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a b s t r a c t

In contemporary society, social networks accelerate decision dynamics causing
a rapid switch of opinions in a number of fields, including the prevention of
infectious diseases by means of vaccines. This means that opinion dynamics
can nowadays be much faster than the spread of epidemics. Hence, we propose
a Susceptible–Infectious–Removed epidemic model coupled with an evolutionary
vaccination game embedding the public health system efforts to increase vaccine
uptake. This results in a global system “epidemic model + evolutionary game”. The
epidemiological novelty of this work is that we assume that the switching to the
strategy “pro vaccine” depends on the incidence of the disease. As a consequence
of the above-mentioned accelerated decisions, the dynamics of the system acts on
two different scales: a fast scale for the vaccine decisions and a slower scale for the
spread of the disease. Another, and more methodological, element of novelty is that
we apply Geometrical Singular Perturbation Theory (GSPT) to such a two-scale
model and we then compare the geometric analysis with the Quasi-Steady-State
Approximation (QSSA) approach, showing a criticality in the latter. Later, we
apply the GSPT approach to the disease prevalence-based model already studied
in (Della Marca and d’Onofrio, Comm Nonl Sci Num Sim, 2021) via the QSSA
approach by considering medium–large values of the strategy switching parameter.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The increasing spread of hesitancy and refusal of vaccines is a major challenge for global public health.
This problem was originally born in the field of prevention of childhood diseases and of influenza but
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it has largely been observed also during the current pandemic of COVID-19 [1]. Focusing on childhood
diseases vaccines, we may say that one of major determinants of this problem is the phenomenon of “pseudo-
rational” exemption to vaccination. This phenomenon consists in the fact that parents both overweight real
or supposed side effects of vaccines and underweight real disease-related risks [2,3]. This causes the public
health systems (PHSs) to spend considerable energies and budget to mitigate the impact of this phenomenon,
typically by means of vaccine awareness public campaigns aimed at increasing the vaccine uptake.

In consequence of the outbreak of exemption to vaccination, a new scientific discipline has been developed:
the Behavioural Epidemiology of Infectious Diseases (BEID) [2,3], whose aim is the inclusion in epidemic
models of the description of human decision making (concerning, e.g., vaccination choices, social distancing,
mobility patterns).

Not surprisingly, Game Theory has an important place in the context of BEID. Namely, the dynamics of
vaccine decision is very frequently modelled as an imitation evolutionary game [4,5] which can be represented
as an infection of ideas process [3]. Of course, also the modelling of the above-mentioned efforts of PHSs
aimed at increasing the vaccine uptake have been introduced in the BEID literature [6].

In the papers [4–6] the implicit focus was on slow changes of vaccine strategy. In the age of social
media this implicit assumption is often unrealistic. Indeed, social networks accelerate decision dynamics
causing a rapid switch of opinions in a number of fields, including the prevention of infectious diseases,
for example in vaccination campaign. This means that opinion dynamics can nowadays be faster than
the spread of epidemics. We are witnessing what has been defined as an “exponential growth in public
opinion channels” [7], which leads public opinion to be extremely volatile on many key subjects [8], such as
politics [8,9] and vaccines [10,11]. This scenario, unimaginable until few years ago, must guide contemporary
models in BEID.

Recently, Della Marca and d’Onofrio [12] explored the impact of the above-mentioned volatility on
the modelling of public response to vaccine awareness campaigns for favouring vaccine uptake. Since the
evolutionary vaccination game is endowed of a parameter that tunes the velocity of strategy change, under
the hypothesis that such parameter is extremely large, they applied a Quasi-Steady-State Approximation
(QSSA) of the model [6]. This resulted in a Susceptible–Infectious–Removed (SIR) epidemic model with a
nonlinear dependence on the control: the PHS effort to increase the vaccine uptake. This control was designed
via optimal control approach and numerically implemented also via heuristic global optimization methods.

In the present work, we drastically depart from the paper [12] in a number of modelling and methodolog-
ical points. Firstly, here we hypothesize that the switching from the vaccine refusal to vaccine acceptance is
influenced by the information on current disease incidence. This is a more realistic hypothesis since the most

idely diffused information on the spread of an infectious disease is not the prevalence but the incidence.
econdly, apart from the extreme cases that the velocity of strategy change is small or is practically infinite,
e consider an intermediate case: the study of the impact of a large but finite switching velocity via the
eometric Singular Perturbation Theory (GSPT) [13].
GSPT [13] is a powerful approach to model phenomena evolving on multiple time scales [14–17]. Such

eparation in time scales differing by many orders of magnitude is quite common in real world scenarios
e.g., chemical oscillations, neuroscience [18–22], electromechanical devices [23], lasers, ecology, celestial
echanics, pattern formation [17]). In particular, it has been applied to epidemics models in which immunity
indows and demographic turnover are much longer than infectious periods [24–28], and to discrete time
pidemic models [29–32]. In particular, we refer the interested reader to [17, Ch. 3] for a comprehensive
ntroduction to the terminology and the basic techniques of GSPT, and to [15,16] for classical applications
f this theory to mathematical models of natural phenomena.

In this work, in line with what was done e.g. in the paper [33], we take into the account that the time
cale of vaccination strategy changes, although very fast, nonetheless is not instantaneous. Hence, we model
he volatility of strategy switching by means of rigorous GSPT. We compare our geometric analysis to a
2
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classical QSSA, highlighting when the two approaches lead to the same conclusion, and when the QSSA
instead fails to reproduce the exact dynamics for a large but finite strategy switching rate. This failure,
as we will illustrate, is due to a delayed loss of stability of the critical manifold in our model. We exploit
the so-called entry–exit function [34–37] to characterize this crucial part of the dynamics of our model.
Moreover, in the final part of this work we briefly apply the GSPT also to the model heuristically inferred
in the paper [6].

