Network (CAN) communication peripheral
and showing the effectiveness of the SLT suite to complement
structural tests.

Index Terms—System-level test, functional testing, fault simu-
lation, automotive SoCs.

I. INTRODUCTION

HE manufacturing test flow is in charge of ensuring that

SoCs have been manufactured without faults, before ship-
ping products to customers. Due to the increasing complexity of
SoCs, a significant amount of faults may be still untested after
the manufacturing test flow [1]. Structural tests focus on single-
component testing, and they often lack testing component in-
teractions and interactions of communication peripherals with
an external driver [1].

In order to comply with increasing quality requirements, such
as 1S026262, in the last decade, a new step in manufacturing
test flow has been added right before the final test. The addi-
tional test step called the System-Level Test (SLT), resembles

Received 11 April 2024; revised 2 October 2024; accepted 25 October 2024.
Date of publication 18 November 2024; date of current version 20 January
2025. Recommended for acceptance by G. Di Natale. (Corresponding author:
Gabriele Filipponi.)

Francesco Angione, Paolo Bernardi, Nicola di Gruttola Giardino, and
Gabriele Filipponi are with the Department of Control and Computer Engi-
neering, Politecnico di Torino, 10129 Turin, Italy (e-mail: francesco.angione @
polito.it; paolo.bernardi@polito.it; nicola.digruttola@polito.it; ~ gabriele.
filipponi @polito.it).

Claudia Bertani and Vincenzo Tancorre are with the STMicroelectron-
ics, 20864 Agrate Brianza, Italy (e-mail: claudia.bertani @st.com; vincenzo.
tancorre @st.com).

Digital Object Identifier 10.1109/TC.2024.3500375

, Student Member, IEEE, Paolo Bernardi
, Student Member, IEEE, Gabriele Filipponi
, and Vincenzo Tancorre

, Senior Member, IEEE,
, Student Member, IEEE,

the final application, workload, and environment as much as
possible, including external communication. Therefore, it is a
functional test step for exercising the SoC as a whole. The
intention is to cover the mentioned coverage weaknesses of
structural tests for already existing fault models.

This work proposes a methodology for generating an SLT
suite of functional test programs for communication peripher-
als. The major innovative elements of the illustrated generation
strategy are the following:

* There exist potential structural testing weaknesses that

may arise from structural tests such as Scan-based or Built-
In Self-Test (BIST); a preliminary phase of the approach
aims at highlighting communication peripheral elements
that may suffer from such weaknesses.

* Based on the analysis above, guidelines to create SLT-
oriented functional test programs are provided in a deter-
ministic and generic form; pseudo-codes are provided to
sketch SLT program flows, while data patterns come from
state-of-the-art approaches and are integrated into the final
SLT suite [2].

e Guidelines are provided for designing a companion mod-
ule for communicating with the communication peripheral
under test; this is crucial to improve the detection of faults
located in detection and correction logic.

Experimental results are presented for the Controller Area
Network (CAN) module of an Automotive SoC manufactured
by STMicroelectronics. The CAN module includes embed-
ded memory elements, communication paths with the inside
and outside of the chip, and has a detection/correction logic
for errors in the received and transmitted data. The consid-
ered design is “polluted” by Scan Chains with different clock
domains, Logic-BIST (LBIST), and Memory-BIST (MBIST)
based Design For Testability (DfT) domains, which poten-
tially contribute at introducing untested logic for structural
tests [3].

The CAN module under test counts about 436K for Stuck-
At Fault (SAF) and Transition Delay Fault (TDF). Increasing
the fault coverage of structural tests over SAF and TDF mod-
els is the major purpose of the proposed methodology. The
original coverage guaranteed by the manufacturing test suite
of structural tests, including Scan, LBIST, and MBIST tests, is
97.89% for SAF and 89.38% for TDF. The synthesized SLT
functional test procedure provides increments of 1.12% and

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2978-1130
https://orcid.org/0000-0002-0985-9327
https://orcid.org/0009-0008-7523-0229
https://orcid.org/0000-0002-1436-3764
https://orcid.org/0009-0000-0274-5346
https://orcid.org/0000-0001-7959-0784
mailto:francesco.angione@polito.it
mailto:francesco.angione@polito.it
mailto:paolo.bernardi@polito.it
mailto:nicola.digruttola@polito.it
mailto:gabriele.filipponi@polito.it
mailto:gabriele.filipponi@polito.it
mailto:claudia.bertani@st.com
mailto:vincenzo.tancorre@st.com
mailto:vincenzo.tancorre@st.com
https://creativecommons.org/licenses/by/4.0/

