
06 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Efficient Verifiable Protocol for Privacy-Preserving Aggregation in Federated Learning / AHMED ELTARAS, Tamer;
Sabry, Farida; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah. - In: IEEE TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY. - ISSN 1556-6013. - 18:(2023), pp. 2977-2990. [10.1109/TIFS.2023.3273914]

Original

Efficient Verifiable Protocol for Privacy-Preserving Aggregation in Federated Learning

Publisher:

Published
DOI:10.1109/TIFS.2023.3273914

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2983789 since: 2023-11-12T15:50:52Z

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 2977

Efficient Verifiable Protocol for Privacy-Preserving
Aggregation in Federated Learning

Tamer Eltaras , Farida Sabry , Member, IEEE, Wadha Labda , Khawla Alzoubi ,
and Qutaibah Malluhi , Member, IEEE

Abstract— Federated learning has gained extensive interest in
recent years owing to its ability to update model parameters
without obtaining raw data from users, which makes it a viable
privacy-preserving machine learning model for collaborative
distributed learning among various devices. However, due to
the fact that adversaries can track and deduce private infor-
mation about users from shared gradients, federated learning
is vulnerable to numerous security and privacy threats. In this
work, a communication-efficient protocol for secure aggregation
of model parameters in a federated learning setting is proposed
where training is done on user devices while the aggregated
trained model could be constructed on the server side without
revealing the raw data of users. The proposed protocol is
robust against users’ dropouts, and it enables each user to
independently validate the aggregated result supplied by the
server. The suggested protocol is secure in an honest-but-curious
environment, and privacy is maintained even if the majority of
parties are in collusion. A practical scenario for the proposed
setting is discussed. Additionally, a simulation of the protocol
is evaluated, and results demonstrate that it outperforms one of
the state-of-art protocols, especially when the number of dropouts
increases.

Index Terms— Federated learning, privacy-preserving, secure
aggregation, verifiable aggregation, cloud computing.

I. INTRODUCTION

FEDERATED learning has been actively researched in the
last five years [1], [2] as a collaborative way to perform

machine learning tasks between many clients, possibly mobile
devices, without the data leaving the clients to preserve their
privacy. The service provider in this setting just orchestrates
many clients, receives local models’ parameters, then updates,
and ensures the validity of the global aggregated model
whether it is a deep-learning model [1], a tree-based model [3],
[4] or any other model type.

Federated learning (FL) faces many challenges [2], such
as devices’ heterogeneity, limited resources, availability, and

Manuscript received 5 July 2022; revised 21 November 2022 and 10 March
2023; accepted 18 April 2023. Date of publication 8 May 2023; date of current
version 15 May 2023. This work was supported in part by the Qatar National
Research Fund (QNRF) under Project ECRA 01-006-1-001 and in part by
the Qatar National Library. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Edgar Weippl.
(Corresponding author: Tamer Eltaras.)

Tamer Eltaras, Farida Sabry, Wadha Labda, and Qutaibah Malluhi are with
the Computer Science and Engineering Department, Qatar University, Doha,
Qatar (e-mail: tamer.taras@qu.edu.qa).

Khawla Alzoubi is with the Engineering Technology Department, Commu-
nity College, Qatar University, Doha, Qatar.

Digital Object Identifier 10.1109/TIFS.2023.3273914

communication overhead. Besides that, federated learning
faces some security and privacy threats from external mali-
cious actors that might do model update poisoning or tradi-
tional data poisoning. A wide range of different threats and
attacks are reviewed in [5] and [6]. Mitigating these kinds
of poisoning attacks is challenging to distinguish between
honest and malicious updates [7], [8]. An adversarial server
also represents a threat to a federated learning setting as a
curious actor at the server side might do reverse engineering
for the local model’s parameters received at the server to reveal
private data.

In order to do this aggregation in a secure manner,
researchers studied numerous possibilities [9], including using
homomorphic encryption, differential privacy, secure multi-
party computation protocols [10], and trusted execution envi-
ronments [2].

Each of these techniques has its own pros and cons.
While homomorphic encryption provides a private solution by
aggregating encrypted data from clients, prohibiting the server
from reverse-engineering the model’s weights or discovering
training data, it is computationally expensive and impractical
for the majority of applications [11].

It also does not consider the problem of dropouts when some
devices drop out of the network due to connectivity problems
or battery power outages. Using differential privacy alone
doesn’t consider the dropouts as well and faces the privacy-
utility trade-off challenge but can operate in the shuffled model
where a trusted third party shuffles the noisy client updates
before forwarding them to the server [12].

Research in secure multi-party computation protocols and
their applications for have started a long-time ago [10], [13].
However, state-of-the-art secure multi-party computation pro-
tocols based on secret sharing for federated learning [14],
[15], [16] still faces challenges with the communication
overhead incurred in the aggregation and verification pro-
cess. They also cannot accommodate the cross-silo setting
where client devices do the local training, but these clients
belong to different organizations with the requirement to
ensure their clients’ privacy. Examples of this scenario include
healthcare organizations, different banks, or multiple oper-
ating vehicular ad hoc networks (VANETs) [17] scenar-
ios. The proposed protocol addresses these two issues for
secure multiparty computation of the gradient vector. In the
next Section, the contributions of our research work are
emphasized.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8664-9091
https://orcid.org/0000-0001-5639-983X
https://orcid.org/0000-0001-6097-2395
https://orcid.org/0000-0002-2797-2673
https://orcid.org/0000-0003-2849-0569

2978 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

A. Our Contributions

Our protocol primarily addresses the fundamental security
challenges in federated learning: the confidentiality of local
gradients and the verifiability of aggregation through incor-
porating auxiliary nodes that represent organizations such as
hospitals, banks, or VANETs. These auxiliary nodes partici-
pate in the protocol to help in keeping the client nodes’ data
private; further explanation will be provided in section V. The
contributions of this research work to the area of privacy-
preserving and verifiable aggregation depending on secure
multi-party computations can be summarized as follows:
• An efficient, verifiable privacy-preserving aggregation

algorithm is proposed. It relies on lightweight primitives.
• To ensure the confidentiality of the user’s local gradients,

a single-masking protocol is used in our scheme instead
of a double-masking protocol used in most literature
work.

• For the verification of the aggregated result, we use the
concept of double aggregation, which is very lightweight
in computation compared to cryptographic primitives
used in most of the research work in the literature.

• The algorithm is compared in terms of communication,
computation, and storage complexities to existing algo-
rithms.

• Performance evaluation and analysis of the proposed
algorithm with changing the number of auxiliary nodes
and dropout percentage is presented.

We are mainly focused on the setting where several organiza-
tions are cooperating, and each organization has several users.
The organizations need to collaborate to train a global model
on all user’s private data without violating the privacy of the
users’ data either by the organization they are affiliated with or
by other organizations. Our scheme allows each organization
to participate in the protocol as an auxiliary node, which lets
each organization guarantee its users’ privacy.

B. Organization

The rest of the paper is organized as follows. Section II
presents related work in the literature. In Section III the
background needed for the approach in the paper is briefly
discussed. Section IV presents an application scenario for the
proposed protocol in healthcare domain and illustrates the sys-
tem architecture of the proposed scheme and its threat model.
Section V explains the protocol steps and handling of dropouts.
It also addresses the verifiability of the aggregated result.
Security analysis for the protocol is presented in section VI.
Evaluation of the performance of the proposed algorithm is
discussed in section VII. Finally, the paper is concluded in
section VIII. To make the paper easy to follow, we summarize
the mathematical symbols and notations used in the paper in
Table I.

