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BOOMERANG FLIGHT MECHANICS� UNSTEADY EFFECTS

ON THE MOTION CHARACTERISTICS

Manuela Battipede� Ph�D Student

Aeronautical and Space Department� Polytechnic of Turin

Turin � ITALY

Abstract� This work describes a simulation program
suitable for predicting the behavior of the boomerang in
function of its geometrical characteristics� of the throw
parameters and of the environmental conditions� tak�
ing into account any non�stationary states corresponding
to some motion steps �throw� transition from helicopter
mode to autogyro mode� landing�� These phases certain�
ly have a signi�cant e�ect on the characteristics of the
trajectory� Boomerang has been treated as a lifting ro�
tor and the nonlinear Pitt�Peters dynamic in	ow model
has been used� even at very high values of the advanc�
ing ratio� The mathematical model is strongly nonlin�
ear and thus greatly dipendent on the initial condition�
The in	uence of di�erent environmental conditions as
well as di�erent geometric and throw parameters have
been shown through the graphical comparison of the ge�
ographical trajectories� Each qualitative trend has been
experimentally veri�ed and this is a preliminary con�r�
mation of the reliability of the numerical code� Finally
a whole 	ight has been described and analysed in each
aspect and the necessity to use an unsteady model has
been shown through a time�topographical analysis of the
advancing blade angles of attack�

Introduction

The reasons of the classical two blade boomerang
can be summarized in a few words� boomerang is
nothing more than an eccentric�hub rotor� consist�
ing of high�e�ciency airfoils� �tted at a nearly null
angle� In this statement two di�erent concepts are
contained� they are concerned with the main charac�
teristics that a good boomerang might have to per�
form its typical 	ight�

� Rotor autorotative ability� autorotation is the
well known regime� during which the rotor is
moved by the aerodynamical forces� through
a continuous extravasation of energy from po�
tential to kinetic� In the case of the helicopter�
autorotation is the phase that follows an en�
gine fail� no longer sustained by engine power
the helicopter starts to descend� thus acquiring
a positive w velocity component� The resulting

local angles of attack would bring to the stall
if the pilot did not accomplish the manoeuvre
to enter in autorotation� which consists in a
rapid reduction of the collective pitch� that is�
of the airfoils incidence� The boomerang has
no controls� so the only way to supply it with
autorotative ability is to shape it directly with
very low angles of incidence� A suited airfoil
is a 	at�convex one� that generally has high
e�ciency� thus featuring a high lift at null an�
gle of attack� In this way the boomerang can
perform its descent in the best way� with a
long glide that� anyway� does not occur in au�
torotation regime� generally only the last tract
of the trajectory is sometimes performed in a
vertical autorotation regime� but boomerang
can anyway greatly bene�t from this property�
throughout its descent�

� Gyroscopic characteristics� the two�blade
boomerang is not quite a gyroscope� that is
a rotatig body with a round inertial ellipsoid�
but it can always be de�ned as a high gyro�
scopical stability system� Its swept angle has
just the aim of making the Jyy inertial mo�
ment of the same order of magnitude of Jxx�
the boomerang gyroscopical qualities will de�
pend quite on the degree of ful�lment of this
condition� This fact explains the reason why
inertia matrix is a very important input pa�
rameter� requiring careful evaluation� An easy
and e�cient method to do this provides for the
use of a threedimensional CAD� which is to be
equipped with a volumes calculation module�
by assuming the geometrical parameters and
the airfoil shape it is possible to build a mock�
up� to which assign a material� that is� the den�
sity� and therefore the weight� The inertia ma�
trix stricly depends from the swept angle� as
stated above� and the research of the best con�
�guration is reduced to a series of subsequent
attempts� accomplished by acting on di�erent
parameters� such as the eccentricity 
thus the
swept angle�� the aspect ratio� the tapering
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or a possible dihedral angle� This problem is
avoidable with other kinds of boomerangs� as
the matter of fact other con�gurations like the
three�blade or the X 
or cross� shape� being
geometrically symmetric� are more similar to
a real gyroscope and are notoriously more sta�
ble in 	ight�

The results presented in this work are referred to
a mock�up obtained through a CATIA � modaliza�
tion� A medium�sized boomerang has been chosen�
and a material of unitary density has been selected

it might be a seasoned or pressed wood�
 the geo�
metrical and inertial parameters are summarized in
the table ��

R ��� m
Chord ���� m 
constant�

Swept Angle ����o

Diehdral Angle �o

FG ������ m
Mass ������Kg

Jxx �������e�� kg m�

Jyy �������e�� kg m�

Jzz �������e�� kg m�

Jxy ������e�� kgm�

Jxz �������e�� kgm�

Jyz ������e�� kgm�

Table �

Methematical model�
equation of motion of a gyroscopic system

We adopt the rigid body model� this implies that
the equations of motion can be decoupled into rota�
tional equations and translational equations if� as it
is� the body reference frame FB origin is chosen to
be at the center of mass� Therefore the state mod�
el used is a ��DOF model� Furthermore we adopt
the NED 
North�East�Down� frame on the surface
of the Earth as an inertial reference frame FI � This
frame is both accelerating and rotating
 however the
accelerations associated with the Earth�s rate are
negligible compared to the accelerations that can be
produced by the boomerang� The 	at�Earth mod�
el is also acceptable� The body reference frame FB
is solid with the rotor� which means that FB is a
rotating frame� This might seam a complication of
the model� but actually it is the only way to follow
the motion of the boomerang step by step without
changing the inertia matrix� that is a full matrix�

J �

�
� Jxx �Jxy �Jxz
�Jxy Jyy �Jyz
�Jxz �Jyz Jzz

�
� 
��

�By IBM and Dassault

Figure �� Reference frames

The boomerang is treated� in every respect� as a
spinning rotor� Thus the most suitable way to de�
scribe its orientation in space 
with respect to the
inertial frame FI� is throught the Euler parameters
q � 
q� q� q� q��T in the form of the so�called quater�

nion four variable representation� It has been pre�
ferred to the Eulerian angles one in order to avoid
the mathematical singularity that might arise in the
attitude equation� where the Euler angles are bound
to the angular rates p� q and r throught trigono�
metrical 
i�e� non linear� relationships� It is always
possible to pass from quaternion parameters to Euler
angles and vice versa� throught very simple relation�
ship� with the further advantage that the quaternion
representation allows to use a linear 
vectorial� at�
titude equation� However it has been observed that
the state equations with quaternion attitude prop�
agation are not minimal� that is quaternion param�
eters are not indipendent� but satisfy the following
constraint equation�

qTq � q�
�

� q�
�

� q�
�

� q�
�

� � 
��

In simulation problems the nonminimality condition
does not lead to any inconvenience� but greater care
is to be used when stability and control problems are
involved� because a non minimal model introduces
extra modes beside the natural ones� they are simply
artifacts of the method of computations and are not
readily associated with real aircraft behavior�

Under those hypotesis the equations describing
the boomerang motion� in the state�space formula�
tion� are�

�vB � ���BvB � BBg� � FB

m

force eq��

��B � �J����BJ�B � J��TB 
moment eq��
�q � �

�

�
�qq 
attitude eq��

�pNED � BT
BvB 
navigation eq��
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in which

��B �

�
� � �r q

r � �p
�q p �

�
� 
��

�q �

�
���

� p q r
�p � �r q
�q r � �p
�r �q p �

�
��� 
��

FB and TB are the aerodynamical forces and mo�
ments� while BB is the rotation matrix from NED
frame to body frame� expressed in function of
quaternions� In the narrow form we write