732

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

TABLE I
COMPARISON BETWEEN DIFFERENT TEST APPROACHES FOR COMMUNICATION PERIPHERALS TESTING
[Test Nature | Test Approach i Pros [Cons [Target |
ATPG Automated No functional interactions, All
High coverage capabilities No online testing, Low Speed Testing
Structural At-speed testing Area overhead
BIST [4], [5] High coverage capabilities Limited capabilities for TDF SPI, RS-232
Limited online testing (startup) No functional interactions
SBST [6] At-speed Online testing Simple protocol operations UART, HDLC,
Deterministic and automated methodologies No off-chip communications ETHERNET
SBST [7] At-speed Online testing No off-chip communications CAN
Functional SBST [8] At-speed Online testing Simple protocols UART, PIA
Off-chip communications No errors injector
At-speed testing Manual efforts
Proposed SLT methodology Off-chip communications No Online testing Generic
Complex HW/SW interactions Additional Tester capabilities

1.51%, respectively, reaching 99.01% for SAF and 90.89%
for TDF.

Section II provides background, and Section III illustrates the
proposed methodology. Section IV reports experimental results,
and Section V concludes the paper.

II. BACKGROUND
A. Manufacturing Test Flow

The rising complexity of integrated circuits strongly affects
the testing scenario. Scan-based tests, which are part of the
so-called structural tests, have been introduced to reduce the
complexity of manufacturing test flow; they allow the automa-
tion of test pattern generation for an integrated circuit. For
testing a specific components, BIST modules are introduced
in the design, and they fall under the umbrella of structural
tests. Common BIST examples are the MBIST, in charge of
testing the memory arrays, and LBIST, oriented to test a specific
portion of logic. The manufacturing test flow is split into phases
to discard faulty devices as soon as possible [1]:

o Wafer Test checks for the primary electrical functionalities
of the chip before cutting it out from the wafer and it is
based on the execution of structural test patterns.

* Package Test repeats the application of the structural tests
after packaging the chip.

* Burn-In, mainly for automotive and safety-critical devices,
exacerbat es latent faults.

o System-Level Test has been recently added as an additional
test phase for safety-critical and automotive devices [9]. It
verifies the correctness of devices by resorting to complex
functional programs in an environment close to the oper-
ational one.

* Final Test repeats the previous structural test suite, eventu-
ally complemented, ATE-wise, with functional SLT tests
where possible.

SLT is needed because the Scan- and BIST-based test ap-
proaches mainly focus on a single component testing without
emulating the final environment of the devices; in other words,
they do not exercise on- and off-chip component interactions,
nor between hardware and software. As a result, Hardware
implemented protocols, such as the CAN and SPI bus, are not
fully tested by structural tests. For instance, it is typical to use

loopback strategies to minimize the interaction with the ATE.
This is producing coverage drops on detection and correction
logic [10]. Scan and LBIST may also introduce some untested
logic when the architecture is partitioned into islands or do-
mains. Such domains may be activated separately and some
glue logic pitched between them may be structurally untestable.
SLT provides a better activation stimuli than LBIST, because
the device is functionally exercised [1], [11], [12], [13], [14].

B. State-of-the-Art for Communication Peripherals Testing

Since the advent of SoCs, designers have started to pack more
and more peripherals in the same die. This trend has increased
the complexity of SoCs as well as their peripheral speed and
capabilities. As complexity increases, so does the testing effort;
thus, different methods have been developed in the literature for
effectively testing peripherals. In the scope of the current work,
Table I shows a comparison between different test approaches
for communication peripherals.

The first commonly used approach for testing communica-
tion peripherals is always the Automatic Test Pattern Generator
(ATPG), a highly automated engine with high coverage capabil-
ities based on generating Scan-based patterns. However, ATPG-
based approaches do not have any online testing capabilities or
at-speed testing. Most importantly, Scan-based patterns test the
modules without functionally using the communication periph-
erals, as already underlined in the previous section.

Another partially automated approach is the introduction of
BIST in the SoC, paying the overhead of additional area [4], [5].
Although BISTs provide at-speed high coverage capabilities for
stuck-at and partially online testing only at the SoC startup,
they are area-hungry, and they need to be designed ad-hoc for
every communication peripheral present in the SoC, leading to
an abnormous area overhead.

As Software-Based Self-Test (SBST) has emerged as an ef-
fective technique for online testing of CPU modules [15], the
concept has also been applied to system peripherals [6], [7],
[8], [16]. SBSTs applied to system peripherals, for commu-
nication or not, have been developed to be transparent to the
application for simple protocol-related testing. SBST and SLT
reside under the umbrella of functional tests. On one hand,
SBSTs are mainly adopted as test strategies for online testing

ANGIONE et al.: SYSTEM-LEVEL TEST METHODOLOGY FOR COMMUNICATION PERIPHERALS IN SYSTEM-ON-CHIPS 733

SoC

Communication Test Data
User Man.ual Peripherals Patterns
and Netlist _ Functionalities from literature
ATPG LBIST N
Structural Test
MBS weaknesses SLT program
documentation o < programs

Fig. 1.

