
11 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture /
Volpe, Deborah; Cirillo, Giovanni; Zamboni, Maurizio; Graziano, Mariagrazia; Turvani, Giovanna. - In: ACM
TRANSACTIONS ON QUANTUM COMPUTING. - ISSN 2643-6809. - ELETTRONICO. - (2024). [10.1145/3665281]

Original

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital
architecture

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/3665281

Terms of use:

Publisher copyright

© Volpe, Deborah; Cirillo, Giovanni; Zamboni, Maurizio; Graziano, Mariagrazia; Turvani, Giovanna 2024. This is the
author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in ACM TRANSACTIONS ON QUANTUM COMPUTING, http://dx.doi.org/10.1145/3665281.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989404 since: 2024-06-10T19:58:11Z

ACM

Improving the exploitability of Simulated Adiabatic Bifurcation

through a flexible and open-source digital architecture

DEBORAH VOLPE, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy

GIOVANNI CIRILLO, Department of Electronics and Telecommunications, Politecnico di Torino, Torino,

Italy

MAURIZIO ZAMBONI, Department of Electronics and Telecommunications, Politecnico di Torino, Torino,

Italy

MARIAGRAZIA GRAZIANO, Politecnico di Torino Facoltà di Ingegneria, Torino, Italy

GIOVANNA TURVANI, Politecnico di Torino, Torino, Italy

Combinatorial Optimization (CO) problems exhibit exponential complexity, constraining classical computers from providing

fast and satisfactory outcomes. Quantum Computers (QCs) can efectively ind optimal or near-optimal solutions by exploring

the solutions space of a problem encoded in a qubits system, exploiting principles of quantum mechanics. However, non-

idealities and high costs limit their availability. These can be overcome by emulating QCs on cheaper and more accessible

classical computing platforms, like Field-Programmable Gate Arrays (FPGAs).

This article presents a digital architecture, implementing the Ising-compatible Simulated Adiabatic Bifurcation algorithm.

It mimics the quantum adiabatic evolution of a network of non-linear Kerr oscillators. The architecture, described in

VHDL and targeting FPGAs, consists of processing elements for computing the Kerr oscillators’ evolution, a set of units

considering their Ising-related interactions and an evolution variables update unit. The proposed approach includes a speedup-

targeting approximation of the algorithm, a method for handling single-variable constraints, and a software model that allows

architecture customization for speciic problems. Tests were conducted using an Altera Cyclone V SoC with FPGA logic and

the Nios II processor for interface purposes. The results demonstrate the functionality of the architecture and its scalability

with the problem size, making it suitable for real-world applications.

Additional Key Words and Phrases: Ising machine, QUBO, optimization, Kerr oscillator, Simulated Bifurcation, Adiabacity

1 INTRODUCTION

Quantum computing research is achieving new results Ð in terms of algorithm deinitions, applications, and

device engineering Ð every day. Regardless of the paradigm considered (quantum circuit model [40] or quantum

annealing [28]), the state-of-the-art already presents theoretical proofs of the potential computational advantages

of quantum computation, particularly in applications involving large-scale data processing such as optimization

and machine learning [3, 14, 16, 35, 40]. However, it should be noted that these proofs are based on worst-case

complexities and experimental evidence of advantage is yet to be fully established. Some limitations must be

considered when quantum computers are going to be used. First, quantum hardware fabrication, control, and

maintenance are costly nowadays. For this reason, companies manufacturing hardware Ð which can be either big

Authors’ Contact Information: Deborah Volpe, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy; e-mail:

deborah.volpe@polito.it; Giovanni Cirillo, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Piemonte, Italy;

e-mail: giovanniamedeo.cirillo@st.com; Maurizio Zamboni, Department of Electronics and Telecommunications, Politecnico di Torino, Torino,

Piemonte, Italy; e-mail: maurizio.zamboni@polito.it; Mariagrazia Graziano, Politecnico di Torino Facoltà di Ingegneria, Torino, Piemonte, Italy;

e-mail: mariagrazia.graziano@polito.it; Giovanna Turvani, Politecnico di Torino, Torino, Piemonte, Italy; e-mail: giovanna.turvani@polito.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2643-6817/2024/5-ART

https://doi.org/10.1145/3665281

ACM Trans. Quantum Comput.

HTTPS://ORCID.ORG/0000-0003-3364-1114
https://orcid.org/0000-0003-3364-1114
https://doi.org/10.1145/3665281
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3665281&domain=pdf&date_stamp=2024-05-29

2 • D. Volpe et al.

Fig. 1. Overview of the article. Sotware implementations evaluate the SBa proposed acceleration by exploiting a benchmark

set of max-cut, knapsack, and traveling salesman problems. This analysis also allows the verification of the feasibility of

the hardware in fixed-point numbers representation, providing the opportunity to choose the proper data parallelism. The

VHDL description of the algorithm is then synthesized on an Altera Cyclone V FPGA interfacing with the Nios II processor.

The processor aims to send the problem’s matrix and algorithm parameters to the FPGA and collect the results. Both the

sotware models and the hardware description are open source, allowing users to generate QUBO problems and solve them

with at least one among sotware or hardware implementations of the algorithm.

companies like IBM, Google, and Intel or startups like Pasqal, Rigetti, IonQ, QuEra, and D-Wave Systems Ð give

the possibility to access their devices via cloud (both with and without fees). Moreover, hardware non-ideality

phenomena like decoherence and relaxation [8, 40], unwanted qubits interactions or excitation [13, 44, 57] and

connectivity limitations [33, 58, 64] can signiicantly afect the reliability of the results.

These issues could partially limit the exploitability of quantum hardware to real-world problems, particularly for

companies and academic institutes unable to access a real quantum computer or aford usage fees. A compromise

between quantum computers’ physical limitations and computational advantages can be achieved through

their classical emulation, belonging to a branch of the so-called quantum-inspired computing, where

quantum phenomena inspire the deinition of procedures accelerating speciic tasks, such as solving Combinatorial

Optimization (CO) problems [5]. Hardware non-idealities would not afect emulated qubits, and they can be

managed on established computing platforms like Field-Programmable Gate Arrays (FPGAs) or Graphics

Processing Units (GPUs). Since these are more afordable than current quantum computers, this approach can

open the way for developing custom applications based on the programming of on-premises quantum-inspired

machines.

Lessons learned from the design of classical computing systems can be leveraged to improve quantum computing

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 3

systems, for example, in applications like circuit compilation [33] or to implement eicient and reliable quantum-

inspired application-speciic classical computers. Hardware emulators are expected to be preferable to software-

based simulators in approximating quantum phenomena because the parallel nature of quantum computation

can be emulated more accurately and lexibly [30]. Very-large-scale Integration (VLSI) design methodologies for

Digital Signal Processing [41] can be considered a good starting point for designing quantum emulators since

these are usually based on models and algorithms involving arithmetic operations.

This article presents a quantum-inspired digital solver for Ising models based on the Simulated Adiabatic

Bifurcation (SBa) algorithm [21], which emulates the evolution of a quantum system. Therefore, the proposed

solver can also be employed with problems described with the Quadratic Unconstrained Binary Optimization

(QUBO) formalism [17], which is equivalent to the Ising model. To the best of our knowledge, the presented

architecture will be the irst open-source implementation of the SBa algorithm, and it is characterized by a

lexible description, allowing the synthesis of the most suitable hardware in terms of dimension and data

parallelism for the problems of interest. Unlike most of the SBa machines, speciically designed for solving

max-cut problems, which involve only the interaction term, the presented implementation can also address

problems including the external ield contribution of the Ising model. Another peculiarity of the proposed

architecture is its near-memory approach, and an approximation of the original algorithm proposed to

enhance solver speed.

Moreover, the SBa machine was inserted and developed inside the context of the toolchain shown in Figure 1. The

optimized solver is the hardware implementation (bottom part of the igure), corresponding to a digital circuit

described in VHDL and synthesized on FPGA. Additionally, a software implementation of the same is available to

provide users with higher lexibility in terms of employable backends for solving Ising/QUBO problems and to

serve as a reference functional model for the hardware implementation. As mentioned, the hardware description

is generic to allow the choice of the best parallelism and size of the machine for the user’s purpose. The FPGA

used to perform tests is put on a board also supporting synthesis of the Nios II processor, currently employed for

interfacing purposes, which could also be used to calibrate some parameters of the custom hardware.

The goals of this article are outlined in the following list:

• to provide a comprehensive overview of SBa algorithm encompassing all the main concepts behind this

quantum system emulation mechanism;

• to assess the SBa performance with generic Ising problems involving constraints on both single spins and

pairs, which can be considered closer to real-world scenarios;

• to explore potential methods for an eicient SBa implementation of Ising problems with ℎ vector;

• to propose and validate an SBa approximation achieving a higher degree of parallelization without signii-

cantly afecting the quality of the solutions obtained;

• to present open-source software and hardware implementations, aiming to facilitate the comprehension of

the SBa algorithm among a wider community of users.

The article is organized as follows. Section 2 presents the theoretical foundations, focusing particularly on the

Ising model and its relation with the QUBO model, the benchmark problems considered, and introduces of the

Simulated Adiabatic Bifurcation (SBa) algorithm. Section 3 introduces the proposed architecture and the toolchain

where it is embedded, highlighting the novelty introduced by this work. Section 4 reports and examines the

results obtained.. Finally, in Section 5, conclusions are drawn, and future perspectives are discussed.

2 THEORETICAL FOUNDATIONS

This section presents the Ising formulation, which is the native model of simulated bifurcation machines and

many other classical, quantum, and quantum-inspired solvers, and its relation with the more popular QUBO

formulation (Section 2.1). Moreover, the problems considered for benchmarking the proposed software and

ACM Trans. Quantum Comput.

https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor/ii.html

4 • D. Volpe et al.

hardware implementation are introduced (Section 2.1.2).

Furthermore, Section 2.2 provides a detailed presentation of the Simulated Adiabatic Bifurcation (SBa) algorithm.

2.1 Optimization Problems formalism

2.1.1 Ising model. The Ising model [38, 49] is a physical-mathematical model of ferromagnetism employed

in statistical mechanics for the description of the magnetic properties of a material. It describes a system of

interacting atomic spins modelled as dipoles arranged in a lattice, where each spin can assume one of two

discrete states, depending on its orientation: +1 (spin-up) or -1 (spin-down). The following Hamiltonian can

describe this model:

� (s) = 1

2

�SPIN−1︁

�=0

�SPIN−1︁

�=0, �≠�

�� ���� � +
�SPIN−1︁

�=0

ℎ��� , (1)

where �SPIN is the number of spins, �� is the �
th spin, �� � is the interaction coeicient between the �th and the

� th spins and ℎ� is the external magnetic ield coeicient of the �th spin. In simulated bifurcation machine, a

symmetric � matrix is considered, hence �� � = � �� .

The Ising Hamiltonian comprises two types of interaction:

• Interaction terms � , whoseweight and sign determinewhether neighbouring spin pairs prefer aligned or anti-

aligned (speciically, ferromagnetic and anti-ferromagnetic) orientation. The sum of all pair contributions

yields the overall interaction energy.

• External ield ℎ, where the sign determines the preferred orientation of a spin (up or down) and the weight

of the energy contribution of a single spin in the system’s energy.

Any system composed of paired elements that can be modelled as spins can be described using this model. It is

categorized 1D, 2D, 3D, or fully connected, depending on the number of interacting neighbours for each spin.

The irst identiies systems with two interacting neighbours, while four and six interacting spins characterize 2D

and 3D structures, respectively. In a fully connected system, each spin interacts with all the others.

Recently, Ising formulation has been extensively used for describing combinatorial optimization problems. In

particular, the optimal solution of the problem corresponds to the ground state of the Ising Hamiltonian.

Moreover, this formulation is the native model for quantum annealers and other quantum and quantum-

inspired optimization solvers and is perfectly equivalent to the Quadratic Unconstrained Binary Opti-

mization (QUBO) formulation. The latter involves unipolar binary variables Ð i.e., which can assume only

0 and 1 values Ð, as implied by the term Binary in the acronym. The term Quadratic refers to the highest

power applied to these variables, allowing the description of combinatorial Optimization through the following

objective function:

Obj(�, �� , �� � , ��) = � +
︁

�

�� · �� +
︁

�< �

�� � · ��� � , (2)

where �� ∈ [0, 1] is a binary variable, ��� � is a coupler that allows two variables to inluence each other, �� is

a weight or bias associated with a single variable (analogous to Ising ℎ�), �� � is a strength which controls the

inluence of variables � and � (analogous to Ising �� �), and � is an ofset, which can be neglected during the

optimization.

It can also be expressed as:

minimize/maximize � = � (x) = x� ·� · x , (3)

where x is a vector of binary variables (e.g. [0,1,1,0,1]) and � is a square matrix of constants, depending on the

problem. The matrix � can be symmetric or in upper triangular form.

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 5

Fig. 2. Optimization problems considered for benchmarking.

As in Ising model, the variable constraints are not explicitly considered in this formulation (as the term Uncon-

strained in the acronym suggests), but they can be evaluated by exploiting proper penalty functions:

minimize/maximize � = � (x) + ��(x) , (4)

where � is a positive parameter to be multiplied by the constraint function or penalty function �(x), whose
sizing is critical, as discussed in [17, 60].

Moving a problem from QUBO formulation to Ising, and vice versa, is always possible by exploiting the following

relation:

�� =
1 + ��
2

, (5)

and its counterpart:

�� = 2�� − 1. (6)

Knowing how to move from one formulation to the other is valuable. Indeed, the Ising model, as mentioned, is

the native formulation for many solvers (classical, quantum, and quantum-inspired), which are consequently

deined as Ising machines. At the same time, in the literature, there are many QUBO descriptions of real-world

problems [15, 24, 45, 48], and the quadratic penalty functions associated with several constraints can be easily

written with known formulas [17]. In general, describing an optimization problem with unipolar binary variables

is expected to be easier and more intuitive than doing the same with bipolar variables. Therefore, to simplify the

formulation of the optimization problem of interest, it is common to write the target problem according to the

QUBO formulation and then translate it to the Ising formulation to exploit a quantum or quantum-inspired solver

QUBO-to-Ising translation, and vice versa, can be automatically done with Python libraries like qubovert [26],

PyQUBO [25, 63] and dimod [2].

2.1.2 Benchmark problems considered. In this paragraph, the benchmark problems considered for the proposed

simulated bifurcation machine are presented. They were chosen because they are suiciently diferent to approach

the solver corner cases and to verify their efectiveness in a real-world context where the problems’ characteristics

vary. Speciically, it is crucial to assess the algorithm’s performance considering problems with and without the

external ield contribution (ℎ) associated with single-variable constraints. Moreover, to stimulate the algorithm

efectively, it is important to consider problems where the external ield predominates over the interaction

coeicients, thus presenting a scenario opposite to that for which the approach is designed. Furthermore,

exploring problems with diferent ranges of coeicient values and energy proile characteristics is necessary

to evaluate the exploration capabilities of the presented approaches in multiple scenarios. As discussed in the

following sections, the chosen benchmark meets these characteristics.

ACM Trans. Quantum Comput.

6 • D. Volpe et al.

Each QUBO formulation is written and converted to Ising formulation through qubovert library for each type of

benchmark problem. For some of them also, sets of problems available online were exploited.

Max-cut. Max-cut [12, 22] (Figure 2(a)) is one of the most known CO problems because it can be exploited

to describe several real-world problems in network design, statistical physics, VLSI design, and circuit layout

design [36]. Its goal is partitioning a graph into two complementary subsets, � and � , maximizing the

cut, i.e. the sum of edges joining the two sets. In its QUBO formulation, a binary variable is required for

each node, which assumes value one if the node belongs to subset � and 0 otherwise. The cut can be represented

as the quantity � (�, �) = �� + � � − 2��� � , whose value equals one if the edge (�, �) is in the cut and zero otherwise.