The manuscript is organized as follows. In Section 2, we introduce an evolutionary vaccination game
where the information on the spread of the disease concerns the disease incidence; in Section 3, we perform
a qualitative analysis of the model in the case of low/medium strategy switching rate; in Section 4, we
consider the case of very large (infinite) switching rate and apply the QSSA; in Section 5, we investigate
the case of large but finite switching rate by using the GSPT approach and compare the results to those
obtained by the QSSA; in Section 6, we provide some numerical simulations; in Section 7, we apply the
GSPT approach to the evolutionary vaccination game studied in the paper [6], where the information on
the spread of the disease concerns the disease prevalence; we conclude in Section 8, summarizing our main
results and providing inspiration for future research.

2. Background of evolutionary vaccination game as a process of mutual infection of ideas

Let us consider the SIR-like model describing the dynamics of a vaccine-preventable endemic childhood
disease under voluntary vaccination choices [5,6]:

Ṡ = µ(1 − p(τ)) − µS − βSI,

İ = βSI − (ν + µ)I,

where: (i) τ denotes the (slow) time variable; (ii) S and I represent the fraction of susceptible and infectious
individuals within the population at time τ ; (iii) birth and natural mortality rates are equal to a value µ;
(iv) p is the time-dependent vaccine uptake of newborns; (v) β is the disease transmission rate; (vi) ν is the
ecovery rate.

Note that (iii) implies a stationary population, so that we can neglect the equation ruling the dynamics
f the fraction of removed individuals: R = 1 −S− I. Observe that, independently of the dynamics of p, the
asic reproduction number is

R0 = β

ν + µ
. (1)

To model the impact of human decision making on the vaccination choices, we assume that the population of
parents is proportional to the total (constant) population and is divided into two groups [4–6]: “pro-vaccine”
and “anti-vaccine”. The first group is given by parents who are in favour of vaccines and vaccinate their
children (p); the second one is given by parents who are hesitant or overtly against vaccination and, as a
consequence, do not vaccinate their children (a = 1 − p).

The evolution of p follows an imitation game dynamics that could be inferred by employing an economics-
oriented approach based on the concept of payoffs [4,5] or, in alternative, a statistical physics-oriented
approach [3,38]. We follow the second approach that we consider to be much clearer than the first one in
the present context. The basic concept is that the dynamics of p and a are ruled by a “double contagion” of
ideas between the two involved groups. This approach yields the following family of models [3]:

ṗ = k1θ̄(Md)pa− k1ᾱ(Mv)ap,
ȧ = −k1θ̄(Md)pa+ k1ᾱ(Mv)ap,

where: (i) the “force of infection” concerning the switch from the strategy “anti-vaccine” to the strategy
“pro-vaccine” is k θ̄(M )p, where M (τ) is an information variable on the extent of the disease status in the
1 d d

3
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community (e.g., incidence, prevalence); (ii) the “force of infection” concerning the switch from the strategy
“pro-vaccine” to the strategy “anti-vaccine” is k1ᾱ(Mv)a, where Mv(τ) is an information/“rumors” variable
n the extent of vaccine-related side effects; (iii) the parameter k1 is a time scale tuning parameter that

characterizes the velocity of strategy switching in the population of parents. In the following, we assume
that both θ̄(·) and ᾱ(·) are linear-affine functions, namely we set:

θ̄(Md) = θ0 + θ1Md, ᾱ(Mv) = α0 + α1Mv, (2)

with θ0 ≥ α0. The action of the PHS to favour the vaccine uptake is simply modelled as an additional switch,
say k1γ1a, from the strategy “anti-vaccine” to the strategy “pro-vaccine”. This provides the model:

ṗ = k1(θ0 + θ1Md)pa− k1(α0 + α1Mv)ap+ k1γ1a,

ȧ = −k1(θ0 + θ1Md)pa+ k1(α0 + α1Mv)ap− k1γ1a.

Taking into the account that a = 1 − p yields the following imitation game equation for p:

ṗ = k1p(1 − p)(θ0 − α0 + θ1Md − α1Mv) + k1γ1(1 − p). (3)

It is easy to see that one cannot identify all of these parameters:

(k1, α1, γ1).

he reason is simple: k1 never appears “alone” so, unless one has an a priori knowledge of the value of γ1

r of α1, k1 cannot be obtained from a parameter estimation of epidemiological data using our model.

emark 1. The scenario is similar to the Malthusian parameters b and m:

ẋ = (b−m)x = rx.

nless one has an external measure of b or of m, one cannot identify both b and m from data concerning
(t). One can only fit the difference

r = b−m.

Thus, the best option is to rewrite the imitation game equation (3) rescaling the parameters by α1, as
ollows

k = k1α1, δ = θ0 − α0

α1
, θ = θ1

α1
, γ = γ1

α1
. (4)

s mentioned in Section 1, we focus here on the relevant case in which the main information on the disease
vailable to the population is the number of new cases. Thus, Md is a measure of the available information

on the disease incidence at time τ . In the case in which the decisions are taken by only considering current
information, we obtain

Md(τ) = βS(τ)I(τ).

We further assume that the information on vaccine side-effects is proportional to the vaccine uptake of
newborns, namely Mv(τ) = p(τ), like in the papers [5,6,12]. We thus obtain the following complete model:

Ṡ = µ(1 − p) − µS − βSI, (5a)
İ = βSI − (ν + µ)I, (5b)
ṗ = k (p(1 − p) (δ + θβSI − p) + γ(1 − p)) . (5c)
4



R. Della Marca, A. d’Onofrio, M. Sensi et al. Nonlinear Analysis: Real World Applications 75 (2024) 103986

t

n

I

a
A
(

a

S
t
w

w

w

3. An evolutionary game in which strategy switching depends on the incidence of the disease

Let us start by investigating the case of low/medium rate of strategy switching (k ̸≫ 1), corresponding
o classical societies with far less volatile opinions.

The model (5) presents two disease-free equilibria. The first one is a disease-free state in which all the
ewborns are vaccinated:

EP = (0, 0, 1).

t is shown in Appendix A.1 that high values of γ, i.e. γ > γ̄, where

γ̄ = 1 − δ,

ensure the global attractivity of EP . Conversely, when γ < γ̄, EP is unstable.
The second disease-free equilibrium is

E0 = (1 − p0, 0, p0),

where
p0 = δ +

√
δ2 + 4γ
2 , (6)

which exists only when p0 < 1, namely γ < γ̄. This disease-free state bifurcates from the equilibrium E0 at
γ = γ̄.