Flow diagram of the proposed methodology.

capabilities of modules required by safety standards, with the
main objective of reaching very high absolute coverage figures.
On the other hand, the primary aim of SLT is the detection
of faults that escape from previous manufacturing test phases.
SLT is typically a holistic strategy that focuses on generating
complex hardware-software interaction between all the system
components on and off-chip, complex protocol functions, and
requiring additional ATE capabilities, i.e., the capabilities of
driving the communication pins from the ATE side.

III. PROPOSED METHODOLOGY

This work proposes a methodology for generating an effec-
tive SLT suite of functional test programs oriented to com-
plement the testing abilities of structural tests specifically for
communication peripherals in SoCs.

The proposed methodology advances the state-of-the-art SLT
methodology because it does not rely upon holistic assumptions
(i.e., making the system boot is a good SLT strategy). To the best
of our knowledge, the proposed approach is the first to detail the
analysis of potential structural test weaknesses. This analysis
guides the development of the SLT suite for communication
peripherals, targeting test escapes of structural tests in the shad-
owed zones of the circuit. The methodology flow is represented
in Fig. 1.

Firstly, the potential weaknesses that may arise from struc-
tural test flow must be highlighted by qualitatively analyzing
the fault list after evaluating ATPG, MBIST, and LBIST ap-
proaches. This preliminary analysis step enables the polariza-
tion of the successive efforts in the generation of SLT func-
tional programs targeting meaningful circuit regions and faulty
conditions.

The functional program generation should cover all the pos-
sible working modes and parameters that an in-field application
could use, as holistically demanded by SLT. Moreover, the
proposed method draws more attention to those functionalities
that could be threatened by structural weaknesses.

Stimulating off-chip interactions with the external world,
through communication channels exposed by the chip, is a
crucial SLT workload for the SoC. Structural tests usually force
the communication channels to loop-back configurations, as a
consequence, the proposed methodology encompasses the de-
sign of a flexible companion module capable of communicating
from the ATE side to/from the SoC under SLT, as Fig. 2 shows.

SoC under SLT ATE
FPGA CPU
cPU [Companion |
1__Modulel
~“Companion
- _Module2

Fig. 2. Companion module view with a companion memory storing error
injection information.

Logic BIST Island X
Generic Communication Peripheral

Peripheral Logic
Control Error Correction \E,\>l<telr;al
Control i - or
Registers > Logic E Detection Logic D
E Loopback | < C
A
B, Es logic c ’/ PAD
Q= BUS Internal RAM .o/. rom Shift iahzsemett
Interface Memory BIST Transmission/Receiver it ~| e
collar buffers C/E —
Transmission
A/B Logic C/E
/ Memory Timing = /
Interface Logic ’W
| E c/ Logic C/|
Fig. 3. Detail of a Generic communication peripheral.

The companion module becomes indispensable when detec-
tion/correction features are available in the peripheral module
under test, as they are not going to be tested since loop-back
always transports uncorrupted bitstreams.

A. Structural Test Weaknesses Analysis

The analysis of structural test weaknesses is performed man-
ually, with the help of the user manual, the netlist, and the
residual structural fault list. The communication module un-
der investigation needs to be stretched as it is generically
done in Fig. 3. Arrows and labels are added to sub-module
boxes that can be extracted easily from the netlist. In the
resulting visualization, the colors of the arrows indicate the
criticality level of the specific interactions among modules
(e.g., dark color is for the most critical and white for low
risk), and the alphabetic labels group sub-modules according
to their functionality (e.g., under label “A” are classified all
functionalities of the internal RAM) represent the following
considerations.
What emerges from crossing functionality and structural test
limitations is quite intuitive to understand from Fig. 3. There-
fore, when developing SLT functional programs, meaningful
areas to target are the following:
1) Embedded memory access ports: they may not be
completely covered along structural tests due to collars
and memory DT circuits like MBIST [17].

2) Interfaces to other on-chip components: they may be
included in different LBIST, or Scan Chain islands can
introduce testability issues [3], [11].

734

3) Transmission/Reception Interfaces to Chip Top:
Some signals and pins to and from outside the SoC may
never be exercised during manufacturing tests.

4) Detection and correction logic circuits: they usually
include large logic functions resulting in deep circuits that
are hard to target by structural tests [1].

5) Complex hardware-software functions, like complex
protocol functions and synchronization mechanisms, are
not exercised [1].

Therefore, an effective SLT suite is a combination of pro-
grams capable of systematically tackling all the aforementioned
considerations. The next subsections provides guidelines to
punctually address functional programs generation according
to the list of critical circuit elements.