II. RELATED WORK

Our research contributes to two areas; secure aggregation
and verification of server work in federated learning. In this
section, we briefly review recent related research work in these
two areas.

TABLE I
MATHEMATICAL NOTATIONS AND THEIR DESCRIPTIONS

A. Secure Aggregation

Secure aggregation in federated learning (FL) refers to the
aggregate computation of the sum of local models’ parameters
updates in a secure way without learning any information
about the personal private data that produced these parameters.
This has been done in the literature in various ways that
differ in terms of computation complexity, communication
latency, and how they deal with the problem of dropout
nodes which is a common problem in federated learning
settings. This research area has been actively researched in
the last five years. In this section, only a limited number
of examples of the research work using differential privacy,
homomorphic encryption, secret sharing, and other secure
multi-party computation techniques are reviewed.

1) Using Differential Privacy (DP): The authors in [18]
proposed using a local differential privacy mechanism to
update the local weights of a deep neural network adapting
to the varying ranges of weights at different layers. They
used parameter shuffling aggregation to bypass the curse of
dimensionality to avoid privacy budget explosion. In a similar
way, the authors in [19] used local differential privacy to add
noise to the local models’ parameters before aggregation. They
analyzed the compromise between convergence performance
and privacy protection levels. They showed that increasing the
number of users participating in FL can increase the model
convergence and emphasized the trade-off between the model
convergence and the privacy-protection level. Applying local
differential privacy at the local models has the advantage of
less communication time needed as only the differentially
private local model parameters are exchanged. However, this
approach requires a large number of participating users, and
it isn’t evaluated for the dropouts effect. To alleviate some of
these problems, Kairouz et al. [20] proposed adding discrete
Gaussian noise before performing secure aggregation and after
discretization of the user model updates. The authors in [21]
depended on a distributed Laplace perturbation mechanism
which is more efficient in terms of noise generation time.
A problem with the approach in [20] is that privacy guar-
antees degrade as the dropped-out users increase. In [22], the

ELTARAS et al.: EFFICIENT VERIFIABLE PROTOCOL FOR PRIVACY-PRESERVING AGGREGATION 2979

authors combine the addition of Gaussian noise with a learning
with errors (LWE)-based masking protocol that substantially
reduces the communication complexity required to add large
vectors. The authors in [23] also achieved low communication
overhead with a training mechanism that requires flexible
participation of clients. In [19], the authors used differen-
tial privacy to protect privacy by adding artificial noise to
parameters at the client’s side before aggregation. The study
explored the relationship between convergence performance
and levels of privacy protection. In [24], a comparison was
made between FL and local differential privacy in terms
of efficiency and privacy loss. However, the performance of
applying local differential privacy to FL was not investigated.
The work in [25] introduced a local differential privacy FL
framework for industrial-grade text mining, demonstrating that
it could provide data privacy and model accuracy. In [26], the
authors describe a hybrid approach that combines differential
privacy and SMC to achieve a balance between accuracy and
vulnerability to inference attacks. The goal is to address the
potential for low accuracy when using differential privacy and
the vulnerability to inference associated with SMC.

2) Using Homormorphic Encryption: Homomorphic
encryption (HE) has been actively researched for use in
multiparty computation for deep learning tasks and then
in federated learning [27], [28], [29], [30], [31], especially
after succeeding in supporting approximate arithmetic over
encrypted data [32], which means users can send their
gradients encrypted to be added while keeping it private.

Phong et al. [33] used additively homomorphic encryption
in asynchronous stochastic gradient descent training for a
neural network. Truex et al. [27] combined additively homo-
morphic encryption (HE) with DP, but their approach cannot
handle client dropouts. Using HE results in a significant run-
time overhead which can be seen as impractical for real-world
FL. Using a batch encryption technique, BatchCrypt [28]
reduces the encryption and transmission overhead of HE-based
aggregation and only requires a single round of communi-
cation. To safeguard model parameters, The authors in [29]
proposed using (HE) approach that can directly execute arith-
metic operations on ciphertexts without decryption. Based
on a lightweight symmetric homomorphic encryption, the
authors in [30] proposed an efficient and verifiable cipher-
based matrix multiplication algorithm to ensure training secu-
rity in a completely decentralized framework. In [34], the
authors proposed a federated learning approach that prioritizes
privacy using a multi-key homomorphic encryption protocol.
The approach encrypts model updates with an aggregated
public key before aggregating them on the server. Decryption
requires collaboration from all participating devices, prevent-
ing unauthorized access to the participants’ data. The authors
of [35] combined ternary gradients federated learning with
secret sharing and homomorphic encryption techniques to
develop privacy-preserving protocols to protect against semi-
honest adversaries. However, the computational burden of HE
renders it inapplicable for real-world training with FL and
negatively affects scalability.

3) Using Secret Sharing: Bonawitz et al. [36] presented
FL’s secure aggregation. Their protocol can withstand client

dropouts. To prevent access to local models, they employed
blinding with random values, Shamir’s Secret Sharing (SSS),
and symmetric encryption. However, their aggregation needs
at least four communication cycles every iteration between
each client and the aggregator. This imposes a severe burden
on clients with limited resources and WAN connections.
VerifyNet [15], and VeriFL [14] modified the protocol of
Bonawitz et al. [36]. Authors in [15] added verifiability on
top of the protocol in [36] to guarantee the correctness of
the aggregation, and in [14], the authors reported optimization
of the communication and computation overhead in case of a
large number of dropouts as it is always the case in a federated
learning setting. However, these protocols rely on a trusted
party to generate public/private key pairs for all clients. SAFE-
Learn [37] introduced a generic design for efficient private
aggregation for FL to overcome the aforementioned problems
since their proposed protocol needs only two communication
rounds in each iteration, it does not rely on expensive cryp-
tographic primitives on client devices, and there is no need
to trust a third party. The authors in [38] mixed masking
using random keys while supporting quantization-based model
compression to boost communication efficiency. They relied
on hardware-assisted trusted execution environments (TEE) for
verification which requires extra costs. Blockchain technology
can be used to secure federated learning and introduce device
and model trust as demonstrated in [39] and [40]. In [41], the
authors proposed a secure aggregation protocol that is robust
to client dropouts using a novel multi-secret sharing scheme
based on Fast Fourier Transform (FFT). A new framework for
secure aggregation was introduced in [42], which uses a multi-
group circular strategy and additive secret sharing for model
aggregation.

Our proposed protocol belongs to this category, but it uses
lightweight primitives and single masking protocol, as will be
discussed in detail in section V, without depending on TEE as
in [38], or the need to trust a third party as in [14] and [36],
or the use of expensive cryptographic primitives as in [36].

B. Verification

As the service provider may return incorrect results to
the users either deliberately or due to unexpected situations,
it is recommended that client devices have the ability to
verify the aggregated model parameters sent by the service
provider. The authors of VerifyNet [15] proposed that the
server the aggregated result together with a proof to each
client device. They utilized homomorphic hash function and
pseudorandom generation to provide verifiability for each user.
Modifications to this technique were done in [14] and [16]
to decrease communication overhead and computational com-
plexity, respectively. However, these techniques [14], [15]
were analyzed in a recent publication [43], and it was pointed
out that they still face some security vulnerabilities if the
server colludes with a malicious user. In [43], the authors used
linear homomorphic hash and digital signature for achieving
traceable verification for the aggregation results and identi-
fying the epoch at which the results went wrong but at the
cost of increasing communication overhead. Luo et al. [44]
used a basic signature method for the problem of verification

2980 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

where each client only needs to verify an aggregated signature
which is independent of the number of clients. Each client
then unmasks the aggregated gradient, updates the parameters
of its local model, and proceeds to the next iteration. It was
claimed in [30] that integrity verification is guaranteed for
every model training step using their aggregation method.
Differently, SafetyNets [45] used interactive proof techniques
to verify the accuracy of the aggregated result supplied by the
server. In work [46], a verifiable system is offered to perform
verification, similar to [38], based on trusted hardware such
as SGX, TrustZone, and Sanctum. However, these techniques
provide a limited number of activation functions or demand
additional hardware.

