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Abstract
We propose a Nonlinear Model Predictive Control (NMPC) law for an underactuated spacecraft attitude maneuver in
the presence of a momentum bias. We assume that a cluster of only two reaction wheels is available and the spacecraft
is no longer fully controllable and stabilizable by means of a continuous static feedback. Nonlinear Model Predictive
Control is investigated as a possible approach for the derivation of a suitable control system, which allows for full
three-axis control, in spite of underactuation, with acceptable closed-loop performance, in the presence of a residual
angular momentum and torque saturation. Maneuver convergence is studied and analyzed in two different scenarios: i)
a minimum non-zero pointing error at rest condition; ii) a periodic spinning solution which allows a zero pointing error
with a residual angular rate. An extensive simulation campaign shows the effectiveness of the proposed NMPC-based
control, proofing the viability of the approach.
Keywords: Attitude control; underactuated spacecraft; nonlinear model predictive control; nonlinear systems

1. Introduction

Spacecraft (SC) attitude control is a challenging tasks,
which can be successfully performed as far as the SC is
equipped with actuators that can deliver a control torque
along three mutually-independent directions (see, e.g.,
[1, 2, 3, 4] and references therein). This requires a min-
imum of three attitude actuators, such as thrusters, reac-
tion wheels, magnetic torquers, etc [5]. Some degree of
redundancy are required to maintain full spacecraft op-
erability after failure of one of the actuators. In recent
decades there has been an increasing interest in attitude
control in underactuated conditions (see, e.g., [6]), when
the number of available actuators can deliver only two in-
dependent torque components to control three rotational
degrees of freedom. In such a case, the attitude stabiliza-
tion becomes impossible by means of a continuous static
feedback [7]. Hence, time-varying and/or switching con-
trol logics need to be envisaged to overcome this issue.

Attitude control of spacecraft in underactuated condi-
tions thus represents a major challenge, relevant in prac-
tical operational mission scenarios after failure of one re-
action wheel in a non-redundant three-wheel cluster, or

multiple failures, when more than three reaction wheels
are installed. If on one side many techniques based on
switching control logics or time-varying controllers were
proposed in the past, a general and closed solution to the
problem is yet to be found. In two recent papers [8, 9]
a control task simpler than exact attitude acquisition was
investigated, that is, pointing of a body-fixed direction σ̂
towards a prescribed target direction τ̂ , fixed in the in-
ertial frame, by means of a cluster of only two reaction
wheels. In this framework, the angular position of the
spacecraft around the target direction is not relevant, thus
reducing the number of attitude variables to be controlled
from three to two, which makes the control problem solv-
able by means of a reduced number of RWs. In [8] the
total angular momentum of the spacecraft (platform and
RWs) is assumed to be zero, and σ̂ can be aligned to-
wards any arbitrary direction τ̂ , with zero residual angular
speed. When a momentum bias h0 is present, the pointing
maneuver is possible with a zero residual platform angu-
lar rate only if the plane identified by the spin axes of the
two RWs can contain the (inertially fixed) direction of h0,
posing a constraint on admissible pointing directions [9].
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2 SPACECRAFT MODEL

In the recent past, an approach based on Model Predic-
tive Control (MPC) which can steer the spacecraft towards
a prescribed attitude during large angle slew maneuvers as
well as stabilize it by means of a cluster of only two reac-
tion wheels (RWs) was successfully developed and widely
tested in simulation in the ideal case of zero residual an-
gular momentum [6]. Unfortunately, in a realistic opera-
tional scenario, the presence of environmental perturbing
torques makes the assumption of zero angular momentum
not always applicable. In this paper we take a step fur-
ther by aiming at developing a MPC-based control tech-
nique which can handle such an issue. It should be noted
that, in case a rest-to-rest maneuver is envisaged, the final
attitude of the spacecraft is still constrained by the need
of absorbing the residual angular momentum into the two
active RWs. This means that an arbitrary desired attitude
cannot, in general, be achieved, provided that the plane
determined by the spin axes of the active RWs must con-
tain the direction of the angular momentum. Note that,
in the presence of environmental disturbance torque, this
direction is not exactly constant in the inertial frame, but
the timescale of its variation is sufficiently slow to be con-
sidered negligible with respect to the time required for
performing the desired attitude maneuvers. Hence, over
sufficiently short time intervals, h0 is assumed (at least
approximately) constant in the inertial frame.