B. SLT Functional Program Suite Generation

The generation of the functional SLT suite, addressing the
identified critical elements, starts from previously established
functional methodologies in the state-of-the-art, as reported in
Table I. State-of-the-art techniques like [7], [8], [16] cover
some of the critical functionalities even using standard test con-
figurations, such as exploiting loop-back configurations from
different communication channels and typical frame trans-
missions/receptions. More efforts are required to complement
structural coverage for modules that are not yet very much
mentioned in the literature, such as the Error-Management-
Logic (EML), Bus-off sequence (if any), shared bus arbitra-
tion, and synchronization logic modules of communication
peripherals.

The resulting suite, which encompasses known and novel
approaches, has been developed manually by a test engineer
using the SoC documentation, including structural test appli-
cation notes, the netlist itself, and the list of residual faults
from structural tests. The suggested suite consists of 6 test pro-
grams meticulously assembled to specifically target overlooked
areas during structural tests. Out of this set of programs, 2
requires the collaboration of the companion module, indispens-
able to exercise the peripheral by transmitting and receiving
packets.

In the following, the functional program specifications are re-
ported in pseudo-code with generic communication peripherals
functions that abstract the underlying software.

Moreover regarding the pattern selection, a generic function
call get_pattern() is generically used in the pseudo-code. As
such the proposed algorithms can be executed multiple times
with various data patterns coming from known literature-based
ones such as from [2], where known techniques based on walk-
ing bits and checkerboard patterns are illustrated.

The data pattern could also be automatically generated from
ATPG-based methodologies [2] or by adopting random method-
ologies if the cost of fault simulations is not too elevated. In
these cases, a generation loop may be set up to refine step by
step the pattern set, while a deterministic approach just require
a single evaluation.

In the following subsections, the communication software
is described from an algorithm perspective, as well as the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

Algorithm 1 Embedded Memory Access Port test.

signature <0 > Init signature var

while peripheral_rx_buffers_are_full() # T'rue do
data < get_pattern()
signarure < signature & data
send_data(data)

end while

wait_reception()

while peripheral_rx_buffers_are_empty() # True do
data < receive_data()
signature <— signature & data

end while

S AU o e

[E—

companion module, for each consideration in Fig. 3. All the
algorithms presented hereafter produce a signature, which is
finally compared with the golden one at the end of every test
execution.

1) Embedded Memory Access Ports: In SoC testing, em-
bedded memory access ports may not be exercised in structural
DST circuits due to MBIST architecture [17]; when the MBIST
is operated, it disconnects the memory from the other SoC
elements and then it tests only a part of the connections among
memory and the rest of the circuit.

Communication peripherals usually provide a dedicated
memory to store data. Its functionality can be thoroughly tested
by filling the memory with incoming messages. The proposed
test must use all transmission/reception buffers if there are more
than one. The CPU running the SLT program sends a burst of
messages large enough to fill all buffers.

The test program pseudo-code is represented in Algorithm 1.

2) Interfaces to Other SoC Components: The use of com-
munication interfaces to other SoC components like CPUs,
DMAs, etc., is limited during structural tests. They are quite
complicated and ATPG resistant because they are composed
of multiplexers which are typically difficult to test, especially
when a large-sized cross-bar is included in the system. The
situation gets even worse if the SoC modules involved in the
communications are far from each other in the layout and fall
into different LBIST islands [11] or Scan domains [3]. As the
structural tests often need to care about power consumption,
patterns are not applied to all gates simultaneously, but island
per island, or Scan domain by Scan domain.

In addition, complex communication protocols requires coor-
dination with digital/analog circuitry in other domains, leading
to coverage loss for structural tests, for example caused by
analog IPs being bypassed during Scan tests.

The register interface serves as a collection of registers de-
signed to control the peripheral’s behavior, issue commands,
store data for transmission/reception, configure additional pe-
ripheral units (i.e. timing management logic), and report in-
formation from the peripheral controller, including status or
interrupt registers. Reading and writing the registers ensure
on-chip bus system usage and functional interactions between
different LBIST islands. The proposed methodology performs
such operations by levering the peripheral under test in an active
yet not fully initialized state.

ANGIONE et al.: SYSTEM-LEVEL TEST METHODOLOGY FOR COMMUNICATION PERIPHERALS IN SYSTEM-ON-CHIPS 735

Algorithm 2 Interfaces to other SoC components test.

Algorithm 3 Transmission/Reception to Chip Top test.

Require: R, the set of the peripheral register file.
1: signature <0 > Init signature var
2: stop_peripheral()
3: assert_functional_reset_peripheral()
4: peripheral_enable_clock() > Avoid init

5: for each » € R do

6 if r is init_register then

7 r<r A (1<K INIT_field_pos)

8: signature = signature @ r

9: r< 1V~ (1<K INIT_field_pos)

10: signature = signature @ r
11: else

12: r<0

13: signature <— signature © r
14: r« UINT_MAX

15: signature = signature @ r
16: end if

17: end for

Assuming R represents the configuration and control periph-
eral register file, the test can be succinctly expressed in pseudo-
code in Algorithm 2.

