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Learning Action Duration and Synergy in Task Planning for
Human-Robot Collaboration

Samuele Sandrini1, Marco Faroni1, Nicola Pedrocchi1

Abstract—A good estimation of the actions’ cost is key in
task planning for human-robot collaboration. The duration of an
action depends on agents’ capabilities and the correlation between
actions performed simultaneously by the human and the robot.
This paper proposes an approach to learning actions’ costs and
coupling between actions executed concurrently by humans and
robots. We leverage the information from past executions to learn
the average duration of each action and a synergy coefficient
representing the effect of an action performed by the human
on the duration of the action performed by the robot (and vice
versa). We implement the proposed method in a simulated scenario
where both agents can access the same area simultaneously. Safety
measures require the robot to slow down when the human is
close, denoting a bad synergy of tasks operating in the same area.
We show that our approach can learn such bad couplings so that
a task planner can leverage this information to find better plans.

Index Terms—Human-Robot Interaction; Task And Motion
Planning; Task planning; Learning for task planning.

I. INTRODUCTION

Human-Robot Collaboration (HRC) often requires the system
to make decisions based on human users’ observed or predicted
behavior. In such a context, planning and allocating tasks to the
human and robot agents are two complex problems, even for
tasks composed of a few activities. Two modelling issues are
essential. First, human behavior is intrinsically unpredictable
and partially uncontrollable [1]. Second, the coupling between
the human and the robotic agents is characterized by a large
variability. For example, the feasibility and the duration of
an action may vary because of the interference between the
human and the robot (e.g., safety stops of the robot or even
due to path-switch in motion re-planning [2]).

In recent years, task planning and allocation problems for
HRC have been investigated. Existing works tried to model
human preferences explicitly and ergonomics into planning
[3]. For example, [4], [5] proposed a hierarchical agent-based
task planner, where complex tasks can be decomposed into
simpler actions. This approach can improve the collaborative
experience by considering human preferences as social costs [6],
[7]. Manufacturing-oriented works focus on process throughput
by minimizing the expected duration [8] or planning contingent
plans to reduce process errors [9], [10]. A promising approach
to deal with uncertainty on the task duration is timeline-based
planning [11]. Timeline-based planning explicitly models the
duration variability of tasks and finds plans that are robust with
respect to it. Timeline-based planning was used in HRC with
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pre-computed robot motions [12], and online motion planning
[13], demonstrating robust plans allow for less frequent re-
planning and shorter average task duration.

Most planning-based methods assume a guess of the action
cost (e.g., the duration) is available from a domain expert.
If this information is unreliable, the task planner reasons on
wrong assumptions so that the resulting plans become sub-
optimal or even infeasible (leading to frequent re-planning
when using a motion re-planner such as [2]). Moreover, the
duration guess does not consider possible couplings between
the tasks executed concurrently by the human and the robot.
Therefore, the task planner neglects each agent’s positive or
negative effects on the others. For example, if concurrent tasks
require the human and the robot to work in the same area, the
robot would probably slow down because of safety. If the task
planner knew this effect, it could favour pairs of tasks that
avoid robot safety slowdowns.

In this work, we propose a method to learn the expected
duration of a joint plan. We leverage a minimum-time formu-
lation of the task planning/allocation problem for HRC. Then,
we estimate the expected duration of each task from previous
executions and learn a synergy coefficient that represents the
effect of one task over the other. A synergy coefficient greater
than one means that the human task causes a slow down of the
robot task. We show that it is possible to cast the estimation
of the synergy coefficients into a set of linear regression
problems (one for each task). The resulting synergy coefficients
can be exploited in task planning and allocation method to
select advantageous task couplings. The proposed approach
can be used offline – to obtain a guess of the task duration
and synergies – or iteratively as the number of executions
grows to refine the initial guess over time. We demonstrate the
proposed approach in an HRC scenario where a human and a
collaborative robot shall perform a sequence of pick-and-place
operations. Experiments show that pairs of tasks that drive the
nearby agents lead to high synergy coefficients, recognizing
favorable and unfavourable pairs.

