
29 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Conservative Surrogate Modeling of Crosstalk with Application to Uncertainty Quantification / Manfredi, Paolo. -
ELETTRONICO. - (2023), pp. 1-4. (Intervento presentato al  convegno IEEE 27th Workshop on Signal and Power
Integrity (SPI 2023) tenutosi a Aveiro, Portogallo nel 07-10 May 2023) [10.1109/SPI57109.2023.10145575].

Original

Conservative Surrogate Modeling of Crosstalk with Application to Uncertainty Quantification

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/SPI57109.2023.10145575

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982153 since: 2023-09-14T11:16:14Z

IEEE



Conservative Surrogate Modeling of Crosstalk with
Application to Uncertainty Quantification

Paolo Manfredi
EMC Group, Department of Electronics and Telecommunications, Politecnico di Torino

10129 Torino, Italy
E-mail: paolo.manfredi@polito.it

Abstract—Machine learning methods are attracting a great
interest as surrogate modeling tools for signal and power integrity
problems. However, an open issue is that it is often difficult
to assess the model trustworthiness in generalizing beyond the
training data. In this regard, Gaussian process (GP) models
notably provide an indication of the prediction confidence due to
the limited amount of training samples. They are wildly used as
surrogates in design exploration, optimization, and uncertainty
quantification tasks. Nevertheless, their prediction confidence
does not account for the uncertainty introduced by the estimation
of the GP parameters, which is also part of the training process.
In this paper, we discuss two improved GP formulations that take
into account the additional uncertainty related to the estimation
of (some) GP parameters, thereby leading to more reliable
and conservative confidence levels. The proposed framework
is applied to the uncertainty quantification of the maximum
transient crosstalk in a microstrip interconnect.

Index Terms—Bayesian estimation, crosstalk, Gaussian pro-
cesses, Kriging, machine learning, surrogate modeling, uncer-
tainty quantification.

I. INTRODUCTION

Surrogate modeling and machine learning are increasingly
used in signal and power integrity applications to perform
efficient design exploration, optimization, and uncertainty
quantification (UQ) tasks. A wide range of techniques were
employed for this purpose, including techniques based on
polynomial chaos expansion (PCE), neural networks, and
kernel-based machine learning methods [1], [2], [3], [4].

The PCE-based methods are particularly suitable for UQ,
since statistical information like moments and sensitivity in-
dices are derived analytically from the model coefficients [5].
The surrogate model consists in this case in an expansion of
suitable orthogonal polynomials depending on the distribution
of the uncertain design parameters. One of the main limita-
tions of this technique is the fact that the model complexity
grows exponentially with the number of uncertain parameters,
thereby making it inefficient for high-dimensional problems.

More recently, data-driven methods belonging to the broad
class of machine learning methods attracted a growing interests
thanks to their model-free structure. This yields enhanced
flexibility and adaptability, as well as better scaling to high-
dimensional problems. These techniques include a wide class
of neural network architectures as well as kernel-based meth-
ods like support-vector regression, least-square support-vector
machines, and Gaussian process (GP) regression, also known
as Kriging [6]. In particular, GP regression is a popular and

flexible tool that is used either as a plain surrogate or as a
target function approximation in Bayesian optimization [7],
[8] and UQ [9].

When it comes to surrogate models, an open issue that so
far received rather limited attention is the trustworthiness in
generalizing beyond training samples. Indeed, when reference
data is not available, the accuracy of the surrogate is usually
assessed based on the same data that is used to build it,
possibly leading to overfitting and making it difficult to predict
how well the model generalizes to unseen data.

In this regard, an attractive feature of GP models is that they
inherently carry an estimate of the prediction uncertainty. The
method assumes that the target function can be assimilated
to a realization of a certain GP. If the GP is fully known,
the information on the prediction confidence is rigorous and
accurate, and it reflects the model uncertainty due to the fact
that a limited amount of data is used to “train” the model.
In practice, some of the GP parameters are unavoidably left
as degrees of freedom that are tuned as part of the training
process, so that a more flexible and general model is put
forward and later adapted to the specific problem at hand.
The fact that the GP parameters are also estimated based on
the available data adds uncertainty to the model prediction,
but this aspect is often overlooked in the literature.

In this paper, we discuss a more rigorous GP formulation,
which accounts for the additional uncertainty related to the
estimation of – at least some of – the GP parameters. This
leads to a more conservative and reliable prediction uncer-
tainty, which helps prevent overconfidence in the model. The
proposed method is applied to the UQ of the maximum tran-
sient crosstalk occurring in a microstrip interconnect and its
performance in comparison with the standard GP formulation
is illustrated.

