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ABSTRACT This paper presents an extension of the Vector Fitting algorithm with the purpose of
constructing compact behavioral models of weakly nonlinear circuits starting from frequency-domain input-
output data. Using the concept of generalized transfer function provided by Volterra series theory for
nonlinear systems, the algorithm approximates a given dataset of generalized transfer function samples with a
black-box multivariate rational model. The fitted model can then be recast into a bilinear state-space form for
time-domain analysis. Practical extraction of the required data samples can be carried out by measurement
or harmonic balance analysis available in commercial solvers. Examples demonstrating the accuracy and
efficiency of the behavioral models include a Low-Dropout Regulator and a Low Noise Amplifier.

INDEX TERMS Behavioral model, nonlinear system, vector fitting, Volterra series, data-driven model,
non-intrusive model reduction, generalized transfer function.

I. INTRODUCTION
Recent developments in electronic systems design have been
driven by the need for powerful yet compact and energy-
efficient devices. As manufacturing technology hits physical
limits to transistor scaling, engineers have turned to alter-
native solutions where functional blocks of heterogeneous
nature such as analog, power, and radio-frequency (RF)
are tightly integrated and operate in close vicinity [1], [2].
This causes unintended electrical interactions due to parasitic
coupling, whose impact should be predicted accurately
through numerical simulation to ensure proper functioning.
In addition, many analog circuit blocks exhibit some degree
of nonlinear behavior, that might be either purposeful (e.g.
in an RF mixer) or just an unwanted higher-order effect in a
circuit that is meant to operate linearly (e.g. an amplifier).

Any numerical simulation and verification process requires
appropriate models of devices, components and their inter-
connection networks. A brute-force approach based on a

The associate editor coordinating the review of this manuscript and
approving it for publication was Ravi Mahajan.

combination of first-principle equations (e.g., Maxwell’s
and/or Kirchhoff’s equations) often yields intractable simu-
lation models, both in terms of memory and time required
to compute their solution. This is especially true when
an entire electronic system made up of several coupled
blocks has to be solved repeatedly in the time domain
(transient analysis) for design verification or optimization.
Therefore, a common trend in Electronic Design Automation
(EDA) over the last few decades aims at reducing such
complexity through behavioral models, intended as reduced-
order compact descriptions of given original high-fidelity
representations. More precisely, a behavioral model should
reproduce reliably the input-output behavior of a physical
device, that is the circuit response to given external stimuli
such as voltage/current inputs or other driving signals.

A plethora of techniques to obtain compact models of elec-
tronic circuits are available. In particular, model reduction
methods based on projection of the circuit equations have
been first put forward for large-scale linear networks [3], [4],
and later extended to nonlinear ones in [5] and [6]. Alternative
techniques are those based on system identification [7],
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which are data-driven algorithms that give a behavioral
model starting from sampled input-output data describing the
circuit behavior, without requiring access to the underlying
system equations. Besides being an efficient way to derive
low-complexity representations from behavioral data, the
data-driven approach is the only option whenever a first-
principles description of the system is unavailable (e.g. out
of intellectual property issues) or difficult to use, for example
in multi-physics simulations or when coupling lumped
circuit representations with distributed elements (field-circuit
simulations).

Among data-driven methods, the Vector Fitting (VF)
algorithm introduced in [8] is an established solution for
building reduced models of linear systems using transfer
function samples obtained from real or virtual frequency-
domain measurements. With VF, these samples are used to
optimize the coefficients of a rational transfer function model
in order to best approximate the data points. VF has found
use in a diverse range of applications including modeling
of electromagnetic structures (printed circuit boards, chip
packages, microwave components), power systems [9], and
even the cardiovascular flow [10]. See [11] for a review.
However, despite the ubiquity of nonlinear phenomena in
electronic circuits, a VF-like solution built on rational fitting
for nonlinear systems is not available yet. This is indeed the
gap that this paper intends to fill. We remark that research
in this direction led to the so-called NL-VF algorithm [12],
[13], whose purpose is however quite different: NL-VF
does not provide a nonlinear dynamical model, but a linear
representation of the map between a set of input excitation
signals to the corresponding output responses, constructed as
a rational transfer function in the Laplace domain.

Modeling of nonlinear systems has been thoroughly
researched in various disciplines and application fields, using
widely different approaches such as block-oriented mod-
els [14], [15] (e.g. Wiener-Hammerstein), NARMAX [16],
Volterra series [17], [18], [19], Machine Learning [20],
Koopman operator theory [21]. Among these, the framework
of the Volterra series for nonlinear system analysis has
attracted enormous interest in engineering fields for a long
time since its introduction. This is because it provides a
rigorous mathematical tool to represent nonlinear systems
(or functionals in its original version) using a series
expansion, with the same intuitive interpretation as the
more familiar Taylor series used to locally approximate
a function.

The Volterra formalism has been successfully used for
several purposes including RF circuit modeling [22], [23],
analog design [24], ADC (Analog-to-Digital Converter)
predistortion [25]. A particularly appealing feature is that
it allows extending the transfer function concept to the
nonlinear domain as described in [26] and [27], thus
offering a way to generalize methods that were originally
conceived for linear systems only. Such generalizations exist
for model reduction algorithms based on Krylov subspace

projection [6], [28], [29], [30],H2-optimal interpolation [31],
[32], [33] and the Loewner identification framework
[34], [35].

Behavioral modeling through the Volterra series has been
addressed in several works. In [22], a mixed discrete-
time/frequency-domain method is proposed to identify the
Volterra kernels or transfer functions based on input-output
measurements. In [36], the authors compute Volterra transfer
functions efficiently starting from X-parameters data (for a
detailed definition, see [36] and references therein). In these
works and in most of the existing literature, the behavioral
model is intended as the collection of Volterra kernel values,
discretely sampled in time or frequency (i.e. non-parametric
approach). This is because, in principle, these suffice to
approximately find the model response to a given input by
multidimensional convolution, as discussed e.g. in [37].
In this paper, a different (parametric) approach is taken:

the Volterra formalism is applied to a given weakly nonlinear
circuit to define an appropriate set of Generalized Transfer
Functions (GTF), whose frequency samples are easily
computed or measured using known methods [36], [38], [39],
[40], [41], [42]. Starting from such samples, we construct
a dynamical model expressed as a set of nonlinear state
equations. Such a model can then be solved by time-domain
integration to find the output response. In addition to superior
accuracy, the benefit of turning the raw transfer function
data into a dynamical model instead of directly applying
convolution is the possibility for this model to co-exist with
other components that have a standard equation- or circuit-
based description. In other words, the proposedmodels can be
used as black-box generalized components in a system-level
simulation, and not only in forward numerical evaluation of
the output signals given some known excitation.

To build the proposed nonlinear behavioral model,
we resort to a rational approximation of the GTFs, achieved
through a generalization of the VF algorithm, which consti-
tutes the main novel contribution of this work. In addition to
the above rational transfer function model, the corresponding
time-domain counterpart in the form of a bilinear state-
space realization is provided. Such form is known to be a
universal approximator of nonlinear dynamic maps [43]. This
behavioral model can be easily synthesized into a SPICE
netlist as a sequence of linear blocks (whose synthesis is
detailed in [11]) interleaved with static nonlinearities.
To summarize, this work provides a comprehensive

framework and an associated algorithmic solution to compute
nonlinear behavioral models starting from input-output
frequency-domain sampled responses. Such models are to
be used to run efficient numerical simulations for design
verification and/or optimization. The proposed approach is
non-intrusive, as it does not require access to the governing
equations of the device to be modeled. The only requirement
is the ability to measure or simulate the original system
via any (commercial) circuit solver (e.g. through harmonic
balance or transient analysis, X-parameters, etc.).
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The performance of the proposed approach is demon-
strated in three test cases of practical relevance. The
first proof of concept is a Low-Dropout regulator (LDO)
circuit to demonstrate the accuracy and efficiency of the
approach. The second example is a large-scale post-layout
model of an LDO after parasitic extraction (in Cadence
Virtuoso [44]). The third example is a Low-Noise Amplifier
(LNA) with an accurate EM characterization modeled in
Keysight ADS [45]. These examples show the applicability
and practical advantages of the proposed modeling algorithm
in terms of simulation speedup.