Many modern micro-controllers offer additional hardware
capable of asserting a reset on modules within the entire SoC
for performing a clean restart of the communication. Therefore,
a functional reset test may be necessary and consists of stopping
the peripheral, resetting it, reading back register values, and
restarting the peripheral.

3) Transmission/Reception Interfaces to Chip Top: Trans-
mission/Reception Interfaces to Chip Top are crucial for the
overall functionality of transmitting and receiving messages to
and from outside devices. Structural tests are very limited by
the test access, as loop-back strategies are almost always used
to reduce the number of pins to contact and control from the
ATE. Therefore, to functionally exercise the Transmission and
Receive logic, the Test Algorithm in 3 is used in conjunction
with a companion module for sequencing messages (which
details are described in Section III-C).

The proposed test program targets the receive/transmission
modules by initializing the peripheral to receive/transmit in
different configurations. The test program pseudo-code is rep-
resented in Algorithm 3.

4) Detection and Correction Unit: Many peripheral proto-
cols are designed to be susceptible to faulty behaviors. As such,
they implement an Error-Management-Logic (EML), which in-
creases reliability and robustness by introducing detection and
correction capabilities.

The detection functionality refers to the ability of the pe-
ripheral to assess when the transmitted/received data is wrong.
It is usually implemented by protection codes inserted into
the transmitted data. In addition to detection, correction logic
enables the repair of erroneous data using error correction codes
transmitted along the data. The correction is limited as it usually
tolerates a maximum number of flipped bits.

Moreover, the bus error detection logic ensures that nodes
can detect and report anomalies on the bus. This is achieved
by identifying incorrect messages and faulty conditions, thus

Require: B, the set of transmission configuration modes.
Require: B,, the set of reception configuration modes.
Require: shared, data shared between ATE and the DUT.
1: signature <0 > Init signature var
2: enable_companion_module(” message_sequencer”)
3: for each btx € B;, do
4 for each brx € 5, do
5 configure_peripheral(btx, brzx)
6: if is_transmission_enabled(btx) then
7 data < get_pattern()
8: signature < signature @ data
9: send_data(data)

10: else

11: signature < signature @ shared
12: end if

13: wait_reception()

14: data < receive_data()

15: signature < signature ® data

16: end for

17: end for

Algorithm 4 Detection and correction unit test.

1: signature <0 > Init signature var
2: enable_companion_module(” pattern_recognizer”)
3: data < get_pattern()
4: signature < signature & data
5: send_data(data)
6: wait_reception_or_errors()
7: if peripheral_has_errors() then
8: data <+ get_failed_transmitted_data()
9: else
10: data < received_data()
11: end if
12: signature < signature @ data
13: if support_bus_off() then
14: wait_bus_off()
15: end if
16: disable_companion_module()
17: data < get_pattern()
18: signature < signature & data
19: send_data(data)
20: wait_reception()
21: data < receive_data()
22: signature < signature & data

preventing any node from disrupting the bus with faulty outputs.
Additionally, malfunctioning nodes can recognize their errors
and disconnect themselves from the bus, entering a bus-off state
until they can re-synchronize and safely rejoin communication.

The test program pseudo-code is represented in Algorithm 4.
In this case a companion module capable of injecting errors in
message frames is needed. Injection can be done with different
strategies as detailed in Section III-C.

5) Complex Hardware-Software Functions: The transmis-
sion logic, which was already the object of investigation in
subsection III, assumes a pivotal role in handling the transmis-
sion of messages, specifically when a priority scheme is part of
the peripheral’s protocol. When the protocol supports message
priority, the transmission handler incorporates complex logic

736

Algorithm 5 Complex transmission functions test.

Requlre ID1,ID27]D3, s.t. 1Dy > ID27ID3 > IDs.

1: signature < 0 > Init signature var
data < get_pattern()
signature < signature & data
send_data(/ D1, data)
data < get_pattern()
send_data(/ D2, data)
data < get_pattern()
send_data(/ D3, data)

9: cancel_transmission(/ D2)
10: cancel_transmission(/ D3)
11: wait_reception()
12: if rx_contains(/ D2) V rx_contains(/ Ds3) then
13: > Failure
14: end if
15: data < receive_data()
16: signature < signature ® data

> Send data with 1D

> Send data with 1 D>

e AN U ol

> Send data with I D3

Algorithm 6 Synchronization functions test.

Require: /D, predefined ID between ATE and this program.
1: signature <— 0 > Init signature var
enable_companion_module(” message_sequencer”)
data < get_pattern()
signature < signature @ (1D + 1)
send_data(I D, data) > Send data with 1D
> Companion senses a frame and transmits ID+1.
data_I D <+ receive_data_ID()
signature < signature @ data_ID
9: data < get_pattern()
10: signature < signature ® (ID — 1)
11: send_data(/ D, data) > Send data with 1D
12: > Companion senses a frame and transmits of ID-1.
13: data_I D <+ receive_data_ID()
14: signature < signature @ data_I D

responsible for instigating a so-called transmission scan to
evaluate pending requests and pinpoint the highest in priority.