Let us introduce the threshold value

γc = pc(pc − δ) < γ̄, (7)

with
pc = 1 − 1

R0
,

nd R0 as given in (1). It is possible to show that if γ > γc (i.e. p0 > pc), then E0 is globally attractive (see
ppendix A.2). Further, if γ < γc (i.e. p0 < pc), then E0 is unstable. When E0 becomes unstable, a unique

and epidemiologically meaningful) endemic equilibrium

E∗ = (S∗, I∗, p∗)

ppears by a transcritical bifurcation at γ = γc. The components of E∗ read

S∗ = 1
R0

, I∗ = µ

ν + µ
(pc − p∗) , p∗ =

δ + θµpc +
√

(δ + θµpc)2 + 4γ (1 + θµ)
2 (1 + θµ) . (8)

traightforward calculations show that I∗ > 0 is equivalent to p0 < pc, that is γ < γc. The local stability of
he equilibrium E∗ may vary with the model parameters, in particular Hopf bifurcations can occur, as we
ill prove shortly in Theorem 2. First, let us introduce, for simplicity, the notation

q1 = µ+ βI∗, q2 = (ν + µ)βI∗, q3 = γ

p∗ + p∗, (9)

ith I∗ and p∗ as given in (8).

Theorem 2. The endemic equilibrium E∗ of model (5) is locally asymptotically stable (LAS) if W ≥ 0,
ith

2 ∗ ∗ ∗
√

∗ ∗
W = q1q3 + θµp βI (βI − ν) + 2 q1q2q3(q1q3 + θµp βI ),
5
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and q1, q2, q3 as given in (9). Otherwise, if W < 0, then there exist two values k1, k2 with 0 < k1 < k2, such
hat E∗ is unstable for k ∈ (k1, k2), whereas it is LAS for k < k1 or k > k2. Hopf bifurcations occur at k = ki,
i = 1, 2. Moreover, in such a case, if k ∈ (k1, k2) then the orbits are oscillatory in the sense of Yakubovich.

Proof. The Jacobian matrix of system (5) evaluated at the equilibrium E∗ reads

J =

⎛⎝ −q1 −(ν + µ) −µ
βI∗ 0 0

kp∗(1 − p∗)θβI∗ kp∗(1 − p∗)θ(ν + µ) −k(1 − p∗)q3

⎞⎠ ,

eading to the characteristic polynomial

p(λ) = λ3 + a1λ
2 + a2λ+ a3,

ith

a1 = k(1 − p∗)q3 + q1 > 0, a2 = k(1 − p∗)(q1q3 + θµp∗βI∗) + q2 > 0, a3 = k(1 − p∗)q2(q3 + θµp∗) > 0,

here q1, q2, q3 are given in (9). The positiveness of the coefficients of p(λ) rules out, by Descartes rule
f signs, the possibility of real positive eigenvalues, so that stability losses of the endemic state can only
ccur via Hopf bifurcations. More precisely, according to Routh–Hurwitz theorem, E∗ is LAS if and only if
1a2 − a3 is positive, equivalently written as

f(k) = b0k
2 + b1k + b2 > 0,

with

b0 = (1 − p∗)2q3(q1q3 + θµp∗βI∗) > 0, b1 = (1 − p∗)(q2
1q3 + θµp∗βI∗(βI∗ − ν)), b2 = q1q2 > 0.

We chose the strategy switching rate, k, as bifurcation parameter because it affects the stability but not the
existence of E∗.

Thus, if b1 ≥ 0 and/or if ∆ = b2
1 − 4b0b2 ≤ 0, then f(k) > 0 independently of k.

Otherwise, if b1 < 0 and ∆ > 0, then f(k) has two positive roots k1, k2, with 0 < k1 < k2, such that
f(k) < 0 for k ∈ (k1, k2) and f(k) > 0 for k < k1 or k > k2. In such a case, at ki, i = 1, 2, the test for
non-zero speed is fulfilled:

f ′(k)|k=ki = ±
√
∆ ̸= 0.

ote that, by simple algebra, one can write

∆ = (b1 − 2
√
b0b2)(b1 + 2

√
b0b2).

t follows that, if
b1 + 2

√
b0b2 < 0,

hen b1 < 0 and ∆ > 0. Vice versa, if
b1 + 2

√
b0b2 ≥ 0,

hen b1 ≥ 0 and/or ∆ ≤ 0.
Finally, as regards the Yakubovich oscillatory, it holds that: (i) the orbits of the system are bounded; (ii)

he endemic equilibrium E∗ is unstable when f(k) < 0; (iii) the disease-free equilibria are unstable. Thus,
e may apply the Yakubovich theorem [39,40]. The claim follows. □
6
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Fig. 1. Hopf bifurcation locus for the equilibrium E∗ of model (5). Roots k1, k2 of the Routh–Hurwitz function f(k) in Theorem 2
s functions of the factor of perceived risk of infection θ ∈ [0, 25000/(ν + µ)]. Parameter values as given in Table 1, with ψ = 0.3.

A bifurcation diagram showing the Hopf bifurcation locus k1, k2 as functions of the factor of perceived
risk of infection θ is given in Fig. 1.

Regarding the Yakubovich oscillatory, this intuitively means that for sufficiently large time all the
state variables are permanently oscillating, with regular or irregular oscillations (periodic, quasi-periodic
or chaotic). Formally, it holds that [39,40]

−∞ < lim inf
τ→+∞

X(τ) < lim sup
τ→+∞

X(τ) < +∞,

for X ∈ {S, I, p}. Note that this is a global result, unlike the Hopf bifurcation theorem, which is local.

4. The case of very large k: Quasi-steady-state approximation

Let us investigate now the case of very large rate of strategy switching, corresponding to the extreme case
that the velocity of switching is practically infinite.

We consider system (5) with
k = 1

ε
,

and ε > 0 very small. The ensuing system is a slow–fast system with two slow variables, S and I, and one
ast variable, p.