In this paper, two preliminary analytical results are ini-
tially derived. First, the admissible attitude which mini-
mizes the error in terms of Euler angle rotation with re-
spect to the desired one with the platform at rest is de-
termined. Second, a spinning condition is determined,
which forces the spacecraft to spin around the underactu-
ated axis, thus achieving a smaller attitude error, although
only for a fraction of the rotation. Two different MPC
strategies are then proposed. In the first case, the mini-
mum error attitude achievable by the SC with respect to
the desired reference attitude is provided as a reference
for the controller. In this case, the minimum attitude er-
ror can be asymptotically approached. A second strategy
is analyzed for the spinning scenario, which allows the
SC to pass closer to the target attitude, if compared to the
minimum error attitude at rest determined above, but only
for a limited amount of time, inversely proportional to the
residual angular rate. During most of the resulting attitude
motion, the pointing error becomes much larger.

Among several available control approaches for atti-
tude control, MPC offers a framework where a control
scheme with proven convergence capabilities becomes
available, without exploiting specific physical properties
of the system, thanks to its intrinsic nature, capable of
dealing with complex (and possibly switching) systems
[10]. MPC’s success in SC attitude control bears the hall-

mark of generating optimal control signals for complex
nonlinear systems, considering state, input, and output
constraints [11, 12, 13]. In essence, MPC employs the
a model of the dynamics to foresee future states and op-
timize control inputs within a finite time horizon. This
dynamic adaptation capability enables spacecraft to be ef-
fectively robust with respect to evolving conditions and
disturbances. Considering that the attitude kinematics and
dynamics of spacecraft are highly nonlinear processes, a
Nonlinear MPC (NMPC) approach is adopted in the paper
[14].

2. Spacecraft model
2.1 System dynamics

Assuming that the spacecraft is rigid, a set of princi-
pal axes of inertia is selected as the body frame, FB =
{G; ê1, ê2, ê3}, centered in the spacecraft center of mass,
G. Unless otherwise stated, all vector quantities are rep-
resented in FB . When spacecraft attitude with respect to
the inertial frame FI is represented in terms of the unit
quaternion [15] q = [q0, q1, q2, q3]

⊤ = [q0, q̄
T ]⊤, the co-

ordinate transformation matrix between FI and FB is

TBI = (q20 − q̄T q̄)I3 + 2q̄ q̄T − 2q0 q̄
× [1]

where ( · )× denotes the skew–symmetric matrix equiva-
lent to the cross product. The time derivative of the quater-
nion vector is

q̇ =
1

2

[
−q̄T

q0 I3 + q̄×

]
ω. [2]

where ω is spacecraft angular velocity with respect to FI .
The total angular momentum of the spacecraft is

h = Jω + hr

where J = diag(J1, J2, J3) is the inertia tensor. Without
loss of generality, we assume that the axis of the failed
wheel is parallel to the third body axis, b̂ = ê3, so that
the relative angular momentum vector stored in the active
reaction wheels is hr = [h1, h2, 0]

⊤, with hi = IwΩi,
i = 1, 2, where Iw is wheel moment of inertia and Ωi its
rotation rate with respect to FB . Hence

hr = [hr1 , hr2 , 0]
⊤ = Iw

2∑
i=1

Ωi êi [3]

The angular momentum balance equations are written
in compact vector form as

ω̇ = J−1 [Md − ω × h] [4]

where Md is the external disturbance torque. Provided
that the duration of the maneuver is limited, we assume
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2.2 Minimum attitude error with zero residual angular rate 2 SPACECRAFT MODEL

that the effect of Md on the angular momentum is negli-
gible over a sufficiently small time interval (that is, Md ≈
0), and the angular momentum vector

hI = TIBh

is constant, when represented in FI .
When friction is neglected and gi is the torque applied

to the i–th wheel about its spin axis by an ideal electric
motor (that is, disregarding electric motor and driver in-
ternal dynamics), one has [16]

ḣri = gi − Iw ω̇T êi [5]

where the torques gi, i = 1, 2, represent the control in-
puts. As an alternative, it is possible to directly assume
the vector ḣ as the control input for the design of the atti-
tude control law, thus removing any argument on whether
friction needs to be accounted for.

