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PEAKED AND LOW ACTION SOLUTIONS OF NLS EQUATIONS
ON GRAPHS WITH TERMINAL EDGES

SIMONE DOVETTA∗, MARCO GHIMENTI† , ANNA MARIA MICHELETTI‡ , AND
ANGELA PISTOIA§

Abstract. We consider the nonlinear Schrödinger equation with focusing power–type nonlinear-
ity on compact graphs with at least one terminal edge, i.e. an edge ending with a vertex of degree 1.
On the one hand, we introduce the associated action functional and we provide a profile description
of positive low action solutions at large frequencies, showing that they concentrate on one terminal
edge, where they coincide with suitable rescaling of the unique solution to the corresponding prob-
lem on the half line. On the other hand, a Ljapunov–Schmidt reduction procedure is performed to
construct one–peaked and multipeaked positive solutions with sufficiently large frequency, exploiting
the presence of one or more terminal edges.

Key words. quantum graphs, nonlinear Schrödinger, least action, terminal edges, Ljapunov–
Schmidt reduction, peaked solutions

AMS subject classifications. 35Q55, 35R02

1. Introduction. A connected metric graph (or network) G = (V (G), E(G)) is a
locally one–dimensional structure built of several intervals, the edges e ∈ E(G), glued
together at some of their endpoints, the vertices v ∈ V (G). The specific way in which
the edges are joined determines the topology of the graph. Each edge e ∈ E(G) is
identified either with a bounded interval Ie = [0, `e], `e > 0, or with a (copy of a)
half–line. Functions u = (ue)e∈E(G) supported on G are defined by their restrictions
ue to the edges of the graph, and the functional spaces Lp(G), H1(G) etc. are defined
in the usual way (for a wider discussion of definitions and notations on metric graphs,
see for instance the monograph [12]). When a differential operator acting on functions
supported on the graph is defined, we also speak of quantum graphs.

The birth of quantum graphs can be traced back to the first half of the Fifties of
the last century [40], when the spectral analysis of Schrödinger operators on a network
modelling molecular bonds has been proposed to investigate the behaviour of valence
electrons in a naphthalene molecule. Since then, graphs have been assumed to provide
a meaningful tool to model the dynamics of systems confined to ramified domains.

Despite the fact that, in general, to rigorously justify the graph approximation
is still an open problem (see for instance [26, 34] as well as [17, 24] and references
therein), the last decades have been witnessing a renewed interest in the theory of
quantum graphs, mainly driven by a wide variety of applications, e.g. quantum wires,
Josephson junctions, propagations of signals, nonlinear optics and so on. Linear mod-
els have been proposed and extensively studied through the years, and the research in
this setting continues to be significantly active (see the milestone paper [31], as well
as [12] for a thorough presentation of the subject and a detailed bibliography, and for
instance [10, 11, 13, 23, 30] and references therein for some recent developments).
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To date, a huge and constantly growing amount of works are available on the
analysis of nonlinear evolutions on metric graphs too. Among these, physical appli-
cations such as for instance the theory of Bose–Einstein condensates contributed to
gather a prominent focus on nonlinear Schrödinger (NLS) equations as

(1.1) − i∂tψ(x, t) = ∆xψ(x, t) + |ψ(x, t)|p−1ψ(x, t) .

Particularly, many efforts have been profused in the analysis of standing waves of
(1.1), i.e. solutions of the form ψ(x, t) = eiλtu(x), for suitable λ ∈ R and u solving
the associated stationary equation

(1.2) − u′′ + λu = |u|p−1u .

First investigations have been developed on specific examples of graphs with half–lines,
such as star graphs (see for instance [1, 2, 36]) and the tadpole graph [37]. Later,
the problem has been addressed on general non–compact graphs with half–lines, for
which a quite well–established theory of existence of standing waves is nowadays
available (see the series of works [5, 6, 7] for the case of the nonlinearity extended
to the whole graph, and [21, 22, 41, 42, 43] for the counterpart with nonlinearities
restricted to the compact core). Broadening the discussion, several results have been
accomplished also on compact graphs [18, 19, 33] and periodic graphs [3, 4, 20, 38, 39].
Furthermore, similar investigations have been recently initiated on different families
of nonlinear equations too, i.e. nonlinear KdV equation, [35], and nonlinear Dirac
equation [15, 16].

As it will play a crucial role in the subsequent discussion, let us also recall that
existence and uniqueness of solutions of (1.2) on the real line R is well–known since
decades (see for instance [32]). In particular, the unique -up to translations- positive
solution in H1(R) of

(1.3) − U ′′ + U = Up in R

is given by

(1.4) U(x) =
(
p+ 1

2

) 2
p−1

[
cosh

(
p− 1

2 x

)]− 2
p−1

.

Similarly, uniqueness of positive H1 solutions of (1.3) holds true also when the equa-
tion is set in R+. In this case, any solution inH1(R+) is given by a suitable translation
U(x− x0)χ[0,+∞), for some x0 ∈ R.

From the standpoint of Critical Point Theory, solutions of (1.2) can be identified
at least in two different ways. On the one hand, one can search for critical points of
the energy functional E : H1(G)→ R

E(u,G) := 1
2

∫
G
|u′|2 dx− 1

p+ 1

∫
G
|u|p+1 dx

in the constrained space of functions u ∈ H1(G) with prescribed mass ρ2, that is∫
G
|u|2 dx = ρ2 .

This is for instance the general framework of [5, 6, 7] and related works, where it has
been shown that the problem is sensitive both to topological and metric properties of
the graph.
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On the other hand, given λ > 0, one can look for unconstrained critical points of
the action functional I : H1(G)→ R

(1.5) I(u,G) := 1
2

∫
G
|u′|2 dx− 1

p+ 1

∫
G
|u|p+1 dx+ λ

2

∫
G
|u|2 dx .

This approach has been exploited in [38] in the case of periodic graphs, and in [27, 28,
29] on star–graphs. Precisely, in [38], minimization on a generalized Nehari manifold
is performed to show existence of least action solutions, whereas in [27, 28, 29] the
focus is set on stability properties of specific critical points of the functional.

Standard variational arguments show that both critical points of the energy with
fixed mass and unconstrained critical points of the action are solutions of the problem

(1.6)
{
−u′′ + λu = |u|p−1u on every edge of G∑

e�v
due
dx (v) = 0 ∀v ∈ V ,

that is they are solutions of the NLS equation (1.2) on every edge of the graph and
they satisfy the homogeneous Kirchhoff condition at every vertex. Here, by e � v we
mean that the edge e is incident at the vertex v, and we use the convention

due
dx

(v) = u′(0) or due
dx

(v) = −u′(le)

according to whether the x coordinate on e is equal to 0 or le at v.
Our work here fits in the investigation of the action functional (1.5). In what

follows, we restrict our attention to compact graphs with at least one terminal edge,
i.e. an edge ending with a vertex of degree 1 (recall that the degree of a graph is the
total number of edges incident at it). For this class of graphs, we are interested in
positive solutions of problem (1.6) for p > 1 and λ > 0. Our aim is twofold.