Taking into account all the edges, the obtained cost function is the following:

Maximize � =

︁

(�, �) ∈�
��, �� (�, �) =

︁

(�, �) ∈�
��, � · (�� + � � − 2��� �) (7)

where��, � is the weight of the edge that connects the �
th and the � th node.

Furthermore, the max-cut problem has two peculiarities. The irst regards the energy proile, which is sym-

metric; this means that, since the obtained two subsets are interchangeable, a solution and its complement (e.g.

[0,1,1,0,1] and [1,0,0,1,0]) have the same energy, so they are equivalent. The second concerns the corresponding

Ising formulation, whose Hamiltonian is the following:

�max-cut = −
︁

(�, �) ∈�
��, ���� � . (8)

Note that the external ield contribution ℎ is not present. This is the most relevant characteristic of the

problem and well justiies the fact that this problem is usually employed as a benchmark of the consolidated SBa

solver in the state-of-the-art, not considering single-spin variables.

In this work, a set of randomly generated max-cut problems of diferent sizes (from 3 to 1000 nodes) and the

well-known G-set max-cut problems, whose dimensions range from 800 to 20000 nodes, were considered for

benchmarking purposes. Randomly generated max-cut problems were considered, as they allow ine-grained

variations in problem size, a feature often absent in online problems. Moreover, these problems have the lexibility

of edge weights that can take integer values within the range [0, 10], which is in contrast with the restricted set

of [-1, 0, 1] in the G-Set. The maximum size of the generated problems is constrained to ensure the estimation of

the reference optimal values.

Knapsack. The knapsack problem [11] (Figure 21) aims to deine the best subset of objects belonging to a

set � . Each object is characterized by a preference parameter �� and a weight�� and the optimization problem

seeks the subset maximizing the total score:

� =

︁

�∈subset
�� , (9)

while not exceeding a certain weight threshold�max:

dim(�)︁

�=1

���� ≤�max , (10)

When �� are all equal, the problem is reduced to selecting the highest possible number of objects to put in the

bag without exceeding the maximum weight.

Auxiliary variables are required to represent the inequality constraint in QUBO formulation, the number of

ACM Trans. Quantum Comput.

https://web.stanford.edu/~yyye/yyye/Gset/

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 7

which depends on the maximum weight [16, 17, 59]. Therefore, the inal cost function is as follows:

�knapsack (x) = �inequality(x) −
︁

�

���� . (11)

The knapsack problem is widespread because it can be adapted for writing many resource selection opti-

mizations, e.g., in industrial environments. Moreover, to additionally prove the importance of these problems

in a real-world scenario, recent attempts to reformulate knapsack QUBO problems, tailored for speciic solvers,

have been proposed to improve execution reliability in terms of time and quality of the obtained solutions. For

example, [42] proposes reformulations targeting the Quantum Approximate Optimization Algorithm (QAOA),

compliant with the quantum circuit model, e.g. in terms of choice of the penalty constants and removal of slack

variables.

This problem was chosen as a benchmark due to its importance in the actual application context and its diference

with respect to the max-cut problem; for example, it presents the contribution of the external ield.

In the case of the knapsack problem, the external ield stands out as the primary contribution, evident from its

formulation. In fact, the single-variable contributions are given by the linear combination of the preference factor

−���� (Equation 11) and the weight constraints�2
� �

2
� − 2�max���� = (�2

� − 2�max��)�� (Equation 10), while the

constraints on pairs are given by −2��� ���� � . Since 2�max�� is expected to be greater than�2
� and 2��� � , the

overall single-variable constraints reasonably provide the most signiicant contribution to the problem.

This article considers a set of randomly generated problems of diferent sizes (from 2 to 103 binary variables)

and the 0/1 Knapsack set, whose sizes range from 8 to 110 binary variables. Randomly generated knapsack

problems were considered as they allow ine-grained variations in problem size, not present in the state-of-the-art

benchmarks. Nevertheless, as evaluations require estimating the expected optimal values, the maximum size

considered for the generated problems is constrained.

Traveling salesman. The Traveling Salesman Problem (TSP) [6, 31] (Figure 2(c)) is one of the most famous

combinatorial optimizations, aiming to ind the shortest possible path for a salesman to visit a set of locations,

traversing each once and returning to the origin. The problem’s popularity stems from its applicability to

real-world scenarios such as transportation services, goods distribution and delivery, planning, and logistics.

One approach to express an �city-TSP-problem according to the QUBO formulation is by employing a matrix

of �city × �city binary variables, where the variable �� � assumes value one if the �th city is visited as � th. For a

city-based TSP, the minimization of the overall covered Euclidean distance can be expressed as:

�distance =

�city−1︁

�=0

�city−1︁

�=0

(�city−2︁

�=0

(︃
(��� − ���)2 + (��� − ���)2�� ��� (�+1)

)
+
︃
(��� − ���)2 + (��� − ���)2�� (�city−1)��0

)
,

(12)

where ��� , ��� , ��� , and ��� are the � and � spatial coordinate of the �th and � th cities, respectively. To ensure

meaningful results, it is necessary to impose that exactly one variable assumes the value one for each row and

column. In this way, all the cities are visited once (except for the starting one) and one at a time. These constraints

can be described through the following penalties function:

�row =

�city−1︁

�=0

(�city−1︁

�=0

�� � − 1
)2
, (13)

�col =

�city−1︁

�=0

(�city−1︁

�=0

�� � − 1
)2
. (14)

ACM Trans. Quantum Comput.

http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/

8 • D. Volpe et al.

Hence, the inal cost function is the following:

�TSP =

�city−1︁

�=0

�city−1︁

�=0

(�city−2︁

�=0

(︃
(��� − ���)2 + (��� − ���)2�� ��� (�+1)

)
+
︃
(��� − ���)2 + (��� − ���)2�� (�city−1)��0

)
+

+ �row
(�city−1︁

�=0

(�city−1︁

�=0

�� � − 1
)2)
+ �col

(�city−1︁

�=0

(�city−1︁

�=0

�� � − 1
)2)

, (15)

where �row and �col are the weights of the penalty functions �row and �col, respectively.

This article employs TSPs of diferent sizes (from 9 to 81 binary variables), randomly generated according to the

aforementioned formulation, to test the designed Ising solver. The choice of involving this family of combinatorial

optimization problems is driven by their importance in applicative scenarios and to the presence of single-

variable constraints, that are not available in max-cut problems and can introduce an additional complexity to

be handled by the SBa architecture. In contrast to the knapsack case, these problems exhibit a balanced coeicient

size between the single-variable (ℎ) and interaction contributions (�). Indeed, both types of coeicients assume

values in the same order of magnitude.

TSPs are generated by granularly varying the number of cities and considering the distances involved in a wide

range of values. This allows the stimulation of solvers with problems featuring coeicients of diverse magnitudes.

As for the previous problems, the maximum size is constrained to ensure the identiication of the reference

optimal values.

2.2 Simulated Adiabatic Bifurcation

Simulated Adiabatic Bifurcation (SBa) is a heuristic quantum-inspired algorithm recently proposed in

[21] for obtaining approximate solutions of large-size optimization problems written according to Ising

formulation in a limited amount of iterations. In the original version, it supports only Ising problems without

the external ield component, exempliied by the following equation:

� (s) = 1

2

�SPIN−1︁

�=0

�SPIN−1︁

�=0, �≠�

�� ���� � . (16)

In particular, it emulates on classical platforms the adiabatic evolution of a quantum system involving a

network of non-linear Kerr oscillators [18] (KPO). The main peculiarity of these quantum oscillators is their

ability to represent a superposition of two oscillation states, commonly known as a Schrödinger cat state, through

quantum adiabatic evolution across its bifurcation point (Figure 3), thereby enabling the representation of a

state analogous to that of a qubit [19]. Through this mechanism, a kind of quantum computer called Quantum

Bifurcation Machines (QbMs) is achieved. Analogously to a measurement mechanism in standard quantum

computation, at the end of the evolution, the oscillator exhibits a bifurcation phenomenon, where the chosen

branch identiies the measured value of the qubit. QbMs are usually employed for quantum adiabatic optimization,

but, theoretically, can be employed also for generic quantum computation as well if corresponding operations for

oscillation control are deined.

The quantum mechanical KPOs Hamiltonian as follows:

�� (�) = ℏ

�SPIN︁

�=1

[
�

2
�†2� �

2
� −

� (�)
2
(�†2� + �

2
�) + Δ�

†2
� �

2
�

]
+ ℏ�0

�SPIN︁

�=1

�SPIN︁

�=1

�� ��
†2
� �

2
� , (17)

where ℏ is the reduced Plank constant, � is the positive Kerr coeicient of oscillators, �†� and �� are the creation
and annihilation operators, respectively, � (�) is the photon pumping amplitude Ð initially at zero, then growing

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 9

Fig. 3. Time evolution of a non-linear Kerr parametric oscillator (KPO), where � and � are themomentum and position

variable of the oscillator, respectively.

Fig. 4. Uncorrelated KPOs system energy profile evolution varying the pumping amplitude (without considering the

optimization problem).

to a suiciently high value Ð, Δ is the positive detuning frequency and �0 is a positive constant.

The initial state of each oscillator of the quantum system (� (�) = 0) is the vacuum state, which is the superposition

of two coherent states (cat state), as shown in Figures 4(a) and 4(d). It is the ground state of the initial Hamiltonian.

ACM Trans. Quantum Comput.

10 • D. Volpe et al.

Gradually increasing the pumping amplitude � (�) from zero to a suiciently high value, each KPO becomes a

coherent state with positive or negative amplitude of quantum adiabatic bifurcation. If the evolution is suiciently

slow, i.e., adiabatic, the system is in its ground state in each time instant (Figures 4(b) and 4(e)).

Without considering the contribution related to the optimization problem, which creates a correlation among

KPOs, every possible combination of the oscillators in one of the two coherent states gives the inal ground

state. Indeed, each oscillator chooses one of the two states chaotically because both minimize the network’s total

energy (Figures 4(c) and 4(f)).

The role of the problem contribution ℏ�0
∑�SPIN

�=1

∑�SPIN

�=1 �� ��
†2
� �

2
� is to create an imbalance in the energy proile

associated with the Hamiltonian such that the inal ground state of the KPOs network is its optimal solution,

as shown in Figure 5(b).

To compute the evolution of the described KPOs system classically, it is necessary to approximate the expected

value �� as a complex amplitude �� + ��� , where �� =
�†� +��

2 and �� =
�†� −��

2 are the canonical conjugated variables

position and momentum of the �th oscillator. The corresponding classical mechanic Hamiltonian is:

�� (x, y, �) = ℏ

�SPIN︁

�=1

[
�

4
(�2� + �2�)2 −

� (�)
2
(�2� − �2�) +

Δ

2
(�2� + �2�)2

]
+ ℏ�0

2

�SPIN︁

�=1

�SPIN︁

�=1

�� � (��� � + ��� �) . (18)

Consequently, the equations of motion that can be obtained for this classical system are:

¤�� =
���

���
= [� (�2� + �2�) + � (�) + Δ]�� + �0

�SPIN︁

�=1

�� �� � , (19)

¤�� = −
�� (�)
��

= −[� (�2� + �2�) − � (�) + Δ]�� − �0
�SPIN︁

�=1

�� �� � , (20)

where dots indicate the diferentiation with respect to the time � .

It was proven [18] that in the classical equivalent of the KPOs network, a good approximation of the combi-

natorial optimization solution can be obtained by considering the inal sign of motion variable �� as the

value of the spin variable �� in the inal solution. This substantially permits the deinition of a new family of

quantum-inspired classical Ising machines.

To render Equations 19 and 20 suitable for fast numerical simulation on classical hardware, some terms

proportional to momentum y, which varies around zeros, can be neglected (in the following, ✁� means that a

variable � ≈ 0), thus simplifying the equation as follows:

��� (x, y, �) = ℏ

�SPIN︁

�=1

[
�

4
(�2� +✓✓�

2
�)2 −

� (�)
2
(�2� −✓✓�

2
�) +

Δ

2
(�2� + �2�)2

]
− ℏ�0

2

�SPIN︁

�=1

�SPIN︁

�=1

�� � (��� � +✟✟��� �) ≈

≈
�SPIN︁

�=1

Δ

2
�2� +� (x, �) =

�SPIN︁

�=1

Δ

2
�2� +

�SPIN︁

�=1

[
�

4
�4� −

Δ − � (�)
2

�2�

]
+ �0

2

�SPIN︁

�=1

�SPIN︁

�=1

�� ���� � . (21)

¤�� =
���

���
=✘✘✘✘✘✘
� (�2� + �2�)�� +✘✘✘� (�)�� + Δ�� − +

✚
✚

✚
✚
✚

�0

�SPIN︁

�=1

�� �� � ≈ Δ�� , (22)

¤�� = −
�� (�)
��

= −[� (�2� +✓✓�
2
�) − � (�) + Δ]�� − �0

�SPIN︁

�=1

�� �� � ≈ −[��2� − � (�) + Δ]�� − �0
�SPIN︁

�=1

�� �� � , (23)

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 11

where � (x) is the potential energy. The same detuning Δ is considered for all. Note that the resulting system is a

network of Duing oscillators with mass equal to Δ
−1 and coupling coeicient equal to �0 �� � [56]. The fourth

power of the position variable �� represents a potential barrier that initially constrains the motion of

each oscillator. This ensures the system is initialized around the ground state, i.e., the zero position, and triggers

bifurcation when the problem contribution emerges.

Note that the simpliied Equation 21 permits the separation of position and momentum, diferently from

the original formula, enabling the resolution of Equations 22 and 23 with the Euler’s method, that is a stable

numerical method for solving Hamiltonian equations of motion. This operation is crucial for obtaining a hardware

implementation of the Ising solver. By discretizing the time in time-step Δ� , the following explicit symplectic

Euler’s method can be obtained for the update of position and momentum variables:

�� (��+1) = �� (��) + Δ�� (��)Δ� , (24)

�� (��+1) = �� (��) − [��3� (��+1) + (Δ − � (��+1))�� (��+1) + �0
�SPIN︁

�=1

�� �� � (��+1)]Δ� , (25)

where �� is the �
th-time-instant (�� = �Δ�).

To achieve the correct evolution of the network, the position and momentum variables should be initialized

close to zero. However, at least onemust deviate from zero to emulate the mechanism initiating the oscillation

from noise, typically employed to activate oscillators.

In their updated expression, the cubic terms of the position variables come from the derivative of the fourth-power

potential barrier included in the Hamiltonian. Its computation could be one of the most crucial aspects during

execution. Instead, the pumping amplitude � (��) should be initialized at zero and gradually increase each time

step. The algorithm pseudocode is provided in 1.

Algorithm 1 SBa algorithm

Input: J matrix

Output: Solution vector s and Energy value

Initialize:

//Initialize position and variables of the �SPIN oscillators

for � = 0 To � < �SPIN do

initialize �� to a random number close to zero

initialize �� to a random number close to zero

end for

//Define the value of the parameter

initialize parameters � , Δ, Δ� , �0, �shape and NumIter

//Initialize to 0 the pumping amplitude

� ← 0

SBa steps:

//In each time step

for � = 0 To � < NumIter do

//Update the position variables (parallelizable part)

for � = 0 To � < �SPIN do

�� ← �� + Δ��Δ�
end for

//Update the momentum variables (parallelizable part)

for � = 0 To � < �SPIN do

ACM Trans. Quantum Comput.