�X � f 
X�X�� 
��

in which

XT �
�
vTB � �

T
B�q

T �pTNED

�

��

is the state vector made by a set of variable that
completely de�ne the state of the system�
In presence of local wind we assume that the wind
velocity vector� that is an input of the problem� is
costant over a region much larger than the size of
the body
 the velocity of the body centre of gravity
with respect to the air is given by

vR � vB �BB

�
� WN

WE

WD

�
� 
��

Basis of rotor modelling

The most interesting aspect of this simulation
problem is the calculation of the aerodynamical ac�
tions� we know that the aerodynamical behaviours
of the boomerang is similar to that of a two�blade
rotor constituted by high�e�ciency airfoils �tted at
a nearly null angle� During the �rst part of its tra�
jectory� this rotor works in helicopter mode� that is�
it produces the lift required to support the body by
accelerating the air mass which passes through the
rotor disk in a direction opposite to the lift direction�
The rotor is said to be active� If the boomerang
is a good one� the second part of the trajectory

return� takes place with the rotor in self�rotation
mode� once the rotation kinetic energy given by the
thrower has exhausted itself� the boomerang trans�
forms its potential energy into rotation kinetic ener�
gy produced by the aerodynamical forces� which dur�
ing this phase are driving ones
 in this case the rotor
is said passive� In self�rotation mode� the direction
of the induced velocity is inverted� that is� a transi�
tion takes place between the two phases� Apart from
this macroscopic aspect� another condideration is to

be done� boomerang 	ight is a phenomenon lim�
ited in time� that is� a complete time history can
be performed in a few seconds� during which mo�
tion variables undergo very strong variations� This
is to say that there is a frequency� associated with
motion� that will obviously be compared with the
natural time of evolution of physical phenomenons�
the higher is the motion frequency� the less time the
�eld has to develop itself and to reach the new oper�
ating conditions and the stronger the non�stationary
e�ects� Thus� to perform a good simulations it is
necessary to use a �sensitive� 
dynamical� model�

Rotor theory has many examples of attempts of
modelization� but every method has the same basic
idea� to concentrate the problem on the determi�
nation of the distribution of indeced velocities� that
is to say that the determination of the induced ve�
locities is at the heart of the rotor aerodynamics�
Di�erent methods have di�erent philosophy� but it
is possible to outline the state of the art as follow�

� Vortex wake theory� the blade is substituit�
ed by a vortex distribution� merely divided in
tip vortex and an inboard vortex sheet� The
trailed and shed vorticity of the rotor wake
is deposited in the 	ow �eld as the blade ro�
tates� and then convected with the local veloc�
ity of the 	uid� This velocity consists of the
free stream velocity and the wake self�induced
velocity� so that the wake acquires the shape
of distorted interlocking helices� skewed in the
direction of motion� This point of view is the
most exhaustive because it permits to evalu�
ate many 	uid dynamic phenomenona of great
importance� like the blade�vortex interaction�
the self�induced distorsion� the stall of the re�
tracting blade and many other that are not yet
well understood even for non rotating wing�
Nevertheless the limitations imposed by this
method are quite heavy� good results are ob�
tained only with a detailed description of the
rotor geometry� including in it even the actual
position of each vortex element� This justi�
�es the birth of di�erent level of approxima�
tion sub�methods that go from the rigid wake
model 
or prescribed wake model� when mea�
sured wake geometry informatin is used�� to
the free 
or semirigid� wake model� throught
a great deployment of forces that has lead to
signi�cant results� Among all the most im�
portant is the evaluation of the 	ow near the
rotor and the mapping of data in chart form
or in look�up tables form ���� for various ge�
ometrical characteristics and OGE operating
conditions of the rotor� These are needed for
rapid calculations in 	ight dynamics and con�
trol simulations� when it is necessary to esti�
mate e�ciently the e�ects of the interactions
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Figure �� in	ow dynamic as a closed�loop problem

beetwen the rotor
s� and the body 
helicopter
fusolage��

� Dynamic in�ow theory� in	ow is treated
globally� as a large mass of air accelerating
throught the rotor disk� in function of the ra�
dial and azimuthal position� as stated in the
following �rst harmonic relation

vi � v� � vic
r

R
cos� � vis

r

R
sin� 
��

This method was initiated by Curtis and
Shupe in ����� they opened a great seam
of research inheriting from Sissingh his quasi�
steady formulation� that did not take into ac�
count the radial variation of the in	ow� the
time lag and the 	ow perturbations in pitch
and roll moments� Since the �����s� dynamic
in	ow has been one of the most investigated
areas of research� Nowaday it seems to have
given some satisfaction� the Pitt�Peters model
seems to be quite reliable� complete and easy
to use� but other work is to be done to give it
a numerical 
experimental� validation� beyond
the methodological one� The formulation of
the Pitt�Peters model will be outlined in the
next section�

I am very far from thinking to have well re�
sumed the subject
 from this point of view
there are few authoritative and very preciouse
works� among all the one by R�T� Chen ��� and
the more targeted one by G�H� Gaonkar and
D�A� Peters ���� Nevertheless there is a concept
to underline� dynamic in	ow is intrinsecally a
closed�loop problem� as shown in �gure � for
the generical case of a controlled machine 
he�
licopter�� but Pitt�Peters model treats it as an
open�loop problem� reducing time calculation
without loosing its own generality�

Calculation Process

Each phase of boomerang 	ight has been simu�
lated� �rst of all the throwing one� that represents
the constrained motion phase� Some words must be
spent on it� even if it is not interesting from the aero�
nautical point of view� One can immagine a throw�
ing machine� constituited by a mechanical arm� ly�
ing on a plane which is orientable with respect to
the NED frame� In correspondence of one tip of
the arm there is the hooking�unhooking boomerang
mechanism� on the other side the arm is bound to
the plane throught a cylindrical torsional spring� it
is possible to set the starting and the ending points
of the run of the arm and calculate the elastic mo�
ment that the arm is subjected to� with the following
linear relationship�

M � ��
Gd�

��nD

��

where �� is the azimuthal variation of the arm posi�
tion� d and n are� respectively� the diameter and the
number of the coils� D the diameter of the spring�
and G is the elastic torsional coe�cient� The motion
of the arm is planar and is described by three second
order scalar equations� which are integrated instant
by instant up to the unhooking moment� The virtu�
al 
simulated� thrower�machine is used with the aim
of calculating the state vector� and its derivative�
proper of the �rst instant of the free motion phase


that coincides with the last istant of the constrained
motion phase�� Even the real one is useful� the sim�
ulated trajectories can be compared to the actual
ones of a numerical�control model� constituted ad
hoc by the very same airfoils used in the test case
model 
airfoils whose aerodynamical characteristics
are obviously known�� In this way it is possible to
validate the mathematical model� being sure to have
imposed the right initial conditions�

During the constrained phase� the aerodynami�
cal forces and moments have been neglected� This is
not a roughly approximation and we can prove it if
we compare the inertial end elastic forces with some
hipothetical values that the aerodynamical forces
would have� if they were evalueted in steady con�
dition� Furthermore this phase wears out in few
split seconds� so that accelerations acquire the im�
pulsive characteristic
 aerodynamical forces have not
enough time to develop themselves and reach a value
that is even half the steady one 
let us remember the
case of the impulsive start of the plate� studied by
H� Wagner �	� in ������ The 	ight initial state vector
is then the result of the balance among inertial� elas�
tic and gravitational actions� In order to have good
	ight performances much power is to be impressed to
the boomerang� it is literally hurled by the thrower
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and undergoes great tangential and centrifugal ac�
celerations� whose actions will in	uence the whole
trajectory y� as will be pointed out in the section
regarding the discussion of the results�

As soon as the free motion phase starts� the
aerodynamical actions� and their variations in time�
begin to play an important role� To perform the
simulation� the nonlinear version of the Pitt�Peters
dynamic in	ow model has been used� It consists
in a �rst�order di�erential vectorial nondimensional
equation to be added to the above mentioned state
equations z�

	
���
��s
��c



� � �M ��� �V � �L���

	
��
�s
�c



��M ���

	
CT
C�

�C�



aero

��	


in which

�� �

�
� ��

�s
�c

�
� 
���

is the nondimensional induced velocity vector in
body axis� while CT � C� and C� are� respectively�
the thrust� the rolling moment and the pitching mo�
ment coe�cients� in body axis x� This esplicit for�
mulation is derived from the most famouse implicit
one� nondimensional� written in a general coordinate
system� that is worth quoting�

�M �

	
���
��s
��c



� �L���

nl

	
��
�s
�c



�

	
CT
�CL
�CM



aero

���


The transformation between the two formulations is
well explained by the same author of the theory in
a technical note ���� in which some aspects of the
model are reviewed and corrected for practical ap�
plications� Essentially it is the rewrite of the model
in a more usable form� that is from a generic refer�
ence frame� to a body reference frame� For further
details the reader is invited to look over the work
by Peters and HaQuang� The general formulation�
however� is useful because allows to have a greater
insight into the range of applicability of this theory�
The �M  matrix� for example� is nothing more that

yHere trajectory has its wider meaning� it is the points
locus described by the state vector tip
 instant by instant
 in
the phase space�

znote that
 before application
 each term is to be switched
to its dimensional form
 and
 above all
 great care is to taken
when nondimensional equations are integrated together with
the dimensional ones
 because in the former case time is nor�
malized on the rotor speed�

xThe subscript aero implies that only aerodynamic contri�
butions are considered in CT 
 CL and CM � For this applica�
tion this detail is meaningless
 because inertial terms due to
�apping or lagging blades are absent� Anyway the author has
reported it for completeness�

an inertial term� that allows to include the e�ects of
the time delay in the build�up or decay of the in	ow
�eld� It is called apparent mass matrix
 the prob�
lem of its evaluation has been the subject matter of
extensive studies� �rst by Carpenter and Fridovitch�
in ����� who introduced the intuitive concept of the
rotor seen as an impermeable disk which� under the
actions of instantaneous acceleration and rotation in
still air� produces reactions forces� They suggested
that the transient in	ow through the rotor� in axial
	ight� could be taken into account by including an
accelerating mass of air occupying ����! of the air
mass of the circumscribed sphere of the rotor�

mS � �

�
�	R�

mA � �

�
	R� �� �����mS

m�� � mA

��R� � �

��


���

A similar concept was applied to the apparent in�
ertia� that was estimated to be a certain percentage
of the rotary inertia of the same sphere� Therefore
we have�

�M  �

�
� �

��
� �

� ��

���
�

� � ��

���

�
� 
���

What seems to be a fanciful idea was con�rmed both
by experimental tests� and by the analytical study
by Pitt and Peters �
�� This latter is quite interest�
ing and allows us to arrive at the focus point� the
development of this model is based on an extension
of the actuator�disc theory and this means that no
geometrical parameters are involved in the determi�
nation of matrix coe�cients� It does not matter how
many blades the rotor has� or what their shape is
and� moreover� adopting the �rst�harmonic form of
the model� as we did� even the pressure distribution
is little in	uential on the matrix coe�cients�

Similar deductions are valid also in the case of
the �L nl matrix� It is function of the wake angle

 
measured with respect to the rotor disk� and of
the mass�	ow parameter matrix �V  � that weighs the
mass�	ow relatively to the associated action�

�L nl � �L �V  �� 
���

�L� �

�
���

�
�

	 �
���
��

q
��sin�
�	sin�

	 �
�	sin�

	

���
��

q
��sin�
�	sin�

	 � sin�
�	sin�

�
���
���


�V  �

�
� VT � �

� V �
� � V

�
� 
���
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Figure �� angles of attack of the advancing blade
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This apparent digression is at the base of the re�
marks that� in some manner� justi�es the applica�
tion of a model� developed for helicopter rotors� to
a very particular rotor� that is� an eccentric one�
We conclude by observing that boomerang 	ight is
performed at very high values of the advancing ra�
tio� when the induced velocities are nearly negligi�
ble with respect to the in	ow due to forward mo�
tion� Notwithstanding this� their variations with
time 
unsteady e�ects� are consistent and this dy�
namic in	ow model has demonstrated to be a good
evaluation tool� as will be shown belove�

The aerodynamical actions have been evaluated
by using the blade�element theory� forces and mo�
ments are calculated by the superpositions of the
contributions of each blade section� that is supposed
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Figure �� comparison between the steady and the
unsteady model 
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to have the same characteristics of its constituting
airfoil� Each elementary action has been evaluated
by knowing the velocity components of the air rel�
ative to any point� thus the local angle of attack�
and by interpolating the data extracted from the
known airfoil characteristic curves� The elementary
actions then have been numerically integrated along
the blade� this procedure is repeated every time that
the state vector derivative is calculated� that is four
times per step� if an RK� integration routine is used�
This method is expensive� in time�calculation terms�
but it may happen to be very far from linear con�
ditions� above all where the blade is retreating and
thus where wind blows from the trailing�edge� At
very high advancing ratio values� this reverse�	ow
region may be wide and a reliable evalutation of the
aerodynamical actions might be impossible by using
the analytical integration 
that is by assuming a con�
stant lift slope and so on����� The choice of the air�
foil has fallen on a wind�turbin one� the Wortmann
FX���W����� whose characteristics have been exper�
imentally evaluated some years ago at the Polytech�
nic of Turin ����� It has demonstrated to be very
suited for this application� due to its good autorota�
tive qualities� that are required for the boomerang
as well as for wind�turbin� Figures � and � show
how rotational speed increases considerably� symp�
tom that the boomerang is little braked during its
rotation
 this allows for a very slow �nal descent� as
shown in �gure ��
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Figure �� components of the translational and rota�
tional speed along the xB and yB axis
TA � ����� sec

The mathematical system constituted by the
thirteen state equations and the three in	ow equa�
tions �� has been integrated in time with an RK�
routine� The choice of the integration alghoritm has
been made by trying to match the philosophy of the
space�state formulation adopted� in which all the in�
formation describing the state of the system is con�
tained in the state vector X at any given instant�
the RK method� unlike the multistep ones� allows to
solve the initial value problem apart from the past
values� The sample time has been choosen in func�
tion of the rotational speed r� it has been reduced
until its further halving has demonstrated to be inin�
	uential on the results� r varies during the motion�
it can even double� so that in the simulation pro�
gram an adaptative step option has been provided
for�

Analysis of a 	ight

The mathematical system describing the physi�
cal one is nonlinear through the BB matrix� the �q

matrix and the aerodynamical actions and� more�
over� the degrees of freedom are coupled� Thus the
time history and the stability of the system will be
strongly dependent on the throwing parameters and
the atmospheric conditions� The solid curves of �g�
ures ��� �� and �� show the geographical trajecto�
ry� in terms of NED coordinates� performed by a
test boomerang� whose geometrical parameters are
resumed in table �� Figures �� � and � are represen�
tative of the same 	ight and can be useful to under�
stand the reasons of the behaviour of the boomerang�
At the throw moment Euler angles are

� � ������o � � �����o � � �����o 
���
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Figure �� e�ect of the altitude on the amplitude
modulation
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Figure �� component of the rotational speed along
the zB axis� note that it is negative 
this is con�
sistent because the trower is supposed to be right
hander�� There is traced also the total energy� eval�
uated by adding kinetical and potential energy con�
tributions
TA � ����� sec
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which means that the xyB plane is nearly normal
with respect to the ground and the xzB plane has a
little climbing ramp� In the �rst phase of the 	ight
the system has a high translational speed that� in
absence of wind� is the composition of the inplain ve�
locities u and v� It takes o� under the initial actions
of great centrifugal and tangential accelerations and�
as soon as aerodynamical forces become substantial�
the trajectory bends and the w velocity component
starts to develop� The boomerang begins its turn
and� while the translational speed decreases� the ro�
tational speed can increase� descrease or remain con�
stant� depending on the autorotative characteristics
of the system� Evidently� an increase of the rotation�
al speed occurs to the cost of the tranlational one�
for obvious energetic considerations� thus a highly
autorotative boomerang covers little distances� be�
cause it spends a great amount of energy in whirring

but if the throw is performed with high power� the
autorotative boomerang is able to complete its turn
with a very slow descent� that is more spectacular
as well as more precise ��

By analysing the surfaces representig the induced
velocities� corresponding to some instants after the
throw 
�gure ��� we see that the advancing blade is
strongly loaded when its anomaly is of some degrees
greater than the reference position �a � ��o 
pos�
itive yB axis�� lifting forces are concentrated there
and in a much greater extent� if we think that the
advancing blade has also higher e�ective local veloc�
ities