On the one side, it is easy to show that a solution of (1.2) can always be found
minimizing the action on a suitable Nehari manifold. Hence, we concentrate on low
action positive solutions and, given λ large enough, we provide a profile description
for such states.

To this end, for every λ > 0, let us introduce the renormalized action functional
Jλ : H1(G)→ R

(1.7) Jλ(u) := λ
1
2−

p+1
p−1

∫
G

(u′)2

2 + λu2

2 − (u+)p+1

p+ 1 dx ,

where u+ := max{u, 0} denotes the positive part of u ∈ H1(G), and consider the
associated Nehari manifold

Nλ : =
{
u ∈ H1(G) \ {0} : J ′λ(u)[u] = 0

}
=
{
u ∈ H1(G) \ {0} : ‖u‖2λ = |u|p+1

p+1

}
.(1.8)

It is standard to prove that Nλ is a natural constraint (see also Remark 1 in Section
2 below). As the arguments developed in Section 3 will display clearly, the scaling
of λ in (1.7) is the natural one that allows the functional Jλ to exhibit a non–trivial
limit as λ→ +∞.

The first of our main results here shows that low action solutions have a unique
peak at a vertex of degree 1, they are similar to a suitable rescaling of U on the
corresponding terminal edge and negligible in L∞ norm on the rest of the graph.
This is stated in the next theorem.
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Theorem 1.1. Let G be a compact graph with at least one terminal edge and
p > 1. Let λn → ∞ and let, for any n, un be a positive solution of (1.6) with
Jλn |Nλn (un)→ m∞, where

(1.9) m∞ := 1
2

(
1
2 −

1
p+ 1

)
‖U‖2H1(R) .

Then, up to subsequences, un has a unique maximum point located at a terminal vertex
v. Moreover, denoting by I = [0, l] the terminal edge where un attains its maximum
(with the convention that the vertex v with degree 1 coincides with 0) we have that,
while n→ 0

1. un(0)→ +∞.
2. λ

1
1−p
n un

(
x√
λn

)
χl

(
x√
λn

)
→ U(x) weakly in H1(R+) and strongly in C0(R+),

in C2
loc(R+) and in Ltloc(R+) for all t ≥ 2. Here χl is a cut off function.

3. λ
1

1−p
n ‖un(x)− λ

1
p−1
n U(x

√
λn)‖C0([0,l/2]) → 0

4. For every l1 ∈ (0, l) and every 0 < l1 < x ≤ l, there exist two constants
c1, c2 > 0, depending on l1 but independent from n, such that

un(x) ≤ c1λ
1
p−1
n e−c2

√
λnx on [l1, l] ⊂ I ,

‖un‖L∞(G\I) ≤ c1λ
1
p−1
n e−c2

√
λnl .

Some remarks are in order. Firstly, we point out that the assumption Jλn |Nλn (un)→
m∞ is consistent, as the sets of solutions un fulfilling it is actually not empty (see
Section 2 and Corollary 2.1). Secondly, we highlight the fact that the presence of a
terminal edge is crucial in the proof of Theorem 1.1, as it allows to locate precisely the
point where low action solutions attain their maximum value. If one were interested
in extending the above results to graphs without terminal edges, aiming to prove
that concentration occurs in the internal of some given edge, then the first problem
in adapting our argument would be to keep track of the exact location of maximum
points along the sequence of solutions under exam.

On the other side, and reversing the perspective, whenever G has at least a termi-
nal edge and again for large λ, it is possible to construct one–peaked and multipeaked
positive solutions to (1.2), i.e. solutions with one or more maximum points at the
vertices of degree 1, respectively, and negligibly small on the rest of the graph. Such
solutions are obtained using the function U in (1.4) as a model and exploiting a
Ljapunov–Schmidt reduction procedure. These results are stated in the next two
theorems.

Theorem 1.2. Let G be a compact graph with a vertex v1 with degree 1 and
p > 1. Denote by I1 = [0, l1] the terminal edge ending at v1, with the convention that
v1 coincides with 0. Then, provided λ is sufficiently large, there exists a solution uλ
of (1.6) with a single peak at v1, i.e. uλ of the form

uλ := Wλ + φ ,

with
Wλ(x) = χ(x)Uλ(x)

where χ is a smooth cut–off function supported on [0, l] ⊂ I1, for some l < l1, and

Uλ(x) =
{
λ

1
p−1U(λx) on I1

0 on G \ I1 ,
4



U being as in (1.4), and
‖φ‖λ = O(λ−α)

for every α > 0. Furthermore,

(1.10) ρ2 := |uλ|2L2(G) = Cλ
5−p

2(p−1)

(
|U |2L2(R+) + o(1)

)
.

Theorem 1.3. Let G be a compact graph with m ≥ 1 vertices with degree 1 and
p > 1. Choose v1, . . . ,vk vertices of degree 1 with 1 ≤ k ≤ m. Let also Ii = [0, li]
denote the terminal edge ending at vi, with the convention that vi coincides with 0.
Then, provided λ is sufficiently large, there exists a k-peaked solution uλ of (1.6) with
a single peak at every vertex vi, i = 1, . . . , k, i.e. uλ of the form

uλ = Wλ + φ ,

with

Wλ(x) =
k∑
i=1

χi(x)Uλ,i(x)

where χi is a smooth cut–off function supported on [0, l] ⊂ Ii, for some l < min1≤i≤k li,
and

Uλ,i(x) =
{
λ

1
p−1U(λx) on Ii

0 on G \ Ii ,

U being as in (1.4), and
‖φ‖λ = O(λ−α)

for every α > 0. Furthermore,

(1.11) ρ2 := |u|2L2(G) = Cλ
5−p

2(p−1)

(
k|U |2L2(R+) + o(1)

)
.

To comment on these results, let us first notice that the procedure leading to the
proof of Theorems 1.2–1.3 is possible for every p > 1. Moreover, the dependence on
λ of the mass ρ2 of the solutions we construct is given explicitly by (1.10)–(1.11).
Particularly, note that if p ∈ (1, 5), i.e. p is in the so–called L2–subcritical regime,
then the above solutions share large masses, whereas they have vanishing mass in the
limit λ→ +∞ if we consider L2–supercritical powers p ∈ (5,+∞). At the L2–critical
power p = 5, all functions identified in Theorems 1.2–1.3 share the same mass.

A further observation about one-peaked solutions is possible. Given a sequence
λn → +∞, let uλn be the corresponding one-peaked solution obtained by Theorem
1.2. The sequence {uλn}n fulfills the hypotheses of Theorem 1.1, so it inherits all the
properties given by Theorem 1.1: the exact location of the unique maximum point,
the decreasing monotonicity, the decay rate and so on.