If we assume that ε ≪ 1, then a QSSA for p can be used, which yields

p(1 − p)(δ + θβSI − p) + γ(1 − p) = εṗ ≈ 0.

s a consequence, in the limit ε → 0, p is the solution of the following algebraic equation:

0 = (1 − p)(γ + (δ + θβSI)p− p2), (10)

7



R. Della Marca, A. d’Onofrio, M. Sensi et al. Nonlinear Analysis: Real World Applications 75 (2024) 103986

S

b
w

(

(

T

w

w

w

I
a
c

a
t

(

e
i
i
a
r

R
a
i

to be solved under the constraint 0 ≤ p ≤ 1. Eq. (10) has two solutions: p = 1, and the unique positive
solution of

γ + (δ + θβSI)p− p2 = 0.
ummarizing, p tends to

p = ζ(S, I) = min
(

1,
δ + θβSI +

√
(δ + θβSI)2 + 4γ
2

)
(11)

ecause it is stable, contrary to p = 1 which is unstable (when the minimum in expression (11) is attained
ith the second term). In other words:

(i) if p = ζ, then ṗ = 0 ∀ε > 0;
ii) if p ∈ [0, ζ), then

lim
ε→0

ṗ → +∞;

iii) if p ∈ (ζ, 1), then
lim
ε→0

ṗ → −∞.

hus, model (5) reduces to the following bidimensional model:
Ṡ = µ(1 − ζ(S, I)) − µS − βSI,

İ = βSI − (ν + µ)I,
(12)

ith ζ defined in (11).
Model (12) admits an unique disease-free equilibrium

E0 = (1 − p0, 0),

ith p0 = ζ(S, 0). When γ < γc, with γc as given in (7), it also admits the endemic equilibrium

E∗ =
(

1
R0

, I∗
)
,

here I∗ is the unique positive solution of

ζ

(
1

R0
, I∗
)

= pc − ν + µ

µ
I∗. (13)

ndeed, the l.h.s. of (13) is an increasing function of I∗, the r.h.s. of (13) is a decreasing function of I∗,
nd ζ(1/R0, 0) = p0 < pc. Note that, with a slight abuse of notation, we denote by E0 and E∗ also the
orresponding equilibria of the model (5) in the case ε ̸≪ 1 (see Section 3).

By using arguments similar to those of paper [41], it can be shown that, if γ > γc then E0 is globally
symptotically stable (GAS), see Appendix A.3; instead, if γ < γc then E0 is unstable and E∗ is GAS in
he positively invariant region

Ω∗ = {(S, I)|S ≥ 0, I > 0, S + I ≤ 1, S ≤ 1 − p0}

see Appendix A.4).
The proposed QSSA provides a model of the spread and control of an SIR-like infectious disease that

xtends the one in the paper [41] to the important case where the information on the disease spread is the
ncidence, not the prevalence. As in the paper [41], oscillations do not occur since the rate of strategy change
s too large. The physical reason of this lack of limit cycles and other oscillating structures is that here we
re in a regime of extremely volatile public opinion. In other words, there is no opinion-induced delay with
espect to the information on the disease spread.

emark 3. The above procedure can easily be adapted to a far more general case in which θ̄(·) and ᾱ(·)
re nonlinear, in place of (2). This would result in a more general nonlinear relationship between p(t), the
nstantaneous incidence (βSI) and the control parameter γ: p = F (βSI; γ) ∈ [0, 1].
8
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5. An approach based on geometric singular perturbation theory

In this section, we focus on a different approach to the model under analysis, through the use of techniques
from GSPT.

We denote by τ the slow time variable and with t = kτ = τ/ε the fast time variable. In a more classical
GSPT notation, system (5) can be rewritten, in the fast time scale t, as

S′ = ε(µ(1 − p) − µS − βSI),
I ′ = ε(βSI − (ν + µ)I),
p′ = p(1 − p) (δ + θβSI − p) + γ(1 − p).

(14)

Note that we denote by Ẋ the derivative of the variable X with respect to τ and by X ′ the derivative with
respect to t, where X ∈ {S, I, p}.

Remark 4. The unit of measure of k is 1/time. This implies that, when we apply a change in the time
coordinate, bringing system (5) to system (14), the resulting t = kτ = τ/ε is dimensionless. Numerical
simulations of (14) should be handled carefully, since t does not have a time dimension; thus, we need to
rescale the time accordingly.

The results obtained with GSPT are asymptotic as ε → 0. Specifically, this means that for each result
there exists a ε0 > 0, which is often not explicitly quantifiable, such that the result holds for 0 < ε < ε0.
This translates, considering k = 1/ε, to a validity of our results for k ∈ (1/ε0,+∞).

In some cases, the QSSA is in perfect agreement with the results obtained with GSPT. In other cases,
namely for orbits which pass exponentially close in ε to the manifold {p = 1}, the QSSA is not able to
replicate the delayed loss of stability of that same manifold. This behaviour is clearly visible in Fig. 2, in
which different situations have been explored.

The critical manifold is given by

C0 = {S ≥ 0, I ≥ 0, S + I ≤ 1, p ∈ [0, 1] | p(1 − p)(δ + θβSI − p) + γ(1 − p) = 0}
={S ≥ 0, I ≥ 0, S + I ≤ 1 | p = 1} ∪

∪ {S ≥ 0, I ≥ 0, S + I ≤ 1, p ∈ [0, 1] | p2 − (δ + θβSI)p− γ = 0}.
(15)

For ease of notation, we introduce

A := {S ≥ 0, I ≥ 0, S + I ≤ 1 | p = 1},
B := {S ≥ 0, I ≥ 0, S + I ≤ 1, p ∈ [0, 1] | p2 − (δ + θβSI)p− γ = 0}.

We first make the expression of B explicit. To remain in the biologically feasible region, we impose p ∈ [0, 1],
from which it follows that p = ζ(S, I), as given in (11). Also, it must be

SI ≤ 1 − δ − γ

θβ
,

here we have assumed that 2 − δ − θβSI ≥ 0 for the couple (S, I) in an open subset of (0, 1)2. Moreover,
we need that 1 − δ > γ, mirroring the necessary conditions coming from the paper [6].

Computing the Jacobian of the fast system (14) with ε = 0, the so-called fast system [17], we notice that
there are two zero eigenvalues, corresponding to the slow variables S and I. The third eigenvalue is

λ = (p2 − (δ + θβSI)p− γ) + (1 − p)(δ + θβSI − 2p).

