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Abstract—In this work, we extend the standard quasi-
Helmholtz filters to high-order discretizations in the context
of the boundary element method. This generalization allows
preconditioning integral equations such as the electric field
integral equation (EFIE) in the h-refinement regime while pre-
serving the accuracy gain of high-order discretizations. The
theoretical framework will be corroborated by numerical results
that validate the effectiveness of the proposed strategy when
stabilizing the refinement-dependent spectral behavior of the
high-order discretized EFIE.

I. INTRODUCTION

Solving the electric field integral equation (EFIE) via the
boundary element method yields highly accurate solutions
when leveraging high-order discretizations [1]. Unfortunately,
the EFIE suffers from severe ill-conditioning at low frequen-
cies and for densely discretized geometries, which causes a
loss of accuracy and a higher number of iterations in the
solution process. An effective approach to treat the low-
frequency breakdown is to rely on the quasi-Helmholtz pro-
jectors, that have been recently generalized to the high-order
framework [2]. However, the projector-based EFIE remains ill-
conditioned for high mesh density (referred to as h-refinement
breakdown), and additional strategies are therefore required to
remedy both ill-conditioning problems at the same time.

To this aim, the quasi-Helmholtz Laplacian filters, recently
introduced in [3], constitute an efficient method to tackle
simultaneously the low-frequency and the h-refinement break-
downs without the requirement of barycentric refinements.
One may consider such filtered projectors as an extension
of the quasi-Helmholtz projectors that offers the additional
possibility of flattening the EFIE spectrum [3], yielding a
well-conditioned formulation from medium to low-frequency
and for arbitrary mesh density. Leveraging previous contri-
butions [2], [3], this paper generalizes the quasi-Helmholtz
Laplacian filters to high-order discretizations. The effective-
ness of the newly introduced filters will be illustrated in the
stabilization of the EFIE in the h-refinement and low frequency
regimes.

II. BACKGROUND AND NOTATIONS

We consider a closed and simply connected surface bound-
ary Γ modeling a perfectly electrically conducting (PEC)
object with outward pointing normal n̂ and approximated by a
mesh of curvilinear triangular cells. We denote by r̂ = (u, v)T

the coordinates in the reference triangle K̂. For each cell K of
the mesh, we define a local-to-global mapping r := FK(r̂),

with associated Jacobian JFK
= (∂uFK , ∂vFK)T and elemen-

tary surface area JK = |∂uFK × ∂vFK |.
We denote by Pr(K̂) the space of scalar polynomials of

degree up to order r on K̂. The Raviart-Thomas space RTr

contains functions ψ(r) = ± 1
JK

JT
FK
ψ̂(r̂) having edge nor-

mal continuity, where ψ̂ ∈ P2
r(K̂)+ r̂Pr(K̂). The continuous

Galerkin space CGr+1 contains functions λ(r) = λ̂(r̂) having
edge continuity, where λ̂ ∈ Pr+1(K̂). The discontinuous
Galerkin space DGr contains functions σ(r) = 1

JK
σ̂(r̂)

where σ̂ ∈ Pr(K̂). In the following, we consider interpolatory
bases of these finite element spaces. We respectively denote
by {λl}Ll=1 the continuous Lagrange basis of CGr+1, by
{ψn}Nn=1 the Graglia-Wilton-Peterson [1] (GWP) basis of
RTr, and by {σs}Ss=1 the discontinuous Lagrange basis of
DGr. In absence of handles, apertures, and junctions, and
denoting by E, V , and C the number of edges, vertices,
and cells of the mesh, L = r(r − 1)C/2 + rE + V ,
N = r(r + 1)C + (r + 1)E, S = (r + 1)(r + 2)C/2 and
N = (L− 1) + (S − 1) [2].

Solving the EFIE yields the surface current density J
induced by a time-harmonic incident field Einc. The equation
reads

(
jk Ts + 1

jk Th
)
J = −n̂ × 1

ηE
inc, where k is the

wavenumber, η is the characteristic impedance, (TsJ) (r) =

n̂(r) ×
∫
Γ

e−jk|r−r′|

4π|r−r′| J(r
′) dS(r′) and (ThJ) (r) = −n̂ ×

∇Γ

∫
Γ

e−jk|r−r′|

4π∥r−r′∥ ∇
′
Γ · J(r′) dS(r′) are the vector and scalar

potentials, respectively, and ∇Γ is the surface nabla operator.
The current is approximated by a linear combination of GWP
functions J(r) ≈

∑N
n=1

[
j
]
n
ψn(r), and the equation is

tested by rotated functions {n̂×ψ}Nn=1 which yield a system
matrix in the form Tj = e with T = jkTs +

1
jk Th (refer

to [2] for definitions). This system suffers from low-frequency
and dense mesh discretization breakdowns. More precisely,
its ill-conditioning behavior is expressed as cond (T) ≲
O(1/(kh)2), with h → 0 and k → 0, where h is the average
cell diameter of the mesh [3].

In the following, we denote the Gram matrix associated with
two sets of (scalar or vector) functions {fi}Ii=1 and {gj}Jj=1

by Gf ,g ∈ RI×J , where [Gf ,g]ij =
∫
Γ
fi(r) · gj(r) dS(r).

