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Summary 

In recent decades, multilayered composites and sandwich structures have been 
widely used in various engineering fields (aerospace, automotive, naval, defence, 
and civil). These structures exhibit a high stiffness-to-weight ratio if compared 
with their metallic counterparts. Moreover, their tailoring capabilities make them 
interesting in design optimization. On the other hand, their intrinsic complex 
transverse material properties description requires an accurate structural model 
able to predict their structural response. Three-dimensional high-fidelity finite 
element models could be considered to evaluate the multilayered structural 
response; however, it is common to find industrial applications in which many 
layers are involved. Consequently, the computational cost of three-dimensional 
finite elements becomes prohibitive even for simple analysis. It becomes 
necessary to pursue another way to reach an affordable solution, even for more 
complex structures. In the framework of theories developed in recent years by 
researchers, the zigzag models represent a new class of models to investigate the 
structural response of multilayered composites and sandwich structures. These 
models, originally formulated by Prof. Di Sciuva, inspired many researchers, 
among them Prof. Gherlone, to put their efforts into contributing to developing 
accurate, efficient and computationally attractive zigzag theories. 

In this context, this research aims to enhance the available refined zigzag 
models to investigate more general structures that exhibit a pronounced transverse 
anisotropy, including the effect of transverse normal deformation and non-
linearities of displacement components typically present in thick multilayered 
structures and sandwich structures. 

Chapter 1 presents a general overview of the most used structural theories 
available in the current literature, with particular attention to the zigzag models 
and variational formulations. 

In Chapter 2, the enhanced Refined Zigzag Theory is formulated to analyse 
general multilayered structures in which the transverse shear coupling due to the 



 Summary 
__________________________________________________________________ 

xx 

 

material anisotropy is present. The formulation of the enhanced zigzag functions, 
the derivation of governing equations, and consistent boundary conditions are 
presented in detail. 

Chapter 3 is devoted to the formulation of a new higher-order mixed model 
based on the en-RZT that takes into account a finer description of the transverse 

shear and normal stresses. The new model formulation, named ( )
{3,2}en-RZT m , 

implements the Hellinger-Reissner variational principle, considering a new set of 
independent strain variables. A penalty term guarantees the compatibility 
conditions on the strain quantities in the governing functional. The governing 
equation and consistent boundary conditions are obtained to analyse anisotropic 
and cross-ply multilayered composite and sandwich plates. 

In Chapter 4, the new mixed model is simplified to beam analysis. The beam 

governing equations and consistent boundary conditions of the ( )
{3,2}B-RZT m  are 

derived using the previous mixed variational statement. Then, two mixed finite 
elements are formulated to analyse cross-ply and sandwich beam structures. 

In Chapters 5 and 6, the numerical and experimental results are presented. In 
Chapter 5, the newly formulated models are numerically assessed to evaluate the 
predictivity responses for linear bending, buckling and free vibration problems. 
The experimental campaign on three- and four-point bending tests and free 
vibration analysis of sandwich structures is conducted, and the results are 
compared with the new beam models. The activity proposed, supported by the 
numerical and experimental results, wants to offer a more general and complete 
methodology based on the refined zigzag models to investigate multilayered 
composite and sandwich structures. In particular, the newly formulated models 
could be used to analyse structures in which the material transverse anisotropy is 
not negligible. Moreover, the mixed formulation of the new models could be used 
to investigate even thick multilayered structures. The formulated elements make 
these new mixed models appealing in their predictivity capabilities and affordable 
low computational cost compared to other available models. 

During the PhD research activity, the aspects concerning model development, 
finite element formulations, and numerical and experimental assessment 
constitute the basis of this thesis work. In addition, other aspects of PhD research 
activity not explicitly considered in this thesis cover numerical analysis of 
functionally graded structures, approximate solutions using the higher-order Haar-
Wavelet method and advanced aspects of finite element modelling, some of them 
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during the period spent abroad at CIMNE, Barcelona. These interesting aspects 
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Preliminaries  

 

This preliminary Section introduces some notions related to the three-
dimensional linear elasticity that are abundantly used in this thesis work. The 
interested reader is referred to Reddy’s book [1] for the omitted details. 

Displacements 

A solid deformable body of known geometry, material constituent, loads and 
boundary conditions is considered. 

As shown in Figure , each material point P of the body, indicated by a volume 
V and an edge surface S , is referred to a Cartesian coordinate system 

 1 2 3, ,xx xX . 

 

Figure 1: Coordinate reference system, deformable body representation and 
notations. 
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When the body is under the action of external forces and boundary conditions, 
the material particles of the body move towards a new configuration, identified by 
the position of the point 1cX . 

The displacement vector of the particle is given by 

 1c U X X  (0.1) 

where  , 1,2,3iU i U  is the vector of orthogonal Cartesian components of 

displacement. 

Moreover, in Figure  are shown: the vector of the applied body forces 

 1 2 3, ,b b bb  ; the portion of the external surface, S , on which is imposed (or 

prescribed) the traction vector  1 2 3, ,tt tt  ; and the portion of the external 

surface, US , on which is imposed the displacement vector U . 

 

Strain-displacement relations 

According to Ref. [1], the strain-displacement relations are given using the 
most common strain measure in solid mechanics, i.e. the Green-Lagrange (G-L) 
strain tensor E . The expression of G-L strain tensor as function of the 
displacement gradients reads as follows: 

    1

2
T T

       E U U U U  (0.2) 

If the displacement gradients are small, i.e. 1U  , the G-L strain tensor 

can be reduced to the infinitesimal strain tensor  1

2
T     e U U . In 

components it reads 
1

,  , 1,2,3
2 i

i
ij

j

jUU
e i j

x x

 
      

, where  
ix





 is the 

derivative of the quantity    along the coordinate ix . The infinitesimal strain 

tensor can also be denoted using the engineering expressions as follows: 
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 (0.3) 

In this thesis work, the infinitesimal strain tensor, according to the 
engineering notation, is used. 

Constitutive material law 

The constitutive equations of the linear elasticity in the case of infinitesimal 
deformation are shown in this Section. Introducing the vector of the stress 
components, as reported in Reddy’s book [1], the generalized Hooke’s law for an 

orthotropic material in its material system coordinate  1 2 3, ,m m m mx x xX  has the 

following expression: 

 

11 12 1311 11

22 2322
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    
    

      
    
    
    
    

σ Cε  (0.4) 

where mσ  and mε  are the vector of the stress and strain components in 
material axes, respectively, and C is the stiffness tensor written according to the 
Voigt-Kelvin notation. The stress-strain relation, i.e. Eq. (0.4), can be inverted in 
a more convenient form highlighting the orthotropic material mechanical 

constants. It results in 1m m m ε C σ Sσ , where the compliance matrix is defined 
as follows: 
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 (0.5) 

where 1 2 3  , ,EE E  are Young’s moduli in 1 2 3,   and m m mx x x material directions, 

respectively; 12 13 23 d an,      are the Poisson’s ratios and 31312 2,  G , G G  are the 

shear moduli in 1-2, 1-3 and 2-3 planes, respectively. Furthermore, the relation 
between Poisson’s ratios and Young’s moduli is also valid, i.e.

 , 1,2,3ij ji

i j
i jE E

 
  . 

Generally, in multilayered composite structures, the material coordinate 

system mX  could not coincide with the structure coordinate system X . However, 
it is commonly considered that the transverse coordinate in flat structures like 

plates and beams 3x  coincides with the material laminate transverse coordinate 

3
mx . The orientation angle of a general kth layer ( )k , between the material 1

mx  and 

1x  axes (see Figure 2) is defined as positive in the counter-clockwise direction. 

Thus, the generalized Hooke’s law written in the structure reference system is: 

 σ Cε  (0.6) 

where 222 33 1311 3 12
T         σ  and 

222 33 1311 3 12
T         ε  are, respectively, the stress and strain 

components in the global structure reference system, and C is the transformed 
stiffness matrix in the global coordinate. 
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Figure 2: Laminate material coordinate system and structure reference axes. 

 

The relationship between C  and C is given by the rotation matrix, i.e. ( )kR  

function of the laminate rotation angle ( )k . It reads: 

 TC RCR  (0.7) 

with 
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 (0.8) 

In plate models, the constitutive material law for an arbitrarily oriented 

lamina, under the plane stress hypothesis in which 33 0  , is rewritten as follows: 
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 where  , 1,2,6ijC i j 


 are the in-plane reduced stiffness components, and 

=  , 4,5ij ijC C i j 
   are the transverse shear transformed stiffness. It is worth noting 

that the plane stress assumption does not affect the transverse shear stress. The 
reduced in-plane stiffness components read: 

 3

3

3

3

, 1,2,6i
ij ij

jC C
C C i j

C
  

  
  (0.10) 

A mixed form of the constitutive material relations for the generic oriented 
lamina, helpful to the formulation of the mixed models developed in this thesis, 
reads as: 
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 where 33
33

1S
C

  and 3 33 3  1,2,6i iR S C i   . 

 

Cauchy’s equations 

The local three-dimensional equilibrium equations or Cauchy’s equations in 
the absence of body forces that govern the structural behaviour, read as follows: 
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General plate notation 

In this Section, the solid general problem is specialized for the plate notation 
useful in this thesis work. 

It is considered a multilayered flat plate made of a finite number N of 
perfectly bonded layers, as shown in Figure 3. Assuming as V  the plate volume, h  

is the thickness, US S S  the total cylindrical edge surface, comprised of US , 

the portion on which displacement restraints are imposed (or prescribed), and S , 

the portion on which a traction vector (force per unit length),   ( 1,2,3)iF i F , 

is prescribed. Moreover, let  )(B) (Bipp and  (T) (T)  ( 1,2,3)ip i p  be the vectors 

of the prescribed tractions (force per unit surface) on the plate's bottom (B) and 

top (T) bounding surfaces along the coordinate axis ix , see Figure 3. The 

prescribed quantities are indicated with an overbar. If not otherwise specified, the 
Einsteinian summation convention over repeated indices is adopted, with Latin 
indices ranging from 1 to 3 and Greek indices ranging from 1 to 2.  

 

Figure 3: General plate notation: plate geometry, applied loads and coordinate 
system. 
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The thickness of each layer, as well as of the whole plate, is assumed to be 
constant in each direction. The points of the plate are referred to an orthogonal 

Cartesian coordinate system defined by the vector    ( 1,2,3)ix iX  , where the 

vector    ( 1,2)xx     is the set of in-plane coordinates on the reference 

surface. Normally, if not otherwise specified, the reference surface is chosen to be 
the middle plane of the plate, and 𝑥ଷ being the coordinate normal to the reference 

plane (see Figure 4), so that 3 ( )3 3( ) , ,2 2B T
h hx x x          .  Furthermore, Ω 

represents the set of points given by the intersection of the plate with the plane 

3 0x  and US     ( U     ) its contour line, with 

U US    and S    . Moreover,  ,t n are the tangential and normal 

axes with the point belonging to the contour line . 

 

Figure 4: Layer numbering and notation. 

If not otherwise stated, the superscript ( )(.) k is used to indicate quantities 

corresponding to the kth layer (k=1,…,N), whereas the subscript ( )(.) k  (k=1,…,N-1) 

stands for the quantity (.) valued at 3 3( )kx x , i.e. at the kth interface (k=1,…,N-1) 

between the kth and the (k+1)th layer. In addition, subscripts (B) and (T) indicate 
the bottom and top surfaces of a single layer/whole plate, respectively. 

Specifically, as it is reported in Figure 4,  (1)
3(B) 3(B)x x  and ( )

3(T) 3(T)
Nx x  denote the 

transverse coordinates of the bottom and top surfaces of the whole plate; thus, 
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3(T) 3(B)h x x   is the total plate thickness and 
( ) ( ) ( )

3( ) 3( 1) 3(T) 3(B)=  ( 1,2,..., )k k k
k kh x x x x k N    , the thickness of the kth layer. 

Finally, the material of each layer is assumed to be linear elastic orthotropic 
with a plane of elastic symmetry parallel to the reference surface. However, its 
principal orthotropy directions (material axes) are arbitrarily oriented with an 

angle ( )k according to the scheme provided in Figure 2. 

 



 

1 

 

Chapter 1 

Introduction 

Multilayered composite and sandwich structures have been widely used in 
engineering fields (aerospace, marine, automotive, military, civil and energy) due 
to their exceptional mechanical properties over traditional metallic structures. As 
a matter of fact, they are to be preferred thanks to their high specific flexural 
stiffness and specific strength [2]. Moreover, they exhibit good fatigue behaviour, 
and their tailoring capabilities allow the design of performant and optimized 
structures. On the other hand, such structures typically exhibit a transverse 
anisotropy and transverse shear deformability higher than their metallic 
counterpart. The abrupt change in the transverse direction of the mechanical 
material properties generates stress concentrations at the interfaces that can cause 
the failure of the structure, such as delamination and debonding. Furthermore, in 
sandwich structures, the transverse applied loads could cause irreversible 
compressions of the core material and, consequently, the failure of the structure. 

It is necessary to design these structures accurately to prevent failures and 
guarantee the highest level of safety during their operative life. It becomes 
important offering to the engineers accurate and efficient mathematical models to 
pursue those objectives during the design process. The structural theories 
formulated in recent decades represent a key role in this process. 