2.2 Minimum attitude error with zero residual angular
rate

It is assumed that the desired attitude, FD =
{O; Ê1, Ê2, Ê3}, is fixed in the inertial frame, FI , hence
it is possible to consider FI ≡ FD = {O; Ê1, Ê2, Ê3}.
The residual angular momentum is represented in FI by
the vector

hI = H0η̂0 = H0(η1, η2, η3)
T

= H0(cosα cosβ, sinα cosβ, sinβ)T

where H0 is its magnitude, and the direction of the unit
vector η̂ is identified by means of its azimuth and eleva-
tion angles, α and β, respectively, as reported in Fig. 1.

In the presence of a residual angular momentum, it is
no longer possible to achieve any arbitrary attitude at rest,
provided that an admissible rest attitude must allow the
two active reaction wheels to absorb the angular momen-
tum. This, in turns, requires that the (inertially fixed) an-
gular momentum lies on the plane identified by the (body-
fixed) directions of the spin axes of the two active RW’s.
This is equivalent to require that the underactuated axis,
b̂, is normal to h. Hence, admissible directions at rest for
b̂ lie on the plane Λ, normal to η̂0.

If one represents the attitude of the spacecraft by means
of the 3-1-3 sequence of Euler angles, namely precession
Ψ, nutation Θ, and spin Φ, the components of the under-
actuated direction b̂ = ê3 are given by

ê3 = (sinΘ sinΨ,− sinΘ cosΨ, cosΘ)T

Hence, the direction of b̂ for an admissible attitude must
satisfy the constraint

h · b̂ = sinΘ(η1 sinΨ− η2 cosΨ) + η3 cosΘ = 0

This requires that

tanΘ =
−η3

η1 sinΨ− η2 cosΨ
[6]

The inverse tangent function provides values of Θ in
the interval [−π/2, π/2]. Provided that the nutation an-
gle is defined in the interval Θ ∈ [0, π], when a negative
value of Θ is obtained, which corresponds to angles in the
interval Θ ∈ [−π/2, 0], an angle π is added. In the end,
for any precession angle Ψ, it is possible to identify from
Eq. [6] a value of the nutation angle which makes the un-
deractuated direction normal to the residual angular mo-
mentum vector, thus resulting into an admissible attitude
with zero residual angular rate. Among all admissible at-
titudes, such that h · b̂ = 0, it is possible to identify that
which results into the overall minimum attitude error.

Letting â and φ be, respectively, the Euler eigenaxis
and Euler eigenaxis rotation angle which drive the body
frame FB onto the desired target attitude, FD, and TBD

the coordinate transformation matrix from the target (and
inertial) frame to the body frame, it is

trace(TBD) = 1 + 2 cosφ

which clearly shows that the attitude error, associated to
the amplitude of the Euler eigenaxis rotation, φ, is mini-
mized when the trace of TBD is maximized.

When expressed in terms of Euler angles for the 3-1-3
sequence, the trace of TBD achieves the form

trace(TBD) = (1 + cosΘ) cos(Φ + Ψ) + cosΘ

For a given value of Θ, trace(TBD) is maximized for Φ+
Ψ = 0, that is, Φ = −Ψ, in which case its value becomes

trace(TBD) = 1 + 2 cosΘ

Note that, in this condition, the attitude error φ coincides
with the nutation angle, Θ. Hence, a global minimum for
the attitude error is obtained when the spacecraft achieves
the attitude with the minimum admissible nutation angle
and a spin angle Φ = −Ψ, equal in magnitude but oppo-
site in sign to the precession angle.