II. BACKGROUND AND NOTATION
A. NOTATION
In this paper, we use boldface italic letters to denote vectors
(x) and boldface symbols (X) for matrices. The matrix
transpose is XT, the identity matrix of dimension n is In, the
n-dimensional vector of all ones is 1n. The notation A ⊗
B is the Kronecker product between matrices A and B.
Calligraphic symbols such as R are tensors. The m-way
tensorR is anm-dimensional matrix whose individual entries
rn1,...,nm are indexed by a multi-index (n1, . . . , nm), contain-
ing a positive integer for each dimension. Following [46], the
symbol R(j) is the matricization of R along dimension j, i.e.
a matrix whose columns are the fibers of mode j. The mode-
j tensor-matrix product R ×j A is obtained by multiplying
the matrix A with the mode-j fibers of R. In other words,
R×jA is the tensor whose matricization isAR(j). In addition,
the vectorization operator vec{R} or vec{rn1,...,nm} returns a
column vector collecting all entries rn1,...,nm ofR.
The letter s is the Laplace variable, the symbols f and

ω = 2π f respectively indicate the frequency and angular
frequency, and the imaginary unit is j.

With Pm we indicate the set of permutations of the first m
natural numbers, with each element σ ∈ Pm being a one-to-
one function from {1, . . . ,m} into itself.

B. VOLTERRA SERIES
A nonlinear one-port circuit can be represented as a nonlinear
system, mapping some input signal u(t) ∈ R (e.g. input
current) to the corresponding output signal y(t) ∈ R (e.g.
voltage response). We restrict the discussion to time-invariant
networks and denote the nonlinear map associated with the
system G as y(t) = G[u](t).

An established tool for input-output representation of
nonlinear maps is the Volterra series [17], [19], that provides
an expansion of the system response y(t) in terms of
multidimensional convolutions of the input u(t) with the
multivariate kernels hm(τ1, . . . , τm), which are characteristic
functions of the system to be represented, as follows

y(t)=y0+
∞∑
m=1

∫ t

0
hm(τ1, . . . , τm)u(t − τ1) · · · u(t − τm) dτττ︸ ︷︷ ︸

≜Gm[u]

.

(1)

In (1), the symbol dτττ ≜ dτ1 · · · dτm indicates that the
m-th summand is a multiple integral across the rectangular
domain [0, t]m ∋ (τ1, . . . , τm). Apart from the affine
constant y0, the first summand (i.e. m = 1) is the
response of the linear subsystem G1[u], which coincides
with the well-known convolution formula valid for linear
time-invariant (LTI) systems. In addition, further terms with
m ≥ 2 represent higher-order nonlinear contributions ym(t)
from the homogeneous subsystems Gm[u], so called because
of the homogeneity property Gm[αu] = αmGm[u], ∀α ∈ R.
The Volterra series is locally valid around an expansion point
u0 (e.g. u(t) = 0) and is guaranteed to converge when
the amplitude |u(t)| is small enough. Therefore, a fruitful
application of the Volterra series requires assuming that the
underlying system is weakly nonlinear, meaning that the first
few terms of the Volterra series are sufficient to approximate
its input-output behavior [47]. In fact, althoughVolterra series
can, in principle, approximate a large class of nonlinear
systems [47], this might require prohibitively many terms.
Hence, we focus on weakly nonlinear systems. We refer
the Reader to [48] for a complete discussion regarding
convergence.

Note that the linear subsystem G1[u], associated with the
impulse response h1(τ ), is the small-signal approximation
of the circuit, linearized around the operating point u0.
In large-signal conditions, it will not provide an accurate
approximation of the system behavior, which would require
taking higher-order terms into account.

For a given subsystem Gm, the choice of hm is non-unique.
However, ambiguity is removed if we assume (without loss
of generality) that every hm in (1) is a symmetric function,
whose value is invariant under arbitrary permutation of its
arguments. This leads to a unique definition of the symmetric
kernel, which is also particularly convenient because its
values can be sampled from input-output experiments (either
numerical simulations or actual measurements), without
requiring direct access to the first-principles equations
underpinning the system to bemodeled. For this reason, by hm
we indicate the symmetric kernels hereinafter.

An alternative representation is the regular kernel hreg
defined in [17, Ch.1], which corresponds to a different form
of the convolution integrals in the series (1). Originally
introduced for realization theory, it has been proficiently
exploited in model reduction [34]. However, in practical
applications, it is less effective for non-intrusive modeling
purposes because regular TF values are not easily inferred
from input-output data, as noted in [49] and [50].

The expansion (1) admits a frequency-domain counterpart
through the (multivariate) Laplace transform. In fact, trans-
forming hm gives the degree-m GTF Hm(s1, . . . , sm) defined
as follows (see [51])

Hm(s1, . . . , sm) =
∫
∞

0
· · ·

∫
∞

0
h(τ1, . . . , τm)e−

∑m
i=1 siτi dτττ

(2)
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Samples Hm(s1, . . . , sm) can be extracted experimentally
from steady-state responses under periodic excitation,
through the harmonic probingmethod of [38], also discussed
and enhanced in [39] and [42].

Laplace transform can also be applied to the m-th regular
kernel hreg,m to obtain the regular transfer function (TF)
Hreg,m(s1, . . . , sm). In this work, the regular TF is only used
instrumentally because of the following useful link with the
symmetric GTF [17],

Hm(s1, . . . , sm) =
1
m!

∑
σ∈Pm

Hreg,m(sσ (1), sσ (1)+σ (2), . . . , sσ (1)+···+σ (m)). (3)

A comprehensive overview of Volterra series theory can be
found in [18].

C. BILINEAR SYSTEM
We consider the class of bilinear systems as a template for
modeling nonlinearities. Bilinear systems are characterized
by dynamic equations including products of inputs and states
and admit the following state-space representation

ẋ = Ax+ Nxu+ bu (4a)

y = cTx (4b)

where x is the state vector, and the coefficients A,N ∈ Rν×ν ,
and b, c ∈ Rν provide the state-space realization. Here,
nonlinearity arises from the product xu in (4a).

Despite the seemingly restrictive bilinear structure, it has
been shown that it has a universal approximation property
because, under some causality and continuity assumptions,
nonlinear input-output maps can be approximated arbitrarily
well by a bilinear model [43]. Moreover, there are construc-
tive ways to recast practically relevant nonlinear systems
into a bilinear format either exactly or approximately using
state variable transformations. For instance, the Carleman
bilinearization [17], [52] is a general analytical procedure
that yields a bilinear approximation starting from the state
equations of a given input-affine system. In addition, exact
lifting techniques can be applied in certain problem instances
to obtain an equivalent quadratic, or quadratic-bilinear
representation [6], [30]. However, these are intrusive in that
they require knowing and being able to manipulate a set of
nonlinear differential equations describing the system under
analysis.