In this Chapter, an overview of the existing structural theories is presented on 
the analysis of multilayered composite and sandwich structures. Their basic 
hypothesis, advantages and limitations are highlighted. Furthermore, the most 
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relevant variational methods used in the elasticity theory are presented to obtain 
the governing equations and the consistent boundary conditions.  

1.1 State of the art on existing structural theories 

In the design process of multilayered composite and sandwich structures, the 
mathematical model used to describe these structures should be able to describe 
the behaviour of these structures under the applied loads in conjunction with the 
applied boundary conditions. By solving three-dimensional equilibrium equations 
that describe linear elasticity, the actual stress field of the structure under the 
applied loads can be reconstructed. 

In the literature framework, some studies on the exact elasticity solutions of 
multilayered composite and sandwich structures are available. An exact solution 
has been proposed in Pagano’s works [3,4] for the cylindrical bending of simply-
supported composite cross-ply laminates and sandwich beams and plates. 
Moreover, Pagano [5] investigated the static response of anisotropic general 
multilayered laminates under cylindrical bending assumptions, revealing the not 
negligible effect of transverse shear coupling in the displacement and stress 
responses.  

Pagano and Wang [6] extended the previous method, obtaining an exact three-
dimensional static solution for bending multilayered and sandwich simply-
supported plates under distributed and concentrated loads. Then, Pagano and 
Hatfield [6] implemented an exact static solution for the three-dimensional 
elasticity of multilayered, bi-directional composites with several layers. Starting 
from Pagano and Hatfield’s work, Zenkour [7] provided an alternative three-
dimensional exact solution for uniformly loaded cross-ply laminates and sandwich 
plates. Later, Srinivas and co-authors [8–10] developed and successfully applied 
an exact three-dimensional solutions for bending, stability and free vibrations of 
simply-supported thick laminated plates. 

A more general and comprehensive formulation of homogeneous and 
laminated orthotropic plates has been reported by Srinivas and Rao [11]. Among 
the exact solutions obtained for antisymmetric laminated plates, Noor and Burton 
[12] have implemented a mixed formulation for stress and free vibration problems 
of anisotropic multilayered plates. Later, Savoia and Reddy [13] obtained a 
solution for the three-dimensional static bending problem of rectangular 
antisymmetric angle-ply multilayered plates with simply-supported edges. It has 
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been revealed that Pagano’s three-dimensional solution is a particular case of 
Savoia and Reddy’s approach. Ye [15] recently investigated the free-vibrations of 
cross-ply laminated rectangular plates with clamped boundaries by implementing 
a recursive method. Finally, Brischetto [14,15] provided a general exact three-
dimensional elasticity solution for the static analysis of multilayered composite 
and sandwich plates/shells using orthogonal curvilinear coordinates under 
transverse normal pressure and simply-supported boundary conditions. 

The proposed literature overview shows that three-dimensional solutions can 
be applied only to a limited number of cases, i.e. simple geometry, applied loads 
and boundary conditions. In fact, most of them are related to beams or rectangular 
plates under sinusoidal or bi-sinusoidal transverse pressure and simply-supported 
boundary conditions. 

As stated by many researchers, these solutions are often used as benchmark 
tests for new theories, model validations or finite element formulations. As a 
matter of fact, such types of loads and boundary conditions are rarely found in 
industrial applications. Without using high-fidelity 3D finite element models for 
complex structures, since they are affected by prohibitive computational costs, 
some alternative models to achieve a reliable and accurate solution must be 
developed. 

Due to the difficulty of obtaining an exact solution for the three-dimensional 
elasticity problem, an approximate model should be considered. A two-dimension 
model, commonly named plate/shell, can be used if the structure has two 
dimensions greater than the third one. Otherwise, if only one dimension is greater 
with respect to the others, it is preferable to model the structure as a beam.  

In the open literature, the simplified models can be further classified based on 
the assumption of the primary variables. For example, in displacement-based 
theories, the primary or master field is represented by displacements; whereas the 
strain field is derived from the displacement one and by using the strain-stress 
constitutive relations, the stress field can be evaluated. In such theories, since the 
strain and stress fields are derived from the master-displacements field, they are 
typically called slave fields. A second class of theories are the mixed models, 
wherein the displacement, the strain and the stress fields can be assumed 
independently, i.e. there is more than one master field.  
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An appropriate variational statement [18] should be used in both 
classifications to obtain the beam/plate/shell governing equations and the 
consistent boundary conditions. 

A further classification noticeable in the literature is related to the 
assumptions on the displacement field. Such models are generally grouped into 
two macro-areas: Equivalent Single Layer (ESL) and Layer-wise (LW) theories. 
In the formers, the displacement field is assumed to be a smoothly continuous 
distribution across the entire laminate thickness. These models are sufficiently 
accurate in predicting global quantities such as maximum displacements, natural 
frequencies and buckling loads, but they are poor in the stress descriptions. In 
fact, according to the assumptions on the displacement field and by using the 
material constitutive relations, it is impossible to obtain a through-the-thickness 
transverse shear stress continuous distribution, i.e., the interlaminar stress 
continuity is not satisfied. A typical procedure to reconstruct a continuous 
distribution of the transverse shear stresses is the a-posteriori integration of the 
indefinite equilibrium Cauchy’s equations. However, since these theories use a 
limited number of variables, they are very computationally attractive. 

The LW theories assume, for each layer, an independent displacement field. 
The number of unknown variables assumed for each layer is then reduced by 
enforcing the continuity of the displacements at the layer interfaces. As a result, 
these models are more accurate than the ESL ones since they can predict a 
displacement distribution closer to those typically represented for a multilayered 
structure, i.e., changes of slopes in its distributions across the interface. However, 
unless it is considered a mixed model, the continuity of the transverse stresses is 
still not enforced, and the a-posteriori integration of the indefinite equilibrium 
equations should be used. Furthermore, a negative aspect of the LW models is the 
prohibitive computational cost when applied to analyse structures with several 
layers.  

In the last decades, a new group of structural theories faced among the 
previous ones. i.e. the ZigZag Theories (ZZT). These theories exhibit some 
advantageous characteristics of both ESL and LW theories. For example, they are 
based on kinematic assumptions different for each layer, which is typical of a LW 
theory, but the total number of variables is fixed and independent of the number 
of layers, which is typical of an ESL model.  
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The generally adopted procedure starts from a general ESL theory that can 
describe the laminate's global behaviour. Then, the global displacement field is 
enriched by a local contribution, i.e. the zigzag functions that introduce the 
changes in the slopes of the displacement distributions across the laminate 
interfaces due to the variation of the lamina material properties. The zigzag 
contribution in the displacement field is generally defined by enforcing the 
displacement and transverse stress continuity at the interfaces. This procedure can 
make them dependent on only a limited number of variables. 

In the next Section, some of the canonical functionals of linear elasticity are 
introduced to give an overview of the most important variational statements that 
can be used to obtain the governing beam/plate/shell governing equation and 
consistent boundary condition. 

 

1.2 Canonical functionals of the linear elasticity 

In this Section, according to the book of Washizu [16], some of the most 
important variational principles in elasticity are briefly enounced and assessed. 
The hypotheses and assumptions behind these principles are the keys to 
understanding the choices, advantages and limitations of our developed models. 
Moreover, these variational statements are practically used to derive the 
governing equations and the consistent boundary conditions of generally 
formulated models. Based on the assumed field number, they can be classified 
into single-field functionals (such as the displacement-based model) or mixed-
field functionals. Hereafter, the quantity indicated with a suffix represents the 
quantity’s master field from which it has been derived. For the sake of 
conciseness, the interested reader is referred to the book of Washizu [16] and the 
other provided references for a full detailed explanation of the proposed 
functionals. 

1.2.1 Hu-Washizu functional  

The Hu-Washizu (HW) principle is a mixed-field functional that allows, at the 
same time, three independent variations of displacements, strains and stresses. As 
stated in the book of Washizu [16], this functional, due to the assumption of the 
master fields, can be considered the most general canonical functional in the 
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elasticity. Consequently, the other variational principles could be derived by the 
Hu-Washizu functional by using the available field equations (or strong relations): 

 Strain-displacement relations or kinematic equations 

 Strain-stress relations or constitutive material equations  

 Internal equilibrium equations or Cauchy’s equations 

The Hu-Washizu principle, according to the notation of the three-dimensional 
elasticity,  reads: 

 

   

  0
U

U U

V

HW T T e T T

T T T

S S

dV

S Sdd


    

  

 σ ε ε ε σ σ ε σ U b

U t σ U U U σ

      

    



 



 
 (1.1) 

where ,  ,  U ε σ  are the independent displacement, strain and stress master 

fields, respectively. Thus, the total number of unknown variables represented by 

the three fields is fifteen. Moreover, Uε is the strain field derived from the 

displacement field, eσ  is the stress field obtained from the strain master field 
using the material constitutive relations. 

It is worth noting that some of the terms expressed in Eq. (1.1) are 
expressions of the compatibility relations that ensure the consistency of the field 

variables. More specifically, the term   U

V

T dVσ ε ε  guarantees in a weak 

form the compatibility between the strains coming from the displacements field 
(using the well-known strains-displacements relations) and the strains variables 

assumed as independent variables. Furthermore, the term  T e

V

dV  ε σ σ  

guarantees, in a weak form, the compatibility between the assumed stress 
variables and those obtained from the strain field using the strain-stress relations, 
i.e. the constitutive material relations.  

The main advantage of this functional is the independent assumption on the 
three fields and their weak connections that allow to formulate very accurate 
models as those in Refs. [17–22], although the degree of complexity behind the 
model formulation and field distributions is high.  
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1.2.1 Hellinger – Reissner (HR) and the Reissner’s Mixed 
Variational Theorem (RMVT) 

The Hellinger – Reissner (HR) principle is a mixed variational statement that 
allows at the same time two independent fields, i.e. the displacements and the 
stresses [16,23]. According to the previous notation, the two derived fields are Uε

, the strains obtained from the displacement field (according to the strain-

displacement relations) and ε , the strains obtained from the stress field using the 
constitutive material relations (strain-stress relations).  

In formula, the Hellinger – Reissner principle reads: 

  

 

  0
U

U

T

HR u

V

T

T

S

T

T

S

T dV

dS dS




  

   σ ε ε ε σ U b

U U Ut Uσ σ

    

     







 
 (1.2) 

It should be noted that the variational statement described by Eq. (1.2)  can be 
obtained from the HW functional, i.e. Eq. (1.1), by enforcing the strong relation 

ε Sσ .  Moreover, in Eq. (1.2)  the term  U

V

T dVσ ε ε  weakly enforces the 

compatibility between the two derived strain fields.  

The HR functional involves only three displacements and six stresses as 
unknown variables, making it computationally more attractive than the HW 
functional.  

It has been demonstrated by Reissner [24,25] that the HR functional can be 
simplified by assuming only the transverse shear and normal stresses as 
independent stress variables, which are directly used to enforce the interlaminar 
equilibrium between adjacent layers. The researchers named this theorem  
Reissner’s Mixed Variational Theorem (RMVT). According to the RMVT, Eq. 
(1.2) is simplified leading: 

 

   

 

33 33 33

33 33

0
U

T U
t t tRMVT

T T U

U

U U U
V

T T T

T
m m t t

S S

dV

dS dS


    




    

 


τ γ γ

ε σ γ τ U b

t σ σU U U U

    
  

   
     








 
 (1.3) 
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where tτ  and 33  are the assumed transverse shear and normal stresses, 

respectively; U
tγ  are the transverse shear strain using the strain-displacement 

relations, and t
γ  those from the assumed transverse shear stress field. Moreover, 

33
U and 33

  are the transverse normal strain from the displacement field and 

those from the assumed one, respectively. Finally, the vector of strains U
mε  and the 

stresses U
mσ  are obtained from the displacement field using the strain displacement 

and the constitutive material relations, respectively. It is worth noting that the 
number of total variables in the RMVT is reduced to six unknowns.  

Among the various application of the RMVT to structural models in the 
literature framework, Auricchio and Sacco have provided an interesting example 
[26]. From a mathematical point of view, the transverse shear and normal strain 
compatibilities in the functional of Eq. (1.3), correspond as single weak 
variational statements in which the assumed stress fields play the role of 
Lagrangian multipliers. Thus, enforcing this condition before obtaining the 
governing equations is possible. In formula, it reads:  

 

 

 

 

33 33 33

33 33

0

0

0
U

T
t t t

U

V

U

V

U U U

V

T T T
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R

S
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u T T T
m m t t

dV

dV

dV

dS dS






  





 

    





t σ

τ γ γ

ε σ γ τ U b

U U U σU

  



 
 

   



  

       








 

 (1.4) 

Solving the first two relations of Eq. (1.4), the assumed stress variables are 
connected to the displacement field variable, reducing the number of governing 
equations.  