III. PRELIMINARIES

To make the article easy to follow, we explain some
cryptographic primitives used in our approach, which should
facilitate understanding the proposed protocol.

A. Key Agreement

A key agreement algorithm allows any party u to combine
their private key sSK

u with the public key s P K
v for any party v

to obtain private shared key su,v between u and v. We use the
Diffie-Hellman key agreement in our protocol to generate the
shared key (seed) between each user and each auxiliary node.
Specifically, given a group G with prime order q , where g
is the generator of group G, each user can agree with each
auxiliary node on a secret share as follows:
• Each user chooses a secret key USK and generate its

public key as gUSK modp and shares the public key with
the server.

• Each auxiliary node chooses a secret key ASK and
generates its public key as g ASK modp and share the
public key with the server.

• The server broadcasts the public keys to the parties.
• The shared key is now computed as key =

(g ASK)USK modp = (gUSK)ASK modp

B. Symmetric Encryption

Symmetric encryption is the traditional algorithm that uses
only one key for encryption and decryption. Given the key
SK and the information x to be encrypted, the encrypted
information is obtained by the algorithm AE.enc(SK , x) →

X̂ . The ciphertext X̂ can be decrypted by the algorithm
AE.dec(SK , X̂) → x . In our model, we use symmetric
encryption to communicate the messages between auxiliary
nodes and users through the server without the server violating
the confidentiality of the messages. We rely on this technique
to avoid making private channels between each user and each
auxiliary node to exchange the messages. We encrypt the
messages, send them to the server, and broadcast them to the
users.

C. Pseudo-Random Generator

We employ a secure Pseudo random generator PRG that
takes a seed and produces a random number as an output. The
PRG has to preserve two properties:

Fig. 1. System architecture.

• The output must be computationally indistinguishable
from a uniform element sampled from the output space
as long as the seed is hidden from the distinguisher.

• The same exact output is generated using the same seed.

IV. SYSTEM ARCHITECTURE

A. General System Architecture and Threat Model

As shown in Figure 1, our system model consists of three
entities, auxiliary nodes, users, and the server.
• Auxiliary Nodes: These nodes are a set of nodes that can’t

all collude together and are keen on the privacy of the data
of the users so that the server can’t reveal the machine
learning local model parameters and analyze them to
learn about the users’ training data. These auxiliary nodes
can represent organizations such as hospitals or medical
entities running research in the healthcare domain or
banks in the banking domain. They are robust and don’t
participate in any training process. Their main job is
to agree with the users on shared keys used as seeds
for generating the random numbers used in masking
the gradients. In each protocol round, each auxiliary
node agrees with each user in the system on a distinct
secret random key. This key agreement would typically
happen without directly communicating with users. Each
auxiliary node would then compute the sum of all the
random numbers at its disposal and send the summation
to the server.

• User: Each user sends its local gradients to be aggregated
securely at the server without revealing these gradients,
as they can be used in a reverse engineering setting to
trace back the users’ data. The users will use the random
numbers shared with the auxiliary nodes to mask their
private gradients. Finally, each client verifies that the
server has computed the correct aggregation.

• Server: The cloud server aggregates the masked gradients
uploaded by all online users and the summation of all the
random numbers uploaded by the auxiliary nodes. As a
result, the server will aggregate all the local gradients
without revealing each user’s gradient.

The following are the assumptions in our threat model:
• All participants will follow the protocol steps, but they

may try to infer other users’ private data.

ELTARAS et al.: EFFICIENT VERIFIABLE PROTOCOL FOR PRIVACY-PRESERVING AGGREGATION 2981

Fig. 2. Aggregation protocol steps and actors in healthcare application scenario: Setup phase (steps 0 and 1), Learning phase (steps 2 and 3), and Verification
(step 4).

• The server could collude with up to |N | − 2 users.
• The server could collude with up to |M | − 1 auxiliary

nodes.
• The server could return a modified version of the aggre-

gated result to the users.
The protocol aims to protect the confidentiality of users’ local
gradients while enabling each user to verify the aggregated
result returned by the server. Using our protocol, for the
server to violate a user’s privacy, it has to collude with all
the auxiliary nodes or collude with |N | − 1 users where |N |
is the number of the users.

B. Healthcare Application Scenario

In the healthcare domain, AI applications that are pro-
vided by different service providers are facing challenges
and receiving critiques on the privacy of patients’ or users’
data [47], which is stored and kept at the service provider
to learn from. Federated learning [48] was proposed to solve
this problem to help learn a model from users’ data without
the data leaving the users’ devices to assure its privacy.
Since then, research has been going to improve issues with
the security of the federated learning approach, such as the
problem discussed in this paper of having a server that will

aggregate the local model updates and send an updated global
model but may be curious to analyze the gradients and
parameters received from the clients to learn more about their
personal data. The proposed scheme presented in section V
sends these gradients with certain random perturbations to
the service provider with the help of auxiliary nodes as will
be specified. Additionally, verifying the aggregated model by
the server is a challenge as the server may return incorrect
results to reduce its costs or to have an edge over other
competitors.

An example scenario in the healthcare domain where the
proposed scheme can fit is shown in Figure 2. An application
service provider for an AI application/study, in the middle
of the figure, orchestrates the federated learning process for
learning from private health data such as different biosignals,
personal attributes, and possibly medications at the client
devices. In this paper, we will use the words; users and client
devices interchangeably. All participants (service providers,
hospitals engaged in the study/application, and users through
their client devices, “cellular phones/wearable devices”) follow
the protocol correctly. However, there are some threats that
the proposed protocol can handle, such as possible reverse
engineering of the models’ updates at the service provider
to infer users’ private data, the service provider may provide

2982 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

wrong information about dropout users, and it may attempt to
manipulate the aggregated result.

In this scenario, it is assumed that some hospitals can
collude with each other, e.g., they could belong to the same
entity (university/research institute/project), but collusion can-
not involve all. Similarly, the service provider may collude
with some hospitals participating in a funded research project,
for example, and with some users/client devices but not with
all.

Each hospital will run one or more auxiliary nodes to
exchange the seeds and generate random numbers for all the
client devices through the server. At step 0, the auxiliary nodes,
as well as the client devices, send their public keys to the
service provider as shown in Figure 2 with the step numbers
for the messages exchanged following the round numbers in
which the message is sent in the proposed protocol; Protocol I.
The service provider, in turn, broadcasts the keys of the clients
to all auxiliary nodes and all keys of auxiliary nodes to all the
clients in step 1. The client devices mask the model parameters
by adding random numbers to them to keep them private. The
masked models’ parameters are sent to the service provider in
round 2. The service provider, in turn, requests auxiliary nodes
to send the sum of random numbers for participating client
devices. Each auxiliary node will then send the sum of random
numbers which it generated to the service provider. The service
provider aggregates the resulting model parameters by adding
all the data received from client devices and subtracting all
the numbers received from the auxiliary nodes (unmasking)
in round 3. The client devices will then verify the aggregated
results in round 4.