The paper is organized as follows. Section II defines the
task planning problem for HRC systems. Section III builds on
that model to formulate the task expected duration in terms of
average duration and synergy coefficients. Then, it casts the
estimation of such coefficients into a set of linear regression
problems. Section IV describes the software architecture to
collect and process the data from task executions. Section
V applies the proposed methodology to the manufacturing
example and shows that the resulting coefficients reflect the
good and bad coupling effects of robot safety stops. Finally,
conclusions and future works are discussed in Section VI.



II. PRELIMINARIES

A. Task Planning Problem

A task planning problem can be formalized as an optimiza-
tion problem. Given a set {H,R} of agents, i.e., human and
robot, and a set of Tasks T = {τi}, the objective of the problem
is to obtain a task plan and assignment π that minimizes the
duration of the process.

We denote a task by a tuple τ = (l, d, t), in which:

• l ∈ {H,R} is an assignment variable that specifies which
agent can perform the specific task, i.e., human, or robot;

• d ∈ R+ is a guess of the task duration;
• t =

[
tstart ; tend

]
is an interval with endpoints correspond-

ing to the start and end time.

We refer to T H and T R as the subsets of T such that l = H
and l = R, respectively.

In this context, it is possible to introduce a binary assignment
variable that defines the allocation of τi ∈ T to the robot (aRi )
or to the human (aHi ):

aRi =

{
1, if task τi is assigned to the robot
0, otherwise

aHi =

{
1, if task τi is assigned to the human
0, otherwise.

(1)

The duration of a plan π is the maximum between the duration
of the robot’s and the human’s plan, denoted by dHπ and dRπ
respectively. The duration of each agent’s plan can be calculated
as:

dHπ =
∑
i

dHi aHi

dRπ =
∑
i

dRi a
R
i

(2)

By defining a cost function J that represents the duration of a
plan π as:

J = max{dHπ , dRπ } (3)

the optimal plan π∗ is:

π∗ = argmin
π

J (4)

subject to the constraint that τi ∈ T can only be assigned
during π:

aHi + aRi = 1 ∀ i s.t. τi ∈ T (5)

and assignment, temporal, and causal constraints owed to the
process requirements1.

1If (4) only involves assignment constraints, the problem is a task allocation;
if causal and/or temporal constraints are considered, the problem becomes a
task planning&scheduling problem.

III. METHODOLOGY

The task planning problem assumes that a guess of the task
duration exists. A domain expert usually provides this guess.
However, this information is often unreliable and comes with a
sizeable unmodeled uncertainty. Moreover, it does not account
for the effect of the task performed by other agents. Indeed, the
task duration is a function of the tasks executed simultaneously
by the other agent, i.e.:

dRi = dRi (τ
H
j ) ∀ j s.t. τHj : tHj ∩ tRi ̸= ∅

dHi = dHi (τRj ) ∀ j s.t. τRj : tRj ∩ tHi ̸= ∅

where τHj and τRj are tasks assigned to humans and robots. If
the coupling between tasks is not modelled, the optimal task
(4) may be unreliable when executed on the real-world system.
To overcome this problem, we extend the formulation given in
II-A to include a synergy coefficient in the task duration.

A. Task Planning Problem with Explicit Task Coupling

For each couple of task indices (i, j), a synergy term is
introduced for each agent and denoted with sRi,j for the robot
agent and sHi,j for the human agent. The synergy term denotes
the increment of the duration of task τi when executed by the
robot while the human is executing task τj . We define this
coefficient as:

sRi,j =
dRi,j

d̂Ri
(6)

where dRi,j is the expected duration of task τi when the human
executes τj and d̂Ri is the expected value of the duration of
τRi for all concurrent tasks τHj . Thus, the duration of a plan π
becomes:

dRπ =
∑
i

d̂Ri a
R
i

(∑
j

sRi,jδ
R
i,ja

H
j

)
(7)

where δRi,j represents the ratio of the overlapping time between
τRi and τHj with respect to the duration of the task τRi , thus
defined as:

δRi,j =
D(tHj ∩ tRi )

D(tRi )
(8)

and D is a function that calculates the duration of a temporal
interval t = [tstart, tend]:

D(t) =

{
tend − tstart, if t ̸= ∅
0, if t = ∅

(9)

Equations (6), (7), (8) can be rewritten for the human agent
as:

sHi,j =
dHi,j

d̂Hi
(10)

δHi,j =
D(tRj ∩ tHi )

D(tHi )
(11)

dHπ =
∑
i

d̂Hi aHi

(∑
j

sHi,jδ
H
i,ja

R
j

)
(12)



Using (7) and (12) in (3), a task planning can minimize
the process duration taking into account the coupling effect
between concurrent tasks.

B. Synergy and duration estimation

We estimate both task duration and synergy coefficients from
experience. Given n executions of a task τi, we approximate
its duration with its expected value:

d̂Ri ≈ E
[
dRi |k

]
∀ k = {1, . . . , n}

d̂Hi ≈ E
[
dHi |k

]
∀ k = {1, . . . , n}

(13)

where dRi |k and dHi |k are the task duration measured in
execution k.

Furthermore, it is possible to formalize the problem of
estimating task synergy coefficients as a least-square regression
problem. For each sample k:

D(tHi )
∣∣∣
k
=

m∑
j=1

δHi,j

∣∣∣
k
sRi,jd

R
i + Tidle

∣∣∣
k

(14)

where Tidle is the time when the robot is not assigned to any
task during τHi and m = |T R| . Equation (14) can be written
in matrix form as:

DH
i = RRSR

i +Tidle (15)

where:
• DH

i ∈ Rn×1 is a column vector containing the human
execution task duration D(tHi )

∣∣∣
k
;

• RR ∈ Rn×m is the regression matrix, which takes the
following form:

RR =



δHi,1

∣∣∣
1

· · · δHi,m

∣∣∣
1

...
. . .

...

δHi,1

∣∣∣
k

· · · δHi,m

∣∣∣
k

...
. . .

...

δHi,1

∣∣∣
n

· · · δHi,m

∣∣∣
n


dRi (16)

• SR
i ∈ Rm×1 is a column vector containing the synergy

coefficients to be estimated:

SR
i =

[
sRi,1 sRi,2 · · · sRi,m

]T
(17)

• Tidle ∈ Rn×1 is a column vector containing the robot idle
times Tidle

∣∣∣
k
.

In conclusion, the solution of the regression problem in (15)
is obtained from the following:

SR
i =

(
RRT

RR
)−1

RRT
[
DH

i −Tidle

]
. (18)

and using the same nomenclature for the human agent:

SH
i =

(
RHT

RH
)−1

RHT
[
DR

i −Tidle

]
. (19)

Fig. 1: Proposed framework architecture.

IV. PROPOSED FRAMEWORK ARCHITECTURE

Figure 1 shows the software architecture developed to
measure and estimates action duration and synergies for real-
world deployment of our approach.

The Task planner is at the highest level and has a symbolic
knowledge of the tasks to execute. Based on the temporal con-
straints between tasks (i.e., precedence) and a-priori durations
information, it computes the optimized plan, the scheduling,
and the assignment of tasks to agents. This information is
used by the dispatcher, which receives the plan and sends
the request at a lower level; finally, it waits for the result to
proceed with the remaining part of the plan.

The task planner interface module is at the middle layer. The
first module component is the task manager, which receives
the task request from the dispatcher and queries the database to
check for properties associated with the requested symbolic task.
In a positive case, the task manager sends the task execution
request to the task executor of the agent specified by the task
planner. When feedback comes from the underlying layer, the
task manager module interacts with the database to update
the task results. The core of the task planner interface is a
database representing the high-level updated Knowledge-Base.
The database stores information used at different levels: the
definition of high-level task properties, run-time information of
duration execution, statistical information of expected duration,
and synergy of concurrent tasks between agents.