It should be paid attention to when RMVT is used in conjunction with low-
order theories since some drawbacks arise in the transverse shear stress 
descriptions. It can be seen that the second weak relation of Eq. (1.4) corresponds 
to the definition of the complementary constitutive relation for the transverse 
shear energy. As highlighted by Auricchio and Sacco [26], some inconsistencies 
in transverse stress distributions arise when the previous condition is enforced 
with low-order models. In such cases, the transverse strain distributions from the 
displacement field are typically poorly described, whereas the description of the 
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transverse shear stress profile assumed a priori involves a large number of 
variables. This further aspect and the compatibility condition, i.e. the second 
expression of Eq. (1.4), try to make the assumed strain distribution similar to the 
derived one, resulting in a worse representation of the transverse shear stresses. 

 

1.2.2 Principle of Virtual Displacements (PVDs) 

 Among the variational principles in linear elasticity, the most used and 
simplest is the Principle of Virtual Displacements (PVDs). This functional 
involves only the displacement field as primary unknowns, whereas the strains 
and stresses are derived using the strain-displacement and the strain-stress 
relations, respectively. 

The PVDs can be obtained directly from the HR functional by enforcing 
kinematic relations or the strain-displacement equations in a strong manner. Its 
expression follows:  

 
  0

U

U U

V

T

S

PVD T T

T T

S

dV

dS dS


  

  

 ε σ U b

U U U Ut σ σ

   

      



 
 (1.5) 

where Uε  and Uσ  are the strain and stress vectors, respectively, functions of 
the variables of the displacement field. The major advantage of this functional is 
its limited number of unknowns making him appealing with respect to the other 
functionals. However, its drawback relies on the description of displacement field 
that often is not able to represent the strains and stresses correctly. 

1.3 The structural theories: a historical and conceptual overview 

In this Section, the widely used structural theories are briefly recalled. Their 
hypotheses and their validity range are addressed to understand better the 
advantages and limitations of analysing multilayered composite and sandwich 
structures. 

In the next paragraphs, the classification of the considered theories starts from 
the displacement-based assumptions. In addition, for some relevant models are 
also presented the corresponding mixed versions.  
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1.3.1 Equivalent Single Layer (ESL) models 

In the Equivalent Single Layers (ESL) theories, as briefly introduced before, 
the displacement field is assumed through a continuous function of the transverse 
coordinate. The distribution is unrelated to the investigated structure's material or 
lamination scheme. Generally, they can be expressed as follows: 
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 
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
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











 (1.6) 

where ( )
3( ) ( , , )if x i p q r  are appropriate through-the-thickness continuous 

functions of the transverse coordinate x3, typically ( )
3 3( )  ( , , )i if x x i p q r   ; P,Q 

and R are the order of expansion and ( ) ,; ) 3( ( 1, 2,, ) iu i p rt q  x  are the 

kinematic unknowns. Moreover,  1 3,x xx . Commonly some kinematic 

hypotheses are enforced to the assumed displacement field to limit or reduce the 
number of unknowns, making the ESL models attractive from a computational 
point of view. 

It can be seen from Eq. (1.6), that the strains are also continuous through-the-
thickness continuous with no changes in their slopes at the layer interfaces. 
However, differences in slopes and discontinuities across the layer interfaces are 
expected in the stress distributions due to the constitutive material relations. 

According to the three-dimensional elasticity, the in-plane stresses 11 22,   

and 12  could be discontinuous across the laminate, but the transverse shear 

stresses 13 , 23  and the transverse normal stress 33  have to be continuous at the 

interfaces in virtue of Cauchy’s equilibrium equations. In addition, the transverse 
shear and normal deformation are typically present in sandwich structures, 
making ESL models less useful for studying them.  
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Despite these effects, the ESL theories are widely used since they are the 
simplest, computationally attractive and generally provide good results if the 
hypotheses behind their formulation are respected.  

In the last decades, many authors have put their effort into formulating 
accurate and simple ESL theories. It follows a brief overview of the most famous 
models. For a more detailed and comprehensive overview of existing ESL 
models, the interested reader is referred to the works of Di Sciuva and Abrate [27] 
and Sayyad and Ghugal [28]. 

1.3.1.1 Classical Laminated Plate Theory 

The simplest ESL plate theory is the Classical Laminated Plate Theory (CLT). 
Originally developed as an extension of the Kirchhoff plate theory, the CLT is 
applied to the analysis of laminated composite structures. The displacement field 
reads: 

 
     
   

3 3

3 3 3

, ; ; ;

, ; ;

x t t x t

U x t u t

U x u x w x

x x

  




 (1.7) 

where 1 2
T U UU    


 are the in-plane displacements, 1 2

T u u   u  are the 

uniform part of the in-plane displacements corresponding to the in-plane 

displacements of the reference plane, when 3 0x  ; 3,1 3,2
T u u    w  are the 

derivatives of the transverse displacement 3u  with respect to the axis 1x  and 2x . 

Moreover,    1,2; ,3i iu tx   are the in-plane and transverse displacement 

components of a point referred to the reference plane of the plate along the 
coordinate system  1 2 3, ,x x x . The assumed displacement field is coherent with 

the kinematic assumptions of Kirchhoff’s plate theory: 

 the transverse normal deformability is neglected, i.e. 33 0  ; 

 line segments perpendicular to the reference surface remain straight 
after the deformation, i.e. in-plane displacements are a linear 

function of the transverse coordinate 3x ;  

 line segments normal to the reference surface remain perpendicular 
to that surface after deformation, i.e. 13 23 0   ; 
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Obviously, these hypotheses are strong simplifications of the real behaviour 
of a composite multilayered plate, as demonstrated by Pagano [4]. It has been 
shown in Ref. [4] that neglecting the transverse shear deformability in the model 
leads to errors in displacements and stress evaluations for span-to-thickness ratios 
below to 50 (for isotropic plates, this value could be lower till 20). Moreover, 
neglecting the transverse normal deformability limits the range of applicability of 
the CLT to sandwich structures. Clearly, the effect of transverse shear 
deformability can be recovered a-posteriori by integrating in-plane stresses in 
Cauchy’s equilibrium equations. 

The presence of  ; tw x  term makes the CLT less attractive in the finite 

element formulation since it is necessary to satisfy the C1-continuity of the shape 
functions that approximate the kinematic variables. Thus, higher-order shape 
functions and more integration points are required, increasing the computational 
cost. 

1.3.1.2 First-order Shear Deformation Theory 

The assumption in the CLT on the transverse shear strains is too restrictive for 
the analysis of multilayered composites and sandwich plates; thus, a more 
complex model should be considered. The First-order Shear Deformation Theory 
(FSDT) relaxes the previous assumption by allowing the transverse shear 
deformation of the plate. The FSDT is the general extension of the Reissner-
Mindlin plate theory originally developed for isotropic plates to multilayered 
structures. The displacement field of FSDT reads: 

 
     
   

3 3

3 3 3

, ; ; ;

, ; ;

x t t x t

U x t u t

U x u x θ x

x x

 




 (1.8) 

where  1 2
T     θ  are the bending rotations around the negative direction 

of x2 and the positive direction of x1, respectively. 

In the FSDT, the transverse shear deformability is included. In fact, starting 
from the displacement field of Eq. (1.8), the transverse shear strains are through-
the-thickness constant functions, whereas the corresponding transverse shear 
stresses are constant with discontinuities in their distributions across the layer 
interfaces. 
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These distributions clearly do not represent the three-dimensional elasticity 
solution since the continuity of the transverse shear stress at the layer interfaces 
and the null stress conditions at the top and bottom external surfaces are not 
satisfied. Furthermore, comparing the results of the FSDT with the exact three-
dimensional ones, the latters exhibit a pronounced shear flexibility. In fact, the 
elasticity solution provides a parabolic distribution of the transverse shear stresses 
for a single-layer structure, whereas the FSDT gives a constant and higher value 
across the plate thickness. Therefore, a solution provided by the researchers has 
been to apply to the material constitutive relations a Shear Correction Factor 
(SCF) for the shear stiffnesses. The purpose of this factor is to correct by 
matching the transverse shear strain energies caused by the different through-the-
thickness distributions. 

Various authors have formulated an SCF in the open literature that better 
captures the transverse shear behaviour. Some of them are worthy of mentioning, 
such as Reissner [29], Cowper [30], Whitney [31], Hutchinson [32], Raman [33] 
and Oñate [34]. In particular, the method developed by Madabhusi-Raman and 
Davalos [33] and later by Oñate [34] gives a general expression for the SCF (also 
valid for the multilayered sandwich plates) that includes the effect of lamination 
schemes (such as the number of layers, lamina orientations, mechanical properties 
and thickness). 

Generally, the FSDT using an appropriate SCF provides accurate results 
regarding maximum deflections, natural frequencies and buckling loads for plates 
with span-to-thickness ratios greater than 20. The in-plane displacement and stress 
distributions are also good if compared with the exact results; however, the 
through-the-thickness distributions of shear stresses are poorly described unless 
obtained by a-posteriori integration of Cauchy’s equations. Clearly, the 
discrepancies with respect to the three-dimensional behaviour increase for low 
values of the span-to-thickness ratio due to the effect of transverse anisotropy that 
becomes relevant in the structural predictions. 

However, an interesting aspect of the FSDT is that it requires only the C0-
continuity in the finite element formulations to approximate the kinematic 
variables, making it appealing for the low computational cost.  

As a matter of fact, the majority of the commercial finite element codes 
implement this formulation. However, the shear-locking phenomenon is one main 
drawbacks associated with C0-continuous shear deformable elements. Such 
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elements overly stiff the response prediction of modelled thin structures. As 
shown in Pagano [4], the transverse shear deformability in thin structures could be 
neglected, but this condition cannot be reached from a numerical point of view. It 
results in the finite element application that the shear stiffness is over-estimated 
with respect to the bending contribution.  

In the open literature, many approaches have been used to remedy this issue. 
Among them, reduced integration has been widely used [35–38] using a low-order 
Gauss integration to compute the transverse shear stiffness contribution. The 
reduced integration strategy has been demonstrated to be computationally valid, 
although extra zero energy modes may appear that require appropriate 
stabilization techniques to correct the provided solutions [39,40]. Other 
methodologies include the Discrete Kirchhoff Theory (DKT) [41,42], where the 
zero transverse shear strains are enforced in some discrete points in the element 
formulation. For shell element formulation, a common procedure is the Mixed 
Interpolation of the Tensorial Components (MITC) [43–46], where the element 
stiffness matrix assumes a different interpolation scheme for bending and shear 
effects. For further consideration of MITC elements, the interested reader is 
referred to the book of Bathe [45]. The Assumed Natural Strain (ASN) method 
[47] introduces a mixed-field formulation for an independent strain evaluation. 
Finally, the anisoparametric interpolation strategy, in combination with an 
element correction factor, has been proposed by Tessler and co-workers [48–52] 
to formulate variationally consistent locking-free finite elements.  

Implementing a mixed formulation could increase the predictivity capabilities 
of the FSDT model. As highlighted in the previous section, Reissner [24] has 
formulated a mixed formulation based on the Hellinger-Reissner functional for 
transverse shear deformability. In another example in the open literature, 
Auricchio and Sacco [53,26] have formulated different refined mixed models 
based on FSTD kinematics to improve the predictions of transverse shear stresses.   

1.3.1.3 Third-order Shear Deformation Theory 

As expected from the three-dimensional elasticity, the typical distribution of 
the transverse shear strains is parabolic for a single-layer structure. Thus, 
assumptions of through-the-thickness linear displacements are no longer valid. 
Consequently, a cubic expansion of the in-plane displacements should be 
considered to follow the correct three-dimensional behaviour. By neglecting the 
transverse normal deformability, the displacement field of a third-order model 
reads: 
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where 1 2 1 2,  T T   ω χ         are the new kinematic unknowns 

related to the parabolic and cubic part of the in-plane displacements. This 
kinematic field involves nine variables, resulting in a set of nine second-order 
partial differential equations that should be solved. The procedure adopted by 
Reddy [1,54,55] is to enforce the traction-free boundary condition on the 
laminate's top and bottom external surfaces, i.e. 

   13 3 23 3/ 02 / 2x h x h      . 

According to this assumption, the displacement field expressed by Eq. (1.9) is 
rewritten as follows: 
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The quantities defined in Eq. (1.10) can be recalled from the FSDT and the 
CLT. Hereafter, the displacement model identified by Eq. (1.10) is referred to as 
Third-order Shear Deformation Theory (TSDT). Although its parabolic 
distribution for the transverse shear strain, the transverse shear stress continuity at 
the layer interfaces is not satisfied in this model for multilayered structures. 
However, it is accurate enough in global quantities predictions and through-the-
thickness in-plane and stresses distributions. Moreover, the TSDT does not 
require any shear correction factor due to the more accurate distribution of the 
transverse shear stresses. 

Although the TSDT is more accurate than the FSDT in displacements, 
frequencies, buckling loads and through-the-thickness stresses, some 
inconsistencies arise when this model is applied to structures with clamped edges 
[56]. In such cases, due to the boundary conditions on the kinematic variables, 
both the bending rotations, i.e. θ , and both the first derivatives of the transverse 
displacements, i.e. w , need to be null. As a result, null transverse shear stress 
distributions and null shear forces are obtained at the clamped edges. This result is 
clearly inaccurate and limits this model's application range. Furthermore, the 
presence in the displacement field of the first derivative of the transverse 
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displacements requires C1-continuity to approximate the transverse displacement 
in finite element formulations. 