V. PROPOSED SCHEME

In this section, we present the technical details of the
proposed protocol. From a high-level view, the protocol aims
to solve three problems that exist in the federated learning
process by:
• Protecting the user’s privacy that may be leaked from the

user’s local gradients.
• Eliminating the effect of the dropout of users during the

training process.
• Enabling users to verify the result computed by the server.
The process starts after each user trains the model locally by

their private dataset. Each user has to upload its local gradients
to be aggregated by the server. The aggregation has to be done
in a secure and private manner such that the local gradients
can’t be revealed to any party, even to the aggregator. In this
protocol, the idea of masking to hide the local gradients of
the users is adopted. Each user will add a set of random
numbers to its gradients before sending them to the server. For
generating and handling these random numbers, the protocol
relies on a setting where a set of nodes called auxiliary nodes
are used. These auxiliary nodes have two main jobs:
• Each auxiliary node agrees with each user on a shared key

which will be used as a seed for generating synchronized
random numbers. Therefore, starting with this seed, in the
same round, both parties generate the same random
values.

• Each auxiliary node helps the server aggregate the gradi-
ents by providing the server with the required masks to
cancel all the random values that have been added to the
gradients.

The complete protocol steps are listed in Protocol I, and
an illustration of the data kept at each participating party
and how it is aggregated at the server is shown in Figure 3.
In the beginning, each auxiliary node and each user gen-
erate three key pairs {(pk1

n, sk1
n), (pk2

n, sk2
n), (pk3

n, sk3
n)} and

{(pk1
m, sk1

m), (pk2
m, sk2

m), (pk3
m, sk3

m)}respectively and send
their public keys to the server. Each user can agree with each
auxiliary node on three shared keys by these keys. The first
key is used in encryption and decryption, the second is used as
a common seed for generating synchronized random numbers,
and the third is used in the process of verification. Each user
uses the second key as a seed to generate random values to
mask its local gradients. Each auxiliary node has only a part
of the mask that each user adds to its local gradients. The set
of keys can be viewed as a matrix where each auxiliary node
creates a column in this matrix, and each user takes a row from
that matrix. Therefore, none of the auxiliary nodes can reveal
the mask of any of the users. Each user uploads its masked
gradients to the server and each auxiliary node uploads the
summation of its generated random numbers. By aggregating
all these values at the server, all the masks will be canceled,
and the server will be able to get the right aggregated result
of the actual local gradients of the users.

A. Protecting the User’s Local Gradients

Assume that the number of the users is |N |, the number of
the auxiliary nodes is |M |, and the number of online users that
participate in the current round is |U | where each user n ∈ U
has a unique ID known to both the server and the auxiliary
nodes. Each user n ∈ U holds a private gradient xn and needs
to hide it from all other parties. Each auxiliary node m ∈ M
will agree on a shared key with each user sn,m (the number
sn,m is the shared key between the auxiliary node number m
and the client number n). By these seeds, in every round i each
client n and each auxiliary node m generate an agreed random
number denoted as P RG(sn,m, round(i)). Hence, each user
can encrypt their local gradient as follows.

x̂n = xn +

M∑
m=1

P RG(sn,m) (1)

Also, each auxiliary node sum all the random numbers at its
disposal as follows.

Pm =

N∑
n=1

P RG(sn,m) (2)

Then, each user submits their encrypted gradient x̂n to the
server, and each auxiliary node submit the sum of its random
numbers Pm to the server. The server can aggregate all the
local gradients X =

∑N
n=1 xn as follows.

X =
N∑

n=1

xn =

N∑
n=1

x̂n −

M∑
m=1

Pm (3)

ELTARAS et al.: EFFICIENT VERIFIABLE PROTOCOL FOR PRIVACY-PRESERVING AGGREGATION 2983

Fig. 3. Illustration for the data view at participating parties in the protocol and its aggregation at the server.

In equation (3) all the random numbers cancel each other, and
the gradients will be aggregated. To illustrate this equation,
we can think that we have a matrix of random numbers,
where each auxiliary node holds a column in the matrix,
and each row is shared with a specific user. So the summa-
tion of the columns

∑M
m=1 Pm cancel the summation of the

rows
∑M

m=1
∑N

n=1 P RG(sn,m), and only the gradients
N∑

n=1

xn

remain.

B. Handling the Dropouts

Our protocol will handle the dropouts by default. Firstly,
the server will receive the gradients from the users. Then, after
some specific time, the server will ask the auxiliary nodes to
upload the randomness corresponding to users who send their
gradients. Even if some users upload their gradients late, the
server will not reveal their private data as the users’ private
data is still masked with the randomness values, but those
users will be excluded from participating in this round.

C. Verifiability

To enable each user to verify the result returned by the
server, we rely on the concept of double aggregation. The
first aggregation is used to compute the aggregated gradient,
whereas the second is used to demonstrate the correctness of
the first.

Each user will agree with each auxiliary node on a shared
key Kn,m ← KA.agree(sk3

n, pk3
m) and compute the summa-

tion of these keys to generate their key denoted as Kn ←∑
m∈M kn,m . Also, each auxiliary generates a shared key with

each user Kn,m ← KA.agree(sk3
m, pk3

n) and compute the
summation of these keys to generate their key denoted as
Km ←

∑
n∈n kn,m . It is obvious that the summation of∑N

n=1 Kn → K is equal to the summation of
∑M

m=1 km → K .
Each auxiliary node has to share the value Km with all
the users. Each auxiliary node will also sample a random
number αm and share it with all users. The summation
of

∑M
m=1 αm → α will be used as a universal key. The

way of sharing both αm and Km is through the server,
as there are no channels between users and the auxiliary
nodes. Each auxiliary node will encrypt the values αm and
Km for each user using a shared agreed key ctn,m ←

AE.enc(KA.agree(sk1
m, pk1

n), αm ||Km) then send the value to
the server. The server will forward the cipher texts to corre-
sponding users. Each user will decrypt the received cipher-
texts as αm ||Km ←AE.dec(KA.agree(sk1

n, pk1
m), ctn,m).

So each user computes K and α as follows:

α =

M∑
m=1

αm, (4)

and

K =
M∑

m=1

Km (5)

2984 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Then, each user computes its mask MAC as follow:

M ACn = Kn + α × xn (6)

Besides the final result X , The server aggregate all the MACs
and sends the result M AC =

∑N
n=1 M ACn to each user.

So each user n can validate the result by verifying the below
equation:

M AC−K − α × X = 0 (7)

Each user can easily verify equation (7) as they receive the
universal key α and the final key K from the auxiliary nodes
and receive the result X and the key M AC from the server.

VI. SECURITY ANALYSIS

In this section, the security of the proposed protocol is ana-
lyzed to show how it preserves the privacy of each user’s local
gradients. The protocol security is ensured in the presence of
at least one auxiliary node and two honest clients. As shown
above, each user masks its local gradient as

x̂n = xn +

M∑
m=1

P RG(sn,m) (8)

The security of the above equation relies on a lemma that says
if uniformly random numbers are added to users’ values, the
resulting values look uniformly random.

To prove that x̂n provides a sufficient level of security,
we first introduce some notations. We will consider that a
server S interacts with a set of U of n users, and the underlying
cryptographic primitives are instantiated with the security
parameter k. We will use the symbol Ui to denote for the
set of users that successfully upload their local gradients in
round i − 1, such that U4 ⊆ U3 ⊆ U2 ⊆ U1 ⊆ U as the users
may drop out at any point during the execution.