Similarly to Theorem 1.1, we stress the fact that terminal edges play a key role in
the Ljapunov–Schmidt scheme of Theorems 1.2–1.3. If such an assumption is removed,
then it is not clear to us what suitable model function should be considered, so to
possibly generalize our arguments to build peaked solutions with maximum points
inside any edge not incident to vertices of degree 1.

To conclude this introduction, we note that all the results derived in this paper
contribute to clarify the deep dependence of these problems on the topology of the
underlying graphs. This is actually a common feature when dealing with graphs
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(just to name an example in the framework of compact graphs, the role of terminal
edges in existence issues for the mass–constrained case has been pointed out in [19]).
On the contrary, it remains an open problem to understand whether the methods we
exploited here could be of some help in investigating the role of the metric, i.e. helping
for instance to understand where low action solutions concentrate in the presence of
multiple terminal edges of different lengths. Also, it is unclear whether a profile
description analogous to the one in Theorem 1.1 can be given when minimizing the
energy functional under a mass constraint. With respect to these questions, it might
be worth briefly comparing our results with the ones in [14] and in [8].

Between the submission and the first revision of this paper, we came to know the
preprint version of [14], where existence and properties of stationary states localized
on single edges are investigated for the cubic NLS, i.e. p = 3 in (1.2). Precisely, given
any edge e in the graph and in the limit of large λ, Theorem 1.1 in [14] proves, both
for compact graphs and non–compact graphs with a finite number of half–lines, the
existence of a positive stationary state Ψ realizing its maximum at one point of e and
being monotonic from this maximum point to the endpoints of the edge. Furthermore,
concentration of this solution is proved in the L2 norm, according to the following
estimate (which directly follows by formula (1.6) in [14])

(1.12)
‖Ψ‖L2(G\e)

‖Ψ‖L2(G)
≤ Ce−2

√
λ`

(here ` := |e| denotes the length of the edge e). A quite remarkable aspect of the
analysis in [14] is that it addresses the problem of identifying, among these localized
states, which is the one that minimizes the energy at prescribed mass. A selection
principle is stated in Theorem 1.2 in [14] for compact graphs in the regime of large
mass. In particular, it is shown that, in the presence of vertices with degree 1, ground
states of the energy will concentrate on the longest terminal edge. The methods
developed in [14] are quite different from the one our analysis in this paper is built
upon. Indeed, the authors of that paper consider suitable nonlinear generalizations
of Dirichlet–to–Neumann maps and they take advantage of elliptic functions available
when dealing with the nonlinearity power p = 3.

Note that, if un is the low action solution of our Theorem 1.1 above, then a
slightly sharper version of (1.12) holds. Indeed, by Theorem 1.1, statement 2., it

follows that ‖un‖L2(G) ∼ λ
p+1

2(p−1)
n ‖U‖L2(R+) as λn → +∞, so that applying (1.12) to

un would read (recalling that p = 3)

(1.13) ‖un‖L2(G\I) ≤ Cλne−2
√
λn` .

Conversely, making use of statement 4. in Theorem 1.1, we obtain for every p > 1

‖un‖L2(G\I) ≤ ‖un‖L∞(G\I)
√
|G \ I| ≤ Cλ

1
p−1
n e−c2

√
λn`

which improves (1.13) since 1
p−1 = 1

2 when p = 3.
Finally, in [8], working within the context of mass–constrained critical points of

the energy on non–compact graphs with a finite number of half–lines, the authors
prove the existence of solutions attaining their maximum only inside a given edge,
provided the mass is sufficiently large. Solutions of this fashion are constructed for
every edge in the graph, regardless of it being terminal or not. Moreover, this result
is achieved for every L2–subcritical nonlinearity p ∈ (1, 5). The analysis therein is of
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variational nature, based on the discussion of the doubly–constrained minimization
problem of minimizing the energy among functions with prescribed mass and attaining
their L∞ norm on a given edge.

The remainder of the paper is organised as follows. Section 2 is devoted to
the profile description of low action solutions, developing the proof of Theorem 1.1,
whereas Section 3 carries on the construction of peaked solutions as in Theorems
1.2–1.3.

1.1. Notation. Hereafter we will use the following recurrent notations.
• BP,r = B(P, r) is the ball centered at P with radius r. We use the same

notation either if BP,r ⊂ R or BP,r ⊂ R+. In the last case, if 0 ≤ P < r we
intend BP,r = {0 ≤ x < P + r}. Finally, Br := B(0, r).

• χρ is a smooth cut–off function such that χρ = 1 when x ∈ Bρ/2 and χρ = 0
outside a ball of radius ρ. When no ambiguity is possible we will omit the
subscript ρ.

• χ[0,+∞) is the characteristic function of [0,+∞).
• With abuse of notation we often identify an edge I ∈ G with [0, l], l being the

lenght of the edge. When the edge is a terminal one, the vertex v of degree
1 will be identified with 0.

• Given a vertex v ∈ G we will suppose w.l.o.g. that the degree of that vertex
is either 1 or strictly larger than 2. In fact, degree 2 vertices are indistin-
guishable from internal points.

• Since throughout the paper we always consider λ > 0, we endow H1(G) with
the following equivalent scalar product

〈u, v〉λ =
∫
G
u′(x)v′(x)dx+ λ

∫
G
u(x)v(x)dx.

From now on, unless otherwise specified, we will always consider this product
(and its related norm ‖ · ‖λ) as the scalar product (and the norm) on H1(G).

2. Profile of low action solution. As anticipated in the Introduction, for any
λ > 0 a positive solution of (1.6) can be obtained as a critical point of the action
functional Jλ defined in (1.7) constrained to the Nehari manifold (1.8) (a standard
reference on minimization on Nehari manifolds is for instance [9]).

Remark 1. Note that any critical point of Jλ is a solution of

(2.1)
{
−u′′ + λu = (u+)p on every edge of G∑

e�v
due
dx (v) = 0 ∀v ∈ V .

Clearly, any positive solution of (1.6) is also a solution of (2.1). Moreover, one
can prove also that any nontrivial solution of (2.1) is a positive solution of (1.6), so
that any nontrivial critical point of Jλ is a positive solution of (1.6). To see this,
it is sufficient to show that any solution ū 6≡ 0 of (2.1) is strictly positive. Since G
is compact, ū has a minimum point P ∈ G. By contradiction, let us suppose that
ū(P ) ≤ 0. If P lies in the interior of some edge e ∈ E(G), then

0 ≤ ū′′(P ) = λū− (ū+)p = λū ≤ 0,

so ū′′(P ) = ū′(P ) = ū(P ) = 0 and by uniqueness of solutions to the Cauchy problem
associated to (1.2), it follows ū ≡ 0 on the whole edge. Then Kirchhoff condition
implies that all edges incident at the vertices of e realize ū′ = 0 at those vertices.
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Iterating the argument thus leads to ū ≡ 0 on G, which is a contradiction. On the other
hand, if P coincides with a terminal vertex, then ū′(P ) = 0 by Kirchhoff condition.
Therefore, either ū(P ) = 0, which then implies ū ≡ 0 on G as above, or ū(P ) < 0
and ū′′(P ) > 0, and P cannot be a minimum point. In both cases, we get again a
contradiction. Finally, if P coincides with a vertex of degree greater than or equal to
3, then Kirchhoff condition implies that u′ = 0 at this vertex along every edge incident
at it. As this entails again ū ≡ 0 on G, we conclude.
It is standard to prove that Nλ is a C1 manifold and that the Palais-Smale condition
holds on Nλ. Moreover, by (1.8) we have that

Jλ|Nλ (u) = λ
1
2−

p+1
p−1

(
1
2 −

1
p+ 1

)
‖u‖2λ.