A final consideration on general Third-order Shear Deformation models has 
been given by Di Sciuva [57], where the author has demonstrated that a class of 
polynomial TDSTs are kinematically equivalent since they can produce the same 
numerical results for the displacements and global quantities, such as frequencies 
and buckling loads. 

1.3.1.4 Higher Order Shear Deformation Theories and non-polynomial 
theories 

Among the other ESL theories available and used in literature are the Higher-
order Shear Deformation Theories  (HSDTs) and the non-polynomial theories. 

Higher-order theories have been formulated in order to take into account the 
transverse shear and transverse normal deformability. Based on Eq. (1.6) many 
authors in literature have formulated their theories. In the open literature, it is 
common to find the nomenclature of {m,n}-order theories where m is the 
maximum order of expansion of the in-plane displacements and n is the maximum 
order of expansion of the transverse displacement.  

Recently, many authors have combined the typical displacement fields seen 
before with non-polynomial functions to account for the transverse shear 
deformability. The non-polynomial models can be distinguished based on the 
assumed functions. In the literature framework are worthy of being cited, the 
sinusoidal functions of Touratier [58], the hyperbolic functions of Soldatos [59], 
the exponential functions used by Karama et al. [60] and the functions of 
Sarangan and Singh [61]. 

The literature provided just wants to overview the existing ESL models, and 
the reader is referred to the Di Sciuva and Abrate review work [27]. 

1.3.2 Layer-Wise (LW) models 

This paragraph presents an overview of the existing Layer-Wise (LW) 
models, with particular attention to the displacement-based formulation.  

The Layer-Wise models (LW) have often been used to analyse multilayered 
composite and sandwich structures. For these structures from the three-
dimensional elasticity, the through-the-thickness distributions of the 
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displacements are typically non-linear zigzag continuous functions. This effect is 
related to the transverse shear and normal mechanical properties that generate a 
remarkable effect in the deformation under the applied loads in thick multilayered 
composite structures. However, as seen before, the ESL theories' kinematic cannot 
reproduce this zigzag effect in the displacement distributions. Moreover, less 
accurate displacement fields cannot describe transverse shear and normal stresses 
with the stress continuity satisfied at the layer interfaces. 

Due to their independent kinematic assumptions for each layer, the LW 
models could reproduce the different effects of different materials that form the 
multilayered structure. Generally, the same theory could be applied for each layer 
using independent variables. According to this assumption, the general 
displacement field for an arbitrary kth layer of an LW model reads: 

   (

1

( ) ( ) )
3 3( ) ( 1,2,3, ; ; )

iP

i
k p k p

i k
p

U f x u ix t tx x


   (1.11) 

where N is the total number of layers, iP  is the maximum order of expansion 

for the ith component of the displacement vector, ( )
3( )p

kf x  is the pth assumed 

through-the-thickness function valid for the kth layer  

The most simple LW theory assumes a linear through-the-thickness variation 
of the displacements in each layer. Once each layer's kinematics is chosen, the 
displacement continuity is enforced at each interface. Generally, the transverse 
shear and normal stresses might still be discontinuous; however, their continuity 
could be enforced in the LW formulations to increase further the model's 
accuracy. 

In the literature framework, Carrera [62] has formulated an LW model that 
can be applied to finite element formulations by involving a hierarchical scheme. 
The Carrera Unified Formulation (CUF) has been used by many authors [63–70] 
to investigate the structural behaviour of multilayered composite and sandwich 
beams/plates and shells. In the framework of CUF, Demasi [71–73] has further 
generalized the CUF formulating the Generalized Unified Formulation (GUF) in 
which each displacement variable has a different order of expansion by enabling 
more importance to some variables than others. For a more detailed overview of 
the CUF and other developed LW models, the interested reader is referred to the 
book of Petrolo et al. [74]. Furthermore, other interesting and more general works 
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related to the LW theories are assessed in Reddy’s book [1], Abrate and Di 
Sciuva’s book chapter [75] and Li’s review article [76]. 

Generally, these models are often more accurate than the ESL ones due to the 
layer-wise approach that is able to accurately describe a more complex 
distribution of the displacement in laminated structures. However, the main 
obstacle of these models is related to the strong dependency of the total number of 
kinematic variables on the number of layers. When the number of layers is high, 
the computational cost of these models becomes prohibitive, and the advantages 
of other solutions are lost. 

1.3.3 Zigzag models 

Historically, the first attempt to develop a simple but accurate model without 
involving the layerwise theories in which the effect of the lamination scheme is 
assumed a-priori in the transverse shear stresses has done by Ambartsumyan [77] 
and later by Whitney [78]. Both authors started assuming an a-priori appropriate 
function for transverse shear stress distributions inspired by the three-dimensional 
elasticity solution. The unknown coefficients are obtained by enforcing the stress 
continuity at the layer interfaces and the continuity of the displacements.  

Even if the proposed models [77,78] have been revealed to be accurate 
enough to the global quantity predictions, the assumed transverse shear stress 
distributions have been demonstrated inaccurately predict the three-dimensional 
solution. Moreover, the dependency of the displacement field from these 
inaccurate distributions is clearly undesirable for describing the laminate 
behaviour correctly. 

Based on the previous idea of having only a few functions that can represent 
the layerwise displacement description and maintain at the same time the model 
simplicity, a new group of structural theories has been proposed in recent years. 
The ZigZag Theories (ZZTs) take some of the best properties of the ESL and LW 
models. Generally, these theories are formulated using a limited number of 
unknown kinematic variables, such as the ESL theories, but the displacement field 
is enriched with a finer layerwise description given by the “zigzag” functions. 

The assumed displacement field of a zigzag model can be seen as a 
superposition of two main contributions: the first is a coarse representation of the 
global laminate behaviour, and the second is a local (layer-scale) refinement 
represented by the zigzag functions. The zigzag functions are only dependent on 
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the transverse thickness coordinate, whereas the dependency of the other 
directions has given by the zigzag amplitudes or zigzag rotations. A typical 
representation of the displacement field of a ZZT in which the transverse 
displacement, for the sake of simplicity, is assumed to be constant, is represented 
as follows: 
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where    ( ) ( )
3 3, ; ( ) ; 1,...,k k

L x t x t k Nu x f ψ x  is the definition of the local 

displacement refinement. Moreover, ( )
3( )k xf  are the zigzag functions and  ; tψ x  

the zigzag amplitudes or zigzag rotations. 

The selection of the zigzag functions is important to represent the 
multilayered structure's response better. Therefore, the developed model could be 
more or less accurate depending on the hypothesis or the assumptions behind the 
zigzag functions formulation.  

In the following paragraphs, some of the most important zigzag theories 
available in the current literature are recalled.  

1.3.3.1 Di Sciuva’s Zigzag Theory (ZZT) 

Chronologically, Di Sciuva proposed the first zigzag model able to investigate 
the behaviour of multilayered composite and sandwich structures. In the middle of 
the ’80s, he proposed a new displacement model [79–82] in which a first-order 
kinematic has been superposed with a through-the-thickness piecewise continuous 
function, i.e. the zigzag functions. By assuming as the reference plane the bottom 
external surface of the laminate and neglecting the transverse normal 
deformability, the assumed kinematic field of Di Sciuva’s ZZT reads: 
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 where kH  is the Heaviside unit function and       ; ; ;k kt t t ψ x a θ x w x

. The constant matrix ka is obtained by enforcing two conditions: the former is 

related to the transverse shear stress continuity that is ensured at each layer 
interface across the whole laminate thickness; the latter condition assumes that the 
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zigzag functions are null across the entire bottom layer. These two sets of 
conditions can fully define the zigzag functions.  

A typical example of one of Di Sciuva’s zigzag functions 

 
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x x xx a H





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

 

   for three-layered structures is represented in 

Figure 5. 

 

Figure 5: Local through-the-thickness displacement contributions using Di Sciuva’s 
zigzag function for a general three-layered beam structure. 

 

Due to the kinematic field and zigzag function formulations, the in-plane 
displacements are able to reproduce the typical “zigzag” distribution of 
multilayered structures by involving only five unknown variables (the same 
number of the FSDT). Moreover, the through-the-thickness transverse shear 
stresses continuity is guaranteed, although the transverse shear stress functions are 
constant across the whole thickness, unable to satisfy the null values at the bottom 
and top surfaces. It has been demonstrated in Refs. [83,84] that the transverse 
shear stresses obtained from integrating local equilibrium equations are more 
accurate than the other ESL theories. 

The kinematic field of Eq. (1.13) has been further extended by Cho and 
Parmerter [85,86] and Di Sciuva [87], considering a through-the-thickness cubic 
variation of the in-plane displacements. In Ref. [88], the ZZT has been extended 
and applied to shell structures. Furthermore, Di Sciuva [89] has generalized his 
ZZT, including the in-plane nonlinear elastodynamic behaviour of multilayered 
anisotropic plates with the possibility of considering interlayer slips. Finally, it 
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has been remarked in Ref. [89] that the previous models could be considered a 
particular case of the last general one.  

Based on Di Sciuva’s zigzag model, Icardi [90,91] has further increased the 
complexity of the previous kinematics to investigate the three-dimensional 
behaviour of thick structures, including the transverse normal deformability. By 
adding higher-order terms in global and local contributions for the in-plane and 
transverse displacements and enforcing the transverse and normal stress 
continuities, the formulated model has demonstrated to reproduce the behaviour 
of multilayered composite thick structures accurately.  

It is important to remark that the zigzag functions chosen in these models can 
satisfy the continuity of the transverse shear stresses and, at the same time, the 
transverse normal stress continuity. As a matter of fact, the coefficients that define 
the zigzag functions are strongly related to the transverse material properties, 
which is an important effect in such structures.  

One drawback of Di Sciuva’s ZZ model is easily noted by looking at the in-
plane displacements in Eq. (1.13). It appears the first derivatives of the transverse 
displacement with respect to the in-plane axes; thus, in finite element formulation, 
a C1-continuity, such as CLT-based elements, is required for the shape functions 
that interpolate the transverse displacement. Moreover, this model suffers from 
the same inconsistencies as the TSDT, i.e. the inability of the model to correctly 
predict the transverse shear stress distributions and the shear force resultants at the 
clamped edges. 

1.3.3.2 Murakami Zigzag Theory 

Similarly, Murakami [92] has proposed a new laminated plate theory that 
includes linear zigzag functions as local contributions of the in-plane kinematics.  

In Murakami’s model, the zigzag functions have a linear piecewise 
distribution with changes in the sign of their slopes across the layer interfaces. To 
simplify the zigzag slopes definitions, they are not dependent on the material 
properties. In fact, their values alternatively vary from -1 to +1. 

According to Ref. [92], the displacement field reads: 
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where the zigzag function is represented by the term  ( ) ( )
3)1 (

kk k
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k

x

h
x   is the local layer transverse coordinate. Figure 6 reports a 

typical Murakami’s zigzag function. 

 

Figure 6: Through-the-thickness representation of Murakami’s zigzag 
function, ( )

3( )k
MZZ x , for a three-layered beam structure. 

A further enhancement is developed later by Toledano and Murakami [93] 
involving the RMVT. This model has demonstrated to accurately describe the 
kinematics of periodic laminated structures with respect to the three-dimensional 
elasticity solution. However, some inconsistencies and inaccuracies arise when 
these models are applied to structures with non-periodical laminations, as 
Gherlone shows in Ref. [94]. As a matter of fact, Di Sciuva’s zigzag functions are 
physically consistent since they are formulated by enforcing the transverse shear 
stress continuity at the layer interface and the conditions on the in-plane 
displacements in the first layer. Instead, Murakami’s zigzag functions are periodic 
functions, insensible to the changes in the transverse material properties, which is 
an important effect in the transverse shear stress continuity when the kinematic 
model is applied to more general lamination schemes.   

1.3.3.3 Other zigzag theories 

In the current literature, other zigzag models have been formulated to 
investigate the structural behaviour of multilayered composites and sandwich 
structures. In Averill’s zigzag model [95] to the first order kinematics, it has been 
superposed a zigzag contribution in the in-plane displacements. The zigzag 
functions are obtained by a partial through-the-thickness continuity of the 
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transverse shear stresses at the layer interfaces. In order to enforce the total 
continuity of the transverse shear stresses in a limiting sense, a penalty term has 
been added in the governing functional. With respect to Di Sciuva’s Zigzag 
model, Averill’s model [96,97] requires only the C0-continuity of the shape 
functions that interpolate the quantities since the first derivatives of the transverse 
displacement are not involved in the in-plane displacements. Moreover, the 
penalty term added in the functional could be seen as an alternative condition that 
respects Di Sciuva’s ZZT enforcement of assuming the first layer as the reference 
for the transverse shear stiffness. However, the same physical inconsistencies 
arise in clamped boundary conditions, i.e. all the unknown variables vanish, and 
both shear stress and strains are null, whereas the shear force is expected not to be 
null. 