12 • D. Volpe et al.

//Computation of the problem contribution

temp← 0

for � = 0 To � < �SPIN do temp← ���� + �� �� �
end for

�� ← �� − (��3� + (Δ − �)�� + �0temp)Δ�
end for

� ← � + �shape
end for

//Optimal solution identification

for � = 0 To � < �SPIN do

�� ← sign(��)
end for

//Computation of final energy

Energy← 0

for � = 0 To � < �SPIN do

for � = 0 To � < �SPIN do

Energy← Energy + �� ���� �

end for

end for

Return: Energy, s

Note that each Kerr oscillator’s position and momentum update is independent of the others, except the

optimization problem term �0
∑�SPIN

�=1 �� �� � (��+1), which represents the only data dependencies among spins

variables. Therefore, the oscillator update can be parallelized. This is the main advantage of choosing this

approach for hardware implementation with respect to other quantum-inspired algorithms, such as Simulated

Quantum Annealing (SQA) [60]. Another beneit of this approach is the elimination of random number

generation for each iteration. Indeed, aside from the initially selected random state of the oscillators’ system, the

SBa algorithm is deterministic. Moreover, it is possible to write the algorithm as a set of matrix operations,

which can facilitate implementations based on GPUs, known for their suitability in handling matrix operations.

It has been demonstrated that SBa enables the minimization of cost functions associated with a fully-connected

2000-node max-cut problem ten times faster than other Ising machines and it solves efectively large-scale

high-density problems [21].

However, the quality of the results strongly depends on the choice of oscillators’ network parameters and

the initial oscillator system state. Consequently, it is not always ensured to ind a stable solution, requiring

multiple repetitions of the routine.

Furthermore, the main limitation of the original SBa algorithm proposed is its inability to directly manage the

external ield component of the Ising formulation of the problem. In the state-of-the-art, some eforts

have been made to extend the approach to all kinds of problems. The proposed methods range from re-writing

the Ising problem with an external ield component as a Hamiltonian with higher dimension involving only J

matrix, which also includes the h vector, as in [65], to exploiting an additional evolution variable multiplied by h

for gradually considering its contribution, as in [7, 46, 51, 66]. In this work, after analyzing the literature and

performing some software tests, the methodology proposed by [46] and exploited in [7] has been followed. This

method consists of using the evolution variable �(�), which modiies the previous equations as follows:

��� (x, y, �) =
�SPIN︁

�=1

Δ

2
�2� +� (x, �) =

�SPIN︁

�=1

Δ

2
�2� +

�SPIN︁

�=1

[
�

4
�4� −

Δ − � (�)
2

�2�

]
+ �0
2

�SPIN︁

�=1

�SPIN︁

�=1

�� ���� � + 2�0�(�)
�SPIN︁

�=0

ℎ��� ,

(26)

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 13

¤�� = Δ�� , (27)

¤�� = −[��2� − � (�) + Δ]�� − �0
�SPIN︁

�=1

�� �� � − 2�0�(�)ℎ� . (28)

Consequently, the position and momentum update expressions become:

�� (��+1) = �� (��) + Δ�� (��)Δ� , (29)

�� (��+1) = �� (��) − [��3� (��+1) + (Δ − � (��+1))�� (��+1) + �0
�SPIN︁

�=1

�� �� � (��+1) + 2�0�(�)ℎ�]Δ� . (30)

However, inding a suitable evolution for A(t) is a challenging task. In [46], �(�) close to 0 for � (�) ≪ Δ and

�(�) ≈
︃
� (�)−Δ
�

for � (�) ≫ Δ is suggested. Unfortunately, to the best of our knowledge, no article explains the

employed evolution for �(�) in detail.

2.2.1 Two-oscillator network evolution. To enhance comprehension of the mechanism behind SBa, a simple

two-spin Ising model with anti-ferromagnetic coupling is analyzed step-by-step in the following. This model

implies that ground-state spin conigurations are either down-up or up-down, and its Hamiltonian is shown in 31.

� = �0�1 . (31)

When pumping amplitude � (�) equals zero, the Hamiltonian of the simulated Kerr oscillators network is equal to:

� (0) = �

4
(�40 + �41) +

Δ

2
(�20 + �21) + �0 (�0�1) +

Δ

2
(�20 + �21) . (32)

The position and momentum variables of the two involved oscillators are initialized to values close, but slightly

diferent from zero to start the network oscillation. From the Figures 5(a) and 5(b), Note that at this time instant, the

energy proile has a single minimum (and stable point) at the origin. Therefore, the trajectory of both oscillators

moves around the origin, implying that position and momentum variables oscillate around zero, as shown in

Figure 6(b).

By linearly increasing the � (�) up to Δ − �0, the optimal solution of the problem of interest appears as ground

states (and stable points) of the oscillators network energy proile. Continuing to increase the pumping amplitude,

all possible spin conigurations become minima (and stable points) of the Hamiltonian. However, the solutions of

the optimization problems are associated with lower energies, i.e., they are global minima of the energy proile,

as illustrated in Figures 5(d) and 5(e).

The appearance of optimal solution conigurations before and their lower energy convergence ensures conver-

gence to the minimum. Indeed, in the case of adiabatic evolution, the trajectory will stabilize around one of the

global minima. Figure 6(b) shows that when � (�) is about equal to Δ − �0 (irst bifurcation point, represented as

the irst dashed black asymptote in Figure 6(b)), the positions of the two oscillators start to follow the branches,

assuring a minimum energy coniguration. At the second bifurcation point (� (�) = Δ + �0, represented as the

second dashed black asymptote in Figure 6(b)), when the other local minima appear, the oscillators should have

already chosen the bifurcation branch, thus limiting the possibility of obtaining sub-optimal solutions.

All the previous considerations, related to the achievement of the optimal solutions, are clearly valid assuming

that the algorithm parameters have been properly chosen and calibrated.

ACM Trans. Quantum Comput.

14 • D. Volpe et al.

Fig. 5. Comparison between KPOs system energy profile evolution varying the pumping amplitude and quantum annealer

hydraulic model time evolution, applying the same optimization problem in both cases.

2.2.2 Comparison between uantum Annealer and Simulated Adiabatic Bifurcation . Quantum annealers [10,

27, 28, 43] are special-purpose quantum computers that allow the minimization of a problem’s cost function,

formulated in either Ising or QUBO representation, through an adiabatic evolution of their quantum system.

Nowadays, they are the best-performing quantum solvers, in terms of complexity of processable optimization

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 15

Fig. 6. Pumping amplitude, position and momentum variables of two-oscillators network time-evolutions considering an

anti-ferromagnetic coupling as an optimization problem to solve.

problems. The Hamiltonian associated with their system is as follows:

� (�) =
︁

� �

�� ��
�
� �

�
� + ℎ

︁

�

��� + Γ(�)
︁

�

��� = = �0 + Γ(�)
︁

�

��� , (33)

where �0 is the standard Ising model on which the problem is mapped, Γ(�) is a time-dependent transverse ield

which varies during the evolution for permitting quantum tunneling between system eigenstates, and ��� and ���
are the Pauli matrices associated with � and � components of the �th Ising Hamiltonian spin, respectively:

�� =

(
0 1

1 0

)
, (34)

�� =

(
1 0

0 −1

)
. (35)

A hydraulic model is commonly employed to provide a qualitative idea of quantum annealer system evolution.

This intuitive representation is exploited in the current work to compare the solutions space exploration done by

QA and KPOs (Figure 5).

Initially, when the transverse ield is high, the quantum annealer creates the superposition of all possible states

with equal weight (spins aligned on the x-axis), corresponding to making the bottom of the tank lat and ensuring

a uniform distribution of the water among the solutions (Figure 5(c)). On the other hand, at the beginning of

the oscillator’s network evolution, the only ground coniguration is the origin, so the trajectory of each spin

oscillates around this (Figures 5(a) and 5(b)). As mentioned in Section 2.2, this corresponds to a superposition of

all possible states.

As the strength of the transverse ield decreases, the system energy gradually reproduces the problem energy

proile. This corresponds in the hydraulic model to a gradual deformation of the tank’s bottom to describe the

objective function, and the water begins to low towards the lowest points (Figure 5(f)). Similarly, the oscillator

network’s energy proile is gradually deformed so that minimum points are created in correspondence with the

lowest energy conigurations associated with the Hamiltonian problem (Figures 5(d) and 5(e)). In the end, the

quantum annealer converges to the optimal solution, described in the hydraulic model as the water concentrated

in the lowest point (Figure 5(i)). At the same time, the trajectory of the oscillators converges to one of the

minimum points (Figures 5(g) and 5(h)). Both models obtain the correct behaviour only for suiciently slow

evolution and correct parameter setting.

ACM Trans. Quantum Comput.

16 • D. Volpe et al.

2.2.3 Previous works. Some hardware implementations of the simulated bifurcation algorithm, called Simulated

Bifurcation Machines (SBMs), have already been designed and applied to real-world problems based on

Ising/QUBO formulations.

To the best of our knowledge, the irst was presented by H. Goto et al. in [21, 52]. They propose an SB-based Ising

machine with a single Arria 10 GX 1150 FPGA described in OpenCL, capable of handling at most 4096 Ising

spin variables. Benchmarks involved only max-cut problems with random edge weights in the set {−1; 0;+1},
which allowed hardware simpliications, especially in terms of required memory and arithmetic components.

Considering that the sum of products operation is the most computationally intensive and that is the only element

inserting data dependencies among the position and momentum of the various oscillators, a method for speeding

up the algorithm was proposed, i.e., splitting the Hamiltonian as:

�SB = �
�SB − � �

�
+ � � , (36)

where � is an integer number greater or equal than 2 and � � = − �02
∑�SPIN

�=1

∑�SPIN

�=1 �� ���� � . This modiies the

Euler’s method as follows:

�
(�+1)
� = ��� + Δ��� �� , (37)

�
(�+1)
� = ��� − [��

(�+1)3
� (��+1) + (Δ − � (��+1))��+1�]�� , (38)

�� (��+1) = ��� , (39)

�� (��+1) = ��� − �0
�SPIN︁

�=0

�� ��
�
� Δ� , (40)

where �� =
Δ

�
,� varies from 0 to� − 1, � (0)� = �� (��) and � (0)� = �� (��). In this way, the most computationally

intensive part
∑�SPIN

�=0 �� �� � is considered
1
�

of the time with respect to the original algorithm, at the cost of reduced

quality of the solution. The advantage with respect to the original algorithm is present if the number of position

and momentum variables (with and without considering the problem contribution) updates are the same, as

shown in Figure 10.

The presented architecture can be subdivided into two parts: one related to the matrix-vector product∑�SPIN

�=0 �� �� � and the other to compute the position and momentum update of each oscillator. The irst,

which is the most computationally expensive, was parallelized by subdividing this into smaller matrix products

to be appropriately added and combined later, as shown in [52].

This architecture was scaled by exploiting multiple FPGAs in [50, 55]. Moreover, it was also an important reference

for the design of other SBMs, whose oscillators network evolve in ergodic [21], discrete, or ballistic [20] ways.

They difer from the original SB approach for an alternative evolution of the oscillators network, due to the usage

of a diferent � (�) (ergodic), the insertion of an inelastic wall (ballistic and discrete), even a discretization of the

position variable (discrete). Also in these cases, hardware implementations of the machines have been obtained

on the same FPGAs of the irst SBM, even for speciic applications involving QUBO models diferent from that

of max-cut. For example, [53, 54] describe the hardware architectures of two ballistic SBM solvers of QUBO

problems for trading strategies and portfolio optimization, synthesized on the Arria 10 GX 1150 FPGA, employing

single-precision loating-point arithmetic components and involving 128 and 256 Ising variables, respectively.

Another architecture was proposed in [70] targeting the Ultra-Scale + XCZU7EV-2FFVC1156 FPGA. This was

designed by re-writing the original SBa algorithm in a graph-based edge-centric description. Handling the algo-

rithm as a set of operations on edges, it is possible to avoid the non-operations deriving from the consideration

of all the � -matrix coeicients. This approach is efective when the problem of interest is sparse. Again, the

optimizations considered as benchmarks are the max-cut problems, belonging to the Gset. The maximum number

of Ising variables that can be handled by hardware is not explicitly written. However, it is possible to recognize

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 17

Fig. 7. Comparison of position and momentum evolution obtained with the original algorithm and by applying the spliting

of Equation 36 with � = 2 in the case of a two-spin problem with an anti-ferromagnetic coupling, while considering the

same number of position and momentum variables updated.

from the results that the most complex problem, solved without pre-processing, involves 1000 spins.

3 PROPOSED SIMULATED ADIABATIC BIFURCATION IMPLEMENTATION

This section presents the SBa digital solver and the associated toolchain, highlighting the unique aspects of this

proposal compared to the current literature. In particular, Section 3.1 outlines the algorithmic novelties introduced

by this work and the corresponding worklow. Section 3.2 illustrates the policy followed for parameter selection,

while Section 3.4 describes the employed software model. Lastly, Section 3.5 showcases the designed architecture.

3.1 Research gap

A signiicant gap in the investigation of Simulated Adiabatic Bifurcation can be identiied in the evaluation

of its performance across various types of combinatorial optimization (CO) problems formulated using Ising

or QUBO formulations. Indeed, the original algorithm and the Quantum Bifurcation machine were thought to

solve only max-cut-like problems, i.e., problems without the external ield component of the Ising formulation.

As mentioned in Section 2.2, some techniques were proposed in the state-of-the-art, even if without providing

many details about them. In this work, the implemented approach is based on introducing the �(�) evolution
parameter. In [46], it is suggested to have �(�) close to zero for � (�) ≪ Δ and close to

︃
� (�)−Δ
�

for � (�) ≫ Δ. In

order to obtain an efective parameter evolution consistent with the provided indication, several trials were done.

Initially, a naive piecewise-deined function was considered, ixed to zero until � (�) = Δ and equal to

︃
� (�)−Δ
�

ACM Trans. Quantum Comput.

18 • D. Volpe et al.

Fig. 8. �(�), position and momentum variables of three-oscillator network time evolutions. The three versions v1, v2 and v3

correspond to �(�) of Equations 41, Equation 42 and 43, respectively.

for � (�) > Δ:

�(�) =
{

0, if � (�) < Δ︃
� (�)−Δ
�

, if � (�) ≥ Δ

}

(41)

The obtained results were not satisfactory. In particular, it was noticed that by exploiting the trivial solution,

the contribution of the ℎ vector was considered less than that of the � matrix and too abruptly. Therefore, it

was considered to substitute the irst part with an exponential, making the function continue, and translate the

function along the x-axis by �:

�(�) =

2
� (�)−Δ−�

� , if � (�) < Δ + �︃
� (�)−Δ−�

�
+ 1, if � (�) ≥ Δ + �

(42)

This modiication resulted in a signiicant improvement. Moreover, analyzing the results obtained by gradually

changing the � value, � = 4� was empirically determined as the best choice. However, since the computation

of an exponential function in hardware is costly, it was evaluated to substitute the irst part with a constant

function, diferent from zero:

�(�) =
{

0.1, if � (�) < Δ + �︃
� (�)−Δ−�

�
+ 0.1, if � (�) ≥ Δ + �

}

(43)

This function can provide good results with a limited expense from the computation point of view, so it was

chosen for the implementation.