Following [17] and [31], we now recall the regular TFs
of the bilinear system (4a)-(4b). Starting from m = 1, the
degree-1 regular TF is

Hbil
reg,1(s1) = cT(s1I− A)−1b. (5)

For m ≥ 2, the higher-order regular TFs are the following
separable functions,

Hbil
reg,m(s1, . . . , sm) = cT(smI− A)−1N(sm−1I− A)−1

N · · · (s1I− A)−1b. (6)

III. PROBLEM STATEMENT AND CONTRIBUTION
The purpose of this paper is to describe a numerical method
to infer a bilinear dynamical model whose input-output
behavior matches the observed response of a given weakly
nonlinear system, known through sampled values of the GTF
in a certain frequency range and up to a predefined degreeM .
To this aim, we introduce the dataset D containing, for each
degree m ranging from 1 to M , a set of Km points consisting
in the m-tuples s(k)m ≜ (s(k)1 , . . . , s(k)m ), with k = 1, . . . ,Km,
paired with the GTF samples H̆m(s

(k)
1 , . . . , s(k)m ) = H̆ (k)

m
evaluated at the respective points. In symbols,

D =
{(
s(k)m , H̆ (k)

m

)
,m = 1, . . . ,M , k = 1, . . . ,Km

}
. (7)

We pursue the objective of finding a bilinear model
whose generalized transfer functions match the observed
H̆ (k)
m as closely as possible. The resulting algorithm could

be part of a workflow as depicted in Fig. 1, where
the initial dataset D is extracted from measurements of
harmonic steady-state responses. Despite the demonstrated
efficiency of transfer function fitting methods in deriving
low-complexity black-box models from sampled data in the
LTI context, a generalization of rational macromodeling
(e.g. VF, Adaptive Antoulas-Anderson (AAA) [53]) to
nonlinear circuits is not yet available and constitutes the
gap addressed here. An exception to this is the algorithm
of [54], which has quite a different purpose as it is designed
for the special class of linear systems with quadratic output.
Another related work is based on the Loewner framework,
by means of using input-output data (e.g., samples of
symmetric transfer functions). This addresses bilinear [55]
but also quadratic identification [49], [50]. Additionally, [56,
Sec. 4.3] addresses bilinear identification in the Loewner
framework using symmetric transfer function data evaluated
for particular combinations of the arguments (all equal). The
proposed approach differs from [55] as the approximation
process also takes into account GTFs of degree larger than
two, which also contribute to determining the dynamic part
of the proposed model (the matrix A).
In this paper, we choose to focus on extending the VF

algorithm because it has several desirable properties such as
flexibility in the choice of cost function and ease of stability
enforcement. To this aim, the foregoing sections describe in
detail the novel contributions of this work, in particular:

- a derivation of the GTFs of a conveniently chosen
bilinear model structure in pole-residue form in Sec. IV.
The selected model format leverages a set of recursively
defined rational basis functions that allow to cast the
identification problem as a simple linear regression
(Sec. IV-D).

- an extension of the VF algorithm for identifying poles
of GTFs in Sec. V. Its main feature is a recursive
strategy relying on a sequence of linear least-squares
optimization steps, which are notoriously scalable and
robustly solvable.
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FIGURE 1. Outline of the nonlinear modeling methodology based on Volterra series, starting from input/output measurements up to a bilinear model
built through rational approximation of GTF data samples.

- numerical examples of the approximation capability
and practical advantages in Sec. VII. The benchmarks
include an LDO voltage regulator and an LNA circuit.

Compared to the early results we reported in [57],
this work contains substantial improvements and additions.
In particular, the newly-introduced multivariate pole-residue
expansion of Sec. IV provides a new model structure based
on rational basis functions that is absent in [57]. This
allows independent estimation of coefficients of different
subsystems, thus avoiding an error accumulation problem
affecting the approach of [57]. Consequently, the bilinear
model realization described herein has been improved to
accommodate this more general model format. As in [57],
pole estimation relies on a sequence of weighted VF steps
(Sec. V). However, this phase has been reworked to use a
different choice of weighting vectors arising from the new
model format.

IV. GENERALIZED TRANSFER FUNCTION FITTING
A. BILINEAR GTF
Let us begin with an analysis of the GTFs of the bilinear
system defined by (4a)-(4b). Expanding the system around
u0 = 0, the degree-1 bilinear GTF Hbil

1 (s1) corresponds to
the small-signal linearization at x = 0, and it coincides with
the regular TF Hbil

reg,1(s1). Higher-order symmetric GTFs Hbil
m

are found by combining (6) and (3) to obtain the compact
expression

Hbil
m (s1, . . . , sm) =

1
m!

∑
σ∈Pm

cTXm(sσ (1), . . . , sσ (m)) (8)

where the auxiliary function Xm(s1, . . . , sm) ∈ Cν is defined
recursively starting with X1(s1) = (s1I−A)−1b according to
the rule

Xm(s1, . . . , sm) =[(∑m
i=1si

)
I− A

]−1NXm−1(s1, . . . , sm−1) (9)

for m ≥ 2. In fact, a simple substitution of (9) into (8) shows
that it is equivalent to plugging (6) into the identity (3). This
recursive definition of Xm is instrumental to the following
developments.
Let us assume that A has simple eigenvalues λ(A), so that

Hbil
1 (s1) has ν distinct poles {pn}νn=1 = λ(A). Then its pole-

residue expansion is a linear combination of partial fractions
from the set 81 = {(s1 − pn)−1}νn=1. Given that the pole-
residue form offers a non-redundant parameterization of the
system coefficients, which makes it particularly suited for
model estimation tasks, we follow the same idea and attempt
to formulate a pole-residue expansion for higher-degree
GTFs. This is in contrast with previous works on bilinear
system identification such as [34], which have focused on
estimating a state-space realization or have considered pole-
residue expansions of the regular kernel instead of the
symmetric one [31]. Therefore, we now derive the set of
multivariate rational basis functions spanning all possible
Hbil
m defined by (8), even for higher degrees m ≥ 2. To this

aim, Eq. (9) suggests taking a recursive approach. Using
a more general notation that will prove useful later, let us
introduce a family of M pole sets {p(1)n }

ν1
n=1, . . . , {p

(M )
n }

νM
n=1.

These appear in the definition of the following sequence

ϕn1 =
(
s1 − p(1)n1

)−1
, 1 ≤ n1 ≤ ν1 (10a)

ϕn1,...,nm =
(
s1 + · · · + sm − p(m)nm

)−1
ϕn1,...,nm−1 , (10b)

1 ≤ nm ≤ νm.

This definition is relevant because the family of pole sets can
be chosen so that Xm belongs to the span of the following set
8m of rational basis functions,

8m = {ϕn1,...,nm (s1, . . . , sm), 1 ≤ nj ≤ ν,∀ j = 1, . . . ,m
}
.

(11)

In other words, any vector-valued function Xm compatible
with the recursion (9) can be written as a linear combination
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of the basis functions in the set 8m, provided that the basis
poles sets are chosen suitably, i.e., in this case, they coincide
with the system poles {p(m)n }

νm
n=1 = λ(A), ∀m = 1, . . . ,M .

Based on (8), the basis functions for the corresponding
expansion of the symmetric GTFHbil

m are the symmetrization
of individual elements of 8m,

ϕ
sym
n1,...,nm (s1, . . . , sm) =

1
m!