Given a subset W ⊆ U ∪ S of parties, the joint view
of all parties in W can be seen as a random variable
REALu,k

W (xU , U1, U2, U3, U4), where k indicate the security
parameter used in the protocol. The view of a party during the
protocol execution consists of its input, randomness, and all
messages this party received from other parties. Once the party
aborts and stops receiving messages, its view remains with
the last message received. Here we are going to discuss the
security of our protocol under collusion between the parties.
First, we introduce a theorem that shows that any collusion
between the users and the auxiliary nodes will not violate the
privacy of other users’ private data.

Theorem 1 (Defense Against Joint Attacks From Multiple
Users and Multiple Auxiliary Nodes): For all k, W ⊆ U, xU ,

and U4 ⊆ U3 ⊆ U2 ⊆ U1 ⊆ U there is a Probabilistic-
Polynomial-Time (P PT) simulator SI M whose output is
indistinguishable from the output of REALu,k

W .

REALu,k
W (xU , U1, U2, U3, U4)≡ SIMu,k

W (xU , U1, U2, U3, U4)

Proof: The joint view of the parties in W does not depend
on the user’s inputs that are not in W because the server’s
view is removed (users do not share their inputs with auxiliary
nodes). One way to achieve a perfect simulation is to let the

simulator run the honest but curious users on their genuine
inputs and the rest on fake input. We emphasize that the
simulated view of users in W is identical to the output of the
real view. For the honest users (not in W), the simulator uses
random values instead of the gradients to compute the masked
value x̂n . The parties in set W will not be able to identify
which values have been used by other parties. The server just
sends the list of the online user’s participating in the round
of masking to the auxiliary nodes and the final aggregation
to the users. Therefore, the simulated view of parties in W is
indistinguishable from the output of real view REALu,k

W .
Theorem 2 (Defense Against Joint Attacks From the Cloud

Server, Multiple Users, and Multiple Auxiliary Nodes): For all
k, W ⊆ U ∪ S, xU , and U4 ⊆ U3 ⊆ U2 ⊆ U1 ⊆ U there is a
P PT simulator SI M that its output is indistinguishable from
the output of REALu,k

W .

REALu,k
W (xU , U1, U2, U3, U4)≡ SIMu,k

W (xU , U1, U2, U3, U4)

Proof: To prove the above theorem, we use a standard
hybrid argument. The idea behind this approach is to start from
the actual view and then execute a series of secure modifica-
tions in the condition that any two subsequent variables are
computationally indistinguishable, which ultimately makes a
simulated view indistinguishable from the real view.
Hyb0 This random variable represents the joint view of the

parties in W in a real execution of the protocol.
Hyb1 In this hybrid, we fix a specific user ń ∈ {U3 \W }. For

the honest auxiliary nodes m ∈ {U3\W }, the simulator
replaces the operation of generating the shared key
between each auxiliary node m ∈ {U3 \W } and ń with
a uniform random number.
Specifically, a random value ŕń,m is selected for aux-
iliary node m ∈ {U3 \W } and ń. Instead of sending

x̂n = xn +

M∑
m=1

P RG(sn,m) (9)

The simulator submits

x̂n = xn +
∑

m∈W

P RG(sn,m)+
∑

m∈U2\W

P RG(rń,m)

(10)

The DDH assumption ensures that this hybrid is com-
putationally indistinguishable from the first one.

Hyb2 In this hybrid for the same specific user ń ∈ {U3 \

W } instead of using P RG(rń,m) the simulator uses
uniformly random number rm with appropriate size to
replace it.
Note that the only change in this hybrid is to substitute
the output of a P RG with a uniformly random value.
Therefore, depending on the security of the P RG,
we can argue that this hybrid is computationally dis-
tinguishable from the previous one.

Hyb3 In this hybrid, for each user n ∈ U2 \ W instead
of sending their gradient xn they use a random
value selected by the simulator Rn , conditioned on∑

n∈U3\W Rn =
∑

n∈U3\W xn = z, so instead of

ELTARAS et al.: EFFICIENT VERIFIABLE PROTOCOL FOR PRIVACY-PRESERVING AGGREGATION 2985

TABLE II
COMPARISON OF COMPUTATION, COMMUNICATION, AND STORAGE COMPLEXITY OF THE PROTOCOL AT THE CLIENT SIDE

TABLE III
COMPARISON OF COMPUTATION, COMMUNICATION, AND STORAGE COMPLEXITY OF THE PROTOCOL AT THE SERVER SIDE

sending

x̂n = xn +

M∑
m=1

P RG(sn,m) (11)

SIM sends

x̂n = Rn +

M∑
m=1

P RG(sn,m) (12)

Therefore, the simulator has already completed the
proof since SI M Simulates RE AL without knowing
xn for all the users n ∈ U3 \ W and the output of
the SI M is computationally indistinguishable from the
output of RE AL.

VII. PERFORMANCE EVALUATION

In this section, we compare our proposed protocol with
two well-known secure aggregation protocols used in [36]
and [15]. While several other secure aggregation protocols
exist in the literature, we specifically chose to compare our
protocol with these two because they are the most relevant
state-of-the-art protocols. One key reason for this selection
is that they employ the same technology as our proposed
protocol for secure aggregation. This allows for meaning-
ful and useful comparisons of performance. Other proto-
cols that adopt a different approach to secure aggregation
may have different performance parameters, making it dif-
ficult to compare them in a meaningful manner. Both of
the protocols we chose to compare against, as well as our
proposed protocol, address the challenge of user dropouts,
which is a significant issue in federated learning. Furthermore,
these two protocols are widely used as benchmarks in the
literature.

All complexity calculations presented below assume a sin-
gle server, M auxiliary nodes, and N users, where each
user has a model parameters vector of size V . The cost of
the public key infrastructure and all signatures are ignored
as they do not change any of the asymptotic complexities
depending on M , N , and V . The results of comparing our
protocol to the two aforementioned protocols in terms of
computation, communication, and storage, on both the client
and server sides, are reported in Table II and Table III
respectively.

A. Performance Analysis for User/Client devices
1) Computation Cost: Computation cost at the user side

is mainly attributed to generating the random values with
each auxiliary node in O(M) complexity, masking the param-
eters vector with the random values at a computation cost
of O(V), computing the values α and K to be used in
validation in O(M) complexity and verification that takes
O(V). Therefore, the overall computation cost at the client
is O(M + V).

2) Communication Cost: The communication cost for each
user is attributed to: (1) sending its 3 public keys to the server
and receiving 3M public keys and M encrypted secret shares
received from the server at a communication cost of O(M),
(2) sending a masked parameters vector of size V to the server,
and sending to the server the secret share of size V at a
communication cost of O(V). Thus, the total communication
complexity is O(M + V).

3) Storage Cost: Beside the user’s own data stored for its
keys generation, the user must store 3M keys corresponding
to auxiliary nodes, the values of α and K , and the data vector
for the model parameters (which it can mask in-place), which
has a size of V . The overall storage cost at the client sums up
to O(M + V).

B. Performance Analysis for Auxiliary Nodes

1) Computation Cost: The computation cost at an auxiliary
node is mainly attributed to generating the random values
with O(N) complexity, generating the Kn,m values with O(N)

complexity as well, and calculating Pm for the list of online
users, which is O(N) making the total complexity O(N).

2) Communication Cost: The communication cost at each
auxiliary node is attributed to (1) sending its 3 public keys
to the server, (2) receiving 3N public keys and sending
N encrypted secret values to the server, (3) receiving a
list of online users from the server, and (4) sending the
computed sum of the random vectors at an auxiliary node.
Thus, the overall communication cost at the auxiliary nodes
is O(N).