The Nehari manifold is not empty as problem (1.6) always admits a constant solution.
Also, any solution uλ that we will find in Section 3 belongs to Nλ.

One can easily prove that infNλ Jλ > 0 and, since Palais-Smale holds, that a non
trivial minimizer exists. We set

mλ := inf
u∈Nλ

Jλ|Nλ (u) > 0.

The one peaked solution of Section 3 allows also to estimate mλ in term of the H1(R)
norm of the function U defined in (1.4). Let us take uλ a one-peaked solution given
by Theorem 1.2. Let I1 = [0, l1] be the terminal edge where the peak is located, and
suppose that the terminal vertex is in x = 0. We know that

uλ = Wλ(x) + φ

where Wλ(x) = χ(x)Uλ(x), χ = 1 if x ∈ I1 and 0 ≤ x ≤ δ, χ = 0 if x ∈ I1 and
2δ ≤ x ≤ l1 for some fixed δ and

Uλ(x) =
{
λ

1
p−1U(x

√
λ) on I1

0 elsewhere .

Immediately we have, for λ large,

‖Uλ‖2λ = ‖U‖2H1(R+) + o(1) = 1
2‖U‖

2
H1(R) + o(1).

In addition ‖φ‖λ ≤ λ−α for any positive α, thus we compute

Jλ|Nλ (uλ) =λ
1
2−

p+1
p−1

[(
1
2 −

1
p+ 1

)
‖Uλ‖2λ

]
+ o(1)

=1
2

(
1
2 −

1
p+ 1

)
‖U‖2H1(R) + o(1)

and we obtain

(2.2) 0 ≤ lim sup
λ→∞

mλ ≤ m∞,

where m∞ is defined in (1.9). This proves, also, that it is possible to find a sequence
{un}n fulfilling the hypothesis of Theorem 1.1. We are able, by proving this theorem,
to give an asymptotic profile description for a positive low action solution of problem
(1.6).
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Proof of Theorem 1.1. The proof is divided in several steps.
Step 1: For n large un is not constant.

Indeed, if un ≡ C, then, by (1.6) necessarily C = p−1
√
λn. Then

Jλn |Nλn (un) = λ
1
2−

p+1
p−1

n

[(
1
2 −

1
p+ 1

)
‖un‖2λ

]
= λ

1
2−

p+1
p−1

n

[(
1
2 −

1
p+ 1

)
λ
p+1
p−1
n |G|

]
= λ

1
2
n

[(
1
2 −

1
p+ 1

)
|G|
]
→∞ for λn →∞,

where |G| is the total length of the graph. This contradicts Jλn |Nλn (un)→ m∞.

Step 2: un has a maximum point Pn. Moreover, un(Pn) ≥ p−1
√
λn.

First, by standard regularity theory, we have that un is a regular solution, that
is, for any edge I ⊂ G, un|I ∈ C2(Ī). Since un is not constant, and the graph is
compact, un has a global maximum point Pn ∈ G.

Now, if Pn is in the interior of some edge I, we have that u′n(Pn) = 0 and u′′n(Pn) ≤
0. Thus, by (1.6) we get λun(Pn)− upn(Pn) = u′′n(Pn) ≤ 0, so un(Pn) ≥ p−1

√
λn.

If Pn is attained on a terminal vertex, again we have u′n(Pn) = 0 by Kirchhoff
condition, so necessarily we have u′′n(Pn) ≤ 0. Thus again un(Pn) ≥ p−1

√
λn.

Finally suppose that Pn is attained at a vertex of degree greater than 1. Since
Pn is a maximum point, d(un)e

dx (Pn) ≤ 0 on any edge e that leaves the vertex. Since,
by (1.6),

∑
e�Pn

d(un)e
dx (Pn) = 0, we have d(un)e

dx (Pn) = 0. At this point there exists at
least an edge e � Pn for which (un)′′e (Pn) ≤ 0 and we conclude as before.
Step 3: There exists a vertex v ∈ G such that, up to subsequences, d(Pn,v)→ 0 while
n→∞.

Suppose, by contradiction, that limn infv∈V (G) d(Pn,v) = δ > 0. Up to subse-
quences, we can suppose that Pn ∈ I for all n and we can identify I = [0, l] so that v
coincides with 0, where the vertex v verifies infw∈V (G) d(Pn,w) = d(Pn,v) for every
n. Thus we define

vn(x) := λ
1

1−p
n un

(
x√
λn

+ Pn

)
χδ

(
x√
λn

+ Pn

)
for |x/

√
λn| ≤ δ.

The function vn belongs to H1(R), moreover

‖vn‖2H1(R) ≤ Cλ
2

1−p
n

∫
B
δ
√
λn

[
d

dx
un

(
x√
λn

+ Pn

)]2
+
[
un

(
x√
λn

+ Pn

)]2
dx

= Cλ
2

1−p
n

∫
B
δ
√
λn

1
λn

(u′n)2
(

x√
λn

+ Pn

)
+ u2

n

(
x√
λn

+ Pn

)
dx

= Cλ
p+1
1−p
n

√
λn

∫
BPn,δ

(u′n)2 (x) + λnu
2
n (x) dx

≤ Cλ
p+1
1−p
n

√
λn

∫
I

(u′n)2 (x+ Pn) + λnu
2
n (x+ Pn) dx

≤ Cλ
p+1
1−p
n

√
λn‖un‖2λ ≤ C

(
p− 1

2(p+ 1)

)
Jλn |Nλn (un) ≤ Cm∞.

So {vn}n is bounded in H1(R), hence there exists v ∈ H1(R) such that vn ⇀ v weakly
in H1(R) and vn → v strongly in Ltloc(R) for any t ≥ 2 and in C0

loc(R). We want to
prove that v is a nontrivial solution of (1.3).
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Take ϕ ∈ C∞0 (R). For n large we have that the support spt(ϕ) of ϕ is contained
in B δ

2
√
λn

. We define a sequence of functions {ϕn}n ∈ H1(G) (for n large) as

ϕn(x) =
{

λ
1
p−1
n ϕ

(√
λn(x− Pn)

)
on I

0 elsewhere .