∑
σ∈Pm

ϕn1,...,nm (sσ (1), . . . , sσ (m))

(12)

Note that the symmetrization consists in summing over all
permutations σ of the m arguments and dividing by their
number m!. The set of basis functions {ϕsym

n1,...,nm} can be
seen as the bilinear analog of the partial fraction basis
underpinning the model representation of the VF iteration.
Example 1 (Basis function set with two poles): To get an

intuitive picture of the construction (10), consider the pole
sets {p(1)1 , p(1)2 }, {p

(2)
1 , p(2)2 }, i.e. ν1 = ν2 = 2. The degree-1

basis functions are

ϕ1(s1) =
1

s1 − p
(1)
1

, ϕ2(s1) =
1

s1 − p
(1)
2

(13)

and the degree-2 (m = 2) ones are

ϕ1,1(s1, s2) =
1

(s1 + s2 − p
(2)
1 )(s1 − p

(1)
1 )

,

ϕ1,2(s1, s2) =
1

(s1 + s2 − p
(2)
2 )(s1 − p

(1)
1 )

,

ϕ2,1(s1, s2) =
1

(s1 + s2 − p
(2)
1 )(s1 − p

(1)
2 )

,

ϕ2,2(s1, s2) =
1

(s1 + s2 − p
(2)
2 )(s1 − p

(1)
2 )

. (14)

Each one of them can be symmetrized according to (12) by
summing the function values at all possible permutations
of the arguments (only two permutations in this case). For
example, the symmetrization of ϕ1,2(s1, s2) is

ϕ
sym
1,2 (s1, s2) = 1/2[ϕ1,2(s1, s2)+ ϕ1,2(s2, s1)]

=
1
2

1

s1 + s2 − p
(2)
2

(
1

s1 − p
(1)
1

+
1

s2 − p
(1)
1

)
(15)

Example 2 (GTFs of a bilinear system): This example ill-
ustrates the observation made in this section that the GTFs
Hbil
m arising from a bilinear system can be expressed as a

linear combination of the basis functions {ϕsym
n1,...,nm}. Con-

sider a simple bilinear system with realization (A,N, b, c)
whose state matrixA ∈ R2×2 has simple eigenvalues λ(A) =
{q1, q2}. Then, for some constant vectors X1,1,X1,2, the
function X1(s) can be expanded as follows

X1(s1) = (s1 − q1)−1X1,1 + (s1 − q2)−1X1,2. (16)

Using (9) to find X2(s1, s2), the factor [(s1 + s2)I − A]−1N
can also be expanded as

[(s1 + s2)I− A]−1N = (s1 + s2 − q1)−1N1,1

+ (s1 + s2 − q2)−1N1,2 (17)

for some constant matrices N1,1, N1,2. Hence, using (9),(16),
(17), X2(s1, s2) can be written as

X2(s1, s2) = (s1 + s2 − q1)−1(s1 − q1)−1︸ ︷︷ ︸
ϕ1,1(s1,s2)

X2,11

+ (s1 + s2 − q1)−1(s1 − q2)−1︸ ︷︷ ︸
ϕ2,1(s1,s2)

X2,21

+ (s1 + s2 − q2)−1(s1 − q1)−1︸ ︷︷ ︸
ϕ1,2(s1,s2)

X2,12

+ (s1 + s2 − q2)−1(s1 − q2)−1︸ ︷︷ ︸
ϕ2,2(s1,s2)

X2,22. (18)

Hence, this shows X2(s1, s2) ∈ span 82, where the set 82 is
82 = {ϕ1,1, ϕ2,1, ϕ1,2, ϕ2,2}. The pole sets defining 82 are
{p(1)n }2n=1 and {p

(2)
n }

2
n=1, with p

(1)
1 = p(2)1 = q1, p

(1)
2 = p(2)2 =

q2. Using (8) and the definition (12), one can also directly
verify that the GTF Hbil

2 (s1, s2) ∈ span{ϕ
sym
n1,n2}

2
n1=1,n2=1

.

B. BLACK-BOX MODEL STRUCTURE
Section IV-A showed that the GTFs of a generic bilinear
system (20) are obtained by a linear combination of a
fundamental set of rational basis functions ϕsym’s. Therefore,
we define the GTF model structure used for fitting the data
samples D to be a linear combination of these ϕsym’s. Note
that the basis depends on a yet unknown family of pole sets,
whose identificationwill be addressed later. For our purposes,
there is no harm in increasing the generality by allowing
different pole sets for each degree, a choice adopted in the
following definition.
Definition 1 (Bilinear GTF model): Given M sets of

model poles
{
p(1)n

}ν1

n=1
, . . . ,

{
p(M )
n

}νM

n=1
, the bilinear GTF

model Hm (s1, . . . , sm) of degree m is defined as

Hm(s1, . . . , sm) =
ν1∑

n1=1

· · ·

νm∑
nm=1

rn1,...,nmϕ
sym
n1,...,nm (s1, . . . , sm)

(19)

where rn1,...,nm ∈ C are constant coefficients (termed
generalized residues) and the multivariate functions ϕ

sym
n1,...,nm

are defined in eqs. (12), (10).
Note that, differently from the analysis in Sec. IV-A, which

proceeds from state-space to transfer function coefficients,
Definition 1 goes backward and postulates a pole-residue-
like expansion first. Although it is based on the same
basis functions ϕsym, all generalized residues rn1,...,nm are
here regarded as independent constants. This will not be
the case if one starts from a given (A,N, b, c), because
the resulting expansion coefficients would be ratios of
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FIGURE 2. Block representation of the bilinear model structure (20),
featuring a finite number of nonzero Volterra kernels.

polynomials depending on the entries of the realization
matrices, hence more difficult to estimate and optimize.

Therefore, a procedure to find a bilinear state-space
realization of the GTF model (19) should be explicitly
provided. The fundamental theory of bilinear realizations has
been thoroughly investigated, for instance, in [58] and [59],
and an algorithm to extract state-space coefficients starting
from a regular transfer function with factored denominator
is described in [17, Ch. 4]. In the following, we adapt the
procedure from [17] to the model (19) which, although not
regular, can still be addressed analogously.
Proposition 1 (GTF model realization): For all degrees

m = 1, . . . ,M, the collection of transfer functions (19) admit
the bilinear realization

ẋ1 = A1x1 + 1u (20a)

ẋm = (Am ⊗ INm−1)xm + 1νm ⊗ xm−1u, 2 ≤ m ≤ M

(20b)

ym = rTm xm , 2 ≤ m ≤ M (20c)

where Am = diag{p(m)n }
νm
n=1, xm ∈ CNm , and Nm =

ν1 · · · νm. In the output equations (20c), the vector rm =
vec{rn1,...,nm} collects the generalized residues of the degree-
m GTF model (19). The overall output is the superposition of
contributions from individual homogeneous subsystems, i.e.

y(t) =
M∑
m=1

ym(t) =
M∑
m=1

rTm xm(t) (21)

The system (20) results from gluing together a sequence
of M subsystems from degree 1 up to M , each being in the
modal realization. This construction is illustrated in Fig. 2,
which clarifies how this bilinear system consists of a chain of
linear blocks0001,0002,. . . ,000M interleavedwith amultiplicative
nonlinearity (static multiplication with the input u). The
linear blocks correspond to individual equations (20a), (20b),
as follows

0001(s) = (sI− A1)−11ν1

000m(s) = [(sI− Am)−11νm ]⊗ INm−1 , 2 ≤ m ≤ M . (22)

Remark 1: Realization (20) has complex coefficients.
In case Hm has real symmetry, with pole sets that are
closed under complex conjugation, a change of coordinate
is sufficient to turn (20) into an equivalent realization with
real coefficients. Assume that the pole set {p(m)n }

νm
n=1 is such

that the first νrealm poles are real and the following 2νcplxm ones
are complex conjugate pairs arranged adjacently, i.e.

p(m)
νrealm +2h−1

= p̄(m)
νrealm +2h

, h = 1, . . . , νcplxm

The transformation matrix

Tm = blkdiag
{

Iνrealm
, I

ν
cplx
m
⊗

1
√
2

(
1 j
1 −j

)}
.

is such that T−1m AmTm ≜ Areal
m is real and in quasi-diagonal

form (consisting of 2 × 2 diagonal blocks). Then the real
realization follows from the change of basis

xm = (Tm ⊗ · · · ⊗ T1)xrealm , m = 1, . . . ,M

in (20), where xrealm ∈ RNm is the new state vector.
Consequently, the residue vector rm is changed into rrealm =

(Tm ⊗ · · · ⊗ T1)Trm. This transformed vector is real
provided that the original rm has the real symmetry property,
i.e. generalized residues corresponding to element-wise
conjugate sets of poles are conjugate.