On the other hand, it was noticed that the sum-product component
∑�SPIN

�=1 �� �� � (��+1) of the oscillator’s momentum

update is the most computation-intensive step, also because data dependencies limit the possibility of parallelizing

the computation. Indeed, as shown in Figure 9(a), its computation can start only after the position update of all

oscillators. In order to reduce the overall momentum computational time, this work proposes an approximation

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 19

Fig. 9. Scheduling of the sum computation and position-variable update tasks in the original version of the algorithm and

when applying the proposed approximation.

Fig. 10. Comparison of position and momentum evolution obtained with the original algorithm and by applying the proposed

approximation in case of a two-spin problem with an anti-ferromagnetic coupling.

that tries to exploit the adiabaticity of the evolution (� (��) ≈ � (��+1)). In particular, the momentum update

ACM Trans. Quantum Comput.

20 • D. Volpe et al.

expression was modiied as follows:

�� (��+1) = �� (��) − [��3� (��+1) + (Δ − � (��+1))�� (��+1) + �0
�SPIN︁

�=1

�� �� � (��+1) + 2�0�(�)ℎ�]Δ�

y

�� (��+1) = �� (��) − [��3� (��+1) + (Δ − � (��+1))�� (��+1) + �0
�SPIN︁

�=1

�� �� � (��) + 2�0�(�)ℎ�]Δ� .

(44)

As it is possible to notice from Figure 9(b), the proposed approximation allows a more eicient parallelization of

product-sum operations and position-momentum update. In particular, the hardware block or the thread (if a

GPU implementation was considered) is almost always active, reducing its impact on the overall execution time.

In the original algorithm case, the time required for the overall execution grows as:

O((�xupdate +�sum +�yupdate) × NumIter) , (45)

where �xupdate is the time required for updating the position variables, �sum the time required for product-sum

operation, �yupdate the time required for updating momentum variables, and NumIter the number of algorithm

iterations. At the same time, with the proposed approximation, the time required grows as:

O(max(�xupdate +�yupdate,�sum) × NumIter) . (46)

Consequently, the proposed approximation guarantees, in the most crucial scenario, i.e., when�xupdate +�yupdate <
�sum, the opportunity of reducing the amount of time required of a factor (�xupdate +�yupdate) ×NumIter, indepen-

dently from the methodology chosen for computing the trajectory variables and the product-sum operations.

The advantages in the speciic case of the proposed architecture will be discussed in detail in Section 3.5.

Furthermore, this work tries to propose a solution to another algorithm limitation. Considering that SBa provides,

even though in a very reduced amount of time with respect to other approaches, an approximation of the

optimal solution, the inal energy is not guaranteed to be the global minima of the objective function. In this

article, we show that performing, after the SBa execution, few steps of a local exploration algorithm, such

as hill-climbing or simulated annealing, is a good strategy for achieving the optimal solution. In particular,

the solution found with SBa is exploited as the exploration starting point. This could signiicantly improve the

solution with a reduced efort because it allows the correction of single variables that could assume wrong values

due to a not perfectly good choice of the algorithm parameters or some numerical errors (especially in ixed-point

number representation) or the intrinsic nature of the algorithm, which identify the ground state of a Hamiltonian

composed by other contributions in addition to those related to the optimization problem itself.

Figure 10 compares the position and momentum evolution obtained with the original SBa and the proposed

approximation, for a two-spin problem with anti-ferromagnetic coupling (Equation 31). This problem is sui-

ciently simple for a visual and intuitive comparison between the canonical and approximated approaches. It is

possible to observe that the approximation ampliies and delays the oscillations compared to those of the original

algorithm. However, the bifurcations can be considered analogous, since in both SBa versions �0 > 0 and �1 < 0.

Similar observations can be done with other problems. It can be concluded that, even though the performed

approximation introduces noticeable changes in oscillations, the inal result is not signiicantly afected, as the

algorithm typically converges to the same inal coniguration.

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 21

3.2 Parameters choice

The choice of the algorithm parameters is one the most crucial points for SBa exploitation because a wrong

choice can completely negate the possibility of obtaining a good solution. Some indications about this are available

in the supplementary information ile of [21].

Firstly, regarding the initialization of position and momentum variables, the suggested strategy is to set

the position and momentum variables to 0 and to a random value in the range [−0.1, +0.1], respectively. This
strategy proved to be efective in the tests performed for the current work. However, this introduces an element of

randomness in the algorithm (which would otherwise be deterministic). This implies that multiple executions

of the algorithm are required to ensure obtaining a good solution. Therefore, this work also attempts to identify a

good initialization of the variables to attempt a single execution of the algorithm. In particular, it has been noticed

that initializing all the position and momentum variables to 0, except ��SPIN−1 = 0.1, where �SPIN is the

number of oscillators, yields a inal energy close to the average energy that can be obtained with the random

starting condition. For this reason, this could be a good starting point if there are limitations on the number of

possible runs.

Regarding the positive detuning frequency Δ and the Kerr oscillators parameter � , the suggestion is to set them

to 1; it was veriied that this assignment is reasonable in all the considered types of optimization problems. On

the other hand, the time step Δ� has to assume, in any case, a value lower than 1 to avoid algorithm divergence.

However, a higher value of Δ� assures, together with a faster evolution of the pumping amplitude, a faster

convergence of the algorithm to a solution at the cost of a possible reduction of its quality. Therefore, the best

choice depends on users’ needs.

The choice of the value of �0 is the most complex. Indeed, it is the only parameter strictly problem-dependent

and plays a crucial role in weighting the contribution of the target optimization problem in the Hamiltonian

with respect to the others. In this work, the same strategy for the choice of �0 reported in the supplementary

information ile of [21] was chosen, on one hand for simplicity, on the other for its empirical validity. In particular,

it is proposed to set �0 for smaller problems to:

�0 =
0.7Δ

�
√
�SPIN

, (47)

where � is the standard deviation of the of-diagonal elements of � and � the number of spins, while for larger

problems:

�0 =
0.5Δ

�
√
�SPIN

. (48)

These equations were derived by considering that the irst bifurcation point is given by the maximum eigenvalue

�max of the J matrix. To reach this point, and consequently the approximate optimal solution, as fast as possible,

the irst bifurcation point is set to 0 by setting �0 =
Δ

�max
. Assuming, for sake of simplicity, that � is a random

symmetric matrix (clearly not true in a real scenario), �max ≈ 2�
√
�SPIN for the Wigner’s semicircle law [9].

Consequently, the optimal setting for the variable is given by Equation 48, but for obtaining a faster convergence,

it is also possible to use a larger �0 (Equation 47). The obtained �0 is not always the best possible, because the

relation is obtained by making some assumptions about the � matrix, but, on average, it provides good results.

The main challenge in this context concerns the extension of this rule to the case in which the external ield of

the Ising computation is considered. Firstly, it was decided to provide the highest possible lexibility through

separate �0 parameters for the � and ℎ contributions:

�� (��+1) = �� (��) − [��3� (��+1) + (Δ − � (��+1))�� (��+1) + �0
�SPIN︁

�=1

�� �� � (��) + 2�0��(�)ℎ�]Δ� . (49)

ACM Trans. Quantum Comput.

22 • D. Volpe et al.

In the previous equation, �0 and �0ℎ are associatedwith � andℎ, respectively. This strategy allows the compensation

of, eventually, a strong imbalance in the values (e.g. a diferent order of magnitude) of the coeicients of the �

matrix and the ℎ vector. In any case, by default, they are considered equal, and to take into account the efect of

the external ield, the standard deviation is also computed considering its coeicients as if they were the diagonal

elements of the � matrix.

Another important parameter that needs to be managed is the slope (��) with which the variable � (�) grows and,
consequently, the number of algorithm interactions required (NumIter). The latter clearly depends not only on

the dimension of the problem under analysis but also on its characteristics. For example, max-cut problems can

obtain a good solution with a faster convergence than knapsack problems. This can be explained by remembering

that the second type of problem also has the ℎ component to handle, and the coeicients involved usually difer

much more from each other than in the max-cut case. In general, in this work, NumIter and �� are chosen to

achieve a inal p-value in the range [2, 10], and the best combination is found by performing small variations in

their values until a good quality of the solution is reached for one problem of the group under analysis.

3.3 Toolchain structure

This article presents the toolchain shown in Figure 1. In particular, it consists of software models written in

the Cython language, featuring a C++ core with an external Python interface. These models were utilized

for studying the mechanism of managing degrees of freedom, evaluating the efectiveness of the proposed

improvement, and identifying the optimal number representation for architecture, using a set of well-known

problems as benchmarks. The software models can also be used independently as software solvers and come

with a user-friendly interface. Leveraging the insights gained from software tests, an architecture was designed

and described in VHDL, generic for the number of bits in the number representation and the number of

emulable oscillators. To ensure its correctness, each block was initially tested in isolation using Python scripts

simulating the roles of other components. Subsequently, a Python class was developed to automatically generate

suitable testbenches and Tool Command Language (TCL) scripts for solving each problem and launching the

simulation in ModelSim 17.0.

The architecture was synthesized by changing its degrees of freedom, such as the number of bits for number

representation and the number of emulated oscillators, to analyze their impact on area requirements,maximum

frequency, and power consumption. To streamline this process, a Python script was employed to generate

TCL scripts and initiate synthesis using Intel Quartus Lite 17.0, targeting the 5CSEMA5F31C6 Cyclone V

FPGA on the DE1 SoC board.

For onboard functional testing, the Nios II lite processor was exploited for sending to the architecture

parameters and problem coeicients at the beginning of the execution and for receiving the inal optimal solution

from the FPGA.

Each component of the toolchain is elaborated upon in the following sections.

3.4 Sotware models

Proper software models were developed to study the algorithm characteristics and evaluate the proposed

approximation, considering the�-speedup, and to verify the possibility of computing the oscillators’ evolution

with ixed-point number representation.

In particular, the following implementations were obtained:

• SBa: loating-point implementation of the original algorithm;

• SBaFixed: ixed-point implementation of the original algorithm;

• SBaVLSILab: loating-point implementation of the algorithm by applying the proposed approximation;

• SBaVLSILabFixed: ixed-point implementation of the algorithm by applying the proposed approximation;

ACM Trans. Quantum Comput.

https://cython.org
https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/quartus/tcl-modelsim.html
https://www.intel.com/content/www/us/en/software-kit/750291/modelsim-intel-fpgas-standard-edition-software-version-17-1.html
https://www.intel.com/content/www/us/en/software-kit/669444/intel-quartus-prime-lite-edition-design-software-version-17-1-for-windows.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=836&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=836&PartNo=2
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor/ii.html

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 23

Fig. 11. Graphical description of the class exploited to execute the solver. Green arrows indicate the required input information,

i.e. the Ising or QUBO description of the target optimization problem and the parameter values. If the second input is not

provided, default parameters are assumed. The blue arrows represent the available methods within the class: the init

create the sotware object, the Sample_Ising or Sample_QUBO executes the algorithm and the others provide a report on the

algorithm’s execution along with a set of plots detailing aspects of the solver execution, such as the evolution of oscillators

and energy or the cumulative distributions of the final output.

• SBaTo: loating-point implementation of the algorithm by applying the�-speedup;

• SBaToFixed:ixed-point implementation of the algorithm by applying the�-speedup;

• SBaTM: loating-point implementation of the algorithm by applying both the proposed approximation and

the�-speedup;

• SBaTMFixed: ixed-point implementation of the algorithm by applying both the proposed approximation

and the�-speedup.

The loating-point number representation was considered to study the algorithm and behavior of all its possible

versions without stringent limitations on the range of values assumable by the algorithm parameters, to examine

the problem coeicients, and to evaluate intermediate results for debugging purposes. The ixed-point imple-

mentations were obtained because this number representation usually permits the design of a less expensive

hardware design from the area’s point of view and with lower latency. Therefore, their functional veriication

is crucial for achieving the best possible hardware design. In this implementation, numbers are represented

as standard integers, where the Least Signiicant Bit (LSB) has virtual weight 2−NumFrac, where NumFrac is the

ACM Trans. Quantum Comput.

24 • D. Volpe et al.

Fig. 12. Graphical representation of the procedure for obtaining a Python module with a C/C++ core by exploiting the Cython

language. First, the developer writes the C/C++ function of interest (.cpp and .h) and the Pyrex file with the header file

containing the declaration of the function of interest (.h). In the Pyrex file, the target function has to be translated into

Cython syntax, and the C++ function must be called within a wrapper function that converts its inputs from Python data

structures to C++ types and converts the returned from C++ types to Python data structures. Then, the setup.py file, which

specifies the name of the Python extension to obtain and the C++ and Pyrex files to consider, is exploited for compiling the

C++ source with Cython. All the files produced by the developer are shown in the magenta box. The compilation produces an

optimized translation of the wrapper (_wrapper.cpp), and the Python module to import in other scripts (.pyd). These files

are shown in the green box. The obtained module can be imported by the user as a standard Python module, as illustrated in

the orange box.

number of bits considered for the fractional part representation. A right shift is performed to keep constant the

number of bits of the representation after complex numerical operations such as multiplication and square root.

Each solver is deined inside a Python class, which permits the deinition of the algorithm parameters, running

the solver for a speciic problem written in Ising or QUBO formulation with a certain number of iterations for a

certain number of times, and analyzing the obtained results. This analysis is possible through a written report and

some plots, such as the graph of the position and momentum variables’ evolutions, the plot with the cumulative

distribution of the inal energies, and another showing the energy evolution as a function of the iteration (Figure

11). The choice of Python language for the solver class came from the need to interface the solver with the main

libraries for Ising/QUBO problems, including qubovert [26], PyQUBO [25, 63] and dimod [2].

However, the algorithm core is written in C++ language to have an eicient execution of the most complex

computational part. The interface between the Python part and the C++ part is realized by exploiting Cython, a

programming language and an optimizing static compiler that allows the writing of C/C++ extensions for

Python and the declarations of static type declarations in Python code. It is based on Pyrex, a programming

language for writing Python extension modules obscuring the Python/C API to the user. The following procedure,

shown in Figure 12, must be followed to exploit this mechanism:

• Wrap the C++ functions (.cpp, .h iles) in a Pyrex ile (_wrapper.pyx ile), which includes the header ile

containing the declaration of the function of interest (.h). In this ile, translate the function into Cython

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 25

Algorithm cycles

Multiplication (11 × �SPIN + �SPIN × (�SPIN − 1)) × NumIter

Addition/subtraction (8 × �SPIN + �SPIN × (�SPIN − 1)) × NumIter

sign determination �SPIN

Square-root NumIter

Comparisons NumIter

Table 1. Operations required for executing NumIter number of iterations of the SBa of �SPIN variables problem.

syntax, and call the C++ function within a wrapper function that converts its inputs from Python data

structures to C++ types and converts data returned from C++ to Python types.

• Use the setup.py ile, which speciies the name of the Python extension to obtain and the C++ and Pyrex

iles to consider, for compiling the C++ source with Cython. Its execution generates an optimized translation

of the wrapper (_wrapper.cpp), and the Python module to import in other scripts (.pyd), in this case, in

the solver class.

The software implementations are not parallelized using multi-thread or multiprocessing programming, as

required by the algorithm’s nature due to the limited resources of the devices on which they were executed.

However, the C++ description of the algorithm core would permit the partial parallelization with a limited amount

of changes in the code, e.g. by adding, for example, the #pragma omp for option before the variables update loop.

3.5 Architecture

This section describes the digital design obtained for a Simulated Bifurcation machine, with detailed comments

on the architectural choices. Further details useful for improving or modifying the open source architecture,

such as Datapaths (DPs), Data Flow Graphs (DFGs) and Control Units (CUs) of single blocks, are provided in the

Supplementary Materials iles.