At the lowest level, there is the single-agent task executor,
which converts symbolic information associated with tasks into
geometric targets. First, it interacts with the database to retrieve
the action type (e.g., pick, place, go to) and the symbolic
goal associated with the task. This layer has a geometric
knowledge of the system and translates the symbolic goal
into a sequence of robot movements. To do so, it knows the
locations of symbolic goals, integrates a motion planner, and



Fig. 2: Software Implementation.

may include an action planner such as in [13]. Once the task
execution is finished, the feedback is sent to the layer above.

The task manager sends the task request to an HMI interface,
which communicates to the HMI the information of the task to
be executed and waits for the confirmation of execution. Then,
it sends the feedback to the task manager.

The advantage of this architecture is that, through the
presence of the database, it is possible to keep the tasks’
representation up-to-date, on which the high-level planning is
based. So, it is possible to update actions’ costs based on the
experience of executions. For this purpose, the task planner
statistics module calculates the estimated duration and task
synergy as described in Section III-B.

A. Software implementation

The functional architecture presented in Section IV was
developed as a hybrid Python/C++ library based on ROS [14].

Software development focused on the task planner interface
level. The crossroads component is the task service manager. As
shown in Figure 2, this node exploits the Publisher-Subscriber
communication to receive the task execution request from the
dispatcher and then send back the feedback.

The communication with the database occurs through an
interface node that acts as a service server for the task service
manager: a service checks for the existence of task properties
associated with the symbolic task, and another service saves
the execution results from the layer below.

Communication with the underlying layer, i.e., task execution
nodes, takes place according to the client-server action model.
The task service manager sends a goal containing a symbolic
task name of the task to be executed and waits for the results,
e.g., duration, task type, and agent information.

The database is composed of different collections, each
dedicated to storing different information:

• task properties: for each task, it stores a symbolic identifier,
the type of action associated with it (e.g., pick, place, go
to), a textual description, the agents that can execute it,
and the symbolic goals associated with it.

• Task results: it is updated in real-time with information
from the lower layers about the execution time and the
success or failure of the task.

• Task duration: it contains the information of expected
durations and standard deviation associated with each
symbolic task.

• Task synergy: for each pair of tasks, it contains the result
of the estimation described in Section III-B.

Notice that both Task duration and Task synergy can be updated
synchronously or asynchronously.

In this framework, MongoDB was used as the database [15].
In addition, PyMongo library was used for interaction with
MongoDB database in the so-called Mongo-DB interface node
shown in Figure 2.

At the lowest level, the task-execution node interacts with
the database interface to retrieve the geometric goal associated
with the task. It acts as a client of the manipulation framework
[16], to which it sends requests, specifying the type of action
to be performed. The manipulation framework defines the
sequence of movements required to perform the requested
action, solves the corresponding motion planning problem, and
finally executes the action.

Finally, the task planner statistics node is independent of
the framework information flow and provides ROS-Services
to update the task duration and the task synergy collections
and make statistical charts. These services can be called
synchronously or asynchronously concerning the information
flow of the framework.



Fig. 3: Simulated cllaborative workcell

V. EXPERIMENTS

We test our approach in a simulated case study of a
collaborative workcell (Figure 3) composed of a collaborative
robot, UR5, mounted on a linear axis and a human operator.
The agents share a portion of the workspace, defining a
collaborative workspace. There are six white cubes on the
work table accessible only by the human operator, six orange
cubes on the work table accessible by the robot, and six blue
cubes within the collaborative work area accessible by both
agents. Thus, humans can handle only white and blue objects,
while robots can handle only orange and blue objects.