3) Storage Cost: Besides the auxiliary node’s own data
stored for its keys generation, it has to store the users’ public
keys received from the server (3N), 2N values for the shared
keys Kn,m and αm , and the list of online users(N). Therefore,
the total storage cost is O(N).

2986 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Protocol I: Verifiable Secure Aggregation Protocol Using Auxiliary Nodes

– Setup
- All parties agree on the security parameter λ, and honestly generated public parameter pp← K A.gen(λ).
- All users have a private authenticated channel with the server.
- All auxiliary nodes have a private authenticated channel with the server.

– Round 0 (Keys Advertising) User n:
- Generate 3 key pairs (pk1

n, sk1
n)← KA.gen(pp),(pk2

n, sk2
n)← KA.gen(pp),(pk3

n, sk3
n)← KA.gen(pp).

- Send the public keys (pk1
n, pk2

n, pk3
n)to the server.

Auxiliary node m:
- Generate 3 key pairs (pk1

m , sk1
m)← KA.gen(pp),(pk2

m , sk2
m)← KA.gen(pp),(pk3

m , sk3
m)← KA.gen(pp).

- Send the public keys (pk1
m , pk2

m , pk3
m)to the server.

Server Side:
- Collect number of keys ≤ |U1| sent by each user, where U1 denotes the set of users in this round.
- Collect the keys from all auxiliary nodes |M |, where M is set of all auxiliary nodes.
- Broadcast to all the users in U1 the list of {(pk1

m , pk2
m , pk3

m)}m∈M .
- Broadcast to all the auxiliary nodes in M the list of {(pk1

n, pk2
n, pk3

n)}n∈U1 .
– Round 1 (Key Sharing)

Auxiliary node m:
- Receive the list of keys (pk1

n, pk2
n, pk3

n)n∈U1 from the cloud server.
- For each user n ∈ U1, compute Kn,m ← KA.agree(sk3

m , pk3
n).

- Compute Km ←
∑

n∈U1
Kn,m .

- Sample a random element αm ← F.
- For each user n ∈ U1, compute ctn,m ← AE.enc(KA.agree(sk1

m , pk1
n), αm ||Km).

- Send all the cipher-texts {ctn,m}n∈U1 to the server
User n:

- Receive the list of keys (pk1
m , pk2

m , pk3
m)m∈M from the cloud server.

- Receive the set of cipher-texts {ctn,m}m∈M .
- For each user n ∈ U1, compute α||K ←

∑
m∈M AE.dec(KA.agree(sk1

n, pk1
m), ctn,m).

- For each user n ∈ U1, compute Kn ←
∑

m∈M KA.agree(sk1
n, pk1

m).
Server Side:

- Collect cipher-texts{ctn,m}n∈U1 sent by each auxiliary node.
- Send a set of cipher-texts {ctn,m}m∈M generated by m ∈ M {ctn,m}m∈M to each user n ∈ U1

– Round 2 (Masking Input) User n:
- Calculate the shared key with every auxiliary node m as sn,m ← K A.agree(sk2

n, pk2
m) and expand this value using a PRG and

calculate the masked input vector x̂n ← xn +
∑

m∈M PRG(sn,m) (mod R).
- Calculate the MAC of the input vector as MACn = Kn + α × xn (mod R).
- Send to the server the masked parameters vector xn and the MAC vector M ACn .

Server Side:
- Receive messages (masked parameters vectors xn and M ACn) from the online users (represented as U2 ⊆ U1).
- Broadcast the list of U2 to each auxiliary node ∈ M .

– Round 3 (Unmasking Input)
Auxiliary node m:

- Receive the list of U2 that represent the online users.
- Calculate the shared key with each user n ∈ U2 sn,m ← K A.agree(sk2

m , pk2
n), and expand this value using a PRG into a

random vector Pn,m ← PRG(sn,m).
- Calculate the Pm ←

∑
n∈U2

Pn,m
- Send the value Pm to the server.

Server Side:
- Receive the values Pm from the auxiliary nodes.
- Calculate the aggregated gradients for all users n ∈ U2 as X =

∑
n∈U2

x̂n −
∑

m∈M Pm (mod R).
- Calculate the aggregated MAC for all users n ∈ U2 as M AC =

∑
n∈U2

M ACn .
- Broadcast (X, M AC) to each user n ∈ U3

– Round 4 (Verification)
User n:

- Receive the pair (X,MAC) and compute M AC ′ = K + αX
- Accept X if M AC ′ = M AC .

ELTARAS et al.: EFFICIENT VERIFIABLE PROTOCOL FOR PRIVACY-PRESERVING AGGREGATION 2987

Fig. 4. Keys exchange costs per user and server as the number of users increases, with the number of auxiliary nodes varying by 10%, 30%, and 50% of
the number of users.

C. Performance Analysis for the Server

1) Computation Cost: The server’s computation cost is
attributed to (1) aggregation of the local gradients, which
involves adding the masked vectors received from the users
and subtracting the random vectors received from the auxiliary
nodes with the overall complexity of O(N V + M) and (2)
calculation of the aggregated MAC for online users, which
takes O(N) time in the worst case when all users are online
with no dropouts. Thus, the overall computation cost becomes
of complexity O(N V + M).

2) Communication Cost: The server acts as the interface
between the users and auxiliary nodes. It participates in all the
communication between users and auxiliary nodes. In round 0,
it collects the keys from users and auxiliary nodes and broad-
casts the user’s keys to all auxiliary nodes and auxiliary nodes’
keys to all users with communication overhead of complexity
O(N + M). In round 1, the server collects the ciphertexts for
the encrypted values sent by the auxiliary nodes and forwards
them to each user, which is O(M+N). In round 2, the server
receives masked parameters vector of length (V) and MAC
vector of length (V) from each online user with a maximum
of N users in case of no dropouts with overall complexity
O(N V). In round 3, the server receives the lists of randoms
from auxiliary nodes O(M) and broadcasts the aggregated
parameters vector (V) and aggregated MAC (V) to online
users (maximum N) with a communication complexity of
O(N V). Therefore, the total communication complexity sums
up to O(N V + M + N).

3) Storage Cost: The server has to store the public keys of
the users (3N) and the public keys of the auxiliary nodes (3M)
in the first round. It stores the auxiliary nodes’ ciphertexts (M)
in the second round. The list of online users (N in case of no
dropouts) is stored in the third round. In the last round, the
server stores the aggregated parameters vector (V) and the
aggregated MAC vector (V) for a total storage complexity
O(N + M + V).

D. Prototype Implementation and Setup

We developed a Python prototype on a desktop machine
with a 2.60 GHz Intel Core i7-6700HQ CPU and 7.5 GB
RAM. The prototype included the following cryptographic
primitives:

• For the key agreement, we used the elliptic-curve Diffie-
Hellman protocol.

• For Secret Sharing, we used t-out-of-n Shamir secret
sharing.

• For encryption, we used Advanced Encryption Standard
(AES) with a 128-bit key in counter mode.

• For the pseudorandom number generator, we used
SHA-256.

To evaluate the performance, we evaluated the execution time
for four phases: key sharing, Masking gradients, aggregation,
and validation.

E. Experimental Results

To conduct our experiments, we used randomly generated
10K-entry vectors with 64-bit entries as the users’ local
gradients. We varied the number of users and user dropout
ratio to acquire a broad understanding of how the two factors
affect the performance of the four phases.