Before delving into the architecture description, an analysis of algorithm complexity is presented and discussed.

Table 1 outlines the number of operations required to execute NumIter iterations of the algorithm for an �SPIN

variables problem. It can be observed that the algorithm complexity grows as O(� 2
SPIN
·NumIter). This indicates

that, without parallelization, the time required for a single algorithm iteration increases quadratically with

the problem dimension and the number of required iterations rises rapidly with the number of oscillators to

mimic. Particularly, drawing parallels with quantum annealers, the expected growth of the required number of

iterations (NumIter) is proportional to 10
√
�SPIN [37]. This underscores the importance of obtaining implementations

that allow parallelization, such as FPGA, GPU or ASIC designs, leveraging the reduced amount of data

dependencies present in the algorithm. Indeed, the update of position and momentum variables can be entirely

parallelized, with the
∑�SPIN

�=1 �� �� � (��) contribution being the unique dependency among them.

This work proposes the architecture reported in Figure 13, aiming to parallelize the algorithm as much as

possible with an area growth slightly more than linear with the number of binary variables. Its main

blocks are:

• Processing elements (PEs): one for each oscillator to be emulated, computing its position and variable

update.

• Sum blocks: one for each oscillator to be emulated, with the purpose of computing
∑�SPIN

�=1 �� �� � (��).
• P A updater block: evaluates the � (�) and the �(�) evolution parameters in each iteration;

• Control Unit (CU): synchronizes the overall system.

ACM Trans. Quantum Comput.

26 • D. Volpe et al.

Fig. 13. Architecture proposed for digital implementation of SBa.

Each PE computes the position and momentum variables of one spin following Equations 29 and 44. The

summation
∑�SPIN

�=1 �� �� � (��) is computed for each PE by the Sum block on top, which can be considered as a

hardware accelerator for the PEs.

The P A updater block evaluates the evolution of the � and � parameters during the algorithm’s execution. For

� , a simple addition suices, while for �, the square root operation is required. Although this operation may

seem problematic at irst glance, as it requires several clock periods if pipelining is applied, it is performed in

parallel with the operations of the PEs and Sum blocks, thus not limiting the total latency of the system.

The Control Unit (CU) block synchronizes the overall system by initiating the start and new iteration signals to

the CUs of the other blocks and collecting the done signals. The inite-state machine of the top-level CU evolves

after the assertion of an external signal.

As evident from Figure 13, besides the presented blocks, column and row counters with a decoder are required.

These serve two purposes: ensuring that each sum block acquires the required coeicients at the outset, and

correctly sampling the single-spin constraint and the initialization values of the momentum variables. Additionally,

an iteration counter is necessary to track the number of iterations performed.

It is apparent that the Sum block is critical in the design, as it can introduce signiicant latency if the sums

are computed in series with a multiply-and-accumulate (MAC) [67] policy or substantial area overhead if

parallel computation is implemented with structures like trees of adders [47, 68]. In both cases, this component

can be considered the bottleneck in terms of scalability or latency. To make a design choice, the architecture’s

complexity was evaluated for both scenarios, as shown in Table 2. Choosing the irst option provides a linear area

growth with the number of oscillators to emulate (O(�SPIN ×NumIter)), without considering the problem’s data

storage elements, whose size does not depend on the implementation. Conversely, the second option increases

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 27

Fig. 14. Scheduling of the sum computation and position-variable update tasks in the original version of the algorithm and

by applying the proposed approximation, considering the proposed architecture.

the area quadratically with the number of spins (O(� 2
SPIN × NumIter)). Moreover, this option is also critical for

what concerns memory access. For these reasons, this work implements the Sum block by exploiting a MAC

approach.

The presented architecture was described in VHDL (IEEE 1164) and, for maximum lexibility, employs generic

descriptions for the integer (INT) and fractional (FRAC) part number of bits, the stopping value of the iteration

counter (N_ITERATION), the number of spins (N_SPIN), and the number of bits required for iterations N and

row/column counter M = log2 (N_SPIN), respectively.
The Simulated Bifurcation Machine receives the algorithm parameters, the variables’ initial state, and the problem

coeicients at the beginning of the algorithm execution, one by one. Providing the initial states as an input and

generating them in software Ð for example, with a connected processor Ð is chosen due to the diiculty of

generating high-quality random numbers in hardware. Moreover, allocating dedicated hardware for an operation

required only at the beginning of the algorithm is not considered eicient from a hardware resources standpoint.

To simplify the computation of an algorithm iteration, recurring and constant products such as �0 � and �0ℎℎ

products are precomputed in software to avoid numerical cancellations. This allows for signiicant savings in

operations. The number of clock cycles required for the completion of a single iteration is determined by the

maximum value between:

• 9, which is the number of cycles required by a single PE if it does not have to wait for the results from Sum

and P A updater blocks;

ACM Trans. Quantum Comput.

28 • D. Volpe et al.

Processing elements

Control units �SPIN or 1

Multipliers 2 × �SPIN

Adder/subtractors �SPIN

� (�) and �(�) updater
Control units 1

Multipliers 1

Adder/subtractors 1

Square-root 1

Sums Spins - multiply and accumulator

Control units �SPIN or 1

Adder/subtractors �SPIN

Carry Save Adder 2 × �SPIN

Multipliers 2 × �SPIN

Counters �SPIN or 1

Register ile �SPIN

Sums Spins - tree of adder

Control units �SPIN or 1

Adder/subtractors �SPIN

Carry Save Adder �SPIN × (�SPIN − 2)
Multipliers �SPIN × �SPIN

Register ile �SPIN

Outside of blocks

Control units 1

Counters 3

Decoder 1

Table 2. Hardware required for executing the Simulated Adiabatic Bifurcation of �SPIN variables problem considering both

multiply-and-accumulate and tree of adder implementations. As for the Control Units of each block, it is reported as either

1 or �SPIN, as it is possible to share the control unit among blocks of the same type or consider one for each. The second

choice is beter from a routing perspective, while the first is beter for reducing the number of required logic elements.

•
⌈
�SPIN−1

2

⌉
+ 1 + 2, with �SPIN number of variables,

⌈
�SPIN−1

2

⌉
number of MAC operations, 1 associated with

the last sum, and 2 for waiting for the � variable sampling and the results sampling;

•
⌈
�bit

2

⌉
+ 5, where

⌈
�bit

2

⌉
is the number of clock cycles required by the pipeline square root module, 4 is the

number of clock cycles in which the P A updater block performs the other operations for � and � update,

and 1 � and � sampling.

Figure 14 shows the advantage of the proposed approximation in the designed architecture. The analysis assumes

that the number of spins �SPIN is suiciently high that the execution time of the block computing matrix-vector

products is higher than those for � (�) and �(�) updates.
In the original version of the algorithm, due to data dependencies, trajectory variable updates can be done in

parallel to product sum operations for at most three steps of the data low graph, which must be reorganized

to increase the distance between the computation of positions and the evaluation of the sum blocks’ outcome.

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 29

Fig. 15. Scheme of the simulation automatization.

The current version of the graph is shown in the Supplementary Materials document. For these reasons, the

execution time grows as:

�exec =

(
�SPIN − 1

2
+ 9

)
× NumIter . (50)

On the other hand, Figure 14(b) demonstrates that the proposed approximation reduces the execution time to:

�exec = max

(
9,

(
�SPIN − 1

2
+ 3

))
× NumIter . (51)

While this may seem like a small savings, its cumulative impact is signiicant.

Finally, the architecture produces a spin coniguration in output. The corresponding energy state can then be

computed in software, similar to the generation of random numbers mentioned earlier. Additionally, as previously

mentioned, the solution can be improved by exploiting local search mechanisms like hill climbing and simulated

annealing.

Each component of the architecture was initially simulated alone to verify its functionality. Python scripts were

used to emulate the other blocks, along with all their outputs and stimuli. Subsequently, the overall architecture

underwent functional testing through wave simulations withModelsim 17.1 and on-board testing by interfacing

with the Nios II processor for acquiring algorithm parameters and reading the inal solution obtained. Both

types of tests are elaborated below.

For wave simulation automation, a Python class associated with the test was implemented, as depicted in Figure

15. This class includes methods for generating:

• the testbench ile (testbench.vhd), in which the Device Under Test (DUT) is stimulated by reading a

parameter and a variable initialization ile;

• the TCL ile (transcript.tcl), required for running the simulation via command line;

ACM Trans. Quantum Comput.

30 • D. Volpe et al.

Fig. 16. Architecture interface with Nios II processor.

• the stimuli iles, with the algorithm parameters and problem coeicients, and the other containing variable

initialization values.

Moreover, the same class is responsible for launching the test and analyzing the obtained results. A Cython

module writes the variables initialization ile to generate the random numbers in C++ (that is a more eicient

programming language for this task), providing higher randomness for the inputs.

The top entity employed for the generated testbench has three input signals:

• Data_in, represented on INT+FRAC number of bits, used to acquire parameters and problem coeicients

at the beginning;

• start, asserted to initiate computation;

• reset, for clearing registers at the beginning.

The output signals are:

• S, representing the inal spin coniguration with a number of bits equal to �SPIN (the problem’s size);

• done, asserted at the end to indicate the completion of computation;

• the X and Y probes report the position and momentum variables assumed by oscillators in each iteration,

facilitating observation of evolution, when XReady and YReady are asserted.

The results are compared with those of the software model to ensure correctness of the description.

The FPGA considered for synthesis was 5CSEMA5F31C6 of the Cyclone V System on Chip (SoC) Altera

family, integrated on the DE1-SoC board. The device includes 85000 programmable logic elements (LE),

making it a small but practical board for prototype development. The DE1-SoC board can be programmed using

the Intel Quartus software associated with theModelsim simulator. In this work, Intel Quartus lite 17.1

was employed. For functional tests, the architecture was interfaced with Nios II/e soft-processor, a Reduced

Instruction Set Computer (RISC) 32-bit general-purpose soft processor synthesizable on Altera FPGAs. The main

advantage of employing this processor is that it is possible to implement extra logic in addition to its basic

architecture and some features not necessary for the application can be removed, thus guaranteeing a high degree

of lexibility. In this case, the processor role is minimal: it sends inputs to the architecture and receives outputs;

consequently, a simple implementation is suicient. Moreover, the Nios processor can be synthesized inmany

Altera FPGAs, also those not SoC, enhancing portability.

ACM Trans. Quantum Comput.

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=836&PartNo=2
https://www.intel.com/content/www/us/en/software-kit/669444/intel-quartus-prime-lite-edition-design-software-version-17-1-for-windows.html
https://www.intel.com/content/www/us/en/docs/programmable/683836/current/introduction.html
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor/ii.html

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 31

Fig. 17. Scheme of the synthesis automatization.

In this work, the architecture was synthesized as a hardware accelerator of the Nios processor, exploiting

the possibility of deining custom instructions. The Avalone interface was employed for connecting the two

elements in the FPGA, as shown in Figure 16. In order to implement the required interface, the architecture top

entity has the following inputs:

• writedata, with size 32 bits, employed for receiving from the processor the algorithm parameters and the

problem coeicients;

• write is a 1-bit signal, which indicates that the processor is sending new data;

• read is a 1-bit signal, which indicates that the processor can read the new data;

• resetn;

• clock;

and the following outputs:

• readdata, with size 32 bits, employed for sending to the processor the inal spins coniguration;

• waitrequest is a 1-bit signal exploited by architecture for informing the processor about the availability

of new data to send.

Correctness was established by comparing the results obtained by running the algorithm onboard and using the

software model with the same parameters and initial spin coniguration.

After architecture validation, it was synthesized by varying the number of bits employed for representation (�)

and the number of considered oscillators (�SPIN) to observe the architecture scaling. For eicient execution, a

Python class was developed to automate this process, as illustrated in Figure 17. The interface of the top-entity

considered with this synthesis is the same considered for interfacing the custom architecture with a processor.

Before concluding, it is important to note that synthesis is only performed when the architecture needs to

be changed in terms of the number of oscillators to be emulated and data width (e.g., the number of bits for

ixed-point representation). Once the hardware is consolidated, compiling the Nios II irmware is the only required

step before solving a given problem.

ACM Trans. Quantum Comput.

https://www.intel.com/content/www/us/en/docs/programmable/683091/22-3/introduction-to-the-interface-specifications.html

32 • D. Volpe et al.

4 RESULTS

This section reports some relevant software results (others are included in the Supplementary Materials iles),

simulations results and synthesis results. The benchmark problems considered are those presented in Section 2.1.2.

All the other results not reported in the following are available in the supplementary information ile. The codes

employed for obtaining the reported results are available in the GitHub repository associated with this project.

4.1 Sotware results

This section reports the results obtained with software models presented in Section 3.4 by considering as

benchmark problems those of Section 2.1.2.

4.1.1 Setup overview. All the tests were performed by exploiting the Cython implementations of software models

(Section 3.4). The diferent versions of the algorithm were tested under equivalent conditions, meaning they were

provided with the same algorithm parameters and number of iterations for each optimization problem considered.

All the benchmark problems have been written with the qubovert Python library. Tests were executed on a

single-process Intel(R) Xeon(R) Gold 6134 CPU @ 3.20 GHz opta-core, Model 85, with a memory of about 103 GB

[1]. Each solver was executed on the same optimization problem one hundred times to extract statistics on its

efectiveness in solving it.

The benchmark problems considered are those described in 2.1.2. For the problems automatically generated from

a generic QUBO description, which involved deining the size and randomly generating some elements (e.g. the

weights of edges in the max-cut problem), the reference optimal values were obtained by solving each of them

with the qubovert simulated annealer on an extremely long annealing duration, allowing reasonable trust in

the obtained solution as the optimum. On the other hand, for the G-set and the 0/1 Knapsack set, the best-known

solutions available in the state-of-the-art were considered as reference optimal values.

The number of iterations SB solvers allows reasonable trust in the obtained solution as the optimum.

4.1.2 Figures of merit. The quality of a solver can be evaluated in terms of optimal value (opt) reached,

average value (avg), probability (�range) of obtaining a value which is the optimum or lower than it by a certain

percentage (�c) and the time-to-solution (TTS), where:

• The optimal value is the best inal value obtained by a solver in the one hundred runs.

• The average value is obtained by averaging the hundred obtained inal values.

• The optimal value single is the value obtained by executing a single time the algorithm with the suggested

initialization of the variables.

• The optimal value hill-climbing is the value obtained after the execution of some hill-climbing iterations

on the optimal value.

• �range is the probability of obtaining inal energy lower than:

val = opt +
����opt · �c

���� , (52)

where opt is the expected optimal value. It is possible to say that one solver is better than another if its

�range is higher. This metric is deined as:

�range ≜
�in_range

�tot
100 , (53)

where�in_range is the number of times in which the solver achieved inal energy lower than val, and�tot is the

number of runs. This metric can be appreciated by reminding us that its value is expected to increase with

the number of iterations. For this reason, it is more useful to consider a normalized
�range

NumIter for comparing

problems of diferent sizes.

ACM Trans. Quantum Comput.

https://github.com/DeborahVolpe/Simulated-Adiabatic-Bifurcation-.git
https://web.stanford.edu/~yyye/yyye/Gset/
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 33

• The time-to-solution (TTS) is usually employed in the state-of-the-art for identify the quantum speed up

in algorithms like SBa [4, 23, 32, 37, 69] and is deined as the time required to ind a target solution, e.g. the

optimum or a sub-optimum, with a certain percentage of conidence �conf, usually set to 99%. In particular, it

can be computed as:

TTS = ��
log (1 − �conf)

log (1 − �range (��))
, (54)

where �� is the algorithm execution time, �range (��) is the probability of inding energy lower than a certain

value, executing the algorithm for a time �� . In this work, for simplicity and to reduce the dependence of

the result from the computational resources considered, the time �� is measured in terms of the number of

iterations. Moreover, some special cases were managed:

ś if �range is equal to 0, TTS was computed by considering a �range equal to 0.1%;

ś if �range is equal to 100%, TTS was computed by considering a �range equal to 99%.