Note that the time-domain simulation in the proposed
approach can be carried out by first integrating (20a)-(20b)
numerically up to m = M , and then recovering the output
as in (21). The diagonal format of each Am implies that the
recursive convolution method [60] can be applied iteratively
to solve for each xm(t), a particularly convenient feature from
the computational standpoint.

C. A MORE COMPACT REALIZATION
By analyzing (20) in frequency domain, one observes that the
input-to-state map u → xm ∈ Cν1···νm is associated with a
symmetric transfer function

444m(s1, . . . , sm) =
1
m!

∑
σ∈Pm

9m(sσ (1) + · · · + sσ (m))⊗ · · ·

· · · ⊗91(sσ (1)) (23)

where9j(s) = (sI−Aj)−11νj , with j = 1, . . . ,m. Simply put,
444m is just the collection of the basis functions ϕ

sym
n1,...,nm in a

column vector. However, by making the Kronecker product
structure explicit, one can reinterpret the generalized residues
rn1,...,nm as an m-way tensorR to recast (19) in tensor format

Hm(s1, . . . , sm) =
1
m!

∑
σ∈Pm

R×m 9m(sσ (1) + · · · + sσ (m))T

×m−1 · · · ×1 91(sσ (1))T. (24)

This rewriting is useful because the tensor identity in
[46, Prop. 3.7] allows to go back to a Kronecker product form
involving the matricization ofR along any of its modes, thus
yielding several equivalent realizations. For instance, using
the mode-m matricization, (24) becomes

Hm(s1, . . . , sm) =
1
m!

∑
σ∈Pm

9m(sσ (1) + · · · + sσ (m))TR(m)·

9m−1(sσ (1) + · · · + sσ (m−1))⊗ · · ·⊗

91(sσ (1)). (25)
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Considering the subsystem of highest modeled degree
m = M , this simple algebraic manipulation shows that
another realization of HM is obtained by modifying the last
output equation in (20c) and the last state equation in (20b)
as follows

ẋM = AT
MxM +R(M )xM−1u

yM = 1TxM (26)

This format is practically more convenient because the size of
the last state vector xM becomes νM instead of NM . Therefore
this is the preferred realization used in the subsequent
numerical examples shown in Sec. VII.

D. FITTING BY LINEAR REGRESSION
The above developments set the premises for tackling GTF
approximation through linear regression. In fact, if the basis
poles defining ϕ

sym
n1,...,nm are again regarded as fixed constants

(whose estimation is to be discussed later), Hm in eq. (19)
has linear dependence upon the to-be-estimated model
coefficients rm = vec{rn1,...,nm}. Using vector notation,
Hm(s1, . . . , sm) = 444T

m(s1, . . . , sm)rm, with444m from (23),

444T
m(s1, . . . , sm) =

(
ϕ
sym
1,...,1 ϕ

sym
2,1,...,1 · · · ϕ

sym
ν1,...,νm

)
, (27)

where all entries are evaluated at (s1, . . . , sm). Then the
standard theory of linear least squares gives the optimal
vector r∗m minimizing the quadratic cost

Jm =
Km∑
k=1

∣∣∣H (s(k)m )− H̆ (k)
m

∣∣∣2 (28)

as r∗m = C†mH̆m, where C†m is the Moore-Penrose pseudoin-
verse of the matrix

Cm =
(

444m

(
s(1)m
)
· · · 444m

(
s(Km)m

))T
(29)

and H̆m ∈ CKm collects all Km degree-m GTF data samples.
Upon finding the optimal r∗m, the bilinearmodel is obtained by
applying the realization inDefinition 1, where the generalized
residues appearing in the output equation (21) are chosen as
the optimal ones, i.e. rm = r∗m.

V. POLE ESTIMATION BY RATIONAL FITTING
In this section, we finally address the issue of determining the
M pole sets that define the basis functions in (12). In order to
review ideas that will be extended for our purposes, let us
consider again the degree-1 GTF H1(s1), a rational function
in the variable s1. The problem of fitting H1(s1) to sampled
data H̆ (k)

1 , so that

H1(s
(k)
1 ) ≈ H̆ (k)

1 , k = 1, . . . ,K1 (30)

is known as a standard rational approximation problem that
has been investigated thoroughly, with robust and well-
developed algorithmic solutions such as the VF algorithm,
which is briefly reviewed in the following. VF uses a
barycentric representation of the rational model written as

a ratio of two functions, namely a numerator b(s1) and a
denominator a(s1),

H1(s1) =
b(s1)
a(s1)

. (31)

These two auxiliary functions are rational with the same
auxiliary poles {qi}

ν1
i=1,

b(s1) ≜
ν1∑
i=1

bi
s1 − qi

, a(s1) ≜ 1+
ν1∑
i=1

ai
s1 − qi

(32)

where for simplicity andwithout loss of generality we assume
that H1(∞) = 0. The VF algorithm performs multiple
iterations, each consisting of finding the optimal coefficients
ai, bi that minimize the cost

J̃1 =
K1∑
k=1

∣∣∣b(s(k)1 )− H̆ (k)
1 a(s(k)1 )

∣∣∣2 . (33)

The optimal ai, bi are obtained by linear least-squares
minimization because J̃1 is a convex quadratic loss function
in these unknowns. The rationale behind this choice is that
J̃1 is a linearized version of the actual cost J1 (model-data
error) as defined in (28), whence it is obtained by neglecting
the common denominator in J1 after H1 is replaced with its
barycentric form b(s1)/a(s1). The choice of auxiliary poles,
initially a guess, is iteratively refined using the denominator
coefficients according to the update rule {qi} ← zeros{a(s)},
that takes the new auxiliary poles for the next iteration to
be the denominator zeros. At convergence, the denominator
coefficients ai tend to zero, a(s)→ 1, and the set of auxiliary
poles converge to the model poles. Hence, a useful feature of
VF is that the pole relocation phase yields a set of model poles
that can be used to define a pole-residue expansion like (19).
We see that using VF to find a rational approximant of the

degree-1 samples H̆ (k)
1 automatically yields the first set of

model poles {p(1)n }, which coincide with the auxiliary poles
{qi} upon convergence. In order to employ the same pole
estimation technique for higher degree GTFs, let us go back
to (25) to observe that the GTF model Hm can be factored as

Hm(s1, . . . , sm) = Fm(s1 + · · · + sm)Qm(s1, . . . , sm) (34)

with Fm(s1+· · ·+ sm) = 9m(sσ (1)+· · ·+ sσ (m))TR(m). Note
that Fm is a 1 × Nm−1 rational function with poles at {p(m)n },
univariate in the argument s1 + · · · + sm and it factors out of
the symmetric sum in (25) because its argument (sσ (1)+· · ·+
sσ (m)) is not affected by the permutation σ .
As for the vector Qm in (34), it contains the symmetriza-

tions of the basis functions ϕn1,...,nm−1 , as follows

Qm(s1, . . . , sm) =
1
m!