Table IV compares the overall performances of the PSA
model, the Verifynet model, and our model with varying user
numbers and dropout ratios. During the sharing key phase, our
model demonstrates a lower cost than PSA and Verifynet as in
our model, only the auxiliary nodes have to share the values
of αM and kM to users, whereas, in the other two models,
each user must make shares of both its secret key and its
private value and share them with every other user. During
the masking input phase, we did not observe a significant
performance gap between PSA and our model. VerifyNet,
on the other hand, incurs enormous overhead, mostly because
of its extensive use of group operations to achieve bilinear
pairing. During the phase of unmasking input and aggrega-
tion, when there are no dropouts, the costs of PSA and our
model are comparable. Nevertheless, when dropouts occur,
the computation cost in PSA increases exponentially while
our model maintains a constant computation cost. This is
expected since, in PSA, for each dropped user, the server must
remove that user’s pairwise masks for each surviving client.
This requires the server to talk to a certain number of clients
to get this dropped user’s secret key and then figure out all
the masks. However, in our model, only the auxiliary node
excludes dropped users from the computation. VerifyNet’s
costs are much higher than PSA and our model for the same
reason mentioned for the masking input phase. Lastly, during

2988 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE IV
COMPARATIVE ANALYSIS RESULT

Fig. 5. Accuracy versus the number of iterations for different numbers of clients.

Fig. 6. Comparison of the accuracy of the FL model versus the default model.

the verification phase, our model is considerably lighter than
Verifynet since it predominantly leverages computationally
lightweight PRG operations. Verifynet, on the other hand,
employs computationally intensive cryptographic operations
such as bilinear pairing and Homomorphic Hash Functions,
which are far more expensive than PRG.

Figure 4 illustrates the impact of increasing the number of
users on the number of messages associated with the exchange
of keys between users and the server for various auxiliary

node ratios. As seen, as the number of users increases,
there is a slight change in the number of messages, and
the lowest use of auxiliary nodes shows the less number of
messages.

F. Accuracy

We evaluated the performance of two different neural net-
work architectures on two popular datasets - MNIST and
CIFAR100:

ELTARAS et al.: EFFICIENT VERIFIABLE PROTOCOL FOR PRIVACY-PRESERVING AGGREGATION 2989

• MNIST [49] is a dataset consisting of grayscale images of
handwritten digits from 0 to 9, comprising 60,000 training
and 10,000 testing images, each of size 28× 28× 1, and
labeled into one of the ten classes.

• CIFAR100 [50] is a dataset that contains RGB images
of 100 classes, with 500 training images and 100 testing
images per class, each of size 32× 32× 3.

For the MNIST dataset, we used a three-layer network with
two hidden, fully connected layers of 256 neurons and recti-
fied linear units. The output layer was fully connected with
10 output neurons and utilized softmax activation. We used
the stochastic gradient descent optimizer with a learning
rate of 0.001. For the CIFAR100 dataset, we employed a
convolutional neural network (CNN) with seven convolutional
layers, each consisting of 3× 3 filters and a stride of 1. Each
convolutional layer was followed by rectified linear units and
2×2 max pooling with a stride of 2. The fully connected layer
used softmax activation. We used the Adam optimizer with a
learning rate of 0.001.

We evaluated the accuracy of Federated Learning (FL)
models against a default model. The default model utilized
ResNet as a pre-trained model and solely trained the fully-
connected layer while maintaining the convolutional layer
parameters constant.

Fig 5 shows the classification accuracy and number of
rounds for different numbers of clients. The figure illustrates
that as the number of clients increases, more rounds are needed
to reach a specific accuracy. Fig 6 compares the accuracy of the
FL model with that of the default model. The results show that
the FL model achieves comparable accuracy, albeit slightly
lower than the accuracy attained by the default model.

VIII. CONCLUSION

In this research, we propose a secure aggregation protocol
that can be employed in a federated learning setting. The
protocol depends on the use of auxiliary nodes that cannot
all practically collude together. At the same time, the use of
auxiliary nodes reduces the communication and computation
costs as well as the storage cost on low-resource devices
for clients and the service provider as well. These auxiliary
nodes can represent hospitals in a healthcare scenario, banks
in a financial or banking application, etc. The analysis of the
protocol showed reduction in the computation, communication
and storage cost compared to state-of-art protocols at the client
nodes. In the proposed protocol, the cost of computation,
communication, and storage on the low-resource devices (e.g.,
mobile phones/wearable devices) of client nodes depends only
on the number of auxiliary nodes and the length of the weight
parameters vector and is independent of the number of users
joining or leaving the training process at each round. Addi-
tionally, the verification step in the proposed protocol relies on
lightweight computations, which reduces power consumption
on client devices.

ACKNOWLEDGMENT

Contents of the research are solely the responsibility of the
authors and do not necessarily represent the official views of
the Qatar National Research Fund (QNRF).

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., in Proceedings
of Machine Learning Research, vol. 54, A. Singh and J. Zhu, Eds.,
Apr. 2017, pp. 1273–1282. [Online]. Available: https://proceedings.
mlr.press/v54/mcmahan17a.html

[2] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210, 2019, doi:
10.1561/2200000083.

[3] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy pre-
serving vertical federated learning for tree-based models,” Proc.
VLDB Endowment, vol. 13, no. 12, pp. 2090–2103, Aug. 2020, doi:
10.14778/3407790.3407811.

[4] Q. Li, Z. Wen, and B. He, “Practical federated gradient boost-
ing decision trees,” in Proc. 34th AAAI Conf. Artif. Intell.,
New York, NY, USA, Feb. 2020, pp. 4642–4649. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/5895

[5] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of feder-
ated learning,” Future Gener. Comput. Syst., vol. 115, pp. 619–640,
Feb. 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X20329848

[6] N. Bouacida and P. Mohapatra, “Vulnerabilities in federated learning,”
IEEE Access, vol. 9, pp. 63229–63249, 2021.

[7] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Mitigating sybils in
federated learning poisoning,” 2018, arXiv:1808.04866.

[8] Y. Khazbak, T. Tan, and G. Cao, “MLGuard: Mitigating poisoning
attacks in privacy preserving distributed collaborative learning,” in Proc.
29th Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2020, pp. 1–6.

[9] Y. Zhang and H. Yu, “Towards verifiable federated learning,” in Proc.
31st Int. Joint Conf. Artif. Intell., Jul. 2022, pp. 5686–5693, doi:
10.24963/ijcai.2022/792.

[10] M. Atallah, K. Pantazopoulos, and E. Spafford, “Secure outsourc-
ing of some computations,” Purdue Univ., West Lafayette, IN,
USA, Tech. Rep. 96-074, 1998. [Online]. Available: http://docs.
lib.purdue.edu/cstech/1328

[11] Z. Liu, J. Guo, W. Yang, J. Fan, K.-Y. Lam, and J. Zhao, “Privacy-
preserving aggregation in federated learning: A survey,” IEEE Trans. Big
Data, early access, Jul. 15, 2022, doi: 10.1109/TBDATA.2022.3190835.

[12] A. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T. Suresh, “Shuffled
model of differential privacy in federated learning,” in Proc. 24th Int.
Conf. Artif. Intell. Statist., in Proceedings of Machine Learning Research,
vol. 130, A. Banerjee and K. Fukumizu, Eds., Apr. 2021, pp. 2521–2529.
[Online]. Available: https://proceedings.mlr.press/v130/girgis21a.html

[13] M. Nassar, A. Erradi, F. Sabry, and Q. M. Malluhi, “A model driven
framework for secure outsourcing of computation to the cloud,” in Proc.
IEEE 7th Int. Conf. Cloud Comput., Jun. 2014, pp. 968–969.