9
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t

Fig. 2. Impact of the finiteness of the rate of switching strategy k. Vaccine uptake of newborns as predicted by the QSSA model
(12) (red lines) and by the GSPT model (14) (black lines). The black dashed lines represent the critical manifold (15). Panel (a):
ψ = 0.3, ϕ = 10. Panel (b): ψ = 0.8, ϕ = 10. Panel (c): ψ = 0.3, ϕ = 50. Panel (d): ψ = 0.8, ϕ = 50. Other parameter values and
initial conditions as given in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

On B, the eigenvalue is
λ = (1 − p)(δ + θβSI − 2p).

Note that 1 − p ≥ 0 and, on B, δ + θβSI − 2p = −
√

(δ + θβSI)2 + 4γ < 0, thus λ < 0 and B is always
ocally attractive when it exists, independently of the value of R0.

Let us now focus on the behaviour of the system when p ≈ 1 (i.e. close to A). If we sum the first two
equations in (5), we obtain

Ṡ + İ ≤ −µ(S + I),

thus S+I converges to zero. We remark that on A the susceptible population S can only decrease, since this
set represents the situation in which there are no vaccine sceptical people, whereas I is not always decreasing,
although the sum S + I is. The eigenvalue on A is

λ = p2 − (δ + θβSI)p− γ.

Thus, ⎧⎪⎨⎪⎩
λ > 0 if

δ + θβSI +
√

(δ + θβSI)2 + 4γ
2 < p ≤ 1,

λ < 0 if 0 ≤ p <
δ + θβSI +

√
(δ + θβSI)2 + 4γ
2 .

ince the corresponding eigenvalue λ changes its sign, the region A is attractive until the intersection with
he surface (11), it then becomes repelling and, after a delay, the dynamics lands on the surface B. Depending
10
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c

Table 1
Parameters values and initial conditions used for numerical simulations of models
(12) and (14).

Parameter Formula Value

µ – 1/78 years−1

ν – 52 years−1

R0 – 18
β R0(ν + µ) 936.23 years−1

pc 1 − 1/R0 0.944
ε 0.1/ν 0.0019 years
k 1/ε 520 years−1

ψ – {0.3; 0.8}
δ ψpc {0.283; 0.756}
θpre – 450
θbas θpre/(ν + µ) 8.652 years
ϕ – {10; 50}
θ ϕθbas {86.52; 432.59} years
γc pc(pc − δ) {0.624; 0.178}
γ γc/2 {0.089; 0.312}
S(0) 1/R0 0.056
I(0) µ (pc − p(0)) /(ν + µ) 4.793 · 10−5

p(0) – 0.75

on the value of R0 and Sin, where Sin indicates the entrance of an orbit in a neighbourhood of {p = 1}, we
an observe two different behaviours:

• Case I: if R0 < 1, or R0 > 1 and Sin < 1/R0, then I(τ) is decreasing and the orbits converge to B after
a delay TE determined with the entry–exit function

∫ TE
0 λ(τ)dτ = 0; hence the exit time TE is given

implicitly by

(1 − δ − γ)TE = θβ

∫ TE

0
S(τ)I(τ)dτ.

A similar entry–exit phenomenon, with orbits eventually landing on a different branch of the critical
manifold, was already observed in the paper [42]. We note that, however, we have no explicit formula
for S(τ)I(τ) on p = 1. There is, to the best of the authors’ knowledge, no theoretical result that
justifies the canard-like behaviour of orbits remaining in a neighbourhood of an unstable branch in this
setting. However, from the lower dimensional case of Section 7, for which the delayed loss of stability is
theoretically foreseeable, and from our simulations, we conjecture that this is always the case, for the
parameter values we are interested in;

• Case II: if R0 > 1 and Sin > 1/R0, then I(τ) changes its monotonicity and the convergence towards
B only happens after a short excursion away from it. In this case, the known formulas for entry–exit
functions cannot be applied.

6. Numerical simulations: the impact of finite k

For numerical simulations, we use epidemiological parameters compatible with a vaccine-preventable
endemic childhood disease [5,6,12]. In particular, we keep fixed the parameters values: µ = 1/78 years−1,
ν = 52 years−1, R0 = 18, ε = 0.1/ν. At variance, we vary the values of the imitation game parameters δ, γ
and θ, that are chosen in the following way:

• since the value of δ affects the value of γc, recall (7), we define it as δ = ψpc, where ψ ∈ {0.3, 0.8};
• we then compute the value of γc and we set γ = γc/2;
• the most complex case concerns finding the value of θ. We cannot use the same value used in the

paper [12], say θpre = 450, since in that case the perceived risk of infection is proportional to I(τ),
whereas here it is proportional to βS(τ)I(t). We impose that, if S(τ) is close to its endemic equilibrium

∗
value S = 1/R0 and the value of I(τ) is equal to that in the prevalence-based case, then the two “risks
11
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Fig. 3. Dynamics of the fraction of infectious individuals as predicted by the QSSA model (12) (red lines) and by the GSPT model
(14) (black lines), and normalized with respect to the endemic equilibrium value I∗, given in (8). Panel (a): ψ = 0.3, ϕ = 10. Panel
b): ψ = 0.8, ϕ = 10. Panel (c): ψ = 0.3, ϕ = 50. Panel (d): ψ = 0.8, ϕ = 50. Other parameter values and initial conditions as given in
able 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

of infection” must be equal each other, namely θβS∗I(τ) = θpreI(τ). This gives in turn a baseline value
for θ in the present case, say θbas := θpre/(ν + µ). We eventually set θ = ϕθbas, where ϕ ∈ {10, 50}.

s regards the initial conditions of the state variables, we assume that they are at the endemic equilibrium
f the model (5) with constant vaccination p(τ) ≡ 0.75; we choose this value because it is large enough, and
t is representative of an initial condition in which three quarters of parents used to vaccinate their children.
herefore, S(0) = 1/R0, I(0) = µ (pc − p(0)) /(ν + µ), p(0) = 0.75.
The above-mentioned values of the parameters and the initial conditions are summarized in Table 1.
Since I(τ) becomes exponentially small in ε, meaning I = e−K/ε for some K > 0, we apply a change of

ariables to system (14), as reported in Appendix A.5, in order to reduce its numerical stiffness. Moreover,
ecall from Remark 4 that the time should be rescaled.