∑
σ∈Pm

9m−1(sσ (1) + · · · + sσ (m−1))⊗

· · · ⊗91(sσ (1)) (35)

The key observation on (34) is that the vectorQm is entirely
determined by the pole sets up to degree m− 1, and the only
quantity depending on the degree-m pole set {p(m)n } is Fm.
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Therefore, we can take a greedy approach towards estimating
the GTF poles where, after the first m − 1 sets are available
and fixed, the m-th set is chosen to coincide with the poles
of Fm, which are found by rational fitting. In fact, we can
address the problem of finding poles and residues of Fm to
minimize the residual of the approximation

Fm(s
(k)
1 + · · · + s

(k)
m )Qm(s

(k)
1 , . . . , s(k)m )︸ ︷︷ ︸
≜Q(k)

m

≈ H̆ (k)
m (36)

for k = 1, . . . ,Km again through VF, precisely because the
unknown is the univariate rational function Fm(s) evaluated
at s(k)1 + · · · + s(k)m , and Q(k)

m are just known vectors. The
only aspect of (36) that prevents direct application of VF in
its standard form is the presence of the factor Q(k)

m , absent
in (30), which is the point of departure in the standard VF
formulation. However, it is easy to modify VF to incorporate
an arbitrary but known weighting factor. In fact, using the
barycentric form ofFm(s) = b(s)/a(s), where b(s) is a vector-
valued numerator function, a linearized version of the loss
function associated with (36) can still be obtained in the same
manner as (33), and it reads

J̃weightm =

Km∑
k=1

∣∣∣b (s(k)1 + · · · + s
(k)
m

)
Q(k)
m

−a
(
s(k)1 + · · · + s

(k)
m

)
H̆ (k)
m

∣∣∣2 (37)

Eq. (37) gives the cost function to be minimized during the
pole relocation to find the m-th pole set, using the same
update rule as in standard VF. This extension of VF has been
developed by the authors for an originally different purpose
in [61] and [62], where a more detailed account is available.

Note that this pole-finding procedure based on a sequence
of weighted VF steps is enabled by the factorization (34),
which is also leveraged in [57]. However, in [57], both poles
and residues determining the degree-m subsystem are esti-
mated through weighted VF, and the approximation result for
degree m is influenced by the residues previously estimated
at lower degrees. This can produce error accumulation going
from m = 1 to higher m. In this work, weighted VF is
only used for estimating the basis poles used to define the
ϕsym’s. Hence, the vectors Qm are different and independent
of the lower-degree generalized residues, which are estimated
independently of each other (see Sec. IV-D).
To sum up, we report a pseudo-code of the GTF

fitting method in Algorithm 1, which combines the pole-
finding method just described with residue estimation from
Sec. IV-D.

The flowchart in Fig. 3 represents the proposed algorithm
along with the context where it is meant to be used.
After a first step to obtain the data samples using one
of the existing methods [36], [38], [39], [40], [41], the
proposed fitting approach summarized in Algorithm 1
can be applied. Note that the electrical and geometric
parameters of the device to be modeled belong to the original
simulation model or physical device used for GTF extraction

Algorithm 1 Approximation of GTFs
Require: M , Km, νm and the data set D as defined in (7)

Find poles {p(1)n }
ν1
n=1 using VF iteration on H̆1(s

(k)
1 )

for m = 2, . . . ,M do
Compute vectors Q(k)

m for k = 1, . . . ,Km as in (35)
Find poles {pn}

νm
n=1 using weighted VF [61], see (36)

Compute generalized residues r∗m, see Sec. IV-D
end for

(first step in Fig. 3) and are not directly used in subsequent
modeling steps because the proposedmethod is non-intrusive.
Fig. 3 contains references to the well-known VF algorithm,
whose algorithmic steps are described in [11], and to
weighted VF which is presented in [61].

VI. ERROR ANALYSIS AND ORDER SELECTION
The series representation (1) allows to decompose the
response of the true system y̆(t) as a sum of nonlinear
contributions up to degree M , denoted as y̆M (t), and the
higher-degree terms y̆hd (t) whose behavior is not taken into
account in the modeling process. As for the model response
as y(t), it only contains nonlinear terms up to degree M by
construction. A similar decomposition is useful in the error
signal e(t) = y̆(t)− y(t) which, for a given input signal u(t),
reads

e(t) =
M∑
m=1

∫ t

0
em(τ1, . . . , τm)u(t − τ1) · · · u(t − τm) dτττ+

+

∞∑
m=M+1

∫ t

0
h̆m(τ1, . . . , τm)u(t − τ1) · · · u(t − τm) dτττ

(38)

In (38), the second sum is the unmodeled nonlinearity y̆hd ,
that depends on the exact kernels h̆m of the underlying system.
On the other hand, em = h̆m− hm is the modeling error in the
firstM kernels, arising from the residual fitting error in (28).

The connection between the error norm ∥e(t)∥∞ resulting
from a given input energy ∥u(t)∥2 is made through the
gain bound function [48]. Applying standard L2 inequalities
to (38) yields

|e(t)| ≤
M∑
m=1

∥em∥H2
∥u∥m2 +

∞∑
m=M+1

∥∥∥h̆m∥∥∥H2
∥u∥m2 (39)

where theH2 system norm is as defined in [31]. TheH2 sys-
tem norm also admits a frequency-domain representation
through Plancherel’s theorem

∥em∥2H2
=

1
(2π )m

∫
+∞

−∞

∣∣∣H̆m − Hm∣∣∣2 dω1 · · · dωm (40)

where the functionsHm and H̆m in the integral are evaluated at
(jω1, . . . , jωm). We see that, as in the linear scenario, eq. (39)
and (40) motivate using the cost function Jm in (28), as it can
be seen as a discretized surrogate of the integral expression
for ∥em∥2H2

in (40), that explicitly appears in the bound (39).
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The choice of the maximum degree of modeled nonlin-
earity M is mainly driven by considerations regarding how
much the behavior of the system under analysis deviates from
its small-signal first-order approximation for a given input
amplitude. It might be determined using specific methods
to find the largest significant degree such as [63], or be
limited in practice by the effort required to sample GTFs in a
high-dimensional space. On this matter, we emphasize that,
although this curse of dimensionality is somewhat intrinsic to
the Volterra series, to the extent that it has been recognized
and addressed in several works [64], [65], the proposed
approximation algorithm is compatible with efficient sparse
sampling schemes as it does not require that the s(k)m lie on a
regular grid, unlike the method [54].

Regardless of how M is chosen, the error due to the
unmodeled nonlinearity in (39) represents a fixed residual
error. On the other hand, the fitting errors em can be controlled
by augmenting the pole sets (i.e. increasing the number of
poles νm). As in standard VF, the parameter νm is given
in advance in Algorithm 1. In case an a priori estimate
of νm is not available, it is also possible to equip the
VF iteration with automated order selection, as discussed
in [66], by monitoring the error as the number of poles is
increased until a stopping tolerance is reached. In the present
context, it should be taken into account that, when the fitting
error is low enough, the inaccuracy in system response will
be dominated by y̆hd (t), and there is no point in further
increasing the number of poles.

VII. NUMERICAL EXAMPLES
This section reports three applications of the GTF fitting
method to nonlinear circuits of practical relevance. In all
cases, we illustrate the details of GTF fitting, including
accuracy in the frequency domain, as well as the time-domain
response. In each section, the link between the general
symbols used until now – e.g. u(t),y(t) – and the electrical
quantities (currents or voltages) pertaining to each example
will be provided.