In the CUF/GUF models framework, Murakami’s zigzag functions have been 
added [98–101] to improve the prediction capabilities without increasing the 
complexity. However, the improvements are shown to be less accurate in 
multilayered structures in which the lamination schemes do not satisfy the 
periodicity prescribed by Murakami. 

Among the model derived by Di Sciuva’s original kinematics, in Icardi and 
Sola’s model [98,99], the effect of zigzag representation is adapted to the solution 
thanks to a reformulation in which appropriate variables substitute the quantities 
derived. Using symbolic calculus and an energy-based method, the author 
achieves high-order quality solutions for analysing thick multilayered composite 
plates. The proposed model named adaptive-zigzag (AZZ) [100] has been further 
extended by Icardi and Urraci [20,101,21,22] using the mixed formulations, i.e. 
Hu-Washizu and Hellinger-Reissner functionals. Even if these last models have 
been demonstrated to be very accurate for some applications, due to their 
complexity and computational cost are not considered in this thesis. The interested 
reader is addressed to the theses of Sola [100] and Urraci [22] for a more 
comprehensive dissertation on these models. 

1.3.3.3 The Refined Zigzag Theory (RZT) 

In the early years of the 21st century, Tessler and co-workers [102,103] 
formulated a new zigzag model that takes into account the Di Sciuva and Averill 
inconsistencies and has been able to study the behaviour of multilayered 
composite and sandwich beams/plates. The new Refined Zigzag Theory (RZT) 
starts from the assumption of first-order kinematics for the global contribution of 
the displacement field. The local contribution for the in-plane displacements is 
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given by appropriate piecewise through-the-thickness continuous linear functions 
with the constraint of being null at the top and bottom external surfaces. 
According to the formulation of RZT [104], the zigzag slopes are obtained by 
partially fulfilling the transverse shear stress continuity at the layer interfaces. 
According to these hypotheses, the displacement field reads: 
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transverse shear moduli computed according to Ref. [104]. 

A typical through-the-thickness representation of one of the refined zigzag 
functions is shown in Figure 7. More specifically, it is reported 
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Figure 7: Through-the-thickness representation of the refined zigzag function, 
( )

3( )k
RZT x , for a three-layered beam structure. 

The potentiality of RZT relies on its zigzag functions, as demonstrated by 
Tessler et al. [105]. The authors have applied the RZT kinematics in analysing a 
homogenous plate without using any shear correction factor. Using an appropriate 
through-the-thickness small parabolic variation of the transverse shear moduli, the 
RZT has reproduced the parabolic shear strain and stress distributions consistent 
with the three-dimensional elasticity. Similarly, Iurlaro et al. [106] has applied the 
RZT to the functionally graded structures demonstrating great accuracy in 
displacement predictions and through-the-thickness stress distributions, buckling 
loads and natural frequencies of plates under different boundary conditions. 

As stated before, for Murakami’s zigzag model, Gherlone [94] has deeply 
investigated the role of the zigzag functions in the kinematics of RZT. It has been 
pointed out that the zigzag functions formulated according to the RZT formulation 
could significantly improve the displacement and stress predictions since they 
consider the variation of the shear laminate properties. On the contrary, the 
Murakami model does not include this effect in its zigzag functions.  Moreover, in 
Ref. [94], the effect of external weak layers (EWL) has also been studied in order 
to improve the zigzag performances and the predictability of the RZT. 

Since the RZT formulation requires only C0-continuity in the governing 
functional, it is possible to formulate simple but accurate finite elements. The 
interested reader is referred to Gherlone and co-workers [107,108] and Oñate 
[34,109] for beam elements, to Ejio et al. [110] and Versino et al. [111,112] for 
plate/shell elements. 

The RZT has also been used in conjunction with the peridynamic differential 
operator to solve the equilibrium equation by the effect of possible discontinuities 
in the structure domain. As a result, Dorduncu [113] has obtained an accurate 
model for highly heterogeneous beam structures. Based on the results for beam 
structures reported in Ref. [114], the procedure has been extended to sandwich 
structures with functionally graded cores, revealing a good accuracy in the static 
predicting response. 

One of the main advantages of the RZT is the accuracy without introducing a 
shear correction factor. Like the FSDT, the RZT presents a through-the-thickness 
piecewise transverse shear stress distribution. It is evident that by integrating the 
local equilibrium equations, continuous distributions of shear stresses could be 
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obtained, but those computed by the RZT are closer than the others with respect to 
the three-dimensional solution. 

In the framework of the RZT-based model, the RMVT has also been applied 
to derive the governing equations of RZT beams and plates.  In Tessler's first 
work [115], the mixed-RZT (RZT(m)) has been formulated for beam multilayered 
structures. According to Ref. [115], the RZT(m) assumes a-priori a trough-the-
thickness distribution of the transverse shear stresses. The assumed functions 
derive directly by integrating the local Chauchy’s equilibrium equations using the 
in-plane RZT stresses under the hypothesis of cylindrical bending. Implicitly valid 
for beam structures, this condition is necessary for plates, as pointed out in Iurlaro 
et al. [116]; otherwise, the mixed model has been demonstrated to be less 
accurate. In fact, the main issue relies on the governing functional, specifically in 
the compatibility condition between the transverse shear strains from the 
displacement field and those obtained from the assumed stresses. This condition 
tries to enforce the congruence between a through-the-thickness piecewise 
continuous parabolic function and a piece-wise, not continuous one, which is 
impossible. If more stress variables in the transverse stress functions are 
considered, more inaccuracies arise due to the mathematical over-fitting problem. 
Thus, the cylindrical bending condition has been chosen as the best compromise 
to achieve a good transverse shear stress representation with a limited number of 
terms in the assumed functions. One of the main advantage of the RZT(m) is that 
the governing equations are exactly the same of the RZT via PVDs. Moreover, the 
same formulated finite elements could be used to investigate the structural 
responses of beams/plates/shells.  

Using the RZT(m), Gherlone [117] has investigated the role of the adhesive 
layer in the static response of sandwich beams, respectively. Moreover, Gherlone 
[118] has formulated a class of efficient tree-node and four-node plate finite 
elements for the elastodynamic analysis of multilayered composite and sandwich 
structures. In Ref. [127], the RZT flat elements have been enhanced with two 
more degrees of freedom to study shell structures not included in the displacement 
formulation, i.e., the drilling rotation and drilling zigzag rotation. Similarly, Kefal 
et al. [119] have implemented a beam element based on the RZT(m) in conjunction 
with the iso-geometric analysis. 

Based on the Hellinger-Reissner functional, Kutlu and co-workers [120,121] 
have presented a novel mixed-RZT analysing multilayered beams and plates. 
Despite the higher number of variables used in Kutlu’s models [120,121] than the 
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RZT(m), the high accuracy in stress predictions has been shown even for laminates 
with several layers and loading conditions.  

Groh et al. [122] have applied the RZT to investigate the effect of 
delamination in laminate composite by introducing a fictitious layer with quasi-
null mechanical properties. Later, Groh and Tessler [123] successfully applied the 
RZT(m) to analyse multilayered composite and sandwich beams with delamination 
in the lamination stacking sequence.  

In sandwich structures, the effect of transverse normal deformability should 
not be neglected. The effect of transverse normal deformability has not been 
considered in the previously proposed formulations, focusing more on a better 
representation of the transverse shear deformability. Barut et al. [124] presented a 
further enhancement of the RZT in which a quadratic through-the-thickness 
variation has represented the in-plane and transverse kinematics, while the effect 
of transverse normal stress has been assumed as a smeared cubic variation in the 
thickness coordinate. The kinematic variables have been linked to the stress 
unknowns in the transverse normal distribution using the least-square statement. 
Then according to the PVDs, the governing equations have been obtained. It 
results in a simple but accurate model that is able to include in the RZT the 
transverse normal deformability. The same authors later made a further 
comparison using triangular finite elements based on the previous higher-order 
RZT model [125], revealing its accuracy in displacements and stress predictions. 
Dorduncu et al. [126] have used the {2,2}-RZT in the dynamic analysis of free 
and forced vibrations of laminate plates. 

By using a higher-order kinematics applied to the RZT, Groh and Weaver 
[127–129] have formulated a mixed model based on the Hellinger-Reissner 
functional. The assumed transverse shear stress functions are assumed directly 
from integrating local equilibrium equations without involving the cylindrical 
bending assumption. In Groh and Weaver’s model, the interesting aspect is the 
derivation of the transverse normal stress field directly by the assumed transverse 
shear stress by integrating Cauchy’s transverse equilibrium equation, but in the 
displacement field, the transverse displacement component is still through-the-
thickness constant. 

Recently, Iurlaro and co-workers [130] have proposed a mixed cubic model 
based on the RZT incorporating transverse normal deformability. The zigzag 
contribution is superposed to third-order in-plane kinematics, while the transverse 
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displacement is a smeared parabolic function that interpolates top, bottom and 
average transverse displacement values. The transverse normal deformability 
assumes a-priori as a cubic function that satisfies the top and bottom stress 
tractions, and the transverse shear stress distributions are a-priori functions 
obtained by integrating Cauchy’s equations under the cylindrical bending 
assumptions. Using the RMVT, the variables of the new stress fields are related to 
the primary kinematic variables and the governing equations and consistent 
boundary conditions are obtained. This model, named RZT(m)

{3,2}, has 
demonstrated to accurately describe the static behaviour of thick multilayered 
composite and sandwich structures [131,132]. Moreover, its formulation requires 
only C0-continuity, and the limited number of kinematic variables makes it 
computationally less expensive. For a more detailed discussion on the RZT{3,2}

(m) 
outcomes, the reader is referred to Iurlaro’s thesis [132] 

Despite these positive aspects of the RZT model, some negative aspects are 
encountered. The first one has been highlighted by Krejia and Sabik [133], i.e. the 
inability of the RZT to investigate a class of laminates characterized by the same 
absolute value of the lamination angle for all the layers. These laminates, often 
called angle-ply, are quite used in the aerospace industry. The authors highlighted 
that the RZT or RZT(m), as it has been formulated, cannot investigate the 
behaviour of angle-ply multilayered plates since both zigzag functions are 
through-the-thickness null.  

As Tessler et al. [143] showed in quasi-isotropic and angle-ply laminates, the 
weighted-average transverse shear stiffness coefficients are the same as the 
transformed transverse shear stiffness coefficients. More specifically, 

1 44 2 55
( ) ( ) 1,..., ),  (k kG C G C k N    ; thus, also the zigzag functions are required to 

vanish. 

Obviously, this unlikely and undesirable effect is obtained for homogeneous 
monolayer plates, but in this case, it can be easily managed to adopt the strategy 
suggested by Tessler et al. [134] by using an appropriate variation of transverse 

shear properties. Other cases are multilayered symmetric  / /    and 

anti-symmetric  /   angle-ply laminated plates. Kreja and Sabik [144] 

found that this entails the singularity of the stiffness matrix, regardless of the 
solution method adopted (Navier-type solutions, approximate Ritz and Finite 
element method). 
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Moreover, it is clear from the three-dimensional solutions, see Ref. [13], that 
the zigzag effect is still present for these laminates. In order to overcome this 
issue, Krejia and Sabik [133] have slightly modified the lamination angle to use 
the RZT formulation and provide a solution. However, if this aspect could provide 
a solution for global values like displacements and frequencies, it cannot correctly 
describe the trough-the-thickness distributions of shear stress. Moreover, the 
assumption of cylindrical bending, as it has been used to formulate the RZT-
mixed model to avoid the inconsistencies of transverse shear stress distributions, 
is no longer valid for angle-ply laminates. In fact, Pagano's work [5] has shown 
the strong influence of transverse shear coupling in anisotropic multilayered 
structures, such as symmetric and anti-symmetric laminates. 

1.4 The novelty of this work 

In this context, this thesis aims to provide an accurate and complete 
mathematical zigzag model that can overcome the issues encountered in the 
previously cited models. The work has been conducted according to the following 
steps: model formulations, numerical assessments and experimental 
investigations. More specifically, the main objectives of this research work are: 

a. to extend the Refined Zigzag Theory to the analysis of more general 
structures, including angle-ply and general lamination schemes that in 
previous formulations are not considered due to the incapacity of 
computing the zigzag functions. For this problem, Kreja et al. [133] 
provided a partial solution, numerically valid; however, it is intended in 
this dissertation to enhance and provide a more complete and variationally 
consistent approach to this problem; 

b. to include the transverse normal deformability, generally included only in 
a limited number of zigzag models and with expensive computational 
costs.  Moreover, to increase the through-the-thickness predictions of the 
transverse shear stresses in multilayered structures with a general 
lamination scheme via a mixed model that overcomes the limitations 
related to the cylindrical bending assumptions; 

c. to formulate accurate and simple finite elements for the static and 
dynamic analysis of sandwich beam structures, including the new 
variational formulation for the transverse normal and transverse shear 
stress distributions; 
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d. to validate the previous models experimentally and provide new results 
for static and dynamic analysis of sandwich beams which are barely 
reported in the current literature. 
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Chapter 2 

The enhanced Refined Zigzag 
Theory 

As highlighted in the previous chapter, the Refined Zigzag Theory (RZT), 
formulated both by using the PVDs [135] and the RMVT [131], has been 
demonstrated to be unable to investigate general laminate structures such as 
multilayered angle-ply laminated structures. It is worth noting that the RZT and 
RZT(m) have been used by Kreja and Sabik [133] to investigate the bending of 
simply-supported multilayered plates, with particular attention on the analysis of 
angle-ply antisymmetric multilayered plates. The approach proposed in Ref. [133] 
is to perturb the orientations slightly, thus allowing the classical RZT to model 
angle-ply laminates. Notwithstanding that the method provided by the author is 
numerically admissible, this thesis intends to provide a more coherent and 
variationally consistent structural model according to the three-dimensional 
elasticity solution for these general lamination schemes. 