Each agent has a dedicated object release area, as illustrated
in Figure 3. The process goal is that: (i) the robot picks four
orange and two blue boxes by placing them in its release
area; (ii) the human picks four white and two blue boxes by
arranging them in its release area. Therefore, the set of tasks
that the human and the robot can perform is defined by:

T H = {Pick Orange Box,Place Orange Box,
Pick Blue Box (H),Place Blue Box (H)} (20)

T R = {Pick White Box,Place White Box,
Pick Blue Box (R),Place Blue Box (R)} (21)

where T = T H ∪ T R.
The process requires access to the same work area, especially

during a simultaneous execution of the Pick Blue Box and Place
Blue Box tasks. The symbolic goal associated with each task
does not refer to a specific pick or place slot. Thus, the choice
of the best slot associated with a symbolic goal is performed
by the action planner of the manipulation framework [16] at
runtime by solving a multi-goal motion planning problem.

The ISO/TS 15066 [17] is applied to ensure safety. Three
collaborative areas are defined. If any human body part enters
inside the red area, the robot is stopped. If the human enters
the orange area, the robot moves at 50 % of its nominal speed.
Finally, if the human operator moves into the remaining area,
the robot is free to move at its nominal speed.

Fig. 4: Task durations grouped by agent, white circles denote
the mean.

A. Results

In order to estimate the synergy coefficients between tasks,
50 plans are randomly generated respecting the assignment
constraints imposed by the agent’s domains (20) and (21)
and precedence constraints between a pick and place tasks.
A simulation run is performed for each recipe, using the
framework proposed in Section IV: tasks are executed, and the
results are saved to the database.

We exploit the task planner statistics node to calculate the
expected duration and standard deviation for each task (grouped
by type and agent). Results are shown in Figure 4.

For each type of task, outliers are removed using an isolation
forest algorithm to reduce noise from the task results before
synergy coefficients estimation [18].

We use the estimated duration of each task and saved
task results to apply the regression described in (15) and
obtain the synergy coefficients estimation between robot and
human tasks. We obtain the column vector in (17) by applying
the regression for each task. Repeating this procedure for
each task, we obtain the synergy matrix shown in Figure 5
(a heatmap graphically highlighting the positive or negative
synergy between concurrent tasks). The heatmap shows the
synergy coefficients of the robot agent task versus the human
tasks. The tasks of the robot (21) are placed in the rows of the
heatmap, and on the columns are the human tasks (20). An
sRi,j element of the heatmap reports the duration increment of
the robot’s task τi when simultaneous with the human task τj .

If the value sRi,j is greater than 1, it means that task τi
performed by the robot is penalized when it is in parallel with
task τj performed by the human. Vice versa, if sRi,j is smaller
than 1, it means that the coupling between tasks τi and τj is
advantageous in terms of execution time.

The heatmap analysis shows that all the robot tasks are
penalized when the human simultaneously performs the Pick
Blue Box and Place Blue Box tasks. Indeed, when the human
operator executes Pick Blue Box, he accesses a red area close
to the robot, causing the robot to stop. Conversely, the robot
tasks do not slow down or even improve performance when
they are executed in parallel with the human tasks Pick White



Fig. 5: Robot task Synergy Matrix (each row corresponds to
the vector SR

i obtained from (17))

Fig. 6: Synergy coefficients and their standard deviation

Box (which does not cause an access to the collaborative area),
and Place White Box.

Figure 6 also shows the synergy coefficients and their
standard deviation estimates by the regression to validate the
statistical significance of the estimate.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a synergy term that takes into account the
coupling between agent tasks is defined. The synergy coefficient
is contextualized in a generic task planning problem by
including it in the duration cost function.

We validated the approach in a simple HRC scenario where
the positive of negative couplings were intuitive in order to
show that the proposed method can learn the expected good
or bad synergy of pairs of tasks.

Future works will focus on integrating the estimated synergy
term in a task planner to demonstrate the reduction of task
plan duration in complex scenarios.

Alternative strategies will be compared to access the advan-
tages of the proposed approach.
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