II. GP REGRESSION

Let us consider a quantity of interest y that depends on
d design parameters x = (x1, . . . , xd) through a – typically
implicit – functional dependence

y = M(x) (1)

where M : Rd → R is a computational model.
GP regression seeks to model the function (1) as a realiza-

tion of a GP called “prior”, which we denote as

y ∼ GP
(
µ(x), σ2r(x,x′)

)
(2)



where µ(x) is the mean function, or trend, and σ2r(x,x′) is
the covariance function, or kernel [6], [10].

Bayesian inference is used to “identify” the specific GP
realization that best fits to the target function based on a lim-
ited number of observations. Indeed, if L observations {yl}Ll=1

are collected for as many configurations {xl}Ll=1 of the input
parameters, with samples yl = M(xl) computed using the
computational model (1), the target function is approximated
using the mean function of the resulting “posterior” GP, which
reads

y ≈ MGPR(x) = µ(x) + r(x)TR−1(y − µ) (3)

where:
• y = (y1, . . . , yL)

T is the vector of observations;
• µ = (µ(x1), . . . , µ(xL))

T is the vector of the GP trend
evaluated at the training samples;

• R is the correlation matrix of the training samples, with
entries Rlm = r(xl,xm), l,m = 1, . . . , L;

• r(x) = (r(x,x1), . . . , r(x,xL)
T is the vector of cross-

correlations between the prediction point and the training
samples.

Equation (3) provides the GP prediction at an arbitrary
point x∗. If no noise is assumed on the data, the prediction
interpolates the training samples.

Furthermore, a posterior covariance function, computed as

c(x,x′) = σ2
(
r(x,x′)− r(x)TR−1r(x′)

)
(4)

is associated to the predictions. The posterior covariance
describes the correlation between the predictions at different
points. Given a single design point x∗, the model prediction is
a Gaussian random variable with expectation (i.e., most likely
prediction) µ(x∗), computed from (3), and variance c(x∗,x∗),
computed with (4). Therefore, the GP model is notably a
stochastic model!

The model variability is an expression of the uncertainty
due to the fact that a limited amount of data is used to train it.
For an arbitrary point that is not part of the training data, the
prediction variance provides an estimate of the prediction un-
certainty, which allows assessing its confidence. It is important
to note that, if the target function (1) does come from the GP
described by µ(x) and σ2r(x,x′), the covariance information
is rigorous and the variance quantitatively accounts for the
prediction uncertainty, which in that case is solely due to the
lack of data.

A. Parameterization of the Prior

In signal and power integrity problems, the GP assumption
may hardly hold. Nevertheless, we can still assume that there
exist a certain GP of which the target function may be a
possible realization! Even in that case, however, it is difficult
to guess a priori a good prior GP. What is typically done in
engineering applications is to assume a generic, parameterized
form of the prior, and to leave some prior parameters as
degrees of freedom to be optimized during training.

Typically, the trend is assumed to be a linear combination
of predefined basis functions (e.g., polynomials up to a given
order), i.e.,

µ(x) =

P∑
j=1

βjhj(x) = βTh(x) (5)

with h(x) = (h1(x), . . . , hP (x))
T and unknown coefficients

β = (β1, . . . , βP )
T. The trend function can already capture the

main behavior of the target function w.r.t. the input parameters.
For stochastic problems, a PCE can be used for the trend,
where the basis functions in (5) are the classical orthogonal
polynomials of the Wiener-Askey scheme, leading to the so-
called polynomial-chaos-based Kriging [11]. Since in this
work we aim at UQ, we shall choose this trend without loss
of generality.

The kernel function is also parameterized. For relatively
smooth problems, popular choices are the squared-exponential
or the Matérn 5/2 kernels, the latter reading

σ2 r(x,x′) = σ2

(
1 +

√
5ρ+

5

3
ρ2
)
exp

(
−
√
5ρ

)
, (6)

where

ρ =

√√√√ d∑
j=1

(xj − x′
j)

2

θ2j
(7)

The kernel is parameterized by the variance σ2 and the
smoothness parameters θ = (θ1, . . . , θd), also called “length-
scales”. Again without loss of generality, we assume in this
work the lengthscale to be the same for all inputs, i.e., θj = θ,
∀j = 1, . . . , d, which makes the kernel “isotropic”.