In the framework of all admissible attitudes, the min-
imum value of the Θ is achieved when ê3 lies at the in-
tersection of the plane Λ with the plane Γ, identified by
the unit vectors Ê3 and h. In which case it is Θ ≡ β.
Note that, in such a case, the line of the nodes generated
by the intersection of Γ with the plane Σ, identified by
the directions of the unit vectors Ê1 and Ê2. The corre-
sponding value of the precession angle is thus given by
Ψ = α− sign(α)(π/2) (Fig. 1), where sign(·) is the sign
function which provides 1 when the argument is positive
and −1 when negative.
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2.3 Spinning periodic solutions 3 MPC CONTROLLER

Summarizing, the minimum error attitude at rest is
achieved when (i) the precession angle is equal to Ψm =
α − sign(α)(π/2), Θm = β, and, following the dis-
cussion reported above, the spin angle is Φm = −Ψm.
Note that, all this considered, the elevation of the angu-
lar momentum vector over the Ê1 − Ê2 plane directly
provides the value of the minimum attitude error which
can be achieved with zero angular velocity, in a rest-to-
rest maneuver. When this angle is large, the resulting at-
titude error may result unacceptably high, also in the case
in which the residual momentum is small in magnitude.

E1

E2

E3 e3

a

b

Q       bmin=

h0

a   p–    /2

S

LG

Fig. 1: Relevant unit vectors and angles for the minimum
error attitude in the presence of a residual angular mo-
mentum.

2.3 Spinning periodic solutions
When 0 ≤ Θ ≤ Θm = β, a component h3 =

H0 sin(β − Θ) of the angular momentum is projected
along the direction b̂ = ê3 of the failed wheel, whereas
the remaining component H0 cos(β − Θ) is projected on
the ê1-ê2 plane, where the active wheels can exchange an-
gular momentum with the platform.

If nutation and precession angles are to be held con-
stant, with Ψ = Ψm, it is Φ̇ = ω3, the presence of a non-
zero angular momentum component along ê3 implies that
a non-zero angular velocity component is present around
that axis, ω3 = (H0/J3) sin(β − Θ). Hence, the spin
angle will vary as Φ(t) = Φm + ω3t, a condition which
can be maintained if the angular momentum of the active
reaction wheels with a spin axis parallel to ê1 and ê2, is
varied periodically as h1 = H0 cos(β − Θ) cos(Φ − Φ⋆)
and h2 = −H0 cos(β − Θ) sin(Φ − Φ⋆), respectively,
where Φ⋆ = sign(α)(π/2).

Such a spin condition allows the platform to pass closer

to the target attitude, than the minimum error attitude at
rest determined above, but only for a limited amount of
time, provided that during most of the rotation around b̂ =
ê3 the attitude error will become (possibly much) larger.

3. MPC controller
Consider a nonlinear time-invariant system governed

by the following equation:

ẋ(t) = f(x(t), u(t)) [7]

where x(t) ∈ X ⊆ Rnx is the state vector at time t ∈ R,
u(t) ∈ U ⊆ Rnu is the input vector (where U is a con-
vex, closed, and compact set, containing the origin in its
interior), and f(x, u) a sufficiently smooth function. The
measurements of the state vector are sampled with period
TS > 0. At each sampling time t = tk, a prediction of
the system state x̂(t) over the time interval [tk, tk +Tp] is
performed, where Tp ≥ TS is the prediction horizon.

The nonlinear MPC optimal control problem is formu-
lated as follows.

u∗ = argmin
u

J
(
x(t), u(t)

)
subject to:
˙̂x(τ) = f(x̂(τ), û(τ)), x̂(tk) = x(tk),

x̂(τ) ∈ X ⊆ Rnx , û(τ) ∈ U ⊆ Rnu ,

(x(τ), u(τ)) ∈ M ⊆ Rnx×nu ∀τ ∈ [tk, tk + Tp].