The test program pseudo-code is represented in Algorithm 5.

Communication protocols can be based on a dedicated bus,
connecting each node to another separately, or on a shared
bus between nodes. The shared bus requires additional logic as
nodes must implement functionality to perform the arbitration
on the shared bus. Indeed, a node starting a transmission can
face the cases when the bus is idle (e.g., other nodes are not
using the bus) or another node is using the bus. Although, in
the first case the only active node will take the bus; bus sensing
is not enough when N nodes start transmission simultaneously.
Modern protocols introduce an initial phase of transmission
called the arbitration phase.

The arbitration logic can be tested by employing the pro-
posed companion module in message sequencer mode requiring
a shared ID among SLT and ATE. Assuming lower ID has
higher priority, the test program pseudo-code is described in
Algorithm 6, while the message sequencer mode is described
in Section III-C.

Finally, the timing of communication protocols must
be tested. This test requires the implementation of strict
synchronization, and the assistance of a companion module

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

able to introduce an arbitrary delay into transmission frames
is crucial.

C. Companion Module

Different companion modules can be hosted on the ATE
FPGA; they can reside on the ATE at the same time with
their inputs and outputs multiplexed. Tthe right functionality is
activated and communication supplied along the execution of
the SLT functional programs that need external support from
the ATE.

According to previous subsection III.B, the companion mod-
ule functionalities needed to complement some of the SLT
firmware running on the chip under test are several:

* Message reception and transmission from and to the pe-

ripheral under test, also called message sequencer.

¢ Error injection within the content of specific message seg-

ments transmitted to the peripheral under test.

* Delay injection during message transmission.

The message sequencer mode transmits predefined messages
to the SoC. Pre-generated messages are stored on-board the
companion module in the ATE, and sent out according to the
tested communication protocol. The companion module archi-
tecture for this mode consists of a central entity and a memory
component. The messages can be either hand-crafted, extracted
from verification stimulus, or auto-generated pseudo-randomly.
Upon receiving an enable signal, i.e., from a digital General
Purpose 1/0 (GPIO), it transmits the message and it returns to
an idle state upon completion.

Three possibilities can be explored for error injection: error
inject errors according to information already provided before
running the test (i.e., a list of times to inject at); a pseudo-
random injector that injects errors at random times and loca-
tions in the message data frame (i.e., a pseudo-random value
determines injection times); a communication protocol injector
that knows about the protocol characteristics and corrupts them
on purpose (i.e., leaving start and stop bit for too long or
short time).

Regarding delay injection, a companion module is required
to introduce an arbitrary transmission delay. The introduced
delay forces a de-synchronization that exercises the communi-
cation peripheral modules aimed at the fine adjustment of the
communication timing. Moreover, when the delay introduces
a misbehaviour that cannot be corrected, the error detection is
exercised as well.

IV. EXPERIMENTAL RESULTS

The proposed case study is a cluster of four CAN modules
embedded into a 40 nm Automotive SoC manufactured by
STMicroelectronics. The SoC has a multicore architecture with
three 32-bit cores, it has 6 MB of flash memory and 128 KB
of general-purpose SRAM. The SoC design is equipped with
multiple LBIST partitions and Scan Chain Domains.

Fig. 4 presents a layout heatmap (extracted from the actual
physical implementation) for the CAN peripheral in the DUT,
where the 4 different controllers can be observed. Fig. 4(a)
shows a color-driven layout map of the CAN peripheral logic

ANGIONE et al.: SYSTEM-LEVEL TEST METHODOLOGY FOR COMMUNICATION PERIPHERALS IN SYSTEM-ON-CHIPS 737

[l A) Embedded memory access ports

& B) Interfaces to other on-chip components

[l C) Transmission/Reception Interfaces to Chip Top
[D) Detection and correction logic circuits

BT E) Complex hardware-software functions

CANZ

.

CAN 3

“tenansntt,

CAN 1" "CANO

(a) Function-based coloured layout plot.

Fig. 4.

(b) Structural SAF Coverage heatmap

(c) Structural and SLT suite SAF
Coverage heatmap plot.

plot.

Layout view of the four CAN controllers in the CAN peripheral of the DUT.

TABLE II
CHARACTERISTICS OF SLT SUITE FOR CAN PERIPHERAL
. . Memory Fault Sim. Develop.