In this Chapter, a new enhanced model based on the Refined Zigzag 
kinematics is formulated to analyse composite multilayered composites and 
sandwich plates with more general lamination schemes. In the next Sections, the 
theoretical background to understand the motivation of this new formulation is 
presented. The new displacement field is presented in detail, and the enhanced 
zigzag functions are formulated according to the RZT procedure. Moreover, the 
governing equations and the consistent boundary conditions of the newly 
developed model, the enhanced Refined Zigzag Theory (en-RZT), are derived 
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using the dynamic version of the Principle of Virtual Displacements, i.e. the 
D’Alembert equations.  

This new model can consider the effect of transverse shear coupling by the 
new set of enhanced zigzag functions in the zigzag kinematics. 

Some of this Chapter's contents have been subject to publication in 
International Journals or presented at International Conferences. More 
specifically, the formulation of the enhanced Refined Zigzag Theory (en-RZT) 
and the numerical assessment for the linear static behaviour has been done in Ref. 
[136]. Furthermore, the extension of the enhanced-RZT to the free-vibration study 
of multilayered composite has been presented to the 19th International Conference 
of Numerical Analysis and Applied Mathematics (ICNAAM 2021), and the 
stability analysis using the Ritz-Method has been reported in Ref. [137]. 

2.1 Theoretical background 

In the literature framework, the effect of transverse shear coupling in 
multilayered angle-ply structures has been studied by Pagano [5] by providing an 
exact three-dimensional solution for the static cylindrical bending of these 
laminates. It has been shown in such cases that the effect of the transverse load is 
able to influence the structural response also in the other in-plane transverse 
direction, not only in the longitudinal one.  

 This coupling effect has been studied since the late 50s by Ambartsumyan 
[77] in the static analysis of anisotropic multilayered plates. In Ambartsumyan’s 
model, a refinement of the Classical Plate Theory with the inclusion of the 
transverse shear deformability, the effect of different material anisotropy has been 
considered. By assuming a-priori, a transverse shear stress distribution for each 

component, i.e. 13 23,    , the corresponding transverse shear strains, 13 23,     are 

coupled due to the material anisotropy effect. The in-plane displacements are then 
obtained by integrating the transverse shear strains in which the coupling effect is 
present. However, as highlighted in Chapter 1, Ambartsumyan’s model suffers 
inaccuracies due to the a-priori parabolic through-the-thickness transverse shear 
stress functions. 

Later, in Di Sciuva’s Zigzag Theory (ZZT), the effect of transverse shear 
coupling in anisotropic multilayered structures was observed differently. As 
reported in Ref. [81] and in Chapter 1, the zigzag contribution in the displacement 
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field of Di Sciuva’s ZZT  is characterized by the satisfaction of transverse shear 
stress continuities at the layer interfaces. In general, for a multilayered anisotropic 
laminate with arbitrarily oriented layers, the displacement field can be expressed 
as follows: 

 

              
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



 (2.1) 

where , , ,k k k kb c da  are constant depending only on the mechanical properties 

of the various layer. It is worth noting in Eq. (2.1)  the explicit dependence of the 
in-plane displacements by the transverse shear strains. Moreover, the effect of 
transverse shear stress coupling in enforcing the transverse shear stress continuity 

is clearly evident from the ,k kc d  coefficients. The superiority prediction 

regarding through-the-thickness displacements and stresses, fundamental 
frequencies and buckling loads of the ZZT, especially for the multilayered 
anisotropic multilayered plates, has been demonstrated by works of the same 
author [80,84,87,138]. 

Similarly, Cho and Parmerter [85,86] have reached the same conclusions as 
Di Sciuva’s model in the transverse shear coupling effect described in the in-plane 
displacements due to the transverse shear anisotropy. 

Moreover, Shu and Soldatos [139]  have investigated the cylindrical bending 
of angle-ply laminates with different boundary conditions. Starting from a similar 
kinematics of a ZZT and under the cylindrical bending hypotheses, the 
displacement field, as reported in Ref. [139], reads: 

 

       
     
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U x
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x x

x w x





  
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

 (2.2) 

where the functions 1 3( )x  and 32( )x  are derived by the three-dimensional 

local equilibrium equations. Notwithstanding the good results provided in Ref. 
[139], the solution of Shu and Soldatos can be obtained only under the hypothesis 
of cylindrical bending of the structure, which is not applicable to more general 
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cases. A further generalization to the plates structures has been made by Messina 
and Soldatos [140], where the effect of transverse shear coupling has been 
guaranteed by two conditions: the inclusion of two more global shape functions 
which are determined a-posteriori satisfying the transverse shear stress continuity, 
and the coupling of the in-plane displacements using two related unknown 
variables. The proposed model in Ref. [142] involves the same number of 
variables and continuity conditions of Di Sciuva’s ZZT to define the global shape 
functions. The work of Kim and Cho represents another example in the literature 
framework regarding the transverse shear coupling [141] in which the first-order 
kinematic has been enhanced with third-order zigzag functions, similar to the 
higher-order zigzag model of Ref. [89]. The accuracy of the first-order model has 
been increased in a least square sense with the three-dimensional theory. 

In Loredo’s model [142], a new set of through-the-thickness functions, named 
warping shear functions, has been formulated to predict both the transverse shear 
deformability and the transverse shear coupling typical of anisotropic plates. 
These functions are formulated using an energetic variational approach without 
any a-priori assumption on their shapes. However, they provided a system of 
partial differential equations that is able to compute the warping faction only for 
very few cases. Based on these considerations, Loredo and Castel [145] have 
reformulated the previous model to provide an accurate solution for more general 
lamination cases. Loredo and co-workers have dedicated many efforts to the 
warping functions definitions, relative assessments and comparisons, attested by 
the published works [143–145]. It is highlighted that the model's accuracy is 
inherent to the warping function definitions, not only in the model's kinematics. 

It is, therefore, evident how the role of appropriate through-the-thickness 
shape or warping functions plays in the correct evaluation of the transverse shear 
coupling in the multilayered laminate response when anisotropic materials are 
considered in the lamination. Moreover, Di Sciuva’s Zigzag model has been 
considered an inspiration since it can provide the necessary information regarding 
how to enhance the zigzag contribution of the Refined Zigzag Theory to consider 
the transverse shear coupling. 

Based on the generalization of the original Di Sciuva’s ZZT in conjunction 
with the formulation of the zigzag functions of RZT, a new set of warping shear 
functions for the RZT kinematics is defined in the following.  
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 2.2 Geometrical preliminaries, displacement field, strains 
and stresses 

2.2.1 Plate notation 

In this paragraph, some basic notations related to the zigzag plate model are 
recalled. It is considered a multilayered flat plate of  N perfectly bonded 
orthotropic layers. The coordinate system is taken as reference where the 

thickness coordinate 3x  ranges from / 2h  to / 2h . In Figure 8,   is the 

middle reference surface and  is its perimeter. Moreover, in Figure 8 the 
kinematic variables and their positive verse are also reported according to the 
Cartesian coordinate system. Finally, the reader is referred to the preliminary 
section for a more detailed overview of the other quantities (geometry, loads and 
layer notations). 

 
Figure 8: Plate coordinate system and kinematic variable representation. 

 

2.2.2 Kinematic assumptions of the enhanced Refined Zigzag 
Theory 

The enhanced Refined Zigzag Theory (en-RZT), following the standard RZT 
kinematics [135], is based on the superposition of a Global (G) first-order 
kinematics and a Local (L) layer-wise correction of the in-plane displacements. 
The global contribution is a through-the-thickness linear function that does not 
depend on the laminate properties. The local contribution is a through-the-
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thickness piecewise linear function of the transverse coordinate 3x  with jumps in 

the first derivatives across the interfaces between two adjacent layers. 

Such as done in the standard RZT model, the transverse normal deformability 

is neglected in enhanced Refined Zigzag Theory, i.e. 33 0  ; thus, the transverse 

deflection is considered uniform along the whole laminate thickness. 

According to these assumptions, the enhanced RZT displacement field reads: 
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where, 
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Furthermore, in Eq. (2.4) the expressions of the various contributions read: 
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In Eq. (2.5) ( ; )tu x  and ( ; )tθ x  are the global in-plane uniform displacements 

and rotations of the normal to the reference plane about the positive 2x  and the 

negative 1x  directions, respectively;  ;w tx  is the uniform transverse 

displacements; ( ; )tψ x  denotes the matrix of the unknown zigzag rotations of the 
( )

3( )k xφ  zigzag functions, these last being assumed piecewise linear functions 

through-the-thickness, vanishing on the top and bottom surfaces of the plate, i.e. 

   (1) ( )/ 2 / 2Nh h   φ φ 0 . 

The kinematic field of the en-RZT involves only seven kinematic variables, 
like the standard RZT, but it involves two more zigzag functions that should be 
considered in the zigzag formulation.  
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The en-RZT differs from the RZT in the ( )
3( )k xφ  matrix expressed in Eq. 

(2.6), in the off-diagonal terms. In the en-RZT, since the transverse shear coupling 
is included in the model, the in-plane local displacement contributions due to the 
zigzag rotation are coupled. For the sake of clarity, it is here reported the same 

( )
3( )k xφ  matrix, according to the standard RZT kinematics: 

 
( )

( ) 1 3
3 (

32
)

( ) 0
(

( )
)

0

k
k

k

x
x

x




 
 





φ  (2.7) 

Moreover, the first derivatives of the enhanced zigzag functions from Eq. 
(2.6), i.e. the zigzag slopes, according to the RZT notation, read: 
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It is obvious that due to the zigzag function definition, Eq. (2.8) , the through-
the-thickness zigzag slopes are piecewise constant functions with jumps at the 
interfaces. Therefore, the zigzag slopes are defined in the next section according 
to the RZT procedure. 

2.2.3 Strains and stresses relations 

Consistent with the linear strain-displacement relations introduced in the 
preliminaries, the en-RZT strain components read: 
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By taking into account the enhanced RZT kinematics, i.e. Eqs. (2.3)-(2.6), Eq. 
(2.9) can be rewritten: 
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where 
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and      ,1 ,2; ; ;T t t tw w    w x x x . 

As usual in plate theories applied to thin and moderately thick structures, the 

transverse normal stress is neglected, i.e. 33 0  . According to this assumption, 

the linear elastic constitutive relations are written as follows: 
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are the in-plane and the transverse shear stresses, respectively. Moreover,  
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As highlighted in the preliminary section, Eqs. (2.16) and (2.17) are, 
respectively, the in-plane reduced and transverse shear elastic stiffness 
coefficients of the kth layer expressed in the plate axes. 

2.2.4 Derivation of the enhanced zigzag functions 

In the following, the enhanced zigzag functions are constructed using the 
typical procedure adopted by the standard RTZ but applied to the new set of 
functions. 

The ingredients of the zigzag formulations involve the expression of the 
transverse shear strains and stresses. For the sake of clarity, they are here briefly 
recalled in a simplified version: 

 
( ) (0) ( )

( ) ( ) ( )

k k
t

k k k
t t t

 



β ψ

τ γC

γ γ
  (2.18) 

According to the standard RZT, the auxiliary strain measure vector is 
introduced here: 

      (0 ); ; ;t t t η x γ x ψ x  (2.19) 

where      1 2; ; ;T t t t    η x x x . 

By substituting Eq. (2.19) into the expression of the transverse shear strains, 
see Eq. (2.18), it is possible to rewrite it in terms of the auxiliary strain measures 
and the zigzag rotations: 

 
       ( ) ( ); ; ;k k

t t t t  γ x η x I β ψ x
 (2.20) 

where I stands for the identity matrix. 
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Substituting Eq. (2.20) into the second Eq. (2.18), the transverse shear stresses 
read: 

 
       

     

( ) ( ) ( )

( ) ( ) ( )

; ; ;

; ;

k k k
t t

k k k
t t

t t t

t t

τ x C η x I β ψ x

C η x C I β ψ x

   





 




   (2.21) 

In Eq. (2.21), two main contributions can be seen: the first is related to the 
auxiliary strain measure, and the second is related only to the zigzag rotations. 
Since the auxiliary strain measure is only dependent on the in-plane coordinate, it 
is a trough-the-thickness constant value; thus, the first contribution of the 
transverse shear stresses is a through-the-thickness constant and not continuous 
function, with jumps at the interfaces due to the transverse material anisotropy. 
The second term depends on the zigzag slopes, which are not yet defined. 
Although, according to the RZT, the interlaminar transverse shear continuity has 
been only partially satisfied [135], with the reference of Eq. (2.21) , only the 
second term is enforced to be continuous at the layer interfaces. It should be noted 
that if the auxiliary strain measure is enforced to be null, i.e. η 0

(0)( ; ) ( ; )t t γx xψ , the zigzag functions of the original ZZT are re-obtained since 

the transverse shear stress continuity is satisfied across the entire laminate 
thickness. 