Since un is a solution of (1.6) we have

0 =J ′λn(un)[ϕn] =
∫
I

u′nϕ
′
n + λnunϕn − upnϕndx

=λ
2
p−1
n

∫
I

d

dx
vn

(√
λn(x− Pn)

) d

dx
ϕ
(√

λn(x− Pn)
)
dx

+ λ
2
p−1
n λn

∫
I

vn

(√
λn(x− Pn)

)
ϕ
(√

λn(x− Pn)
)
dx

− λ
p+1
p−1
n

∫
I

vn

(√
λn(x− Pn)

)
ϕ
(√

λn(x− Pn)
)
dx

=λ
p+1
p−1−

1
2

n

∫
R
v′nϕ

′ + vnϕ− vpnϕdx,

so by weak convergence on H1(R)∫
R
v′ϕ′ + vϕ− vpϕ = 0 for any ϕ ∈ C∞0 (R).

Since, by Step 2, un(Pn) ≥ λ
1
p−1
n then vn(0) = λ

1
1−p
n un(Pn) ≥ 1, so by Ltloc convergence

we can prove that v 6= 0. Thus, by uniqueness of solutions of (1.3) we have that v = U .
This leads to a contradiction. In fact, there exists R > 0 such that

|U |p+1
Lp+1(BR) >

3
4 |U |

p+1
Lp+1(R)

and, since vn → v = U in Lp+1
loc there exists n0 > 1 such that

(2.3) |vn|p+1
Lp+1(BR) >

3
4 |U |

p+1
Lp+1(R) for n > n0.

On the other hand, there exists n1 > 1 such that, for n > n1 it holds R/
√
λn < δ/2,

so that if |x| ≤ R, then x/
√
λn + Pn ∈ BPn, δ2 and χ(x) ≡ 1. So, for n large we have

|vn|p+1
Lp+1(BR) ≤ λ

− p+1
p−1

n

∫
BR

|un|p+1(x/
√
λn + Pn)dx ≤ λ

1
2−

p+1
p−1

n

∫
BPn,δ

|un|p+1dx

≤ λ
1
2−

p+1
p−1

n |un|p+1
Lp+1(G).

So

Jλn |Nλn (un) = λ
1
2−

p+1
p−1

n

[(
1
2 −

1
p+ 1

)
|un|p+1

Lp+1(G)

]
≥
[(

1
2 −

1
p+ 1

)
|vn|p+1

Lp+1(BR)

]
>

3
4

(
1
2 −

1
p+ 1

)
|U |p+1

Lp+1(R) = 3
4

(
1
2 −

1
p+ 1

)
‖U‖2H1(R) = 3

2m∞(2.4)
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I1

l 2

l 1

l 3
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l 2l 2l 2
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I3

Fig. 2.1. example of a labelling of the edges entering a vertex v as in Step 5 of the proof of
Theorem 1.1.

that contradicts our assumption, thus implying limn infw∈V (G) d(Pn,w) = 0.

Step 4: Given v as in the previous step, we have limn d(Pn,v)
√
λn = 0.

Suppose, by contradiction, that limn d(Pn,v)
√
λn = δ > 0. Define

(2.5) wn(x) := λ
1

1−p
n un

(
x√
λn

)
χl

(
x√
λn

)
for 0 ≤ x/

√
λn ≤ l.

The function wn belongs to H1(R+), and, in analogy with Step 3, we can prove
that wn ⇀ w weakly in H1(R+) and wn → w strongly in Ltloc(R+) for any t ≥ 2
and in C0

loc(R+). Given ϕ ∈ C∞0 ((0,+∞)), for n large we have that the support
spt(ϕ) of ϕ is contained in B l

2
√
λn

and we can prove, as before, that w is a nontrivial
positive solution of (1.3) on R+, although we do not know its value at the origin. By
uniqueness of solutions of (1.3) on R+, we have that w = U(x − x0)χ[0,∞) for some
suitable x0 ∈ R. Since for the maximum point of un it holds Pn

√
λn ≥ δ/2 > 0, we

have that w has a maximum point in (0,+∞), so x0 > 0. At this point we can prove,
similarly to Step 3, that there exists K > 1 such that

Jλn |Nλn (un) > Km∞

which contradicts our hypothesis.
Step 5: v coincides with an extremal vertex.

Suppose, by contradiction that v is a vertex with degree k ≥ 3.
To simplify the notation, let I1 = [0, l1], . . . , Ik = [0, lk] the edges that intersect

in v and let us suppose that for any Ij , coordinates xj are defined on Ij so that v
coincides with xj = 0, as shown in Figure 2.1. Suppose, also, that Pn ∈ I1.

Choose ρ < mink lk and define, for j = 1, . . . , k, ujn := un|Ij and

vjn(x) := λ
1

1−p
n ujn

(
x√
λn

)
χρ

(
x√
λn

)
for 0 ≤ x/

√
λn ≤ ρ.

As before, for any j, {vjn}n is bounded in H1(R+), and converges to some vj weakly
in H1(R+) and strongly in Ltloc(R+) for any t ≥ 2 and in C0

loc(R+).
Given any R > 0, there exists n sufficiently large such that R < ρ

√
λn/2, so on

[0, R] we have that vjn(x) ≡ λ
1

1−p
n ujn

(
x√
λn

)
. Now, since un solves (1.6), we have that

(vjn)′′ = vjn − (vjn)p on [0, R]
11



and, since vjn → vj in C0([0, R]), and by the arbitrariness of R we have that vjn → vj

in C0
loc(R+) for all j.
Finally vj is a nontrivial positive solution of (1.3) on R+, so

vj(x) = U(x− xj)χ[0,+∞) for some xj ∈ R.

We can prove that xj = 0 for all j. In fact, we have that Pn is a maximum point for
un, so Pn

√
λn is a maximum point for v1

n, so (v1
n)′(Pn

√
λn) = 0. Since, by Step 4,

Pn
√
λn → 0 , we have that (v1)′(0) = 0 for C2 convergence. Thus x1 = 0. Moreover

ujn(0) = u1
n(0) for any j by continuity of un. Then also vjn(0) = v1

n(0) and, passing to
the limit in n, also that vj(0) = v1(0) for any j. Thus xj = 0 for all j, since U has
a unique maximum. At this point, note that, adapting the argument in Step 3, one
obtains that, for every j = 1, . . . , k and for sufficiently large n

‖vjn‖
p+1
Lp+1(BR) >

3
4‖U‖

p+1
Lp+1(R+) ,

where BR is a suitable neighborhood of the origin in R+. Since the previous estimate
is the analogue of (2.3), proceeding as in (2.4) leads to

Jλn |Nλn (un) ≥3k
4

(
1
2 −

1
p+ 1

)
‖U‖2H1(R+)

=3k
8

(
1
2 −

1
p+ 1

)
‖U‖2H1(R) = 3k

4 m∞ > m∞

being k ≥ 3, i.e. a contradiction.