Test Name A;I%ﬂ:lll?(:? Mode'! \vgi;%(el:?sis %i(l:lceut[lczl]l Footprint Time? Time

[KB] [h] [h]
Embedded Memory Access Port Algorithm 1 LPBK A 2,522,475 9.96 13.96 20
Interfaces to other SoC components Algorithm 2 NA B 23,870 12.55 0,13 26
Transmission/Reception to Chip Top Algorithm 3 LPBK, CMP C 332,096 6.42 1.84 22
Detection and correction unit Algorithm 4 CMP D 7,294,466 6.82 40.39 34
Complex transmission functions Algorithm 5 LPBK E 1,002,251 6.92 5.55 10
Synchronization functions Algorithm 6 CMP E 447,579 6.77 2.48 34

Total 11,622,737 49.44 64.35 136

[1] LPBK = Loopback, CMP = Companion Module. [2] Stuck-at 4+ Transition Delay fault models for a total of ca. 900k faults.

depending on the critical regions highlighted by the structural Simulation

test weaknesses analysis, as detailed in section IILLA (see the
legend in the figure). In this map there are at least two very
localized hot spots, located in the error detection/correction
logic, and in the Transmission/Reception interface to the chip
top, in the southern part of the heat map. This experimental evi-
dence confirms the hypothesis formulated in section III.A about
structural test weaknesses. As a preview of the final results fully
reported later, Fig. 4(b) provides the layout heatmap of the CAN
peripheral, in red the untested SAF faults, and in green the tested
ones by all the structural tests. Meanwhile, Fig. 4(c) presents
the effect of applying the proposed SLT suite complementing
structural tests. Many red spots disappear or the areas colored
red are much lighter after SLT.

The algorithms presented in section III.B have been im-
plemented for the cluster of CAN modules. Test patterns are
provided according to the deterministic approach shown in [2].
The resulting suite of 6 functional test programs is presented in
Table II; it reports, for each program, the targeted weakness,
as well as the execution time in terms of clock cycles, the
memory footprint (code and data), their fault simulation grading
time, and their approximate development time by one person
for both program development and verification and compan-
ion module development and verification. The functional SLT
suite requires 11,622,737 clock cycles, which translates into
145 ms with a clock frequency of 80 MHz (the maximum

Functional
Program

Functional fault
simulation

JTAG Slgnals Faulty CAN TX

Fig. 5. Laboratory experimental setup.

reachable clock for the CAN peripherals in the DUT). The
suite was developed in 136 hours or 8.5 days by two test
engineers.

Meanwhile, the companion modules are synthesized and
implemented in a Xilinx MPSoC ZCU 104 Ultrascale Plus+

738

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

TABLE III
FAULT COVERAGE FOR STUCK-AT FAULT MODEL (435,967 FAULTS) AND TRANSITION DELAY FAULT MODEL (435,966 FAULTS)

Test Nature Test Name Nomber || Single | Incremental | || Single | Incremental | &
Scan-based NA 95.69 95.69 NA 87.17 87.17 NA
Structural LBIST NA 53.46 97.89 22 16 89.38 2.15
MBIST NA 1.13 97.89 0 0.03 89.38 0
Transmission/Reception to Chip Top Algorithm 3 40.30 98.45 0.56 12.55 89.65 0.27
Embedded Memory Access Port Algorithm 1 41.79 98.65 0.2 12.77 89.73 0.08
Complex transmission functions Algorithm 5 25.01 98.66 0.01 5.79 89.74 0.01
Functional Interfaces to other SoC components Algorithm 2 13.36 98.96 0.3 5.11 90.63 0.89
Detection and correction unit Algorithm 4 39.94 98.99 0.03 11.82 90.67 0.04
Synchronization functions Algorithm 6 35.39 99.01 0.02 14.24 90.89 0.22
Total 99.01 1.12 Total 90.89 1.51
logic; it was synthesized and implemented with a clock
. of 2 MHz.
Functional To grade the System-Level Test functional programs, func-
1.12% tional fault simulations [18] are performed using a commercial
fault simulator Z0IX (Synopsys), for Stuck-At-Faults (SAF) and
25.80% 0.86% Transition Delay Faults (SDF) fault models. Table III presents
SLT fault coverage results including “Single”, “Incremental”,
33.75% and “delta” A coverages, which represent the individual pro-
18.59% 1.34% gram coverage, the incremental value to previous tests, and
17.55% the increment to previous ones, respectively. The fault cover-
Scan-based LBIST age achieved by the structural tests (Scan-based, LBIST and
MBIST) reaches 97.89% for 435,967 SAFs and 89.38% for
435,966 TDF. The proposed SLT permits reaching up to 99.01%
(a) Stuck-At fault model. for SAFs and 90.89% for TDFs. Fig. 6(a) and 6(b) show that the
functional SLT programs add up to 1.12% and 1.51% of fault
coverage. LBIST and Scan-based approaches are also quantified
Functional in Fig. 6, showing that Scan-based approaches cover most of
the faults. Functional SLT emerges to be more powerful than
1.51% LBIST (e.g., covering more faults of the CAN cluster) but
LBIST covers more faults “uniquely” than SLT. MBIST adds
18.16% 0.06% no unique coverage and is not reported in the diagrams.
The relative improvement by the SLT suite for SAF is
4.64% about 50% concerning untested faults from structural tests.
55.20% 2.14% About TDFs, despite the incremental improvement being higher
9.17% than for SAFs, the improvement over untested faults is 15%.
Scan-based LBIST Given the relatively low coverage for TDF achieved by struc-
tural methods, many TDF faults look to be functionally
untestable.
(b) Transition Delay fault model.
Fig. 6. Venn diagrams between Structural, LBIST and functional (SLT) test

approaches.