[8]

Associating to each solution x̂ of [8] the tracking error
x̃(τ) = x̂(τ)− xr, we employ a performance index

J =

∫ tk+Tp

tk

(
∥x̃(τ)∥2Q + ∥û(τ)∥2R

)
dτ+

+∥x̃(tk + Tp)∥2P

[9]

where Q,P ≻ 0 ∈ Rnx×nx and R ≻ 0 ∈ Rnu×nu are
suitable diagonal matrices to be designed. Note that, as
usual for the MPC setting, the receding horizon strategy
is employed. Hence, only the first sample of the optimal
input signal is applied to the plant, while the ’tail’ of the
solution is discarded. The same procedure is repeated at
each optimization step tk.

3.1 Implementation of NMPC to attitude control
The NMPC controller is based on prediction of the sys-

tem behavior along a finite time window. Such prediction
is carried out by employing a model of the system dy-
namics. In this work, we use the same SC dynamics both
for the NMPC prediction model and the plant, except for
the SC inertia matrix J which, in the prediction model, is
considered to be diagonal, i.e., the direction of RWs’ spin
axes are perfectly aligned with the SC principal axes of
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3.2 System constraints 4 RESULTS

inertia. This kind of situation is typical in real scenarios,
where the knowledge of the SC inertia matrix is subject to
uncertainty.

The NMPC prediction model consists of the Euler
equation for the angular velocity evolution [4] (account-
ing also for the wheels dynamics [3]), as well as, the
quaternion evolution [2]. In summary, the attitude model
consists of a set of affine-in-the-input first-order differen-
tial equations where the state is x .

= [ω, q0, q̄,h]
T ∈ R10

and the control input is u
.
= [g1, g2]

T ∈ R2; gi is the
torque applied to the i-th wheel about its spin axis by an
electric motor. Note that, in this work, except for the an-
gular momentum bias, no further external disturbances are
accounted for.

Hence, the overall closed-loop system is defined by
joining together [2] and [4], with u∗ = [g∗1 , g

∗
2 ]

T com-
puted as the solution of the optimal control problem
[8]. In order to make the optimal control problem effi-
cient from a numerical point of view, a finite pice-wise
parametrization of the input signal u has been assumed,
with changes of values at the nodes τ1, ..., τN ∈ [tk, tk +
Tp] with N ∈ N being the number of nodes. In the fol-
lowing, we consider N = 1 (i.e. a constant input for every
τ ∈ [tk, tk+Tp]). The value N = 1 was chosen, since en-
suring a satisfactory tracking/convergence performances,
while guaranteeing a low computational burden of the op-
timization algorithm.

3.2 System constraints

Referring to [8], X , U , and M are set describing pos-
sible state, input, and mixed input-state constraints, re-
spectively. For the application at hand, no limitation on
the satellite rotation about its three axis is imposed, while
a saturation on the RWs deliverable torques is taken into
account. Nevertheless, the latter statement does not auto-
matically imply that the full state remains unconstrained,
since one has to take into account that the overall satellite
dynamics accounts also for the RW angular momentum h.
In light of this, the state and the output are not bounded
singularly, whereas the feasible set is a (linear, for the ap-
plication at hand) polytope which takes both the input and
the state as arguments. Whereby, the resulting scenario
consist in a mixed input-state constraints set

∥gτEM − h∥∞ ≤ 0.1τEM [10]

where τEM is a scaling constant referred to the RW elec-
tric motor, and recalling that gi and hi are the control input
and the angular momentum of the i-th wheel, respectively.
Mathematically speaking, the set of admissible values of

ℓ(x, u)
.
= gτEM − h is the polytope

M .
=

{
ℓ(x, u) = gτEM − h ∈ R2×2 :

− 0.1τEM ≤ giτEM − hi ≤ 0.1τEM , i ∈ {1, 2}
}
.

[11]

Hence, given the above definition in [11], within the
NMPC algorithm, we do not impose any further satura-
tion or constraints on the controlled input g .

= [g1, g2]
T .

4. Results
We consider the nominal satellite matrix of inertia

J = diag(3, 4, 5) kg m2. Wheel inertia around the spin
axis is assumed equal to Iw = 0.01 kg m2. Once data
for the residual angular momentum vector represented in
FI are chosen, namely H0, α, and β, a zero-angular rate
minimum error attitude can be determined, according to
the derivations reported in Subsection 2.2. In the follow-
ing, we consider H0 = 0.005 Nms, α = β = 10◦.