A. PRELIMINARY: GTF EXTRACTION
The preliminary step in the typical workflow of Fig. 3 is the
extraction of GTF samples of the weakly nonlinear circuit
under analysis. Measurement of Volterra transfer functions
using a Vector Analyzer has been addressed in [41]. Extrac-
tion from measured or simulated X-parameters is discussed
in [36]. In our experiments, the GTF samples were extracted
through the classic harmonic probing method [38], [39].
In practice, we used harmonic balance (HB) analysis [67]
performed via commercial solvers, which solves the circuit
response to a quasi-periodic multi-tone input in the frequency
domain. Starting from the Fourier coefficients of the response
resulting from HB for several values of the input amplitude,
the GTF can be extracted by solving an overdetermined
linear system (as detailed in [39]). More advanced probing

FIGURE 3. Typical workflow of applicability of the GTF fitting algorithm.

FIGURE 4. Circuit diagram of the LDO example of Sec. VII-B, originally
presented in [69]. The load is an ideal current source with value iL(t), the
load voltage is vL(t).

methods have been developed, for example, using Gaussian
inputs [68], or modulated signals [40].

B. LOW DROPOUT REGULATOR
This first test case (proof of concept) is an LDO regulator,
typically employed to provide a regulated supply voltage to
other circuit blocks. In Fig. 4, we report the circuit diagram as
originally presented in [69] (see original source for additional
details such as component values and topology description).
Here, we operate the LDOwith Vin = 3V supply voltage and
a load bias current IL = 20mA.

To build a model around this bias point (u0 = IL),
the output voltage response to load current variations was
measured in the frequency domain by HB analysis with up
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to three tones. This is because our purpose is to model the
transfer function from the load current iL , which coincides
with the input u(t), to the output voltage vL , i.e. the system
output y(t).

In single-tone experiments, the maximum frequency is
set to 50MHz and K1 = 60 samples of H̆ (k)

1 (j2π f1)
are collected. These represent samples of the small-signal
output impedance around the prescribed bias point. In two-
tone experiments, we measured the response at points
(f1, f2) on a square grid. Each of f1, f2 is swept on
140 logarithmically-spaced points (≈ 30 points/decade) in
the interval ∈ [500Hz, 20MHz]. This results in K2 = 2 ×
1402 samples of the 2nd -degree GTF H̆ (k)

2 (j2π f1,±j2π f2).
Similarly, three-tones simulations were conducted up to
20MHz to obtain a total ofK3 = 4×1402 samples of the type
H̆ (k)
3 (j2π f1,±j2π f2,±j2π f3). These were used to construct

a bilinear model of maximum degree M = 3 as described
above with ν1 = 6, ν2 = 7, and ν3 = 7 poles. As typically
donewith the classical VF algorithm, the number of poles was
increased until a satisfactory model-data fit was obtained.

In the frequency domain, a model-data comparison for
GTFs of degree one and two is reported in Fig. 5, whereas
a subset of the degree-3 responses (i.e. the H3 GTF) is
displayed in Fig. 6.

The voltage response is comprised of an affine term
corresponding to the DC voltage at the bias point VL,dc =

y0 = 2.7107V, in addition to the bilinear model response to
the shifted input u(t) = iL(t)− IL .
For time-domain validation, we first consider the case

where u(t) is a sequence of current steps between 0 to
±10mA, with rise time tr = 0.2µs. In this case, the
reference circuit is solved in the time domain using HSPICE
in the interval t ∈ [0, 6µs] and compared with the bilinear
model solved in MATLAB. The solution is discretized in
5 × 104 timesteps and found through recursive convolutions
applied to the bilinear model (20).

A comparison of the modeled load voltage response with
the reference solution is shown in Fig. 7(top). Starting
from the degree-3 model, we also truncated it to lower
degrees of nonlinearity (M = 1, 2) and computed the time-
domain responses to evaluate the contribution of higher-order
components. Figure 7 (top panel) confirms that the degree-3
model is more accurate than a simple linear (small-signal)
approximation. More quantitatively, the instantaneous time-
domain error with different model degrees is reported in the
middle panel of Fig. 7. A summary of the errors in terms of
peak and RMS (root-mean-square) values is also provided in
the bottom panel.

To illustrate the different sources of errors discussed in
Sec. VI, we built several models with different numbers
of poles ν = ν1 = ν2 = ν3. Performing the same
simulation with the trapezoidal pulse input for each of
these models, we obtain the RMS errors reported in Fig. 8.
We see that the degree-2 model (green line) stagnates after
ν = 4, suggesting that the error due to the truncation of
higher-degree components is dominant. In fact, the error

FIGURE 5. Data-model comparison of the frequency-domain GTFs of the
LDO example in Sec. VII-B. Top panel: degree-1 GTF. Middle panel:
degree-2 GTF as a function of f1 for several values of f2. Bottom panel:
same as the middle panel, containing samples of H2 in the second
quadrant, i.e. with f1 > 0, f2 < 0.

FIGURE 6. Data-model comparison of degree-3 GTFs regarding the LDO
example in Sec. VII-B. For several combinations (f2, f3), |H3| is displayed
as a function of f1. The top panel shows curves corresponding to both
f2, f3 > 0, while the bottom one shows slices where at least one among
f2, f3 is negative.

becomes lower and continues to decrease with increasing ν

if the model degree is increased toM = 3 (red line).
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FIGURE 7. Time-domain validation of the LDO model in Sec. VII-B using a
sequence of step signals. Top panel: transient response. Middle panel:
instantaneous error with respect to time for several values of maximum
degree M. Bottom panel: root-mean-square (RMS) error and peak error
(over the entire simulation interval) versus model degree M.

FIGURE 8. RMS error trend (corresponding to the transient simulation in
Fig. 7) as the number of poles ν = ν1 = ν2 = ν3 is increased, for different
model degrees up to M = 3.

A second test was carried out with a different input signal
u(t), obtained by low-pass filtering a 10µs-long white noise
signal through a single-pole filter with −3-dB frequency
at 0.2MHz. The noise power was adjusted to obtain a
10 mA peak amplitude after filtering. The model response
is compared with the HSPICE reference solution in Fig. 9,
where a subinterval of the simulation is reported so as to show
the differences between the linear model response (degree
M = 1) and the nonlinear model with M = 3. The
dependence of peak and RMS errors (in the entire simulation
interval) versus M are also reported, to show that a higher
degree of modeled nonlinearity yields increased accuracy in
the time domain.

FIGURE 9. Time-domain validation of the LDO example from Sec. VII-B.
Top panel: voltage responses in the sub-interval [4, 6] µs. Bottom panel:
RMS and peak errors over time, as a function of the model degree M.

FIGURE 10. Analysis of varying load conditions for the LDO example in
Sec. VII-B. Top: load current iL(t), i.e. input signal. Middle: transient
response of HSPICE (reference) and proposed model (with M = 1 or 3).
Bottom: instantaneous error (proposed vs. HSPICE) for several model
degrees M.

As discussed in Sec. II-B, the Volterra series underpinning
our results is an expansion around some operating point u0,
which provides higher-order nonlinear corrections to a simple
small-signal linearized model (degree one). To analyze the

VOLUME 13, 2025 2757



A. Carlucci et al.: Data-Driven Modeling of Weakly Nonlinear Circuits via GTF Approximation

consequence of varying loading conditions that drive the
system away from the expansion point (in this example, the
bias current IL = 20mA), we report the results of a transient
simulation using the load current iL(t) shown in Fig. 10(top).
It consists of a repeated chirp signal with frequency spanning
the interval [0.5, 5] MHz oscillating around different bias
points. As the operating point moves away from the initial
value IL = u0 = 20mA to 22.5, 25 and 30 mA, the error of
the linear model (degree M = 1) increases visibly as shown
in Fig. 10(bottom). Nonlinear models of degree M = 2 and
M = 3 provide a lower error because they capture the
nonlinear behavior that appears in large-signal conditions.