Veff �
q
U�

P � U�

T 
���

where UP is the parallel component of the local ve�
locity� with respect to the rotor disk� while UT is the
tangential one� that strongly feels the e�ects of the
forward speed� All this means that� on an average�
that direction provides the position of the pressure
centre and subsequently of the precessing axis� In
fact the latter is de�ned as the intersection between
the rotational plane and the plane that contains the
couple� created by the lifting actions� applied in the
pressure centre and the inertial and gravitational
forces� applied in the centre of the mass� The pre�
cessing angular velocity vector� that lies on this ax�
is� has thus both a component along the y axis and
one along the x axis� so while the former is respon�
sible of the further bending of the trajectory the
latter produces the �	attening� of the boomerang�
the xyB plane reduces its inclination with respect
to the ground� slowly assuming a horizontal orien�
tation� But this motion is almost impercettible and
the trajectory has the time to complete itself� before
the 	attening can take place� In the meantime� the

�this characteristic is associated with a certain form of
stability
 but this is an intuitive concept more than a mathe�
matical one�

body has reached its upper point� in corrispondence
of which the translational speed has a local mini�
mum� The following glide occurs under the action
of the gravitational �eld� the boomerang descends
in autorotation with a strong recovery of kinetic en�
ergy
 the traslational and the rotational speeds in�
creases while the rotational plane becomes more and
more horizontal� This is the reason why at a given
instant� just at the end of the 	ight� when the body
is landing� the trajectory turns to climb� because
the lifting actions have assumed the zNED direc�
tion� The trajectory has now accomplished a com�
plete turn and� depending on the amount of residual
power and� to much greater extent� on the presence
of wind� it can end in di�erent way� if the airfoils
constituting the boomerang have high e�ciency� the
trajectory goes on with another turn� as long as it
is allowed to by the power
 it may happen that� just
before the end of the turn� the rotational plane tilts
to the other side and the boomerang enters in an op�
posite narrow turn� completing what is called �the
eight�� In the best case� the trajectory ends in a
vertical autorotation in corrispondence of the geo�
graphical initial point� What determines a situation
instead of another" Figures ��� �� and �� show the
comparison between two trajectories obtained from
the same initial and environmental conditions� but
in one case airfoils e�ciency has been decreased by
an ��!� with respect to the nominal one� precisely�
the values of drag coe�cient have been kept con�
stant� as the moment coe�cient ones� while the cl
curve has simply undergone a contraction equivalent
to ��! k� The trajectory then becomes wider and
reaches higher altitudes� On the contrary� it my hap�
pen that airfoils e�ciency is not satisfactory� that is�
the boomerang is not able to perform its turn� In
this case� experience teaches that a little positive tip
incidence can be useful� but can also compromise the
boomerang autorotative qualities�

Parameters in	uence on the trajectory

The variables of �gure � are representative of the
same 	ight� They show a behavour that� in one way�
reminds of a beat phenomenon� namely a sinusoid�
whose frequency is imposed by the rotational speed
r� modulated by a sinusoidal amplitude� The lat�
ter is strictly bound to the oscillations of the total
translational speed� which� in its turn� decreases and
increases according to the trend of the boomerang to
climb or to descend� keeping anyway an average de�
creasing course� Figure � shows what has just been

kThis method is used even in the practical situations� the
boomerang is calibrated by the airfoils shape modi�cations to
perform the desired trajectory� It means that this is a case
in which the high e�ciency condition is not required at all
costs�
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Figure ��� in	uence of the wind 
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stated
 being the system strongly nonlinear� the pa�
rameters of this damped beat oscillation will depend
on the characteristics of the system as much as on
the throwing conditions� which seem to be able to
modify the system natural modes�

Figures ��� �� and �� show the in	uence of the
wind� a contrary wind substarcts a greater amount
of energy from the system� nevertheless the 	ight
results longer
 a favourable wind is less expensive�
in terms of energy� but the boomerang is crushed
to the ground in a few seconds� This trend is well
known among the throwers� in fact the �rst rule to
learn is to throw about ��o o� the wind�

Figures ��� �� and �� show another well known
behaviour� in this case the varying parameter is the
angle of inclination of the xyB plane� with respect to
the xyNED plane� at the throwing instant� namely
the angle �P of inclination of the throwing�machine
plane� with respect to the ground� The more hori�
zontal the angle� the higher the trajectory� because

�
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the thrower�machine
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the lifting force has a greater component along the
zNED direction� To run the additional �ve or ten
meters of altitude� the body loses rotational kinetic
energy� the angular speed vector decreases and the
precessing moments ���J  � are no more able to tilt
the boomerang� that crushes in a few seconds�

Figures ��� �� and �� show the in	uence of the
throw power� it is modi�ed by varying the elastic
constant ke of the spring� that produces the bending
moment on the thrower�machine arm� Using a tor�
sional spring the bending moment is linear with ke�
so that a smaller value of ke implies a lower throw�
ing power� Apart from the last tract� the diameter of
the trajectory seems to feel no e�ects� while the al�
titude is a�ected� This trend has been detected and
analysed also by other authors ���������� who agree in
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Figure ��� in	uence of the throw power 
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stating that the boomerang seems to �possess� its
trajectory radius in itself�

In conclusion �gure �� � and � reports a com�
parison between two trajectories� obtained with the
same throwing parameters� but in one case the un�
steady e�ects have not been token into account�
namely the induced velocity is the one that resolves
the closed�loop problem� based on the momentum
theory� The di�erences are remarkable� above all
in terms of time calculation� resolving a closed�loop
problem requires a time of some orders of magnitude
greater than the case of the open�loop problem� Fur�
thermore the trajectory evaluated with the steady
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model has clearly something innatural and� in fact�
has never been veri�ed experimentally�

Topographical analysis of the angle of attack

Figures �� ��� �� and �� are quite interesting�
they show the topographical situation of the an�
gles of attack of the advancing blade� in four dif�
ferent phases of the motion� They have been traced
by mapping� instant by instant� the whole turn of
the advancing blade� erasing the central part that
is meaningless� as it corresponds to a pressure hole

but it is of no easy interpretation� in fact this area
would not be swept by the blades� if the body had
not a forward motion�� It is easy to see that the
reverse 	ow region narrows during the 	ight� this is
perfectly coherent� in fact the local angle of attack
is due to the superposition of an increasing rotation�
al speed r and a decreasing total translational one�
At the end of the 	ight the rotational speed is very
high� so that it prevails over the traslational one and
the reverse 	ow region disappears�
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Conclusions

The results that have been presented show that
this simulation program is able to treat strongly un�
steady motions� such as the boomerang 	ight� The
boomerang is seen as a rotor working at very high
advancing ratio
 no geometrical limitation is im�
posed� so that boomerang behaviours of di�erent
shapes and dimensions can be compared� under any
environmental condition� Usteady e�ects� which are
predominant during the whole 	ight� are well treated
by the Pitt�Peters dynamic in	ow model� The lat�
ter is based on the resolution of an open�loop pro�
gram� unlike other models� so that a whole 	ight

that takes some seconds� can be simulated in a few
tens of minutes� This application can be interest�
ing as the boomerang is a truly free rotor with a
known� or easy to experiment� behaviour� thus rep�
resenting a good means to verify the reliability of any
numerical code� written� for example� for helicopter
applications�

List of Symbols

X state vector
vT
B
� �u� v� w
 linear velocity vector of the system�s

center of gravity �in absence of wind

vR linear velocity vector of the system�s

center of gravity in presence of wind
�T
B
� �p� q� r
 rotational velocity vector of the system

in body axes
�T � ��� �� �
 Euler angles
qT � �q�� q�� q�� q

 quaternions
pT
NED

� �N�E�h
 coordinates with respect to the NED i�
nertial system

FT
B
� �X�Y� Z
 vector of forces in body axes

FAB vector of aerodynamic forces �in body
axes


TT

B
� �l�m� n
 vector of moments in body axes

TAB
vector of aerodynamic moments �in bo�
dy axes


g gravity acceleration vector
J inertia matrix
BB rotation matrix �from FI to FB

�T � ���� �s� �c
 induced velocities vector
ke spring elastic constant
TA time aloft
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