In Figs. 2–4 we display the numerical solutions of models (12) and (14), as well as the critical manifold
15), for the four possible combinations of the factors ψ and ϕ defining the imitation game parameters δ
nd θ, as indicated in Table 1. Namely: (a) ψ = 0.3, ϕ = 10; (b) ψ = 0.8, ϕ = 10; (c) ψ = 0.3, ϕ = 50; (d)
= 0.8, ϕ = 50. Specifically, we combine cases in which: (i) δ is considerably smaller than pc (ψ = 0.3) or

uite close to it (ψ = 0.8); (ii) θ is medium (ϕ = 10) or relatively large (ϕ = 50). Note that, in the case of
bsence of action enacted by the PHS (γ = 0), θ is the slope of the reactivity with respect to the information
n the disease spread.

We report in Fig. 2 the dynamics of the vaccine uptake of newborns, p; in Fig. 3 the dynamics of the
raction of infectious individuals normalized with respect to the endemic value in (8), I/I∗; in Fig. 4 the

ynamics of the disease incidence, βSI.

12
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Fig. 4. Dynamics of the disease incidence βSI as predicted by the QSSA model (12) (red lines) and by the GSPT model (14) (black
lines). Panel (a): ψ = 0.3, ϕ = 10. Panel (b): ψ = 0.8, ϕ = 10. Panel (c): ψ = 0.3, ϕ = 50. Panel (d): ψ = 0.8, ϕ = 50. Other parameter
values and initial conditions as given in Table 1. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

From Figs. 2–4, we note a generalized and very remarkable discrepancy between the solutions by the
QSSA (model (12), red lines) and those by the GSPT (model (14), black lines). In any case, the solutions of
both the models converge towards the endemic equilibrium. However, in the case (a), the damped oscillations
of p predicted by the QSSA have much larger period than those predicted by the GSPT (Fig. 2a). In the
cases (b)–(c)–(d), the orbits of the model (14) exhibit transitory oscillations by approaching {p = 1}, while
those of model (12) approach the endemic equilibrium after a short passage near {p = 1}.

Further, in the case (a), the disease prevalence and incidence predicted by the model (14) resemble
the shape of their QSSA counterpart (Figs. 3a and 4a). At variance, in the cases (b)–(c)–(d), the disease
prevalence and incidence predicted by the GSPT showcase effect of the delayed loss of stability of the system
through a slow passage near I = 0 and SI = 0, respectively. From Fig. 3 we also note that for both the
models varying ψ and ϕ (and hence, δ and θ) affects the timing of the oscillations of the disease prevalence.
In particular, increasing the values of ψ and/or ϕ increases the oscillation period.

A less pronounced but nonetheless important discrepancy is also observed in Fig. 2 between the solutions
of GSPT (model (14)) and the values of the critical manifold (15) at the solutions of GSPT (black dashed
lines). The discrepancy is evident in all the cases except for the case (a), where the orbits of both models
(12) and (14) never approach {p = 1}, and the critical manifold (15) gives an excellent approximation of the
behaviour of the model (14). In the cases (b)–(c)–(d), the discrepancy is not limited to very short periods
but it extends from some months (Fig. 2b) to many years (Fig. 2d), which can have a remarkable impact

from the Public Health viewpoint.

13
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7. Reconsidering the case in which prevalence is the main information

In this section, we reconsider our initial imitation game Eq. (3) and briefly examine the case that the
main information on the spread of the disease is the prevalence at time τ , namely

Md(τ) = I(τ).

his case was partially investigated in the paper [12] by using a QSSA approach. We now complete the
nalysis by using tools from GSPT.

Note that we continue to assume that Mv is given by the vaccine uptake of newborns: Mv(τ) = p(τ).
The corresponding model in the fast time scale t now reads:

S′ = ε(µ(1 − p) − µS − βSI),
I ′ = ε(βSI − (ν + µ)I),
p′ = p(1 − p)(δ + θpreI − p) + γ(1 − p),

(16)

here
θpre = θ1

α1

s the corresponding factor of perceived risk of infection, and k, δ and γ as defined in (4).
We recall the expression of the endemic equilibrium E∗ = (S∗, I∗, p∗) of model (16), whose components

re given by

S∗ = 1
R0

, I∗ = µ

ν + µ
(pc − p∗) , p∗ =

δ + µθpre

ν + µ
pc +

√(
δ + µθpre

ν + µ
pc

)2
+ 4γ

(
1 + µθpre

ν + µ

)
2
(

1 + µθpre

ν + µ

) . (17)

The critical manifold is

C0 = {S ≥ 0, I ≥ 0, S + I ≤ 1, p ∈ [0, 1] | p(1 − p)(δ + θpreI − p) + γ(1 − p) = 0}
={S ≥ 0, I ≥ 0, S + I ≤ 1 | p = 1} ∪

∪ {S ≥ 0, I ≥ 0, S + I ≤ 1, p ∈ [0, 1] | p2 − (δ + θpreI)p− γ = 0}.
. (18)

For ease of notation, we introduce

A := {S ≥ 0, I ≥ 0, S + I ≤ 1 | p = 1},
B := {S ≥ 0, I ≥ 0, S + I ≤ 1, p ∈ [0, 1] | p2 − (δ + θpreI)p− γ = 0}.

where B is described by

p = ξ(I) =
δ + θpreI +

√
(δ + θpreI)2 + 4γ
2 . (19)

With the same argument employed in Section 5, we obtain that the Jacobian of the fast system (16) with
ε = 0 has two zero eigenvalues and a third eigenvalue given by

λ = (p2 − (δ + θpreI)p− γ) + (1 − p)(δ + θpreI − 2p).

On B, the eigenvalue is
λ = (1 − p)(δ + θpreI − 2p) < 0,

thus B is always locally attractive when it exists, independently of the value of R .
0

14
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We now study the behaviour of the system when p ≈ 1 (i.e. close to A). As in Section 5, we have that
he quantity S + I converges to zero.