Step 6: un has a unique maximum. Moreover, this maximum coincides with v.
By contradiction, suppose that un has another maximum point Qn 6= Pn. By the

previous step, up to subsequences, it is possible to prove that there exists a terminal
vertex w in G such that limn d(Qn,w)

√
λn = 0. Moreover, one can check that w

must coincide with v, otherwise Jλn |N > 3
2m∞.

Thus limn d(Qn,v)
√
λn = 0. At this point, let wn be as in (2.5) in Step 4

wn(x) = λ
1

1−p
n un

(
x√
λn

)
χl

(
x√
λn

)
for 0 ≤ x/

√
λn ≤ l

and, setting pn = Pn
√
λn, qn = Qn

√
λn, we have

(2.6) pn, qn → 0 as n→∞, and w′n(pn) = w′n(qn) = 0.

By the previous steps it holds wn(x) → U(x)χ[0,+∞) in C2
loc(R+), thus implying

w′′(0) < 0. On the other hand, in light of (2.6) we have w′′(0) = 0 which gives us a
contradiction.

We can prove that Pn ≡ v exactly with the same argument, using the fact that
u′n(v) = 0 since un solves (1.6).

Step 7: wn(x)→ U(x)χ[0,+∞) in C0(R+).
With the same argument of Step 6, we can prove also that un cannot have any

local maximum point other than v. So we get that un is monotone on the graph and
consequently that wn is monotone on [Pn

√
λn,+∞). Now, given ε > 0 there exists

12



an R = R(ε) such that U(R) ≤ ε/4. Moreover, there exists n̄ = n̄(R) such that, for
n > n̄, ‖wn − U‖C0([0,R]) ≤ ε/4. So

(2.7) ‖wn − U‖C0(R+) ≤ ‖wn − U‖C0([0,R]) + ‖wn‖C0([R,+∞)) + ‖U‖C0([R,+∞))

≤ ‖wn − U‖C0([0,R]) + wn(R) + U(R)
+ ≤ ‖wn − U‖C0([0,R]) + |wn(R)− U(R)|+ 2U(R)

≤ 2‖wn − U‖C0([0,R]) + 2U(R) ≤ ε.

Step 8: Proof of Claims 1–2–3.
The proof of Claims 1 and 2 of the Theorem is a direct consequence of the previous

steps. Moreover by Step 7∥∥∥∥λ 1
1−p
n un|I

(
x√
λn

)
− U(x)

∥∥∥∥
C0([0,l

√
λn/2])

→ 0

and by a change of variable we obtain Claim 3.

Step 9: proof of Claim 4.
Let l1 ∈ (0, l) be given. First, we can repeat the argument of the previous steps to

prove that un has no local maximum point except for the extremal vertex. Therefore,
un is strictly decreasing on any edge of the graph.

Given again as in (2.5)

wn(x) := λ
1

1−p
n un

(
x√
λn

)
χl

(
x√
λn

)
for x ≥ 0,

by Step 7 we have wn(x)→ U(x)χ[0,+∞) in C2
loc(R+) and, by definition, there exists

a constant C0 for which
U ≤ C0e

−x for x > 0.
Now, fix 0 < ε < 1/4 and choose R = 2 log(C0/ε). Then there exists n̄ = n̄(ε) such
that

‖wn − U‖C2[0,R] ≤ ε for n ≥ n̄.
We have that

(2.8) wn(x) ≤ 2ε on R/2 ≤ x ≤ R,

indeed
wn(x) ≤ U(x) + ε ≤ C0e

−R/2 + ε ≤ 2ε.
Now (2.8) implies, by rescaling, that

un

(
x√
λn

)
χl

(
x√
λn

)
≤ 2λ

1
p−1
n ε on R/2 ≤ x ≤ R,

so that, since R√
λn
≤ l

2 for n large, we have

un (y) ≤ 2λ
1
p−1
n ε on R

2
√
λn
≤ y ≤ R√

λn
,

and, un being strictly decreasing,

(2.9) un (y) ≤ 2λ
1
p−1
n ε on R

2
√
λn
≤ y ≤ l.

13



Now, un solves
u′′n −

(
λn − up−1

n

)
un = 0 on 0 ≤ y ≤ l

and, by (2.9) and since ε ≤ 1/4, there exists a > 0 independent from n such that

λn − up−1
n ≥ λn

(
1− (2ε)p−1) ≥ aλn on R

2
√
λn
≤ y ≤ l.

Since it is well–known (see Lemma 2.4 of [25]) that, whenever

u′′ − λnq(x)u = 0 on 0 < l1 ≤ x ≤ l, q ≥ a,

there exist two constants c1, c2 > 0, independent of λn, such that

u(x) ≤ c1λ
1
p−1
n e−c2

√
λnx

for every l1 ≤ x ≤ l, we conclude.
Corollary 2.1. We have

lim
λ→∞

mλ = m∞.

Proof. By (2.2) we have limλ→∞mλ ≤ m∞. To prove the reverse inequal-
ity, assume by contradiction that there exists a sequence {un}n of solutions with
limn Jλn |Nλn (un) < m∞, and, as in the proof of the previous theorem, we have

wn → U in Lp+1
loc (R+) ,

wn being given by (2.5). Now, for any η, there exists an R = R(η) > 0 such that

|U |p+1
Lp+1([0,R]) > (1− η)|U |p+1

Lp+1(R+)

and, since wn → U in Lp+1([0, R]) there exists n0 > 1 such that

|wn|p+1
Lp+1([0,R]) > (1− 2η)|U |p+1

Lp+1(R+) for n > n0.

At this point we can proceed similarly to (2.4), obtaining

Jλn |Nλn (un) ≥ (1− 2η)m∞.

The arbitrariness of η provides the contradiction.

3. Construction of peaked solutions. In order to perform the finite dimen-
sional reduction, we have to linearize Problem (1.3) around the solution U and to
study the null space of the linearized problem, that is the set of solutions to the
Neumann boundary value problem

(3.1)
{
−ψ′′ + ψ = pUp−1ψ in R+

ψ′(0) = 0.

While the equation −ψ′′+ψ = pUp−1ψ in R has a one-dimensional space of solutions
generated by Z(t) = U ′(t), it is easy to show that problem (3.1) has only the trivial
solution, due to the boundary condition.

14



For a given compact graph G, we then consider the compact immersion

iλ :
(
H1(G), 〈, 〉λ

)
→
(
L2(G), 〈, 〉L2

)
and define its adjoint map

i∗λ :
(
L2(G), 〈, 〉L2

)
→
(
H1(G), 〈, 〉λ

)
such that

〈i∗λ(f), v〉λ = 〈f, v〉L2 for all v ∈ H1(G) ,

or equivalently

u = i∗λ(f)⇔ u solves
{
−u′′ + λu = f in G∑
e�v

due
dx (v) = 0 ∀v ∈ V .