equipped with 4 Arm AS53 cores running a Linux-based oper-
ating system and connected to a host computer through Ether-
net. The FPGA is directly controllable by a Linux operating
system through the PYNQ framework. The laboratory setup
is shown in Fig. 5. This allows the connection of an external
CAN node to the chip top allowing off-chip by the DUT, includ-
ing all features related to the error injections. The instantiated
companion modules occupy 13,071 LUTS, 6,441 FlipFlops, 2
BRAM cores, and three external I/O pins of the programmable

V. CONCLUSION

The proposed methodology aims at filling the gap in struc-
tural tests for communication peripherals by providing a func-
tional SLT suite. It illustrates how to create a general recipe
for developing an effective functional SLT suite based on the
identification of structural tests weaknesses on communication
peripheral. The support of companion modules is added to
address off-chip communications and error injections. In order
to validate the proposed methodology, the CAN peripheral has
been selected. However, the methodology is peripheral indepen-
dent, and portable to other communication modules like UART,
SPI, and others.

ANGIONE et al.: SYSTEM-LEVEL TEST METHODOLOGY FOR COMMUNICATION PERIPHERALS IN SYSTEM-ON-CHIPS

(1]
[2]
[3]
(4]

[3]

(6]

[7]

[8]

(9]

REFERENCES

1. Polian et al., “Exploring the mysteries of system-level test,” in Proc.
IEEE ATS, 2020, pp. 1-6.

P. Bernardi et al., “On the in-field testing of spare modules in automotive
microprocessors,” in Proc. IEEE VLSI-SoC, 2017, pp. 1-6.

N. Karimi et al., “Test generation for clock-domain crossing faults in
integrated circuits,” in /[EEE DATE, 2012, pp. 406-411.

B. Jose and J. S. Immanuel, “Design of BIST(Built-In-Self-Test) embed-
ded master-slave communication using SPI protocol,” in Proc. ICPSC,
2021, pp. 581-585.

S. Saha et al., “Design and implementation of a BIST embedded high
speed RS-422 utilized UART over FPGA,” in Proc. ICCCNT, 2013,
pp. 1-5.

A. Apostolakis et al., “Test program generation for communication
peripherals in processor-based SoC devices,” IEEE Design & Test
Comput., vol. 26, no. 2, pp. 52-63, Mar./Apr. 2009.

F. A. da Silva et al., “A systematic method to generate effective STLs
for the in-field test of CAN bus controllers,” Electronics, vol. 11,
no. 16, pp. 1-19, 2022

P. Bernardi et al.,, “Software-based on-line test of communication
peripherals in processor-based systems for automotive applications,” in
Proc. MTV, 2006, pp. 3-8.

H. H. Chen, “Beyond structural test, the rising need for system-level
test,” in Proc. VLSI-DAT, 2018, pp. 1-4.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

739

P. Aggarwal, “Cost effective manufacturing test using mission
mode tests,” in Proc. IEEE Int. Test Conf, Oct 2007,
pp. 1-8.

D. Tille et al., “Towards an automated flow for implementation of
dedicated LBIST scan chains for functional safety,” TUZ, vol. 33,
no. 3, pp. 25-26, 2021.

D. Appello et al., “System-level test: State of the art and challenges,”
in Proc. IEEE IOLTS, 2021, pp. 1-7.

D. K. R. Tipparthi and K. K. Kumar, “Concurrent system level test
(CSLT) methodology for complex system-on-chip,” in Proc. IEEE
EPTC, 2014, pp. 196-199.

S. Biswas and B. Cory, “An industrial
test,” IEEE Design Test Comput., vol.
Feb. 2012.

P. Bernardi et al., “Development flow for on-line core self-test of
automotive microcontrollers,” IEEE Trans. Comput., vol. 65, no. 3,
pp. 744-754, Mar. 2016.

M. Grosso et al., “A software-based self-test methodology for system
peripherals,” in Proc. IEEE ETS, 2010, pp. 195-200.

F. Angione et al, “An optimized burn-in stress flow targeting
interconnections logic to embedded memories in automotive systems-
on-chip,” in Proc. IEEE ETS, May 2022, pp. 1-6.

P. Bernardi et al., “Fault grading of software-based self-test procedures
for dependable automotive applications,” in Proc. DATE, Mar. 2011,

pp. 1-2.

study of system-level
29, no. 1, pp. 19-27,

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