The eigenvalue on A is
λ = p2 − (δ + θpreI)p− γ.

hus, ⎧⎪⎨⎪⎩
λ > 0 if

δ + θpreI +
√

(δ + θpreI)2 + 4γ
2 < p ≤ 1,

λ < 0 if 0 ≤ p <
δ + θpreI +

√
(δ + θpreI)2 + 4γ
2 .

Since the corresponding eigenvalue λ changes its sign, the region A is attractive until the intersection with
the curve (19), it then becomes repelling and, after a delay, the dynamics lands on the curve B. Depending
on the value of R0 and Sin, where Sin indicates the entrance of an orbit in a neighbourhood of {p = 1}, we
an observe two different behaviours:

• Case I: if R0 < 1, or R0 > 1 and Sin < 1/R0, then I(τ) is decreasing and the orbits converge to B after
a delay TE determined with the entry–exit function

∫ TE
0 λ(τ)dτ = 0; hence the exit time TE is given

implicitly by

(1 − δ − γ)TE = θpre

∫ TE

0
I(τ)dτ.

A similar entry–exit phenomenon, with orbits eventually landing on a different branch of the critical
manifold, was already observed in the paper [42]. The canard-like behaviour is confirmed applying the
results in the paper [43] (see also [44]). We note that, however, we have no explicit formula for I(τ) on
p = 1;

• Case II: if R0 > 1 and Sin > 1/R0, then I(τ) changes its monotonicity and the convergence towards
B only happens after a short excursion away from it. In this case, the known formulas for entry–exit
functions cannot be applied.

In Figs. 5–6, we report the numerical solutions of model (16), as well as the critical manifold (18), and
compare them with those by the QSSA approach. We display in Fig. 5 the dynamics of the vaccine uptake
of newborns, p; in Fig. 6 the dynamics of the fraction of infectious individuals normalized with respect to
the endemic value in (17), I/I∗. The parameters used are the same as in Table 1, with the exception of the
value of θpre. Indeed, in this case we set

θpre = ϕ450, with ϕ = {10, 50}. (20)

From Fig. 5, we note that even in the scenario of prevalence-based information, the “exact” dynamics of p
(black lines) largely differs from the one predicted by the QSSA method (red lines). Moreover, the solutions
of the GSPT model (16) may differ from the corresponding values along the critical manifold (18) (black
dashed lines) for time intervals of some years (Figs. 5b and 5d), which may have a remarkable impact from
the Public Health viewpoint.

Similarly to what observed in Section 6, from Fig. 6 we also note that for both the models increasing δ
and/or θpre increases the oscillation period of the disease prevalence.

8. Concluding remarks

The aims of this work were multiple. To start, we first considered and studied the impact of the use
of disease incidence instead of disease prevalence in the context of the vaccination imitation game. This
assumption allows for a more realistic model because the incidence of a disease is a more widely diffuse datum
than the prevalence. Indeed, our model concerns the spread of endemic SIR infections. This scenario is deeply
15
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Fig. 5. Information based on the disease prevalence: impact of the finiteness of the rate of switching strategy k. Vaccine uptake of
ewborns as predicted by the QSSA model proposed in the paper [12] (red lines) and by the GSPT model (16) (black lines). The
lack dashed lines represent the critical manifold (18). Panel (a): ψ = 0.3, ϕ = 10 in (20). Panel (b): ψ = 0.8, ϕ = 10 in (20). Panel
c): ψ = 0.3, ϕ = 50 in (20). Panel (d): ψ = 0.8, ϕ = 50 in (20). Other parameter values and initial conditions as given in Table 1.
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ifferent from the one of the epidemic spread of a new or a re-emerging disease, such as the pandemic scenario
e are living in since 2020. Agents in a process of endemic spread of an infectious disease act according to

he information/rumors they receive on side effects and on information on data such as the disease incidence
r, more rarely, disease prevalence. To the best of our knowledge, other kinds of meaningful data such as
stimated avoided cases due to vaccination campaigns are often not taken into consideration for endemic
iseases.

The study of the proposed model was done both for small and for very large strategy switching velocity
y agents (parameter k), in the second case by using the QSSA. The first case (small k) corresponds to old
cenarios in which agents had slow reactions and the impact of actions of governments was mainly based on
raditional press, actions by doctors, and other means that require a complex logistic organization. In the
ase of very large k, our model refers, instead, to a contemporary scenario where not only agents are rapidly
eacting to news spreading on social media, but also the public health system and pro-vaccine activists
apidly enact their campaigns on the same channels.

It is of interest to note that the QSSA provides a model of the spread and control of an SIR-like infectious
isease that extends – on a mechanistic ground – the purely phenomenological model [41] to the important
ase where the information on the disease spread is the incidence, not the prevalence. As in the paper [41],
lso here oscillations do not occur. However, here we have a rationale: the lack of oscillations is related to the
act that the rate of strategy change is too large. The physical reason of this lack of limit cycles and other
scillating structures is that here we are in a regime of extremely volatile public opinion. As a consequence,
here is no opinion-induced delay with respect to the information on the disease spread. Another important
16
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Fig. 6. Information based on the disease prevalence: dynamics of the fraction of infectious individuals as predicted by the QSSA
model proposed in the paper [12] (red lines) and by the GSPT model (16) (black lines), and normalized with respect to the endemic
equilibrium value I∗ given in (17). Panel (a): ψ = 0.3, ϕ = 10 in (20). Panel (b): ψ = 0.8, ϕ = 10 in (20). Panel (c): ψ = 0.3, ϕ = 50
in (20). Panel (d): ψ = 0.8, ϕ = 50 in (20). Other parameter values and initial conditions as given in Table 1. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

point to stress is that the QSSA allows to precisely identify the role and the impact of the parameter γ
(which summarizes the efforts of PHS to convince hesitant people to change their vaccine-related decisions)
on the vaccine uptake p, which turns out to be a nonlinear function of both the disease incidence and of γ.

Then, we investigated the impact of the boundedness of the large parameter k. This allowed us to compare
the analytical approaches of QSSA and GSPT.