3.1. One peaked solutions. We construct now a model profile for a solution
which has a peak on the extremal vertex v1 (the vertex of degree 1) of the first
edge I1 = [0, l1]. We suppose, without loss of generality that v1 corresponds to the
coordinate x = 0. We define

Uλ(x) =
{

λ
1
p−1U

(√
λx
)

on [0, l1]
0 elsewhere

and, given a cut off function χ := χl(x), with l < l1, we define

(3.2) Wλ(x) = χ(x)Uλ(x)

and we search a solution of (1.6) of the form u = Wλ(x) + φ, φ being a small error in
H1(G). To improve the readability of the paper, herafter we denote

f(s) := (s+)p,

so a solution of (1.6) can be written as

(3.3) Wλ + φ = i∗λ(f(Wλ + φ)).

We define a linear operator

Lλ : H1(G)→ H1(G)
Lλ(φ) = φ− i∗λ(f ′(Wλ)φ)

and we recast equation (3.3) as

Lλ(φ) = Nλ(φ) +Rλ

where
Nλ(φ) := i∗λ [f(Wλ + φ)− f(Wλ)− f ′(Wλ)φ]

Rλ := i∗λ(f(Wλ))−Wλ.

The following result implies the invertibility of Lλ for λ sufficiently large.
Lemma 3.1. There exists λ0, c > 0 such that ∀λ > λ0, ∀φ ∈ H1(G) it holds

‖Lλ(φ)‖λ ≥ c‖φ‖λ
15



Proof. We proceed by contradiction, assuming that there exist a sequence λn →
∞ and a sequence of functions φn ∈ H1(G) such that ‖φn‖λ = 1 and

‖Lλn(φn)‖λn → 0.

By definition of Lλ we have

φn − Lλn(φn) = i∗λn(f ′(Wλn)φn)

that is {
− (φn − Lλn(φn))′′ + λn (φn − Lλn(φn)) = f ′(Wλn)φn on G∑

e�v
d(φn−Lλn (φn))

e

dx (v) = 0 ∀v ∈ V

and, setting zn := φn − Lλn(φn), and hn := Lλn(φn) we get

(3.4)
{
−z′′n + λnzn = f ′(Wλn)zn + f ′(Wλn)hn on G∑

e�v
dze
dx (v) = 0 ∀v ∈ V .

Also, we have

(3.5) ‖zn‖2λn = ‖φn‖2λn + ‖Lλn(φn)‖2λn − 2 〈φn,Lλn(φn)〉λn → 1

and, on the other hand,

‖zn‖2λn =
∫
G

(z′n)2
dx+ λn

∫
G

(zn)2
dx

=
∫
G

(−z′′n + λnzn) zndx+
∑
v∈V

∑
e�v

z′n(v)zn(v).

In light of (3.4) we have that
∑
e�v z

′
n(v)zn(v) = 0 for all v ∈ V , and, since Wλn = 0

outside the first edge I1, also that −z′′n + λnzn = 0 on Ie, e 6= 1. Thus

‖zn‖2λn =
∫
I1

(−z′′n + λnzn) zndx =
∫
I1

f ′(Wλn)z2
n + f ′(Wλn)Lλn(φn)zndx,

and, since Lλn(φn)→ 0 in H1(G) and by (3.5), we have

(3.6)
∫
I1

f ′(Wλn)z2
n → 1 while n→∞.

On the edge I1 we consider the rescaling s = x
√
λn and we set

z̃n(s) = λ1/4
n zn

(
s√
λn

)
for s ∈ [0, l1

√
λn].

Of course
z̃′n(s) = λ

− 1
4

n z′n

(
s√
λn

)
and z̃′′n(s) = λ

− 3
4

n z′′n

(
s√
λn

)
and, recalling the definition (3.2) of Wλ, and (3.4),

−z̃′′n(s) + z̃′n(s) = pχp−1
(

s√
λn

)
Up−1(s)

[
z̃n(s) + h̃n(s)

]
for s ∈ [0, l1

√
λn]
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where h̃n(s) := λ
1
4
nhn

(
s√
λn

)
. Moreover it holds, for some constant C > 0,

(3.7) ‖z̃n‖H1([0,l1
√
λn]) ≤ C,

since ∫ l1
√
λn

0
|z̃′n(s)|2 + z̃2

n(s)ds =
∫ l1

0
|z′n(x)|2 + λnz

2
n(x)dx ≤ ‖zn‖2λn

which is bounded by (3.5). Analogously

‖h̃n‖H1([0,l1
√
λn]) ≤ ‖hn‖λn → 0.

By (3.7) we have that there exists a function z̃ defined on R+ such that, for every
fixed T > 0,

z̃n → z̃ a.e. in R+

z̃n → z̃ in Lp([0, T ]) for all q > 1
z̃n ⇀ z̃ weakly in H1([0, T ]).

We can show, indeed, that z̃ ∈ H1([0, T ]). Consider

ζn = z̃nχ

(
s√
λn

)
.

Since λn → ∞ we have that ‖ζn‖H1(R+) ≤ C‖z̃n‖H1([0,l1
√
λn]) ≤ C, thus ζn admits a

weak limit in H1(R+). Also, ζn = z̃n on [0, δ
√
λn], so ζn ⇀ z̃ weakly in H1(R+) and

z̃ ∈ H1(R+).
Now, take a function ϕ ∈ C∞(R+) and let T > 0 be such that the support of ϕ

is contained in [0, T ], so that∫
[0,T ]

(−z̃′′n(s) +z̃′n(s))ϕ(s)ds

=
∫

[0,T ]
p

(
χp−1

(
s√
λn

)
Up−1(s)

[
z̃n(s) + h̃n(s)

])
ϕ(s)ds

=
∫

[0,T ]
pUp−1(s)z̃n(s)ϕ(s)ds+ o(1) .

Integrating by parts the first term and passing to the limit we have that∫
R+
z̃′(s)ϕ(s) + z̃′(s)ϕ(s)ds =

∫
R+
pUp−1(s)z̃(s)ϕ(s)ds.

Since ϕ is arbitrary, we have that z̃ is a solution of (3.1), so z̃ ≡ 0. Moreover, extending
by zero z̃n to the whole half line, we have z̃n ⇀ 0 in L2(R+), thus

p

∫ l1
√
λn

0
Up−1(s)z̃2

n(s)ds = p

∫
R+
Up−1(s)z̃2

n(s)ds→ 0.

This leads to a contradiction in light of (3.6), since

p

∫ l1
√
λn

0
Up−1(s)z̃2

n(s)ds ≥ p
∫ l1

√
λn

0
χp−1

(
s√
λn

)
Up−1(s)z̃2

n(s)ds

=
∫ l1

0
f ′(Wλn)z2

ndx→ 1.