The triplet of parameters (β, σ2, θ) is estimated and op-
timized during the training phase. It is important to point
out that the posterior covariance (4) does not account for
the additional uncertainty related to the estimation of these
parameters, thereby leading to an overoptimistic estimate of
the prediction uncertainty, especially when a low number of
training samples is used.

B. Application to UQ
Assuming that the prior parameters are known, the outlined

GP framework can be used for UQ. In particular, the GP
surrogate is used as an emulator of the true computational
model (1) for the fast predictions of samples in a Monte Carlo
(MC)-like analysis.

To this end, a randomly drawn set of design parameters
{x∗

i }
N
i=1 is generated according to their distribution. Corre-

sponding predictions are generated by evaluating (3), leading
to

ȳ = µ∗ +RT
∗R

−1(y − µ) (8)

where µ∗ is the prior trend evaluated at the MC samples and
R∗ is the cross-correlation matrix between the MC samples
and the training samples (i.e., R∗,li = r(xl,x

∗
i ), with l =

1, . . . , L and i = 1, . . . , N ). Moreover, the covariance matrix
of the MC predictions is obtained from (4) as

C0 = σ2
(
R∗∗ −RT

∗R
−1R∗

)
(9)



where R∗∗,ij = r(x∗
i ,x

∗
j ), with i, j = 1, . . . , N .

While (8) provides the best prediction of the MC samples,
(9) can be used to assess its confidence. Specifically, the vector
of MC predictions is a multivariate Gaussian random variable
with mean and covariance given by (8) and (9), respectively,
which can be expressed as

y∗ = ȳ +C
1
2
0 ξ (10)

where ξ = (ξ1, . . . , ξN )T is a vector of N independent
standard normal random variables, i.e., ξi ∼ N (0, 1) for
i = 1, . . . , N . A different realization of ξ, plugged into (10),
provides a different prediction of the MC samples taking into
account the uncertainty of the surrogate model due to the
limited training data, thus allowing the estimation, e.g., of
confidence bounds on the statistical information. Analytical
estimates are available for the mean and the variance of the
output y [9].

C. Estimation of the Prior Parameters

Usually, the GP parameters are estimated empirically from
the training data. The trend coefficients β are estimated using
a generalized least-square estimate [6], [10], leading to

β =
(
HTR−1H

)−1

HTR−1y (11)

where H is a matrix with the trend basis functions evaluated
at the training samples, i.e., Hlj = hj(xl), with l = 1, . . . , L
and j = 1, . . . , P . The kernel parameters σ2 and θ are instead
usually optimized by either maximum likelihood estimation or
cross-validation error minimization using global optimization
algorithms [6], [10].

Once the prior parameters are known, they are plugged in in
the expressions of the trend (5) and kernel (6) to compute the
surrogate model prediction of the MC samples via (8)–(10).
The estimate of the prior parameters is avoidably inexact but,
as already mentioned, the posterior covariance (4) does not
account for this contribution to the overall model uncertainty.

D. Impact of Parameter Estimation on Prediction Uncertainty

This section illustrates how the additional uncertainty re-
lated to the estimation of the prior parameters can be included
in the predictions. Only the main results are discussed here,
whereas a detailed discussion is deferred to an expanded paper.

Using Bayesian settings, it has been shown that the un-
certainty in the estimation of the trend coefficients β can be
accounted for by including an additional term in the posterior
covariance [6], [10], [12], leading to a modified covariance
matrix that we can express as

C1 = C0 +∆C (12)

The posterior distribution remains Gaussian, which means that
we can still generate the MC predictions by means of (10),
using C1 in place of C0.

It is possible to use Bayesian inference also to estimate the
kernel variance σ2. This leads to a different expression of the
covariance matrix, which we denote as C2. However, in this

case, the posterior distribution becomes no longer Gaussian,
but rather a Student’s t-distribution [10], [12]. Therefore, the
MC predictions can be computed as

y∗ = ȳ +C
1
2
2 τ (13)

where τ = (τ1, . . . , τN )T is a vector of N independent t-
distributed random variables, i.e., τi ∼ tν , with ν = L − P
degrees of freedom. It should be noted that a t-distribution
is similar to a standard normal distribution but with larger
variance (= ν/(ν − 2) > 1), which in general leads to
a lower confidence of the surrogate model predictions. The
t-distribution approaches the Gaussian distribution (i.e., its
variance approaches 1) when the degrees of freedom ν → ∞.