To better appreciate the variation of TTS and �range (��) metrics with the problem size, the moving average (MA)

is applied to smooth the variation and to identify the trend easier:

MA =
1

�

�−1︁

�=0

� [� − �] , (55)

where � is the array of data to be moving-averaged and � ≥ 1 is the index of the last sample of the window. For

� < � , the irst element of � is replicated� − � times.

In addition to these explicit igures of merit, it could also be interesting to observe the evolution of the � variables

concerning SBa. In particular, this observation aims to verify the presence of bifurcation and ensure that variables

do not diverge. Furthermore, it is essential to monitor the evolution of the average energy and the cumulative

distribution obtained through multiple repetitions of the algorithm on a target optimization problem. These

observations help in conirming that the algorithm parameters are correctly chosen.

4.1.3 Performed tests. This section presents and discusses some signiicant results obtained with the software

implementations presented in Section 3.4 for each benchmark considered (Section 2.1.2). Additionally, a com-

parison between hardware and software results for the max-cut case is exempliied. Further results are provided

in tables in the Supplementary Materials ile.

Figure 18 reports examples of cumulative distributions and energy evolutions of max-cut problems generated

with qubovert of sizes 18, 50 and 190-node, respectively. In particular, for the 18-node case, cumulative distribu-

tion and average energy evolution obtained by simulating one hundred times the proposed architectures are

shown to demonstrate the consistency between software and hardware results. For the 50-node problem, results

obtained from a single run Ð i.e., with the suggested variables initialization Ð of the simulated architecture are

presented. It is possible to notice the behaviour of the original version of the algorithm (SBa), and the proposed

approximated implementation (SBaVLSILab) are very similar. Moreover, the results obtained by simulating the

proposed architecture, using ixed-point number representation, are comparable to the loating-point software

results. Finally, it is shown that the implementations with the�-speedup is applied (SBaTo and SBaTM) perform

worse than the original (SBa) and the approximated algorithm (SBaVLSILab).

Figure 19 shows the optimal value obtained with a single run (opt single run), one hundred runs (opt multiple

runs), the average value (avg multiple runs) obtained in the multiple execution case and the energy obtained

after the application of some hill-climbing iterations on the multiple run optimal solution (opt SBa + HC) for

each software implementation considering G1, G2, G48, G55, G66, and G81 problems belonging to the G-set

benchmark. Moreover, results obtained by running SBa for a larger number of iterations (SBalonge) are included.

It demonstrates that the proposed approximation does not signiicantly afect the performance with this kind of

ACM Trans. Quantum Comput.

https://web.stanford.edu/~yyye/yyye/Gset/
https://web.stanford.edu/~yyye/yyye/Gset/

34 • D. Volpe et al.

Fig. 18. Cumulative distributions and average energy evolutions obtained by running one hundred times each sotware

implementation on max-cut problems of diferent sizes. SBa is the floating-point implementation of the original algorithm.

SBaFixed is the fixed-point implementation of the original algorithm. SBaVLSILab is the floating-point implementation

of the algorithm by applying the proposed approximation. SBaVLSILabFixed is the fixed-point implementation of the

algorithm by applying the proposed approximation. SBaTo is the floating-point implementation of the algorithm by applying

the�-speedup. SBaTM is the floating-point implementation of the algorithm by applying both the proposed approximation

and the�-speedup.

problem, as the energies obtained with SBa and SBaVLSILab solvers are very close. Moreover, it also validates

the proposal of applying hill-climbing iterations on the inal solution to improve its quality and indicates that

the proposed initialization of the variables in the case of a single run is efective, except for the solver in which

the�-speedup is applied. Instead, Figure 20 reports the cumulative distributions, energy and position variable

evolution of G2 (800-node), G55 (5000-node), and G81 (20000-node) max-cut problem obtained by running one

hundred times the software implementations. Again, Note that the results obtained with the original algorithm

(SBa) and the proposed approximation (SBaVLSILab) are similar and better than the solutions obtained with

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 35

Fig. 19. Optimal value obtained with a single run (opt single run), one hundred runs (opt multiple run), the average value

(avgmultiple run) obtained in themultiple execution case and the energy obtained ater the application of some hill-climbing

iterations on the multiple run optimal solution (opt SBa + HC) are reported for each sotware implementation considering

G1 and G2 problems of the G-set. SBa is the floating-point implementation of the original algorithm. SBaLonge is an SBa

execution on a longer evolution time. SBaFixed is the fixed-point implementation of the original algorithm. SBaVLSILab

is the floating-point implementation of the algorithm by applying the proposed approximation. SBaVLSILabFixed is

the fixed-point implementation of the algorithm by applying the proposed approximation. SBaTo is the floating-point

implementation of the algorithm by applying the�-speedup. SBaToFixed is the fixed-point implementation of the algorithm

by applying the �-speedup. SBaTM is the floating-point implementation of the algorithm by applying both the proposed

approximation and the�-speedup. SBaTMFixed is the fixed-point implementation of the algorithm by applying both the

proposed approximation and the�-speedup.

ACM Trans. Quantum Comput.

https://web.stanford.edu/~yyye/yyye/Gset/

36 • D. Volpe et al.

Fig. 20. Cumulative distributions, average energy and position variables evolutions obtained by running one hundred times

each sotware implementation on G2, G55, and G81 max-cut problem of the G-set. SBa is the floating-point implementation

of the original algorithm. SBaVLSILab is the floating-point implementation of the algorithm by applying the proposed

approximation. SBaTo is the floating-point implementation of the algorithm by applying the�-speedup. SBaTM is the

floating-point implementation of the algorithm by applying both the proposed approximation and the�-speedup.

ACM Trans. Quantum Comput.

https://web.stanford.edu/~yyye/yyye/Gset/

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 37

Fig. 21. Cumulative distributions, average energy and position variables evolutions obtained by running one hundred times

each sotware implementation on a 103-variable knapsack problem. SBa is the floating-point implementation of the original

algorithm. SBaVLSILab is the floating-point implementation of the algorithm by applying the proposed approximation.

SBaTo is the floating-point implementation of the algorithm by applying the �-speedup. SBaTM is the floating-point

implementation of the algorithm by applying both the proposed approximation and the�-speedup.

Fig. 22. Optimal value obtained with a single run (opt single run), one hundred runs ((opt multiple run), the average

value (avg multiple run) obtained in the multiple execution case and the energy obtained ater the application of some

hill-climbing iterations on the multiple run optimal solution (opt SBa + HC) are reported for each sotware implementation

considering f1_l-d_kp_10_269, f4_l-d_kp_4_11 and f7_l-d_kp_7_50 problems of the 0/1 Knapsack set. SBa is the floating-point

implementation of the original algorithm. SBaVLSILab is the floating-point implementation of the algorithm by applying

the proposed approximation.

implementations involving the�-speedup (SBaTo and SBaTM).

Figure 2(b) presents cumulative distribution, energy and position variables evolutions of a 103-variable knapsack

problem generated with qubovert. It proves that the performance of SBa and SBaVLSILab are comparable and

better than that of SBaTo and SBaTM for this kind of problem.

Figure 22 reports the optimal values obtained with a single run (opt single run), one hundred runs (opt multiple

runs), the average value (avg multiple runs) obtained in the multiple execution case and the energy obtained

ACM Trans. Quantum Comput.

http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/

38 • D. Volpe et al.

Fig. 23. Cumulative distributions, average energy and position variables evolutions obtained by running one hundred times

each sotware implementation on the f7_l-d_kp_7_50 knapsack problem of the 0/1 Knapsack set. SBa is the floating-point

implementation of the original algorithm. SBaVLSILab is the floating-point implementation of the algorithm by applying

the proposed approximation.

Fig. 24. Cumulative distributions, average energy and position variables evolutions obtained by running one hundred times

each sotware implementation on a 25-variable traveling salesman problem. SBa is the floating-point implementation

of the original algorithm. SBaVLSILab is the floating-point implementation of the algorithm by applying the proposed

approximation. SBaTo is the floating-point implementation of the algorithm by applying the�-speedup. SBaTM is the

floating-point implementation of the algorithm by applying both the proposed approximation and the�-speedup.

after the application of some hill-climbing iterations on the multiple run optimal solution (opt SBa + HC) for

SBa and SBaVLSILab, considering f1_l-d_kp_10_269, f4_l-d_kp_4_11, and f7_l-d_kp_7_50 of the 0/1 Knapsack

set. The results of SBa and SBaVLSILab are consistent also with these benchmarks, showing that the suggested

initialization in the case of a single run is efective and the application of hill-climbing on the optimal solution

can help improve it. Figure 23 shows, as an example, the cumulative distribution, energy and position variables

ACM Trans. Quantum Comput.

http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 39

Fig. 25. Evolution of
�range

NumIter and Time-To-solution (TTS), both not averaged and averaged (MA), varying the number of

involved binary variables in the optimization problems. SBa is the floating-point implementation of the original algorithm.

SBaVLSILab is the floating-point implementation of the algorithm by applying the proposed approximation. Simulation

corresponds to the hardware simulation.

evolutions of the f7_l-d_kp_7_50 knapsack problem.

Moreover, the cumulative distribution, energy and position variables evolutions of a 25-variable traveling sales-

man problem generated with qubovert are reported in Figure 24, indicating that SBa and SBaVLSILab inal results

are better than those of SBaTO and SBaTM.

ACM Trans. Quantum Comput.

40 • D. Volpe et al.

Fig. 26. Evolution of
�range

NumIter and Time-To-solution (TTS) varying the number of involved binary variables in the optimization

problems. In these plots, both metrics are averaged. SBa is the floating-point implementation of the original algorithm.

SBaFixed is the fixed-point implementation of the original algorithm. SBaVLSILab is the floating-point implementation

of the algorithm by applying the proposed approximation. SBaVLSILabFixed is the fixed-point implementation of the

algorithm by applying the proposed approximation. SBaTo is the floating-point implementation of the algorithm by applying

the �-speedup. SBaToFixed is the fixed-point implementation of the algorithm by applying the �-speedup. SBaTM is

the floating-point implementation of the algorithm by applying both the proposed approximation and the �-speedup.

SBaTMFixed is the fixed-point implementation of the algorithm by applying both the proposed approximation and the

�-speedup. Simulation is the Modelsim simulation.

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 41

Fig. 27. Evolution of
�range

NumIter and Time-To-solution (TTS) varying the number of involved binary variables in the optimization

problems. In these plots, both metrics are averaged. SBa is the floating-point implementation of the original algorithm.

SBaVLSILab is the floating-point implementation of the algorithm by applying the proposed approximation.

Finally, Time-To-Solution (TTS) and
�range

NumIter evolution varying the number of involved binary variables are

reported. Before commenting on any result, it is important to justify the preference of averaged results for TTS

and
�range

NumIter . Figure 25(d) reports both the non-averaged and averaged results for max-cut, knapsack and traveling

salesman problems, depending on the number of nodes. It is possible to observe on one hand many luctuations

in the dotted plots, which are associated with results not averaged, on the other the chosen moving average

length smooths the trend, not signiicantly altering the overall trend of the metric, thus allowing reasonable

performance comparisons between the diferent solvers. Plots associated with knapsack (Figures 25(c) and 25(d))

and traveling salesman problems (Figures 25(e) and 25(f)) present fewer luctuations than the counterpart for

max-cut problems (Figures 25(a) and 25(b)). The reason can be simply traced back to the fact that fewer nodes

were involved.

Figures 26 and 27 show the averaged TTS and
�range

NumIter results, for each class of problem considered (max-cut,

knapsack and traveling salesman) for each solver. Note that evolutions obtained with SBa and SBaVLSILab are

enough similar, proving that the proposed approximation does not afect signiicantly the performance. TTS

parameter is expected to grow exponentially with the problem dimension [37] for quantum annealers:

TTS ≈ 10�+�
√
�+� log (

√
�) , (56)

where � is the number of involved binary variables, �, � and � are interpolation coeicients. Therefore, to

compare the evolution trend of SBa with that of QA, the evolution of TTS is reported in a logarithmic scale for

ACM Trans. Quantum Comput.

42 • D. Volpe et al.

Fig. 28. Waves of the simulation of the first iteration of a 50-node max-cut.

Fig. 29. Waves of the simulation of an iteration of a 50-node max-cut. In particular, it shows the state of the top-level control

unit as well as those of the PE0, Sum0, and the P A0 updater, for allowing the observation of the high level of parallelization

in the architecture of Figure 13.

each considered optimization and for each solver. In the max-cut case, where a higher number of problems are

considered, and thus the trend is identiiable, it is possible to observe an evolution similar to that of a quantum

annealer.

4.2 Functional verification

As mentioned, functional veriication of the architecture was done in two ways.

Firstly, each block (PE, Sums, and P A0 Update) was tested individually. Subsequently, the overall architecture

was simulated with Modelsim 17.1, employing the automation script represented in Figure 15, considering

many problem sizes. The results obtained are compared with the outcomes of the software models to verify the

correctness of the architecture description. Figure 29 shows waves of the simulation of a single iteration of a

50-node max-cut (red square). In particular, the state top-level control unit and those of the PE0, Sum0, and the P

A0 updater are reported for emphasizing the advantage in terms of parallelization of the proposed approximation.

Indeed, Note that the sum block remains active throughout (except for two clock cycles in which it waits for

the correct sampling of its output and of the � variables) and that the number of clock cycles required for an

iteration is, coherently with the theory reported in Section 3, equal to 28, i.e.
⌈
49
2

⌉
+ 3. Additionally, Figures 28, 31

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 43

Fig. 30. Waves of the simulation of some iterations of a 50-node max-cut. In particular, it shows the state of the top-level

control unit as well as those of the PE0, Sum0, and the P A0 updater, for allowing the observation of the high level of

parallelization in the architecture of Figure 13.

Fig. 31. Waves of the simulation at the end of an algorithm run.

and 30 show the irst, last, and sequences of several iterations, respectively. The position variables � and energy

evolution obtained by simulating a single run are reported in Figure 32.

Afterwards, the correctness of the post-synthesis description of the architecture was veriied by testing the solver

on-board connected to the Nios II processor, whose role is to send the algorithm parameters and to receive the

inal coniguration. Also, in this case, the obtained results are compared with those of the software model, and

the coherence among them assures us of the correctness of the synthesized architecture.

4.3 Synthesis results

This section reports the results obtained by synthesizing the architecture employing the automation script of

Figure 17 while varying the bits for number representation and the size of the solvable problems.

4.3.1 Setup overview. The synthesis was performed by executing the tcl iles generated by the automation script

using Quartus Lite 17.1. In order to explore the tool potential, each combination, number of bits/number of

spins was synthesized by applying speed optimization (OPTIMIZATION_MODE "AGGRESSIVE PERFORMANCE"), area

optimization (OPTIMIZATION_MODE "AGGRESSIVE AREA") and balanced options (OPTIMIZATION_MODE BALANCED).

ACM Trans. Quantum Comput.

44 • D. Volpe et al.

Fig. 32. Simulation of a single run of the architecture for solving a 50-node max-cut problem.

Moreover, the power and the time multi-corner analyzer were activated.