In the framework of the simulation campaign, the fol-
lowing initial conditions are randomized:

• A pseudo-random initial attitude, according to the
method devised in [17].

• Random initial values for h1 and h2, assuming a
uniform probability density function over the range
hi,0 ∈ [−2H0; 2H0], i = 1, 2, thus generating
the initial angular momentum vector for the wheels,
hr(t0) = [h1,0, h2,0, 0]

⊤.

Hence, the initial values for the SC angular ve-
locity components is thus given by ω(t0) =
J−1 [TBD0hI − hr(t0)], where TBD0 is the coor-
dinate transformation matrix for the initial random
attitude.

4.1 Case 1: Minimum attitude error with zero residual
angular rate

For the case where we steer the SC attitude to
a rest condition with a minimum attitude error, we
choose to control both the quaternion and the angu-
lar rate to the prescribed reference, as depicted in Sec-
tion 2.2. Thus, referring to the cost function [9], the
matrices P,Q ∈ R10×10 are built such that only the
diagonal entries relevant to the quaternion and angu-
lar rate can have non-null values. By means of a
trial-and-error procedure, the matrices are chosen as
P = diag(103, 700, 500, 700, 100, 100, 100,03×1), Q =
diag(7 · 103,02×1, 9 · 105, 100, 100, 100,03×1), whereas
P guarantees closed-loop convergence to an arbitrarily
small, attractive, and invariant set, centered on the ref-
erence [14]. Q consists of a sort of a kinematic planning
for the attitude maneuver. Indeed, the higher is the value

5



4.1 Case 1: Minimum attitude error with zero residual angular rate 4 RESULTS

Fig. 2: Minimum pointing error at rest condition: SC
pointing error evolution. The black line represents the
theoretical minimum pointing error.

of the diagonal entry of Q, the faster is the convergence
of the relevant state. Furthermore, we have R = I3×3,
where I is the identity matrix. The controller works at
1 Hz, i.e. TS = 1 s, while the prediction horizon is set
as Tp = 15TS . To conclude, the optimal control prob-
lem has been solved in a Matlab environment by means of
the nonlinear optimization toolbox and employing the se-
quential quadratic programming iterative method. Finally,
the Monte Carlo campaign consists of 250 simulated cases
with randomized initial conditions spanning over a 200 s
time window.

A plot of the variation of the resulting pointing error
during the runs is shown in Fig. 2 where the black line
represent the theoretical minimum pointing error achiev-
able by the SC (i.e., β = 10◦). In Fig. 4, we show the av-
erage value, inside the range between the maximum and
the minimum pointing error, as well as the 3σ deviation,
recorded at each time instant for the whole set of simu-
lations. Figure 3 shows the statistical properties of the
distribution of pointing errors between 0 and 200 s, ev-
ery 50 s, in terms of average value, median, variance and
range. In this latter figure, the central red line inside each
box indicates the median, while the the black circle is the
mean. The bottom and top edges of the box indicate the
25th and 75th percentiles, respectively. The whiskers ex-
tend to the most extreme data points (outliers excluded).
Outliers, that is, cases which violates the calculated range
of variation by more than 3σ, are plotted individually us-
ing a ’+’ marker symbol. Note that, as outcome of the
Monte Carlo campaign, we obtain a dozen of outliers – at
the end of the maneuver – over 250 cases.