Based on these considerations, Eq. (2.21) can be rewritten, highlighting the 
two contributions: 

 
       

   

( ) ( ) ( ) ( )

( ) ( )
3 3

; ; ;

, ; , ;

k k k k
t t t

D k C k
t t

t t t

x t x t

τ x C η x C I β ψ x

τ x τ x

  

 


 

 (2.22) 

where      ( ) ( ) ( )
3, ; ;C k k k

t tx t tτ x C I β ψ x 


 is the through-the-thickness 

continuous term. 

Enforcing the continuity conditions on ( )C k
tτ  contribution at each layer 

interface, i.e.    ( ) ( ) ( 1) ( 1)
3( ) 3( )

C k k C k k
t T t Bx xτ τ   , and recalling the expression of the 

continuous part, it reads: 

          ( ) ( ) ( 1) ( 1); ; ;k k k k
t tt t tC I β ψ x C I β ψ x Gψ x   

 
 (2.23) 

where G is a (2x2) matrix of the zigzag weighted-average transverse shear 
moduli of the whole plate. These values are independent of the layer, and the 
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matrix is not diagonal for a general lamination scheme in which the coupling 
transverse shear effect is present. 

By solving Eq. (2.23) for ( )kβ of the kth layer, the expression of the enhanced 

zigzag slopes matrix reads: 

 
( ) ( )k k

t β S G I  (2.24) 

where  ( ) ( )
1

k k
t tS C





 is the symmetric matrix of the transverse shear 

compliance coefficients of the kth layer. 

Integrating Eq. (2.24) over the whole laminate thickness yields 

 3(T

3

)

(B)

( )
3(T

( ) (
) 3(B

1)
3 )  ( ) ( )

x
Nk

x
dx x x  φ φβ  (2.25) 

Eq. (2.25) shows that only two free additional conditions are necessary to 
determine the zigzag functions uniquely. As in the standard RZT, we exploit this 
freedom by adding the condition that the local contribution is zero on the top and 
bottom surfaces of the whole plate, i.e., 

 (1) ( )
3( ) 3( )( ) ( )L L N

B Tx xu u 0    (2.26) 

 from which (see, Eqs. (2.4) and (2.6)) 

 3(T) 3(B
( ) 1)

)
( ( ) ( )N x x φ φ 0  (2.27) 

and, as a consequence,  

 3(T)

3(B)

)
3

(
x

k

x
dx  0β  (2.28) 

By considering the expression of the enhanced zigzag slopes, i.e. Eq. (2.24) 
and substituting it into Eq. (2.28), yields 

  
( )

3(T) 3(T)3(T)

( )
3(B) (B)3(B)

( ) ( )
t t 3 3

1
3   

k

k

Nx x xk k

x x x
k

dx dx dx


 
    

 
  S G I 0 S G I  (2.29) 

From which 

  
1 1

( ) ( ) ( ) ( )
3 T

( )
(T) 3(B) 3( ) 3(B) t t

1 1

( )
N N

k k k k

k k

kx x x x h h
 

 

   
      

   
 G S S  (2.30) 
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Substituting Eq. (2.30) into Eq. (2.24), integrating over the thickness yields 

     ( ) ( ) ( ) ( ) ( )
3(B) 3(B) t 3( )

( ) ( )
3 3 3(3 )    ( )( ) k k k k k

B
k

T
k x x x x xx x     φ S G Iφ  (2.31) 

with 

  

 
1 1

( ) ( ) ( ) ( )
3( ) 3( ) 3( ) 3( ) 3( )

1 1

( )     2,3,...,   
k k

k q q q
B B T B B

q q

x x x x x h k N
 

 

        (2.32) 

It is easy to show that Eq. (2.31) can be cast in the following recursive 
formula 

 

    

   

( ) ( ) ( ) ( )
3 3(B) t t t

1

( ) ( ) ( ) ( )
3 3(B

1

)
3

)

(   

                         ( 1,..., )

( )
k

k q q k

q

k
k q q k

q

k x x h

x x h k

x

N





    

    





φ S G I S S

β β β

G

 (2.33) 

2.3 Governing equations and boundary conditions 

The governing equations and the variationally consistent boundary conditions 
are derived here using the dynamic version of the principle of virtual work 
(D’Alembert principle). 

The principle can be stated as follows (here δ stands for the variational 
operator): 

 int ext inp inW W W W       (2.34) 

where  

  ( ) ( ) ( ) ( )
int   k T k k T k

p p t t

V

W dV    σ ε τ γ  (2.35) 

is the virtual variation of the internal work given by the stresses;  

 (
3in

)( )k TW x d  


   U U  (2.36) 
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is the virtual variation of the work done by the inertia forces. In Eq. (2.36), 
( )

3( )k x  is the material mass density; the overdot indicates differentiation with 

respect to the time. Moreover, 

  11 ,1 ,1 ,2 ,2 12 ,1 ,2 12 ,2 ,1inp 22W P w P w Pw w w w dw P w


          (2.37) 

is the virtual variation of the work done by the in-plane applied loads in the 
buckling mode (linearized stability equations). It is assumed that the plate is 
loaded by uniformly distributed in-plane normal loads for unit length, which vary 
neither in magnitude nor direction during buckling. 

Normally, it is known that for general lamination plates, there is bending and 
stretching coupling [2]; thus, the plate will not remain flat in the pre-buckling 
state. However, as explained in Refs. [146–148], the antisymmetric multilayered 
plates remain flat for in-plane compressive loads and under the edges constraints 
corresponding to simply-supported and clamped cases. 

Furthermore, extW  is the virtual variation of the work done by the applied 

loads 

  ext (B) (B) (T) (T)
T T TW d d  

 
     p U Fp U U



  (2.38) 

where 

 

       
       

(B) 1(B) 2(B) 3(B)

(T) 1(T) 2(T) 3(T)

; ; ; ;

; ; ; ;

T

T

t p t p t p t

t p t p t p t

   
   

p x x x x

p x x x x
 (2.39) 

are the applied surface loads on the bottom (B) and on the top (T) surfaces of 
the plate; (B)U  and (T)U  are the displacements at bottom and top external 

surfaces, respectively, and  

 
       1 2 3; ; ; ;T tFt tF tF   F x x x x

 (2.40) 

For the sake of simplicity, it is assumed that only the transverse load is acting 
on the plate. Since the effect of transverse normal deformability is neglected, it is 
irrelevant if the transverse applied load is acting on the top or the bottom external 
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surface; the resultant value is considered as follows: 3 3(T) 3(B)p p p  . In addition, 

the integration along the thickness direction shown in the previous formulas can 
be performed according to the following expression 

( )
3

(

( )
3

3
1

)
)

3

(T)

( )
(B1 1

3 3( ) ( )
kk

kk

N Nx x

x x
k k

dx dx


 

        . 

Substituting the expression of the in-plane and transverse shear stresses (2.14) 
and strain relations (2.10) into Eq. (2.35) and integrating along the thickness 
direction, yields  

 
 0 )

int
(T T T T T

mW d 
    



      Mε γ QN M ε ε Q ψ
 (2.41) 

In Eq. (2.41) , the following force and moment stress resultants for unit length 
have been introduced 

    
11

11 11
( )22 ( )

22 22

2

3 p

12
12 12

1

, , , , 1, , k T k

M

M
x

M

M

 
 
 

  
     
                          

N σφM M










 (2.42) 

 
   

2

1 )( )1 (

2

, , 1, t
k kQ Q

Q Q

                
Q Q β τ






 (2.43) 

Regarding the virtual work done by inertia forces, substituting Eq. (2.3) into 
Eq. (2.36), yields 

 

(0) (1) (0)

(1) (2) (1)

(0) (1) (2) ( )

in

0

T T T

T T T

T T T T T wm

W d

w





  



  

  

   


   
 
    
 
    

 








u m u u m θ u m ψ

θ m u θ m θ θ m ψ

ψ m u ψ m θ ψ m ψ

 
 

  
 (2.44) 

where the inertia resultants are defined as follows: 

 
 

 

(0) (0) (1) (0)

( )0) (1)

( ) ( )

3
(2

2
3 3

( ) ( ) ()

;   (1, ;,   

(, ,

= , , )

, , )

k k

k k T k

m

x

x x

  

 







Im m m

I I φ φm m m
 (2.45) 

Finally, 
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   ( )
ext

k
i i i iW p u m d F U d


    

 
       (2.46) 

with 

 ( ) ( ) 3( ) ( ) 3( ) ( ) 1,2 2 1, ,3      i B i T B B T Tip p p i m x p x p         (2.47) 

Integrating by parts the governing functional, Eq. (2.34), and its contributions, 
Eqs. (2.35)-(2.44), the governing equations in terms of the kinematic unknowns 
are obtained. 

2.3.1 Static response 

The equilibrium equations for the static response of the plate can be obtained 
by considering, in the governing functional, only the virtual variation of the 
internal energy and the work done by the external forces. Thus, the equilibrium 
equations of the en-RZT expressed in terms of the resultant forces and moments 
read as [136] 

 

1 11,1 12,2 1

12,1 22,2

1,1 2,2 3

1 11,1 12,1 1 1

2 12,1 22,1 2

1 11,1 12,2 1

21,1 2 2

2 2
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2 22 ,
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0
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:

:
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M Q
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  

  













 

 





   

 

 

 

 

 





 (2.48) 

 

2.3.2 Buckling problem 

The governing equations for the buckling problems are obtained by neglecting 
the inertial terms and the work done by the applied loads. Thus, they read as 
follows [137]: 
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1 11,1 12,2

12,1 22,2
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 (2.49) 

It should be noted that Eq. (2.49) are referred to the pre-buckling state in 
which the plate is assumed to remain flat. 

 

2.3.3 Free vibration problem 

By neglecting the applied external loads or buckling loads, the governing 
equations for the free vibration problem read 

 

(0) (1) (0) (0)
1 11,1 12,2 1 1 11 1 12
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 (2.50) 

 

Generally, the governing equations, i.e. Eqs. (2.48), (2.49) and (2.50), are 
completed with a consistent set of boundary conditions  
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 (2.51) 

In Eq. (2.51) cos( , )n x n   are the direction cosines of the outward unit 

normal n  to   with respect to the   axis, and t  the unit vector tangent to , the 

boundary of  , and oriented in such a way the 3( , , )xn t  form a right-handed 

coordinate system, see Figure 3. 

Using the definition of en-RZT stresses, i.e. Eq. (2.18), the en-RZT 
constitutive relations are expressed as follows: 
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 (2.52) 

where the matrices of the constitutive relations are expressed as follows: 
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 (2.53) 

 

2.4 The Ritz method for the en-RZT 

In this Section, the approximated Ritz method is proposed to solve the 
linearized governing equations of the en-RZT plate model. Due to the 
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mathematical difficulty of solving the governing equations analytically when 
general lamination schemes, constraint conditions or applied loads are considered, 
an approximated solution that transforms the differential problem into an 
algebraical one is formulated here. The starting point is the D’Alembert principle 
introduced by Eq. (2.34), in which the following functions approximate the 
kinematic variables: 

      ( ) ( ) ( ) ( )
1 2 1 2 1 2

1

,,ˆ ,
f

f f f T f
m

M

m
mf x x C f x x x x



  g C  (2.54) 

where  1 2
ˆ ,f x x  denotes the general unknown kinematic variable, i.e. 

1 2 1 1 22,  ,  , ,   n a d ,u u w     . In Eq. (2.54), ( )f
mC  are the m unknown generalized 

constant that multiplies the corresponding  ( )
1 2,f

mf x x  approximating function. In 

the Ritz method, the admissible functions must be a complete set of at least 
linearly independent and able to satisfy the geometric boundary conditions. In this 
work, the admissible functions are the Gram-Schmidt orthogonal polynomials. In 

the following expressions, the symbol GSC   denotes the vector of the unknowns 

coefficients of the Gram-Schmidt polynomials used to approximate the kinematic 
variables. 

Introducing the vector of the unknown kinematic variables, i.e. 

1 2 1 2 1 2
ˆ T u u w      d , and taking into account Eq. (2.54), it yields 

the following expression: 
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 (2.55) 

Substituting Eq. (2.55) into Eq. (2.18), the strain quantities are expressed as 
follows: 
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In a more useful matrix form 

 
ˆ

ˆ
d GS

GS





d G C

e G C
 (2.57) 

By substituting Eq. (2.57) into Eq. (2.34), and taking into account that the 
virtual variations are arbitrarily independent, yields the following approximated 
discretized governing equations: 

  GS G GS MC K K C P  (2.58) 
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 (2.59) 

is the stiffness matrix; 
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is the geometric stiffness matric and 11 11 12
11 11

22 12,  ,  
P P

P
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r r
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    the buckling 

load parameter; 
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is the mass matrix and 
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is the load vector. 