This concludes the proof.
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Proposition 3.2. We have ‖R‖λ ≤ λ−α for any α > 0.
Proof. Take V = i∗λ(f(Wλ)). Then we have, by direct computation, that

−(V −Wλ)′′(x) + λ(V −Wλ)(x) = (χp − χ)(x)λ
p
p−1Up(x

√
λ)

− λ
1
p−1χ′′(x)U(x

√
λ)− 2λ

1
p−1
√
λχ′(x)U ′(x

√
λ)(3.8)

and V ′(0) = 0. Thus, multiplying (3.8) by V −Wλ, and integrating by parts we have

‖R‖λ = ‖V −Wλ‖λ ≤ Cλ
p
p−1 |(χp − χ)(x)Up(x

√
λ)|L2([0,l1])

+ Cλ
1
p−1 |χ′′(x)U(x

√
λ)|L2([0,l1]) + Cλ

1
p−1
√
λ|χ′(x)U ′(x

√
λ)|L2([0,l1])

=: I1 + I2 + I3.

By a change of variables, and since U(x) decays exponentially in x, we have

I2
1 ≤ Cλ

2p
p−1

∫ 2δ

δ

U2p(x
√
λ)dx = Cλ

2p
p−1−

1
2

∫ 2δ
√
λ

δ
√
λ

U2p(s)ds

≤ Cλ
3p+1

2(p−1)

∫ 2δ
√
λ

δ
√
λ

e−2psds ≤ Cλ
3p+1

2(p−1)

[
−e
−2ps

2p

]2δ
√
λ

δ
√
λ

≤ Cλ
3p+1

2(p−1) e−2pδ
√
λ.

In the same way we can proceed for I2 and I3, obtaining the claim.
Proof of Theorem 1.2. We look for a solution of (3.3) in the form Wλ + φ, where

Wλ is defined in (3.2). This corresponds to find a fixed point of the map

Tλ :H1(G)→ H1(G)
Tλ(φ) :=L−1

λ (Nλ(φ) +Rλ) .

We prove that T is a contraction on
{
φ ∈ H1(G), ‖φ‖λ ≤ cλ−α

}
for some positive

α, c. By Lemma 3.1, there exists c > 0 such that

‖Tλ(φ)‖λ ≤ c (‖Nλ(φ)‖λ + ‖Rλ‖λ)
‖Tλ(φ1)− Tλ(φ2)‖λ ≤ c (‖Nλ(φ1)−Nλ(φ2)‖λ) .

By the mean value theorem and by the properties of i∗λ there exists 0 < θ(x) < 1 such
that

‖Nλ(φ1)−Nλ(φ2)‖2λ ≤ c
∫
G

[
(Wλ + φ2 + θ(φ1 − φ2))p−1 − (Wλ)p−1]2 (φ1 − φ2)2

dx,

so, if ‖φi‖λ is small enough, then also |φi|L2(G) is small and we can find a constant
0 < K < 1 such that

‖Nλ(φ1)−Nλ(φ2)‖λ ≤ K‖φ1 − φ2‖λ .

In a similar way we can prove that, if ‖φ‖λ is small enough, by Proposition 3.2

‖Tλ(φ)‖λ ≤ c (‖Nλ(φ)‖λ + ‖Rλ‖λ) ≤ c
(
‖φ‖2λ + λ−α

)
.

Then there exists c > 0 such that Tλ maps a ball of center 0 and radius cλ−α in
H1(G) into itself and it is a contraction. So there exists a fixed point φλ with norm
‖φλ‖λ = O(λ−α).
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At this point we proved that (1.6) has a one-peaked solution u = Wλ + φ, with
‖φλ‖λ = O(λ−α). To conclude the proof we compute the L2 norm of the solution,
that is

|u|2L2(G) = C|Wλ|2L2(G) + l.o.t. = C

∫ l1

0
U2
λ(x)χ2(x)dx+ l.o.t.

= Cλ
5−p

2(p−1)

(
|U |2L2(R+) + o(1)

)
.

which concludes the proof.

3.2. Multipeaked solutions. Let us now consider a graph G which has at
least k vertices v1 . . . ,vk of degree 1, and we construct a solution of (1.6) which has
a positive peak on any vertex vi, i = 1, . . . , k. Without loss of generality we suppose
that each vertex vi, i = 1, . . . , k lies on of the edge Ii = [0, li] and that vi corresponds
to the coordinate x = 0.

The strategy of the proof is similar to the previous one, so we only underline the
differences. We define

(3.9) Wλ(x) =
k∑
i=1

χi(x)Uλ,i(x)

where
Uλ,i(x) =

{
λ

1
p−1U(x

√
λ) on [0, li]

0 elsewhere
and, χi := χδ,i(x) is a cut off function which is 1 on [0, δ/2] ⊂ [0, li] and 0 on [δ, li]
and on every other edge Ij , j 6= i. Here δ < mini li.

It is clear that Wλ(x) ∈ H1(G). As before, we look for a solution of (1.6) of the
form u = Wλ(x) + φ, φ being a small error in H1(G). We can prove the invertibility
of the operator Lλ as follows.

Lemma 3.3. There exist λ0, c > 0 such that ∀λ > λ0, ∀φ ∈ H1(G) it holds

‖Lλ(φ)‖λ ≥ c‖φ‖λ .

Proof. As before, we proceed by contradiction, assuming that there exist a se-
quence λn → ∞ and a sequence of functions φn ∈ H1(G) such that ‖φn‖λ = 1 and
‖Lλn(φn)‖λn → 0.

Setting zn := φn − Lλn(φn) and hn := Lλn(φn), we can prove as in Lemma 3.1
that zn solves equation (3.4) and that ‖zn‖2λn → 1 as n→∞. Since Wλn = 0 outside
the first k edges I1, . . . , Ik, we have

(3.10) ‖zn‖2λn =
k∑
i=1

∫
Ii

(−z′′n + λnzn) zndx =
k∑
i=1

∫
Ii

f ′(Wλn)z2
ndx+ o(1).

This means that there is at least one edge Iī such that

(3.11)
∫
Iī

f ′(Wλn)z2
ndx 6→ 0 .

Letting now zn,̄i = zn|Iī , we can define the functions

z̃n(s) = λ1/4
n zn,̄i

(
s√
λn

)
for s ∈ [0, l̄i

√
λn]
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and we can repeat the argument of Lemma 3.1 to prove that z̃n ⇀ 0 in L2(R+) as
n→∞. This contradicts (3.11).

Proposition 3.4. We have ‖R‖λ ≤ λ−α for any α > 0.
Proof. As in Proposition 3.2, we take V = i∗λ(f(Wλ)), where Wλ is defined in

(3.9). Then we find that V −Wλ solves the following differential equation

(3.12) − (V −Wλ)′′(x) + λ(V −Wλ)(x) =
k∑
i=1

(χpi − χi)(x)λ
p
p−1Up(x

√
λ)

− λ
1
p−1

k∑
i=1

χ′′i (x)U(x
√
λ)− 2λ

1
p−1
√
λ

k∑
i=1

χ′i(x)U ′(x
√
λ)

which leads to the same conclusion of Proposition 3.2.
Proof of Theorem 1.3. The proof of this theorem is verbatim the proof of Theo-

rem 1.2.
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