NMPC delivers good convergence properties, despite
the wide variation in initial error and residual initial angu-
lar momentum. In fact, as Monte Carlo output, the angu-
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Fig. 3: Minimum pointing error at rest condition: SC
pointing error boxplot.
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Fig. 4: Minimum pointing error at rest condition: In red
the SC mean pointing error evolution, in dashed-dotted
black line the minimum and maximum values (at each
sampling step), in dotted blue the 3σ deviation with re-
spect to the mean value at each sampling step.

lar rate of SC (Fig. 5), and the control torques (the NMPC
command in Figure 7 and the resulting RWs torques in
Figure 6) are also displayed. It is evident that, together
with a good tracking of the desired reference attitude,
NMPC also guarantees satisfying performance in terms
of residual angular rate, which, nevertheless, is not totally
nullified. It is worth to note that the Monte Carlo cam-
paign confirms the effectiveness of the proposed NMPC
controller in finding a set of feasible rotations – despite an
underactuated direction and an initial residual in terms of
angular momentum – without any higher kinematic plan-
ning level. This is a remarkable property of NMPC: the
capability to jointly carry out the two tasks of planning
and control.
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4.2 Case 2: spinning periodic solutions 5 CONCLUSIONS

Fig. 5: Minimum pointing error at rest condition: SC an-
gular rate evolution.

Fig. 6: Minimum pointing error at rest condition: Torques
delivered by the RWs.

4.2 Case 2: spinning periodic solutions

For the case of spinning periodic solution we limit the
simulated cases to a few units, over a similar time scale
of the first scenario presented. In contrast to the first
simulated scenario, for the spinning periodic solution, we
choose to also control the state of the first two RWs, ac-
cording to the reference provided in Section 4.2.

Referring to the cost function [9], the ma-
trices P,Q ∈ R10×10 are chosen as P =
diag(103, 700, 500, 700, 100, 100, 10000, 50, 50, 0), Q =
diag(7 · 103,02×1, 9 · 105, 100, 100, 10000, 50, 50, 0).
Furthermore, we have R = I3×3, where I is the identity
matrix. The controller works at 1 Hz, i.e. TS = 1 s, while
the prediction horizon is set to Tp = 15TS . As in the
previous scenario. In the latter case, the simulations span
a time window of 250 s. From 8 it is worth to notice how,
by keeping a residual of angular rate on the SC axes, it

Fig. 7: Minimum pointing error at rest condition: NMPC
command to the wheels.
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Fig. 8: Spinning periodic solution: SC pointing error evo-
lution

is possible to reach – for a limited amount of time – the
zero pointing error condition. On the other hand, ω3 (see
Fig. 9) is forced to keep a constant value in steady state,
in order to allow the SC to periodically rotate towards
the reference-pointing axis. Finally, torques delivered by
RWs are plotted in Fig. 10, while the NMPC command in
Fig. 11.

Finally, Figs. 10-11 the torques delivered by the RWs
cluster, as well as, the relevant optimal input signal pro-
vided by the NMPC controller.

5. Conclusions
An underactuated spacecraft NMPC attitude controller

is developed and presented in detail, which demonstrate
the capability of efficiently managing an angular momen-
tum bias, due to the residual effect of external perturba-
tions. Stabilization performance have been demonstrated
by means of an extensive simulation campaign by refer-
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Fig. 9: Spinning periodic solution: SC angular rate evolu-
tion.
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Fig. 10: Spinning periodic solution: Torques delivered by
the RWs.

ring to a small satellite platform equipped with only two
operative reaction wheels in two different scenarios: i)
stabilization towaards a minimum pointing error at rest
and ii) tracking a periodic spinning solution which allows
for an almost zero attitude error, at some time during the
rotation.

Simulations results confirm the effectiveness of the
proposed NMPC controller in both aforementioned sce-
nario, showing an excellent behavior in tracking the de-
sired attitude, while guaranteeing a smooth manoeuvre
and robustness against the residual initial angular momen-
tum. Monte Carlo campaign prove how the NMPC con-
troller is a suitable technology for this kind of attitude ma-
neuvers, by autonomously identifying the set of feasible
rotations - despite an underactuated direction - without
any higher level kinematic planning while providing an
optimal control action. Further work will be focused in
employing different kind of SC actuators (e.g., magnetic

0 50 100 150 200 250
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-0.2

0

0.2

NMPC Command on actuated directions

0 50 100 150 200 250

Time [s]

-0.2

-0.1

0
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Fig. 11: Spinning periodic solution: NMPC command to
the wheels.

torquers) and/or more advanced NMPC tools, including
robust NMPC as well as and NMPC for reference track-
ing.
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