The main result obtained by means of the GSPT approach lies in the significant extension of the QSSA
approach, which is only valid in the limit as ε → 0 (equivalently, k → +∞) that may be excessively sharp.
As we remarked in Section 5, instead, GSPT provides results for k large but finite (equivalently ε small but
strictly positive), which is more realistic from a behavioural switching point of view. This is crucial for the
system under study, due to the presence of a transversal intersection of two parts of the critical manifolds.
Orbits travelling close to this intersection do not always follow the stable branches of the critical manifold;
rather, they spend a non-negligible amount of time in the vicinity of a repelling branch. This part of the
dynamics can be characterized through the use of the so-called entry–exit function, as we showcased in
Sections 5 and 7.

In the case analysed in Section 7, the canard-like behaviour can be explained through the application of
known analytical results. The model we focused on for most of the work, i.e. the one in Section 5, shares
many similarities to the one in Section 7. However, to the best of the authors’ knowledge, there is not general
analytical result for the behaviour of multiple time scales system near a transcritical point in such a setting.
A higher dimensional result in the spirit of the paper [43] would be precious both from a purely theoretical

point of view, and from its application potential.

17
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Of course, this study suffers a number of limitations. We may mainly mention three: (i) from the
epidemiology viewpoint, the adopted model is a non-spatial and deterministic mean-field model; (ii) from
the behavioural viewpoint, the model is equipped with a relatively simplistic evolutionary model of opinion
change; (iii) we have no precise, universal way to quantify the range of validity for k (equivalently, ε). Finally,

e explicitly stress that our model is far more adapt to describe the control of the spread of a childhood
nfectious disease than to deal with COVID-19, which would require a far more detailed model of both spread
nd control.
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ppendix

.1. Global stability of EP for model (5)

Let us assume that γ > γ̄, where γ̄ = 1 − δ. From the differential equation (5c) and θβSI − p ≥ −1 it
mmediately follows that

ṗ ≥ k(p(δ − 1) + γ)(1 − p),

mplying that
lim inf
t→+∞

p ≥ min
(

1, γ

1 − δ

)
.

Since γ > γ̄, then lim inft→+∞ p = 1, thereby showing that EP is GAS.
Conversely, if γ < γ̄, then the instability of EP easily follows by linearizing the differential equation (5c)

at EP .

A.2. Global stability of E0 for model (5)

Assume now that γc < γ < γ̄, where γc = pc(pc − δ). Consider the following inequality

ṗ ≥ kp(1 − p)
(
δ − p+ γ

p

)
,

t follows that
lim inf
t→+∞

p ≥ p0.

oreover, the above minimum limit implies that for large times

Ṡ ≤ µ(1 − p0 − S)

nd in turn that
İ ≤ βI(p − p0).
c
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Simple algebra shows that γ > γc is equivalent to p0 > pc, and the global stability of E0 immediately
ollows.

Conversely, if γ < γc (i.e. p0 < pc), then the instability of E0 follows from the linearized equation for the
nfectious fraction: i̇ = βi(pc − p0).

.3. Global stability of E0 for model (12)

By defining σ = S + I, from system (12) we obtain

σ̇ = µ(1 − ζ(S, I)) − µσ − νI ≤ µ(1 − p0) − µσ,

t follows that
lim sup
t→+∞

σ = 1 − p0.

he above maximum limit implies that for large times

İ ≤ βI(pc − p0).

ence, if p0 > pc, then E0 is globally attractive.

.4. Global stability of E∗ for model (12)

The Jacobian matrix of system (12) evaluated at the equilibrium E∗ reads

J =

⎛⎝ −µ ∂ζ
∂S

(
1

R0
, I∗
)

− βI∗ − µ −µ∂ζ
∂I

(
1

R0
, I∗
)

− (ν + µ)

βI∗ −(ν + µ)

⎞⎠ .

ince trJ < 0 and detJ > 0, the eigenvalues of J have negative real parts. Further, in Ω∗ there are no closed
rbits since

div
(

1
I

(Ṡ, İ)
)

= −µ

I

∂ζ

∂S
− β − µ

I
< 0.

hus, by the Poincaré–Bendixon thricotomy it follows that E∗ is GAS in Ω∗.

.5. Change of variables

In order to reduce the numerical stiffness of the model (14), we employ a change of the state variables of
he model. Specifically, we introduce:

x := ln(S), y := ln(I), z := ln
(

p

1 − p

)
,

i.e.
S = ex, I = ey, p = ez

1 + ez
.

By deriving the new variables with respect to the time t, we obtain

x′ = ε

(
µ
e−x

1 + ez
− βey − µ

)
,

y′ = ε (βex − ν − µ) ,

z′ = δ + θβex+y − ez

1 + ez
+ γ

1 + ez

ez
.

he obtained system is remarkably less numerically stiff than the original one.
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[44] P. Kaklamanos, C. Kuehn, N. Popović, M. Sensi, Entry-exit functions in fast-slow systems with intersecting eigenvalues,

J. Dynam. Differential Equations (2023) 1–18.
21

http://refhub.elsevier.com/S1468-1218(23)00156-6/sb33
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb33
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb33
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb34
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb34
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb34
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb35
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb36
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb37
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb38
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb38
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb38
https://www.sciencedirect.com/science/article/pii/S0025556408001600
http://dx.doi.org/10.1137/070706963
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb41
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb41
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb41
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb42
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb43
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb43
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb43
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb44
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb44
http://refhub.elsevier.com/S1468-1218(23)00156-6/sb44

	A geometric analysis of the impact of large but finite switching rates on vaccination evolutionary games
	Introduction
	Background of Evolutionary Vaccination Game as a process of Mutual Infection of ideas
	An Evolutionary Game in which strategy switching depends on the incidence of the disease
	The case of very large k: Quasi-Steady-State Approximation
	An approach based on Geometric Singular Perturbation Theory
	Numerical simulations: the impact of finite k
	Reconsidering the case in which prevalence is the main information
	Concluding remarks
	Acknowledgements
	Appendix
	Global stability of EP for model SIRpcompleto 
	Global stability of E0 for model SIRpcompleto 
	Global stability of E0 for model TPB
	Global stability of E* for model TPB
	Change of variables

	References