Before reporting all the results, it is important to clarify that synthesis took a few minutes for all the performed

tests and was only needed when changing the architecture in terms of oscillators and data width (e.g., number of

bits for ixed-point representation). Once done, the hardware was stable, and further synthesis was unnecessary.

Compiling the Nios II processor irmware was the only additional step, typically taking less than a minute.

4.3.2 Figures of merit. The synthesis results were evaluated in terms of occupied area, speed, and power

consumption. In particular, the following igures of merit were considered:

• Logic utilization, measured in terms of Adaptive Logic Modules (ALM), which are the basic building

block of the device family (LE);

• Digital Signal Processors (DSPs) employed;

• Required registers (REG);

• Maximum operating frequency, expressed in MHz;

• Dynamic Power consumption, expressed in mW (DP);

• Static Power consumption, expressed in mW (SP);

• Total Power consumption, expressed in mW (Tot P).

All these values can be read from the report iles provided by the Quartus synthesis.

The most important igures of merit for evaluating the architecture are the frequency (associated with speed)

and those related to area occupation, i.e., number of logic elements, DSP, and registers. Indeed, the occupied

area allows the estimation of the FPGA size required for solving a problem of a certain dimension, while the

maximum operating frequency provides an idea of the time required to solve a problem. The considered power

consumption is obtained without applying back-annotation Ð i.e., without providing a transactions ile coming

from simulation Ð procedure but exploiting the Quartus power analyzer since the power consumption is not the

most critical point in this design and n estimation is suicient, even if not perfectly accurate.

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 45

Fig. 33. Synthesis results obtained by considering area-optimized, speed-optimized and balanced directives.

4.3.3 Performed tests. The architecture was synthesized by gradually increasing the number of spins (step 1)

and bits for representing numbers (step 4) until the available hardware resources were suicient. All the obtained

ACM Trans. Quantum Comput.

46 • D. Volpe et al.

results are reported in tables of the Supplementary Materials ile.

The relation between igures of merit, number of spins, and bits employed for number representation is emphasized

in Figure 33. Plots of igures merit as a function of the number of bits are obtained considering a 12-spin machine.

In contrast, graphs showing the relation between synthesis results and the number of spins are acquired with a

16-bit for the number representation.

In particular, Figure 33(a) shows the linear relation between the number of registers and logic utilization and the

bits employed for numerical representation, which aligns with expectations. DSPs are employed in the synthesis

as arithmetic components (when they are described behaviourally), so linear growth alternating with constant

stretches can be explained by the availability of these blocks with a non-ine granularity for what concerns the

number of bits.

Figure 33(b) reports the relation of DSP, number of registers, and logic utilization with the number of considered

spins. Note that, coherently with expectations, the number of registers and logic utilization grow little more than

linearly with the number of considered oscillators (the contribution out of linearity comes from registers iles for

� matrix memorization, which have a quadratic growth). The DSP grows linearly.

It is possible to observe that, except for the number of DSPs required (which is constant), the optimization area

directives are generally efective since the results obtained by exploiting these produce an area lower than those

obtained with high-speed options and balanced synthesis.

Figure 33(c) reports the relation between the maximum operating frequency and the number of bits. As expected,

a decreasing trend, even if not continuous, is probably related to the DSP allocation trend’s discontinuity and the

variable number of square root pipeline levels with the number of bits.

Figure 33(d) illustrates instead the relation between the maximum operating frequency and the problem size.

Again, it is possible to notice a decreasing trend, even if not particularly smooth. In both igures, it is possible

to notice how the speed optimization directives are very efective in that the maximum operating frequency is

perceptibly higher than those obtained with a balanced synthesis or with area optimization options.

Figures 33(e) and 33(f) present the total power consumption as a function of the number of bits and the number

of spins, respectively. It is possible to observe that in both cases, the power increases. This is reasonable because

by increasing the number of bits or the number of spins the overall size of the Simulated Bifurcation Machine

increases, implying a higher power consumption.

5 CONCLUSIONS

This work proposed a quantum-inspired digital solver for Ising models based on the Simulated Adiabatic

Bifurcation (SBa) algorithm, emulating the evolution of a quantum system composed of interacting non-linear

Kerr oscillators. The architecture Ð characterized by a lexible description in terms of bits employed for number

representation and of the size of the problem to be solved Ð can manage the external ield contribution of the

Ising model and implements a proposed approximation of the original algorithm able to guarantee a speed-up

thanks to a higher degree of parallelism in computation. Furthermore, the Ising machine has been integrated in a

toolchain context, supporting future developers and users. First of all, software models of the algorithm in Cython

language were provided, compliant with the qubovert library for QUBO problems description and formulation.

Users can use these directly, and developers can exploit these as a reference for validating hardware. Then,

Python classes for automatizing synthesis and architecture simulations were provided. Finally, the architecture

was interfaced with the Nios II processor for an on-board test.

The results show that the proposed approximation does not signiicantly afect the quality of the solution but

allows a higher degree of parallelization. Moreover, the implemented method for supporting the external ield

contribution of the Ising formulation was proven to be satisfactory, even if there is room for improvement. Finally,

the proposal of exploiting local search to improve the inal solution obtained gives encouraging results. Therefore,

ACM Trans. Quantum Comput.

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 47

it could be interesting to investigate it more in-depth. As expected, the architecture scales linearly, increasing the

bits for numerical representation and a little more than linearly, increasing the number of oscillators to mimic.

A Julia ecosystem for QUBO modelling, rich in variables encoding, constraints and solvers, has been recently

proposed in [62]. The development of an interface or a wrapper between this and both the software model and the

hardware presented in this article could undoubtedly be an interesting future work, not only for the developer in

terms of accessibility to additional backends but also for the backend developers since more benchmark problems

can be tested on their platforms. Moreover, the Window Sticker framework, aiming to support the study of the

quantum-inspired optimization approach available in [39], could be exploited in the future for identifying further

strategies for tuning the algorithm parameters, thus improving the efectiveness of the exploration approach.

The architecture can be further improved byworking on its bottleneck: the sum block. A possibility for overcoming

limitations of the current design could be investigating the most recent architectures for computing matrix-vector

multiplication Ð i.e., observing together the sum blocks, Note that they compute the product between the �

matrix and the � vector Ð, such as systolic arrays [61], or exploit emerging technology, such as logic-in-memory

[34].

The work could also be expanded to support diferent evolutions of the oscillator network beyond adiabatic, such

as the aforementioned ergodic, discrete and ballistic, and the higher-order cost functions version of the algorithm

[29].

Even though the proposed work is a preliminary prototype of the Ising machine implementing SBa, it could

represent, also for the accessibility of codes, a starting point for spreading the knowledge and the use of SBa,

improving its exploitability.

We aspire that the creation of this open-access toolchain will empower both researchers and industries to explore

this captivating optimization method, thus enabling them to tackle challenges that have the potential to enhance

the quality of people’s lives.

REFERENCES

[1] [n.d.]. Intel Xeon Gold 6134 Processor - Product Speciication. [Online] https://ark.intel.com/content/www/us/en/ark/products/120493/

intel-xeon-gold-6134-processor-24-75m-cache-3-20-ghz.html, accessed 25-October-2021.

[2] [n.d.]. Python package Dimod. https://github.com/dwavesystems/dimod.

[3] Amira Abbas, Andris Ambainis, Brandon Augustino, Andreas Bärtschi, Harry Buhrman, Carleton Cofrin, Giorgio Cortiana, Vedran

Dunjko, Daniel J. Egger, Bruce G. Elmegreen, Nicola Franco, Filippo Fratini, Bryce Fuller, Julien Gacon, Constantin Gonciulea, Sander

Gribling, Swati Gupta, Stuart Hadield, Raoul Heese, Gerhard Kircher, Thomas Kleinert, Thorsten Koch, Georgios Korpas, Steve Lenk,

Jakub Marecek, Vanio Markov, Guglielmo Mazzola, Stefano Mensa, Naeimeh Mohseni, Giacomo Nannicini, Corey O’Meara, Elena Peña

Tapia, Sebastian Pokutta, Manuel Proissl, Patrick Rebentrost, Emre Sahin, Benjamin C. B. Symons, Sabine Tornow, Victor Valls, Stefan

Woerner, Mira L. Wolf-Bauwens, Jon Yard, Sheir Yarkoni, Dirk Zechiel, Sergiy Zhuk, and Christa Zoufal. 2023. Quantum Optimization:

Potential, Challenges, and the Path Forward. arXiv:2312.02279 [quant-ph]

[4] Tameem Albash and Daniel A Lidar. 2018. Demonstration of a scaling advantage for a quantum annealer over simulated annealing.

Physical Review X 8, 3 (2018), 031016. https://doi.org/10.1103/PhysRevX.8.031016.

[5] Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hirotaka Tamura, and Helmut G. Katzgraber. 2019. Physics-

Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer. Frontiers in Physics 7 (2019), 48. https:

//doi.org/10.3389/fphy.2019.00048.

[6] Mandell Bellmore and George L Nemhauser. 1968. The traveling salesman problem: a survey. Operations Research 16, 3 (1968), 538ś558.

https://doi.org/10.1287/opre.16.3.538.

[7] Thomas Bouquet, Mehdi Hmyene, François Porcher, Lorenzo Pugliese, and Jad Zeroual. 2021. Approximating Optimal Asset Allocations

using Simulated Bifurcation. arXiv:2108.03092 [q-in.PM] https://doi.org/10.48550/arXiv.2108.03092.

[8] Howard E. Brandt. 1999. Qubit devices and the issue of quantum decoherence. , 257ś370 pages. http://dx.doi.org/10.1016/S0079-

6727(99)00003-8.

[9] Giulio Casati and Vyacheslav Girko. 1993. Wigner’s semicircle law for band random matrices. (1993). https://doi.org/10.1515/rose.1993.

1.1.15.

[10] Bikas K Chakrabarti, Hajo Leschke, Purusattam Ray, Tatsuhiko Shirai, and Shu Tanaka. 2023. Quantum annealing and computation:

challenges and perspectives. Philosophical Transactions of the Royal Society A 381, 2241 (2023), 20210419. https://doi.org/10.1098/rsta.

ACM Trans. Quantum Comput.

https://ark.intel.com/content/www/us/en/ark/products/120493/intel-xeon-gold-6134-processor-24-75m-cache-3-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120493/intel-xeon-gold-6134-processor-24-75m-cache-3-20-ghz.html
https://github.com/dwavesystems/dimod
https://arxiv.org/abs/2312.02279
https://doi.org/10.1103/PhysRevX.8.031016
https://doi.org/10.3389/fphy.2019.00048
https://doi.org/10.3389/fphy.2019.00048
https://doi.org/10.1287/opre.16.3.538
https://arxiv.org/abs/2108.03092
 https://doi.org/10.48550/arXiv.2108.03092
http://dx.doi.org/10.1016/S0079-6727(99)00003-8
http://dx.doi.org/10.1016/S0079-6727(99)00003-8
https://doi.org/10.1515/rose.1993.1.1.15
https://doi.org/10.1515/rose.1993.1.1.15
https://doi.org/10.1098/rsta.2021.0419
https://doi.org/10.1098/rsta.2021.0419

48 • D. Volpe et al.

2021.0419.

[11] Mark W. Cofey. 2017. Adiabatic quantum computing solution of the knapsack problem. arXiv (2017). https://doi.org/10.48550/arxiv.

1701.05584.

[12] Chase Cook, Hengyang Zhao, Takashi Sato, Masayuki Hiromoto, and Sheldon X-D Tan. 2019. GPU-based Ising computing for solving

max-cut combinatorial optimization problems. Integration 69 (2019), 335ś344. https://doi.org/10.1016/j.vlsi.2019.07.003.

[13] Davide Costa, Mario Simoni, Gianluca Piccinini, and Mariagrazia Graziano. 2023. Advances in Modeling of Noisy Quantum Computers:

Spin Qubits in Semiconductor Quantum Dots. IEEE Access 11 (2023), 98875ś98913. https://doi.org/10.1109/ACCESS.2023.3312559

[14] Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J.

Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, and Fernando G. S. L. Brandão. 2023. Quantum

algorithms: A survey of applications and end-to-end complexities. arXiv:2310.03011 [quant-ph]

[15] Bryan Dury and Olivia Di Matteo. 2020. A QUBO Formulation for Qubit Allocation. https://doi.org/10.48550/ARXIV.2009.00140.

[16] Elias Fernandez-Combarro, CASTILLO ALVAREZ, and SAMUEL GONZALEZ. 2023. PRACTICAL GUIDE TO QUANTUM MACHINE

LEARNING AND QUANTUM OPTIMISATION: Hands-on Primer To... Quantum Computing. PACKT PUBLISHING LIMITED.

[17] Fred Glover, Gary Kochenberger, and Yu Du. 2018. A tutorial on formulating and using QUBO models. (2018). https://doi.org/10.48550/

arXiv.1811.11538.

[18] Hayato Goto. 2016. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network. Scientiic reports 6, 1 (2016),

21686. https://doi.org/10.1038/srep21686.

[19] Hayato Goto. 2019. Quantum computation based on quantum adiabatic bifurcations of Kerr-nonlinear parametric oscillators. Journal of

the Physical Society of Japan 88, 6 (2019), 061015. https://doi.org/10.7566/JPSJ.88.061015.

[20] Hayato Goto, Kotaro Endo, Masaru Suzuki, Yoshisato Sakai, Taro Kanao, Yohei Hamakawa, Ryo Hidaka, Masaya Yamasaki, and Kosuke

Tatsumura. 2021. High-performance combinatorial optimization based on classical mechanics. Science Advances 7, 6 (2021), eabe7953.

https://doi.org/10.1126/sciadv.abe7953 arXiv:https://www.science.org/doi/pdf/10.1126/sciadv.abe7953

[21] Hayato Goto, Kosuke Tatsumura, and Alexander R Dixon. 2019. Combinatorial optimization by simulating adiabatic bifurcations in

nonlinear Hamiltonian systems. Science advances 5, 4 (2019), eaav2372. https://doi.org/10.1126/sciadv.aav2372.

[22] Yoshitaka Haribara, Shoko Utsunomiya, Ken-ichi Kawarabayashi, and Yoshihisa Yamamoto. 2015. A coherent Ising machine for

MAX-CUT problems: Performance evaluation against semideinite programming relaxation and simulated annealing. arXiv preprint

arXiv:1501.07030 (2015). https://doi.org/10.1007/978-4-431-55756-2_12.

[23] Itay Hen, Joshua Job, Tameem Albash, Troels F Rùnnow, Matthias Troyer, and Daniel A Lidar. 2015. Probing for quantum speedup in

spin-glass problems with planted solutions. Physical Review A 92, 4 (2015), 042325. https://doi.org/10.1103/PhysRevA.92.042325.

[24] Kazuki Ikeda, Yuma Nakamura, and Travis S Humble. 2019. Application of quantum annealing to nurse scheduling problem. Scientiic

reports 9, 1 (2019), 1ś10. https://doi.org/10.48550/arXiv.1904.12139.

[25] Joseph T. Iosue. [n.d.]. pyqubo. https://github.com/recruit-communication https://github.com/recruit-communication.

[26] Joseph T. Iosue. 2019. qubovert Documentation. [Online at https://qubovert.readthedocs.io/en/stable/,; accessed 10-May-2022].

[27] Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Firas Hamze, Neil Dickson, Richard Harris, Andrew J

Berkley, Jan Johansson, Paul Bunyk, et al. 2011. Quantum annealing with manufactured spins. Nature 473, 7346 (2011), 194ś198.

https://doi.org/10.1038/nature10012.

[28] Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the transverse Ising model. Physical Review E 58, 5 (1998),

5355. https://doi.org/10.1103/PhysRevE.58.5355.