C. POST-LAYOUT LOW DROPOUT REGULATOR
This section describes a large-scale example, namely the low-
quiescent-current LDO design originally proposed in [70]
for low-power applications. We use the implementation
described in [1], with a layout based on a 40 nm CMOS
technology process in Cadence Virtuoso [44]. Post-layout
parasitic extraction produces a network with more than
4×104 nodes, 2×104 capacitances, and 6×104 resistances.
Consequently, transient analyses of the resulting network take
up to several minutes, even using a commercial solver like
Cadence SPECTRE.

The input voltage was set to VDD = 1V and the output
voltage is regulated to a reference value Vref = 0.6V.
We built a nonlinear model of the output impedance, i.e. the
load voltage response to a load current excitation, around
a nominal operating point corresponding to a load current
IL = 50µA. As a starting point, GTF samples were collected
up to degree M = 3 in the frequency range [1 kHz, 1MHz].
To extract higher-order GTFs, we resorted to HB analyses
with at most three tones and with amplitude in the range
[1, 3]µA. These produced respectively K2 = 1331 and
K3 = 12799 samples of H̆2 and H̆3. The proposed algorithm
was run with ν1 = 7, ν2 = 12, ν3 = 12 poles to build the
nonlinear rational model.

A frequency-domain comparison between the data and the
degree-2 model is reported in Fig. 11. Each curve is a slice
of the graph of the bivariate function H2(j2π f1, j2π f2) along
f1 and with fixed f2. The top panel shows several curves
corresponding to positive values of f2, while the bottom one
shows negative values. Fig. 12 shows similar results for one-
dimensional slices of the graph of H3.
In the time domain, we provide validation against the

reference solution computed in SPECTRE using two different
test signals. The first one is a 40-µs long chirp waveform
whose instantaneous frequency f (t) sweeps logarithmically
from 10 kHz to 1 MHz. Its amplitude is increased linearly
from 10µA to 20µA in the interval [0, 10]µs and stays
constant afterwards. Fig. 13 (top) reports the load voltage
waveform computed by the reference SPECTRE, which is
comparedwith the proposedmodel of degree three. The linear
response, corresponding to the proposed model truncated
at degree one, is also depicted to show the benefit of

FIGURE 11. Data-model comparison of the degree-2 transfer function
from the post-layout LDO example in Sec. VII-C. Top: slices corresponding
to several fixed values of f2 > 0. Bottom: slices corresponding to f2 < 0.

FIGURE 12. Data-model comparison of H3 from the post-layout LDO
example in Sec. VII-C.

adding the nonlinear correction. Fig. 13 (bottom) reports the
instantaneous error for this transient simulation across all
three degreesM = 1, 2, 3.

The second test signal consists of a trapezoidal pulse of
duration 20µs, amplitude 25µA and 10 ns rise/fall time.
The load voltage response is reported in Fig. 14(top). Note
that nonlinear models of increasing degree are closer to
the reference solution computed in SPECTRE, as confirmed
by the error trends (peak and RMS error) reported in the
bottom panel. The overall simulation up to 40µs is solved in
4 × 103 timesteps in both SPECTRE and MATLAB. While
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FIGURE 13. Time-domain analysis of the post-layout LDO of Sec. VII-C
using a chirp signal input. Top: reference and modeled load voltage
responses. Bottom: instantaneous error for each model degree M.

the former takes 118 seconds on a 2.3-GHz Linux server,
the proposed model of degree 3 is solved in under 0.1 s
on a 1.7-GHz laptop. Hence, the compact model provides a
computational speedup in excess of 1000×.

Owing to the large-scale nature of the original model,
the preliminary GTF extraction task is computationally
demanding. In our experiments with the basic harmonic
probing method, it took just under 2 hours to extract GTF
samples of degree two. For the third degree, the HB sweep
required about 36 hours to complete. Compared to this
data collection phase, the proposed rational fitting algorithm
represents a negligible added computational cost as it runs
in 1.3 minutes. It should be considered that data collection
and recursive rational fitting constitute a one-time cost that
is spent for model construction. Once the model is available,
a major speedup in repeated transient analyses is granted.

D. LOW-NOISE AMPLIFIER
This section is concerned with a different example consisting
in an LNA design, taken from the X-parameters examples
available with Keysight ADS simulator [45]. The LNA is
designed to operate at around 750 MHz, providing a 15 dB
gain. A high-level view of this example is provided in
Fig. 15, where the amplifier block hides a transistor-level
model including distributed elements. Note that knowledge
of the internal transistor models is not required to apply the
proposed black-box algorithm, which is entirely independent
of such internal details.

In this case, we extracted GTF samples up toM = 3 using
HB simulations up to 3 GHz. The model was built using
K1 = 116, K2 = 3416, K3 = 36121 samples and ν1 = 11,
ν2 = 11, ν3 = 9 poles. Using relative error weighting, the
data was fitted with the results reported in Fig. 16. In the
time domain, the model was compared to the simulation in

FIGURE 14. Step response of the post-layout LDO of Sec. VII-C. Top:
reference and modeled load voltage responses. Bottom: peak and RMS
error values as the model degree M is increased from 1 to 3.

FIGURE 15. High-level view of the RF LNA example in Sec. VII-D.

FIGURE 16. Data-model comparison of the first two GTFs from the
example in Sec. VII-D. Top panel: degree-1 GTF, i.e. small-signal transfer
function. Bottom panel: degree-2 GTF in magnitude versus the first
variable f1, for several values of f2.

ADS. The input signal consists of a 750MHz carrier with On-
Off Keying modulation at 40 MHz. The carrier amplitude is
100 mV, meaning that the available power level is−16 dBm.
The simulation length is 2µs and the number of simulation
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FIGURE 17. Time-domain validation of the example in Sec. VII-D using
reference solution from ADS. Top: comparison between responses in a
subinterval. Middle: error along the entire simulation, for all degrees up
to three. Bottom: RMS and peak errors versus model degree M.

timesteps is 2 · 105 in both ADS and the proposed approach.
The amplifier output waveforms (in a short subinterval of
the overall simulation) and the error between the reference
simulator and models of different degrees are reported in
Fig. 17. Again, we observe a reduction in the time-domain
error (both RMS and peak values) as a higher degree of
nonlinearity is considered. This suggests that the inaccuracy
of the degree-1 model is mainly due to a deviation from the
small-signal regime at this power level, resulting in a weakly
nonlinear behavior that is correctly represented by adding
higher-order responses.

Although the original simulation model is relatively small-
scale, a speedup is already observed because the described
transient analysis is completed in 3.6 s using the black-
box model, while Keysight ADS takes 20 s to solve the
original system for the same number of timesteps. Regarding
the modeling phase, the total time required for fitting
(pole and residue identification) is six minutes. The most
time-consuming part is the preliminary GTF extraction via
harmonic balance. In our experiments, the HB sweep for
extracting degree-2 samples H̆ (k)

2 took 5.6 minutes, while the
extraction H̆ (k)

3 required 65 minutes using Keysight ADS on
a 3.3-GHz computer.

VIII. CONCLUSION
This paper described a macromodeling algorithm based
on the rational fitting of Volterra transfer functions to

build behavioral models of weakly nonlinear circuits. While
the modeling workflow remains entirely in the frequency
domain, the method produces a bilinear state-space represen-
tation that can be simulated in the time domain. Moreover,
the method developed herein only requires input/output
observations of the steady-state responses of the device to
be modeled, without knowledge of its governing equations.
Using test cases of practical relevance, considerable speedup
is observed compared to the original simulation model.
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