[14] X. Guo et al., “VeriFL: Communication-efficient and fast verifiable
aggregation for federated learning,” IEEE Trans. Inf. Forensics Security,
vol. 16, pp. 1736–1751, 2021.

[15] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure
and verifiable federated learning,” IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 911–926, 2020.

[16] C. Hahn, H. Kim, M. Kim, and J. Hur, “VerSA: Verifiable secure aggre-
gation for cross-device federated learning,” IEEE Trans. Dependable
Secure Comput., vol. 20, no. 1, pp. 36–52, Jan. 2023.

[17] Y. Yang, L. Zhang, Y. Zhao, K.-K.-R. Choo, and Y. Zhang, “Privacy-
preserving aggregation-authentication scheme for safety warning system
in fog-cloud based VANET,” IEEE Trans. Inf. Forensics Security, vol. 17,
pp. 317–331, 2022.

[18] L. Sun, J. Qian, and X. Chen, “LDP-FL: Practical private aggre-
gation in federated learning with local differential privacy,” 2020,
arXiv:2007.15789.

[19] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 3454–3469, 2020.

[20] P. Kairouz, Z. Liu, and T. Steinke, “The distributed discrete Gaus-
sian mechanism for federated learning with secure aggregation,” 2021,
arXiv:2102.06387.

[21] S. Goryczka, L. Xiong, and V. Sunderam, “Secure multiparty aggre-
gation with differential privacy: A comparative study,” in Proc. Joint
EDBT/ICDT Workshops, New York, NY, USA, Mar. 2013, pp. 155–163,
doi: 10.1145/2457317.2457343.

http://dx.doi.org/10.1561/2200000083
http://dx.doi.org/10.14778/3407790.3407811
http://dx.doi.org/10.24963/ijcai.2022/792
http://dx.doi.org/10.1109/TBDATA.2022.3190835
http://dx.doi.org/10.1145/2457317.2457343

2990 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[22] T. Stevens, C. Skalka, C. Vincent, J. Ring, S. Clark, and J. Near,
“Efficient differentially private secure aggregation for federated learning
via hardness of learning with errors,” 2021, arXiv:2112.06872.

[23] H. Zhou, G. Yang, H. Dai, and G. Liu, “PFLF: Privacy-preserving
federated learning framework for edge computing,” IEEE Trans. Inf.
Forensics Security, vol. 17, pp. 1905–1918, 2022.

[24] H. Zheng, H. Hu, and Z. Han, “Preserving user privacy for machine
learning: Local differential privacy or federated machine learning?”
IEEE Intell. Syst., vol. 35, no. 4, pp. 5–14, Jul. 2020.

[25] Y. Wang, Y. Tong, and D. Shi, “Federated latent Dirichlet allocation:
A local differential privacy based framework,” in Proc. AAAI Conf. Artif.
Intell., 2020, vol. 34, no. 4, pp. 6283–6290.

[26] S. Truex et al., “A hybrid approach to privacy-preserving federated
learning,” in Proc. 12th ACM Workshop Artif. Intell. Secur., Nov. 2019,
pp. 1–11.

[27] S. Truex et al., “A hybrid approach to privacy-preserving federated
learning,” 2018, arXiv:1812.03224.

[28] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, BatchCrypt:
Efficient Homomorphic Encryption for Cross-Silo Federated Learning.
Berkeley, CA, USA: USENIX Association, 2020.

[29] J. Park and H. Lim, “Privacy-preserving federated learning using homo-
morphic encryption,” Appl. Sci., vol. 12, no. 2, p. 734, Jan. 2022.
[Online]. Available: https://www.mdpi.com/2076-3417/12/2/734

[30] J. Zhao, H. Zhu, F. Wang, R. Lu, Z. Liu, and H. Li, “PVD-FL: A privacy-
preserving and verifiable decentralized federated learning framework,”
IEEE Trans. Inf. Forensics Security, vol. 17, pp. 2059–2073, 2022.

[31] Z. Ma, J. Ma, Y. Miao, Y. Li, and R. H. Deng, “ShieldFL: Mitigating
model poisoning attacks in privacy-preserving federated learning,” IEEE
Trans. Inf. Forensics Security, vol. 17, pp. 1639–1654, 2022.

[32] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Advances in
Cryptology—ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. Cham,
Switzerland: Springer, 2017, pp. 409–437.

[33] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1333–1345, May 2018.

[34] J. Ma, S. Naas, S. Sigg, and X. Lyu, “Privacy-preserving federated
learning based on multi-key homomorphic encryption,” Int. J. Intell.
Syst., vol. 37, no. 9, pp. 5880–5901, Sep. 2022.

[35] Y. Dong, X. Chen, L. Shen, and D. Wang, “EaSTFLy: Efficient and
secure ternary federated learning,” Comput. Secur., vol. 94, Jul. 2020,
Art. no. 101824.

[36] K. Bonawitz et al., “Practical secure aggregation for federated learning
on user-held data,” 2016, arXiv:1611.04482.

[37] H. Fereidooni et al., “SAFELearn: Secure aggregation for private
federated learning,” in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2021, pp. 56–62.

[38] Y. Zheng, S. Lai, Y. Liu, X. Yuan, X. Yi, and C. Wang, “Aggregation
service for federated learning: An efficient, secure, and more resilient
realization,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 2,
pp. 988–1001, Mar. 2023.

[39] Y. Miao, Z. Liu, H. Li, K.-K.-R. Choo, and R. H. Deng, “Privacy-
preserving Byzantine-robust federated learning via blockchain sys-
tems,” IEEE Trans. Inf. Forensics Security, vol. 17, pp. 2848–2861,
2022.

[40] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device
federated learning,” IEEE Commun. Lett., vol. 24, no. 6, pp. 1279–1283,
Jun. 2020.

[41] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran, “Fast-
SecAgg: Scalable secure aggregation for privacy-preserving federated
learning,” 2020, arXiv:2009.11248.

[42] J. So, B. Guler, and A. S. Avestimehr, “Turbo-aggregate: Break-
ing the quadratic aggregation barrier in secure federated learn-
ing,” IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 479–489,
Mar. 2021.

[43] Y. Ren, Y. Li, G. Feng, and X. Zhang, “Privacy-enhanced and
verification-traceable aggregation for federated learning,” IEEE Internet
Things J., vol. 9, no. 24, pp. 24933–24948, Dec. 2022.

[44] F. Luo, S. Al-Kuwari, and Y. Ding, “SVFL: Efficient secure aggregation
and verification for cross-silo federated learning,” IEEE Trans. Mobile
Comput., early access, Nov. 4, 2022, doi: 10.1109/TMC.2022.3219485.

[45] Z. Ghodsi, T. Gu, and S. Garg, “SafetyNets: Verifiable execution of
deep neural networks on an untrusted cloud,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 1–12.

[46] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” 2019, arXiv:1806.03287.

[47] F. Sabry, T. Eltaras, W. Labda, F. Hamza, K. Alzoubi, and Q. Malluhi,
“Towards on-device dehydration monitoring using machine learning
from wearable device’s data,” Sensors, vol. 22, no. 5, p. 1887, Feb. 2022.
[Online]. Available: https://www.mdpi.com/1424-8220/22/5/1887

[48] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[49] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[50] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.

http://dx.doi.org/10.1109/TMC.2022.3219485