III. HIGH-ORDER QUASI-HELMHOLTZ PROJECTORS

The expansion coefficients j can be decomposed in the form
j = Λl +Σs, where Λ and Σ are respectively the GWP-to-
Loop and GWP-to-Star transform matrices, defined as [2]

Λ = G−1
ψ,ψGψ,n̂×∇Γλ and Σ = G∇Γ·ψ,σ , (1)
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which also guarantees the orthogonality properties ΣTΛ = 0,
ΛTTh = 0 and ThΛ = 0 [2]. From this decomposition, we
build the general form of the projectors on the Loop and the
Star subspaces, respectively PΛ = Λ(ΛTΛ)+ΛT and PΣ =
Σ(ΣTΣ)+ΣT , where + denotes the Moore-Penrose pseu-
doinverse. These projectors are orthogonal to each other, i.e.,
PΛPΣ = 0.

IV. HIGH-ORDER QUASI-HELMHOLTZ LAPLACIAN FILTERS

In order to analyze the proposed strategy, we normalize the
EFIE leveraging inverse square roots of Gram matrices. The
normalized EFIE reads

T̃j̃ = ẽ with T̃ = jk T̃s +
1

jk
T̃h (2)

where T̃s = G
−1/2
ψ,ψ TsG

−1/2
ψ,ψ , T̃h = G

−1/2
ψ,ψ ThG

−1/2
ψ,ψ ,

ẽ = G
−1/2
ψ,ψ e and j̃ = G

1/2
ψ,ψj. The normalized Loop

and Star transform matrices are Λ̃ = G
1/2
ψ,ψΛG

−1/2
λ,λ and

Σ̃ = G
−1/2
ψ,ψ ΣG−1/2

σ,σ . One can check that the orthogonality
properties analog to the ones obtained with the non-normalized
Loops and Stars still hold. We can subsequently build the
normalized quasi-Helmholtz projectors as

PΛ̃ = Λ̃(Λ̃T Λ̃)+Λ̃T and PΣ̃ = Σ̃(Σ̃T Σ̃)+Σ̃T . (3)

Note that the matrices that we need to pseudoinvert in (3) are
Galerkin approximations of the Laplace eigenvalue problem:
based on the standard discretization using CGr+1 functions

Λ̃T Λ̃ = G
−1/2
λ,λ G∇Γλ,∇ΓλG

−1/2
λ,λ , (4)

and based on the mixed-form discretization using RTr–DGr

functions [4]

Σ̃T Σ̃ = G−1/2
σ,σ Gσ,∇Γ·ψG

−1
ψ,ψG∇Γ·ψ,σG

−1/2
σ,σ . (5)

Additionally, for Lipschitz boundaries, the eigenvalues of
both discrete operators converge to the continuous Laplacian
eigenvalues with rate h2(r+1) [4]. As it concerns the continu-
ous Laplacian eigenvalues, they are known to increase linearly
with their index, which is one of the main results that enable
an effective rescaling of the filtered Laplacian operators [3].

We now define the filtered quasi-Helmholtz projectors as
PA

n = A(ATA)+nA
T , where A stands for either Λ̃ or Σ̃,

while (ATA)n is the eigenvalue decomposition of ATA
truncated after its first n smallest eigenvalues [3]. Next, we
define the wavelet-like projectors on the range of A

WA
ℓ = PA

2ℓ−1 −PA
2ℓ−1−1 , ℓ = 2, . . . , ⌊log2(NA)⌋

WA
1 = PA

1 ; WA
⌊log2(NA)⌋+1 = PA −PA

2⌊log2(NA)⌋−1 .
(6)

which allow defining the quasi-Helmholtz Laplacian filters

QΛ̃ =

⌊log2(L)⌋+1∑
ℓ=1

βΛ̃
ℓ WΛ̃

ℓ and QΣ̃ =

⌊log2(S)⌋+1∑
ℓ=1

βΣ̃
ℓ WΣ̃

ℓ , (7)

with

βΛ̃
ℓ = ∥WΛ̃

ℓ T̃sW
Λ̃
ℓ ∥−1/2 , ℓ = 1, . . . , ⌊log2(L)⌋+ 1,

βΣ̃
ℓ = ∥WΣ̃

ℓ T̃hW
Σ̃
ℓ ∥−1/2 , ℓ = 1, . . . , ⌊log2(S)⌋+ 1 .

(8)
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Fig. 1. Condition number of the system matrices as a function of the number
of unknowns at a frequency of 10 kHz.

The preconditioning matrix is finally given by

Q = k−1/2αΛ̃ QΛ̃ + jk1/2αΣ̃ QΣ̃ , (9)
with

αΛ̃ = ∥QΛ̃T̃sQ
Λ̃∥−1/2 and αΣ̃ = ∥QΣ̃T̃hQ

Σ̃∥−1/2, (10)

which yields the preconditioned system

QT̃Qy = Qẽ , (11)

with j = G
−1/2
ψ,ψ Qy.

V. NUMERICAL VALIDATION

We compare the condition number of the quasi-Helmholtz
Laplacian filters EFIE (11) along with the quasi-Helmholtz
projectors EFIE (3)–[2] and the standard EFIE (2) (with
normalization) for an increasingly dense mesh discretization
of the unit sphere. The proposed technique provides bounded
condition numbers, while the other formulations display con-
dition numbers growing with the number of unknowns. Im-
plementation details and additional validation results will be
provided during the conference presentation.
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