[29] Taro Kanao and Hayato Goto. 2022. Simulated bifurcation for higher-order cost functions. Applied Physics Express 16, 1 (2022), 014501.

https://doi.org/10.35848/1882-0786/acaba9

[30] A.U. Khalid, Z. Zilic, and K. Radecka. 2004. FPGA emulation of quantum circuits. In IEEE International Conference on Computer Design:

VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings. 310ś315. https://doi.org/10.1109/ICCD.2004.1347938.

[31] Ines Khoui, Anis Laouiti, and Cedric Adjih. 2019. A survey of recent extended variants of the traveling salesman and vehicle routing

problems for unmanned aerial vehicles. Drones 3, 3 (2019), 66. https://doi.org/10.3390/drones3030066.

[32] Matthew Kowalsky, Tameem Albash, Itay Hen, and Daniel A Lidar. 2022. 3-regular three-XORSAT planted solutions benchmark of

classical and quantum heuristic optimizers. Quantum Science and Technology 7, 2 (2022), 025008. https://doi.org/10.1088/2058-9565/ac4d1b.

[33] Janusz Kusyk, Samah M. Saeed, and Muharrem Umit Uyar. 2021. Survey on Quantum Circuit Compilation for Noisy Intermediate-

Scale Quantum Computers: Artiicial Intelligence to Heuristics. IEEE Transactions on Quantum Engineering 2 (2021), 1ś16. https:

//doi.org/10.1109/TQE.2021.3068355.

[34] Orian Leitersdorf, Ronny Ronen, and Shahar Kvatinsky. 2022. MatPIM: Accelerating Matrix Operations with Memristive Stateful Logic.

In 2022 IEEE International Symposium on Circuits and Systems (ISCAS). 215ś219. https://doi.org/10.1109/ISCAS48785.2022.9937557

[35] Yangyang Li, Mengzhuo Tian, Guangyuan Liu, Cheng Peng, and Licheng Jiao. 2020. Quantum Optimization and Quantum Learning: A

Survey. IEEE Access 8 (2020), 23568ś23593. https://doi.org/10.1109/ACCESS.2020.2970105.

[36] Frauke Liers, Tim Nieberg, and Gregor Pardella. 2011. Via Minimization in VLSI Chip Design Application of a Planar Max-Cut Algorithm.

http://e-archive.informatik.uni-koeln.de/630/.

ACM Trans. Quantum Comput.

https://doi.org/10.1098/rsta.2021.0419
https://doi.org/10.1098/rsta.2021.0419
https://doi.org/10.48550/arxiv.1701.05584
https://doi.org/10.48550/arxiv.1701.05584
https://doi.org/10.1016/j.vlsi.2019.07.003
https://doi.org/10.1109/ACCESS.2023.3312559
https://arxiv.org/abs/2310.03011
https://doi.org/10.48550/ARXIV.2009.00140
https://doi.org/10.48550/arXiv.1811.11538
https://doi.org/10.48550/arXiv.1811.11538
https://doi.org/10.1038/srep21686
https://doi.org/10.7566/JPSJ.88.061015
https://doi.org/10.1126/sciadv.abe7953
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.abe7953
https://doi.org/10.1126/sciadv.aav2372
https://doi.org/10.1007/978-4-431-55756-2_12
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.48550/arXiv.1904.12139
https://github.com/recruit-communication
https://github.com/recruit-communication
https://qubovert.readthedocs.io/en/stable/
https://doi.org/10.1038/nature10012
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.35848/1882-0786/acaba9
https://doi.org/10.1109/ICCD.2004.1347938
https://doi.org/10.3390/drones3030066
https://doi.org/10.1088/2058-9565/ac4d1b
https://doi.org/10.1109/TQE.2021.3068355
https://doi.org/10.1109/TQE.2021.3068355
https://doi.org/10.1109/ISCAS48785.2022.9937557
https://doi.org/10.1109/ACCESS.2020.2970105
http://e-archive.informatik.uni-koeln.de/630/

Improving the exploitability of Simulated Adiabatic Bifurcation through a flexible and open-source digital architecture • 49

[37] Salvatore Mandra, Zheng Zhu, Wenlong Wang, Alejandro Perdomo-Ortiz, and Helmut G Katzgraber. 2016. Strengths and weaknesses of

weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches. Physical Review A

94, 2 (2016), 022337. https://doi.org/10.1103/PhysRevA.94.022337.

[38] Yuki NAITO and Kunihiro FUJIYOSHI. [n.d.]. A Study on Updating Spins in Ising Model to Solve Combinatorial Optimization Problems.

city 4 ([n.d.]), 3. https://sasimi.jp/new/sasimi2019/iles/archive/pdf/p310_R4-13.pdf.

[39] Author Name. Year. Stochastic Benchmark Repository. https://github.com/usra-riacs/stochastic-benchmark Accessed: May 29, 2024.

[40] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge

University Press. https://doi.org/10.1017/CBO9780511976667.

[41] Keshab K Parhi. 1999. VLSI digital signal processing systems: design and implementation. John Wiley & Sons.

[42] Rodolfo A Quintero and Luis F Zuluaga. 2021. Characterizing and benchmarking QUBO reformulations of the knapsack problem. Technical

Report. Technical Report. Department of Industrial and Systems Engineering, Lehigh University.

[43] Atanu Rajak, Sei Suzuki, Amit Dutta, and Bikas K Chakrabarti. 2023. Quantum annealing: an overview. Philosophical Transactions of the

Royal Society A 381, 2241 (2023), 20210417. https://doi.org/10.1098/rsta.2021.0417.

[44] Mario Simoni, Giovanni Amedeo Cirillo, Giovanna Turvani, Mariagrazia Graziano, and Maurizio Zamboni. 2021. Towards compact

modelling of noisy quantum computers: A molecular-spin-qubit case of study. ACM Journal on Emerging Technologies in Computing

Systems (JETC) 18, 1 (2021), 1ś26. https://doi.org/10.1145/3474223.

[45] Stefano Speziali, Federico Bianchi, Andrea Marini, Lorenzo Menculini, Massimiliano Proietti, Loris F. Termite, Alberto Garinei, Marcello

Marconi, and Andrea Delogu. 2021. Solving Sensor Placement Problems In Real Water Distribution Networks Using Adiabatic Quantum

Computation. https://doi.org/10.48550/arxiv.2108.04075.

[46] Kyle Steinhauer, Takahisa Fukadai, and Sho Yoshida. 2020. Solving the Optimal Trading Trajectory Problem Using Simulated Bifurcation.

arXiv preprint arXiv:2009.08412 (2020). https://doi.org/10.48550/arXiv.2009.08412.

[47] Junqing Sun, Gregory Peterson, and Olaf Storaasli. 2007. Sparse Matrix-Vector Multiplication Design on FPGAs. In 15th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM 2007). 349ś352. https://doi.org/10.1109/FCCM.2007.56

[48] Toufan D. Tambunan, Andriyan B. Suksmono, Ian J. M. Edward, and Rahmat Mulyawan. 2022. Quantum Annealing for Vehicle Routing

Problem with weighted Segment. https://doi.org/10.48550/ARXIV.2203.13469.

[49] Kotaro Tanahashi, Shinichi Takayanagi, Tomomitsu Motohashi, and Shu Tanaka. 2019. Application of Ising machines and a software

development for Ising machines. Journal of the Physical Society of Japan 88, 6 (2019), 061010. https://doi.org/10.7566/JPSJ.88.061010.

[50] Kosuke Tatsumura. 2021. Large-scale combinatorial optimization in real-time systems by FPGA-based accelerators for simulated

bifurcation. In Proceedings of the 11th International Symposium on Highly Eicient Accelerators and Reconigurable Technologies. 1ś6.

https://doi.org/10.1145/3468044.3468045.

[51] Kosuke Tatsumura, Alexander R. Dixon, and Hayato Goto. 2019. FPGA-Based Simulated Bifurcation Machine. In 2019 29th International

Conference on Field Programmable Logic and Applications (FPL). 59ś66. https://doi.org/10.1109/FPL.2019.00019.

[52] Kosuke Tatsumura, Alexander R. Dixon, and Hayato Goto. 2019. FPGA-Based Simulated Bifurcation Machine. In 2019 29th International

Conference on Field Programmable Logic and Applications (FPL). 59ś66. https://doi.org/10.1109/FPL.2019.00019.

[53] Kosuke Tatsumura, Ryo Hidaka, Jun Nakayama, Tomoya Kashimata, and Masaya Yamasaki. 2023. Pairs-Trading System Using Quantum-

Inspired Combinatorial Optimization Accelerator for Optimal Path Search in Market Graphs. IEEE Access 11 (2023), 104406ś104416.

https://doi.org/10.1109/ACCESS.2023.3316727

[54] Kosuke Tatsumura, Ryo Hidaka, Jun Nakayama, Tomoya Kashimata, and Masaya Yamasaki. 2023. Real-Time Trading System Based on

Selections of Potentially Proitable, Uncorrelated, and Balanced Stocks by NP-Hard Combinatorial Optimization. IEEE Access 11 (2023),

120023ś120033. https://doi.org/10.1109/ACCESS.2023.3326816

[55] Kosuke Tatsumura, Masaya Yamasaki, and Hayato Goto. 2021. Scaling out Ising machines using a multi-chip architecture for simulated

bifurcation. Nature Electronics 4, 3 (2021), 208ś217. https://doi.org/10.1038/s41928-021-00546-4.

[56] John Robert Taylor and John R Taylor. 2005. Classical mechanics. Vol. 1. Springer.

[57] Lieven MK Vandersypen and Isaac L Chuang. 2005. NMR techniques for quantum control and computation. Reviews of modern physics

76, 4 (2005), 1037. https://doi.org/10.1103/RevModPhys.76.1037

[58] Davide Venturelli, Salvatore Mandrà, Sergey Knysh, Bryan O’Gorman, Rupak Biswas, and Vadim Smelyanskiy. 2015. Quantum

optimization of fully connected spin glasses. Physical Review X 5, 3 (2015), 031040. https://doi.org/10.1103/PhysRevX.5.031040.

[59] Amit Verma and Mark Lewis. 2021. Variable Reduction For Quadratic Unconstrained Binary Optimization. https://doi.org/10.48550/

arxiv.2105.07032.

[60] Deborah Volpe, Giovanni Amedeo Cirillo, Maurizio Zamboni, and Giovanna Turvani. 2023. Integration of Simulated Quantum Annealing

in Parallel Tempering and Population Annealing for Heterogeneous-Proile QUBO Exploration. IEEE Access 11 (2023), 30390ś30441.

https://doi.org/10.1109/ACCESS.2023.3260765.

[61] Mahendra Vucha and Arvind Rajawat. 2011. Design and FPGA implementation of systolic array architecture for matrix multiplication.

International Journal of Computer Applications 26, 3 (2011), 18ś22. https://tinyurl.com/ymmmapf9

ACM Trans. Quantum Comput.

https://doi.org/10.1103/PhysRevA.94.022337
https://sasimi.jp/new/sasimi2019/files/archive/pdf/p310_R4-13.pdf
https://github.com/usra-riacs/stochastic-benchmark
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1145/3474223
https://doi.org/10.48550/arxiv.2108.04075
 https://doi.org/10.48550/arXiv.2009.08412
https://doi.org/10.1109/FCCM.2007.56
https://doi.org/10.48550/ARXIV.2203.13469
https://doi.org/10.7566/JPSJ.88.061010
https://doi.org/10.1145/3468044.3468045
 https://doi.org/10.1109/FPL.2019.00019
https://doi.org/10.1109/FPL.2019.00019
https://doi.org/10.1109/ACCESS.2023.3316727
https://doi.org/10.1109/ACCESS.2023.3326816
https://doi.org/10.1038/s41928-021-00546-4
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/PhysRevX.5.031040
https://doi.org/10.48550/arxiv.2105.07032
https://doi.org/10.48550/arxiv.2105.07032
https://doi.org/10.1109/ACCESS.2023.3260765
https://tinyurl.com/ymmmapf9

50 • D. Volpe et al.

[62] Pedro Maciel Xavier, Pedro Ripper, Tiago Andrade, Joaquim Dias Garcia, Nelson Maculan, and David E. Bernal Neira. 2023. QUBO.jl: A

Julia Ecosystem for Quadratic Unconstrained Binary Optimization. arXiv:2307.02577 [math.OC]

[63] Mashiyat Zaman, Kotaro Tanahashi, and Shu Tanaka. 2022. PyQUBO: Python Library for Mapping Combinatorial Optimization Problems

to QUBO Form. IEEE Trans. Comput. 71, 4 (2022), 838ś850. https://doi.org/10.1109/TC.2021.3063618.

[64] Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz. 2020. Embedding algorithms for quantum annealers

with chimera and pegasus connection topologies. In International Conference on High Performance Computing. Springer, 187ś206.

https://doi.org/10.1007/978-3-030-50743-5_10.

[65] Tingting Zhang and Jie Han. 2022. Eicient Traveling Salesman Problem Solvers using the Ising Model with Simulated Bifurcation. In

2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). 548ś551. https://doi.org/10.23919/DATE54114.2022.9774576.

[66] Tingting Zhang, Qichao Tao, and Jie Han. 2021. Solving Traveling Salesman Problems Using Ising Models with Simulated Bifurcation.

In 2021 18th International SoC Design Conference (ISOCC). 288ś289. https://doi.org/10.1109/ISOCC53507.2021.9613918.

[67] Yan Zhang, Yasser H. Shalabi, Rishabh Jain, Krishna K. Nagar, and Jason D. Bakos. 2009. FPGA vs. GPU for sparse matrix vector multiply.

In 2009 International Conference on Field-Programmable Technology. 255ś262. https://doi.org/10.1109/FPT.2009.5377620

[68] Ling Zhuo and Viktor K Prasanna. 2005. Sparse matrix-vector multiplication on FPGAs. In Proceedings of the 2005 ACM/SIGDA 13th

international symposium on Field-programmable gate arrays. 63ś74. https://doi.org/10.1145/1046192.1046202

[69] Michael Ryan Zielewski and Hiroyuki Takizawa. 2022. A method for reducing time-to-solution in quantum annealing through pausing.

In International Conference on High Performance Computing in Asia-Paciic Region. 137ś145. https://doi.org/10.1145/3492805.3492815.

[70] Yu Zou and Mingjie Lin. 2020. Massively simulating adiabatic bifurcations with FPGA to solve combinatorial optimization. In Proceedings

of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 65ś75. https://doi.org/10.1145/3373087.3375298.

Received 27 September 2023; revised 23 February 2024; accepted 26 April 2024

ACM Trans. Quantum Comput.

https://arxiv.org/abs/2307.02577
https://doi.org/10.1109/TC.2021.3063618
https://doi.org/10.1007/978-3-030-50743-5_10
 https://doi.org/10.23919/DATE54114.2022.9774576
 https://doi.org/10.1109/ISOCC53507.2021.9613918
https://doi.org/10.1109/FPT.2009.5377620
https://doi.org/10.1145/1046192.1046202
https://doi.org/10.1145/3492805.3492815
https://doi.org/10.1145/3373087.3375298

	Abstract
	1 Introduction
	2 Theoretical foundations
	2.1 Optimization Problems formalism
	2.2 Simulated Adiabatic Bifurcation

	3 Proposed Simulated Adiabatic Bifurcation implementation
	3.1 Research gap
	3.2 Parameters choice
	3.3 Toolchain structure
	3.4 Software models
	3.5 Architecture

	4 Results
	4.1 Software results
	4.2 Functional verification
	4.3 Synthesis results

	5 Conclusions
	References