Interestingly, ν increases (i.e., the uncertainty reduces) when
the number of training samples L is increased and/or the
number of trend basis functions is reduced. This is reasonable,
because the former yields a more accurate training, whereas
the latter requires the estimation of a higher number of
coefficients.

Unfortunately, it is much more difficult to account also for
the uncertainty due to the estimation of the lengthscale θ,
because in this case the posterior distribution is no longer
available in closed form [10], [12]. Therefore, in this work
we use the following compromise:

• We estimate the kernel lengthscale θ using a standard
empirical method, in this case maximum likelihood
(but leave-one-out cross validation could be alternatively
used);

• Once the lengthscale scale is available, we use Bayesian
estimators to account for the uncertainty in the estimation
of the trend coefficients β and kernel variance σ2.

The above approach unavoidably neglects the uncertainty
in the estimation of θ. Nonetheless, it still provides more
conservative prediction confidence compared to the standard
GP formulation.

III. NUMERICAL RESULTS

In this section, we apply the outlined GP framework to
the UQ of the maximum transient crosstalk in the coupled
embedded microstrip line originally introduced in [13] and
already investigated in [14]. In particular, two test cases are
considered, with d = 2 and d = 6 uncertainty parameters. In
the first test case (TC-1), the uncertainty is in the substrate
thickness and the line gap. In the second test case (TC-2), the
uncertainty is in the line widths and in their distance from the
ground plane. All parameters are assumed to be independent
and Gaussian distributed with a 10% standard deviation from
the mean. We refer to [14] for additional details.

The transient crosstalk in the microstrip interconnect, pro-
duced by a 1-ns pulse with an amplitude of 5 V and a
risetime of 100 ps, is simulated in SPICE. For each random
configuration of the uncertain parameters, the maximum over
time is considered as the target quantity y. We train a GP
surrogate of the maximum crosstalk with a second-order PCE
as trend function and an isotropic Matérn 5/2 kernel. The
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Fig. 1. Distribution of the maximum crosstalk for the two test cases and
different number of training samples. Blue line: reference distribution of the
MC samples; dashed lines: confidence levels of the various GP models.

number of trend basis functions is P = 6 for TC-1 and P = 28
for TC-2. The training data is generated using Latin hypercube
sampling over the domain [−3, 3]d and we use the MATLAB®

Statistics and Machine Learning Toolbox™ [15] toolbox to
estimate the kernel lengthscale. Finally, a MC simulation with
1000 samples is run to generate reference results.

Figure 1 shows the results for the probability distribution
of the maximum crosstalk. The top and bottom panels refer
to TC-1 and TC-2, respectively, whereas the results of the
left and right panels refer to a different number of training
samples. In particular, either L = 10 (left) or L = 30 (right)
is used for TC-1, whilst for TC-2, we use either L = 30 or
L = 60.

The distribution of the MC samples is shown by the solid
blue lines. The dashed lines are instead the 95% confidence
bounds of the distribution predicted with the GP surrogates.
In particular:

• in red are the confidence bounds obtained with the
standard GP implementation, labeled as “GP-0”, with
the covariance matrix (9), which does not account for
the uncertainty introduced by the estimation of the prior
parameters;

• in yellow are the confidence bounds obtained with the
corrected covariance matrix (12), labeled as “GP-1”,
which only accounts for the additional uncertainty intro-
duced by estimation of the trends coefficients β;

• the green lines are the confidence bounds obtained from
(13), labeled as “GP-2”, which also account for the
uncertainty in the estimation of the kernel variance σ2.

We notice that the GP confidence bounds are increasingly
wider as we include more contributions to the model uncer-
tainty. GP-0 and GP-1 confidence bounds are overoptimistic,
especially for the lower number of training samples. This
is clearly observed in particular for TC-2 and L = 30:

very narrow bounds are predicted, which however do not
enclose the actual MC distribution. GP-2 provides much
more conservative bounds, better reflecting the actual model
uncertainty. The confidence difference between the three GP
models bounds reduces by increasing L, since the estimation
of the prior parameters becomes more accurate. In this case,
despite still being narrower, the GP-0 and GP-1 confidence
bounds include the reference MC distribution, indicating that
the GP model is overall more accurate.

IV. CONCLUSIONS

In this paper, we discussed more conservative GP regression
formulations that account also for the prediction uncertainty
arising from the estimation of some prior parameters from
the training data. The results were illustrated based on the
simulation of the maximum transient crosstalk in a microstrip
interconnect, for which more conservative and reliable confi-
dence bounds were obtained.
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