The discretized governing equations, i.e. Eq. (2.58), could be specialized for 

free vibration  and  GP 0 K 0 , for bending analysis  and G  K 0 M 0 , for 

buckling analysis  and  P 0 M 0 . 
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Chapter 3 

The mixed {3,2}-enhanced Refined 
Zigzag Theory 

In thick multilayered composite and sandwich structures, the role of 
transverse normal deformability, typically neglected in most plate models, needs 
to be included to guarantee an accurate prediction of stresses. Moreover, as 
highlighted by three-dimensional solutions, the trough-the-thickness 
displacements across the laminate section are no longer piecewise linear, but they 
assume higher-order patterns. 

As reported in Chapter 1, many authors have put their efforts into including 
higher-order terms in their theories to represent the through-the-thickness profiles 
of thick laminated structures accurately. Among the existing literature, some 
examples related to how to include the transverse normal deformability in current 
models are briefly recalled in the next Section. Furthermore, the use of mixed 
formulations, despite introducing new variables, leads to a more accurate 
representation of the stress patterns with respect to the models formulated 
according to the Principle of Virtual Displacements (PVDs).  

In this Chapter, a new mixed higher-order model is proposed starting from the 
enhanced Refined Zigzag Theory and extended for thick multilayered composite 
and sandwich structures. The involved kinematics is assumed cubic for the in-
plane displacements and parabolic for the transverse one. The number of 
kinematic variables is then reduced thanks to a partial constraint condition on the 
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transverse shear stresses at the laminate's top and bottom external surfaces. This 
procedure provides a new set of higher-order enhanced zigzag functions. 
Furthermore, the transverse normal stress is assumed a-priori as a smeared cubic 
function across the entire laminate thickness. The transverse shear stresses are 
through-the-thickness assumed distributions derived from integrating Cauchy’s 
equations in which a new set of strain variables has been used. The variational 
principle used to derive the governing equations involves the Hellinger-Reissner 
functional and a new penalty term for strains’ compatibility. 

The present formulation has been proposed at the 25th International 
Conference on Composite Structures (ICCS25) in Porto (Portugal) [149] and 
published in the Composite Structures Journal [150]. 

 

3.1 Theoretical background 

In this Section, a brief theoretical background is presented to give an 
overview of higher-order models and mixed formulations useful to understand this 
new model's assumptions better. 

In the literature background, Tessler and co-workers [151–153] have 
presented the {m,n}-th model in which the in-plane displacements and the 
transverse displacements are expanded as Taylor’s series of the transverse 
coordinate of order m and n, respectively. In Refs. [151–153], the transverse shear 
strains and transverse normal stress are also assumed as through-the-thickness 
parabolic and cubic smeared functions, assumed independently from the 
displacement field. Moreover, the assumed transverse shear stress functions are 
able to satisfy the traction-free conditions at the top and bottom surfaces. 
Whereas, according to the last Cauchy’s equation, the assumed transverse normal 
stress has its first derivative null on the external laminate surfaces. A least-square 
compatibility constraint is enforced between the strains derived by the two 
assumed fields to reduce the number of unknown variables. Although its 
simplicity, the presented model is quite inaccurate in displacements and stresses 
predictions. 

In Di Sciuva’s ZZT [89], the in-plane contribution of the displacement field 
has been enriched with a higher-order term. A further enhancement in the zigzag 
model can be found in Di Sciuva and Gherlone [154,155], where the authors 
enriched the zigzag plate theory with third-order Hermitian functions to include 



Chapter 3 The mixed {3,2}-enhanced Refined Zigzag Theory 
__________________________________________________________________ 

53 

 

the cubic variation of the in-plane displacements. One of the advantages of the 
proposed model, as reported in Refs. [154,155], have represented the possibility 
of including damaged interfaces and transverse normal deformability. 
Furthermore, the Hermitian zigzag model [156] has also been extended, including 
the sub-laminate approach to increase the predictivity capabilities of the model to 
investigate the static and dynamic response of damaged and undamaged sandwich 
beams. Finally, the Hermitian zigzag model and the sub-laminate approach have 
been combined in a mixed version using the RMVT by Gherlone and Di Sciuva 
[157,158] for the thermos-mechanical analysis, revealing the great accuracy in 
displacement, stress and strain through-the-thickness predictions with a limited 
number of variables.  Furthermore, the contributions of Icardi and co-workers 
[90,91,98,101] are worthy to be cited where both in the displacement and stresses 
predictions by using mixed formulations with the aim of the Hellinger-Reissner 
and Hu-Washizu formulations. 

In the framework of Refined Zigzag Theory models, among the existing 
attempts to include higher-order effects and transverse normal deformability to 
assess the structural behaviour of thick laminated structures, is worthy of 
mentioning  Barut et al. [124,125] where it has been used a quadratic through-the-
thickness variation of the in-plane and transverse displacements. The normal 
stress is then considered as in the Tessler’s {m,n}-models as a smeared cubic 
function of the transverse coordinate. A least-square statement links the new stress 
variables to ensure the transverse normal strain compatibility condition. 

Later, Iurlaro and co-workers [131,132] enriched the RZT kinematics with a 
set of piecewise cubic and continuous zigzag functions for the in-plane 
displacements and for the transverse one with a smeared distribution which 
depends on the top, bottom and average displacements. In his model, Iurlarlo 
[132], such as done in Barut et al. [124], has included the same cubic assumption 
of the transverse normal stress distribution that satisfies the outer surfaces' stress 
conditions on the prescribed tractions. The transverse shear stresses are then 
assumed as continuous functions by integrating Cauchy’s equations. The RMVT 
is then used to enforce in a weak manner the transverse shear and transverse 
normal strains compatibilities in order to link the variables of the assumed stress 
fields to the variables of the displacement field. According to the Auricchio and 
Sacco recommendations [26], related to the use of the RMVT with low-order 
theories, the cylindrical bending assumption has been used in the Iurlaro’s {3,2}-
RZT(m) model since problems of over-fitting for the assumed transverse shear 
stresses distributions could arise. 



Chapter 3 The mixed {3,2}-enhanced Refined Zigzag Theory 
__________________________________________________________________ 

54 

 

Similarly, Groh and Weaver [127] developed a mixed model for static 
analysis of highly heterogeneous laminates and sandwich beams, in which the 
linear RZT has been used in combination with the Hellinger-Reissner functional. 
For the stress field, the assumed transverse shear and transverse normal stress 
distribution are formulated by integration of Cauchy’s equations. It has been 
revealed in Ref. [127] that the HR functional can provide an accurate description 
of both in-plane and transverse stress fields with more accuracy than the 
corresponding RMVT. A further extension of Groh and Weaver’s mixed model 
has been done for multilayered plate structures [128,129] and curved anisotropic 
beams [159]. Moreover, in the literature, Köpple and Wagner [162] and Tringh et 
al. [163] are further examples of the success due to the mixed formulation using 
HR functional and RZT for a more accurate prediction of stresses. 

As enounced by Iurlaro et al. [116], in the mixed formulation of the RZT  
using the RMVT, introducing the cylindrical bending hypothesis in Cauchy’s 
equations is necessary to obtain the assumed transverse shear stress functions. The 
fundamental reason for this assumption relies on the transverse shear strain 
compatibility part of the RMVT, as highlighted by Auricchio and Sacco [26]. If 
the assumed stresses, obtained from the integration of in-plane stresses using 
Cauchuy’s equations, are described, including the in-plane shear contribution, the 
transverse shear compatibility tends to be enforced in a strong manner. However, 
the transverse shear strains coming from the displacement field are not generally 
accurate, even for the third-order RZT model. As a consequence, inaccuracy and 
inconsistencies in the through-the-thickness transverse shear distributions are 
detectable even for cross-ply and sandwich plates. The strategy is to adopt fewer 
unknown stress variables to describe the transverse shear stresses to prevent this 
undesirable effect. In context, the cylindrical bending assumption intends to 
pursue this aim. This strong but effective simplification is clearly valid for cross-
ply and sandwich plates, according to the three-dimensional behaviour. However, 
for anisotropic multilayered plates in which the effect of transverse shear coupling 
is not negligible leads to an erroneous description of the laminate response. It 
should be noted that this problem does not arise when the Hellinger-Reissner 
functional is considered, as testified by Auricchio and Sacco [26] for FSDT and  
Groh and Weaver [128] for RZT. 

Starting from the models that Auricchio and Sacco [26] presented for First 
Order kinematics, one could be used to achieve a simple but accurate model that 
considers both a higher-order variation of the displacements and transverse shear 
and normal stresses. The variational statement uses the Hellinger-Reissner 
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principle, where the transverse shear stresses are functions of a new set of strain 
variables. A penalty term in the governing functional has been added to ensure the 
compatibility between the new in-plane strain variables and those derived from 
the displacement field. In addition, the penalty functional includes a penalty 
parameter used to enforce the compatibility condition in a stronger/weaker 
manner. The results provided by Auricchio and Sacco [26] for the transverse shear 
stresses by using the FSDT for an antisymmetric angle-ply plate are encouraging 
to apply this method to a higher-order version of the enhanced-RZT. 

In the following Sections, a new higher-order zigzag model is presented. First, 
the enhanced higher-order zigzag functions are obtained following the standard 
RZT procedure that prescribes the partial enforcement of the transverse shear 
stress continuity at the layer interfaces. The number of kinematic variables is then 
reduced by enforcing a null value for the continuous part of transverse shear stress 
at the top and bottom external surfaces. Moreover, in the formulated model, the 
effect of the transverse normal stress is considered by assuming an a-priori 
through-the-thickness cubic variation that satisfies the top and bottom normal 
traction conditions. Furthermore, the transverse shear stresses are derived from 
integrating Cauchy’s equations without using any simplification related to the 
cylindrical bending assumption. Finally, the governing equations and the 
consistent boundary conditions according to the mixed variational formulation are 
obtained and specialized for bending and free vibration problems. 

 

3.2 Geometrical preliminaries, displacement field, strains, 
stresses and higher-order zigzag functions  

 

3.2.1 Kinematic field, strains and stresses 

The kinematic field assumption of the ( )
{3,2}en-RZT m considers the en-RZT 

displacement field for the in-plane displacements with the superposition of 
second- and third-order power-series terms of the thickness coordinate. A second-
order power-series expansion in the thickness coordinate approximates the 
transverse displacement. The complete kinematic field can be represented as 
follows: 
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where  ;tu x  and  ;tθ x  are the global uniform displacements and rotations 

of the normal to the reference plane about the positive x2 and the negative x1 

directions, respectively;  ;tψ x  are the zigzag rotations, whereas 

     (1); ,  ; ,  ;t t w tχ x ω x x  and  ( 2 ) ;w tx  are the additional kinematic unknowns 

that take into account the effect of the non-linear distribution of in-plane and 
transverse displacements along the thickness direction. 

Moreover, in Eq. (3.3) the expression of the linear zigzag functions (such as 
in Ref. [136]) reads: 

    ( ) ( ) ( ) ( ) ( ) ( )
3 3 3( )
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β is the matrix of zigzag slopes, i.e. 

( ) ( )
3 ,3 3( ) ( )k kx xβ φ . 
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The kinematics shown in Eq. (3.1)-(3.3) involves thirteen unknown variables 
independent of the number of layers. The procedure described by Iurlaro et al. 
[131] to reduce the number of variables is here adopted to condense some of the 
global unknowns, thus introducing a new set of higher-order zigzag functions 
expected to be piecewise cubic along the thickness direction. In the following 
section, the procedure enounced in Iurlaro et al. [131] is applied here in a general 
way to the enhanced zigzag functions. 

The final reduced kinematic can be expressed as follows: 
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 

  
 

μ  (3.7) 

is the new set of higher-order, piecewise cubic zigzag functions that satisfy 
the null condition at the top and bottom external surfaces and the displacement 
continuity at the layer interfaces.  

It should be noted that the coupling extra-diagonal terms in Eq. (3.7), i.e. 
( )
12 3( )k x  and ( )

21 3( )k x , are null for cross-ply multilayered and orthotropic 

sandwich plates. In fact, the expressions ( ) ( )
11 3 22 3( ) and ( )k kx x   obtained by Iurlaro 

[132] are a particular case of this general formulation.  

According to the displacement field defined in Eq. (3.5), the strain quantities 
can be defined as follows: 
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 (3.8) 

where  3
3

3
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( )

( )
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z

x
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H 0
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0 H




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
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, 
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,1 ,1 ,1 ,2 ,2 ,2( ; )T w w wt w w w   w x  and 
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11 3 12 3
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3 22 3 21 3

21 3 12 3 11 3 22 3

( ) 0 0 ( )

( ) 0 ( ) ( ) 0

( ) ( ) ( ) ( )

k

k

x x
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 
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 
   
  

Μ . 

 Moreover, 1,1 2,2 1,2 2,1
T

m u u u u   ε , 1,1 2,2 1,2 2,1
T

       ε  and 

1,1 2,2 1,2 2,1
T

       ε . 

 

3.2.2 Enhanced higher-order zigzag functions 

The derivation of the enhanced higher-order zigzag functions follows the 
procedure described by Iurlaro [132]. It is here extended to the case of more 
general lamination schemes that include the effect of transverse shear coupling. 
For the sake of clarity, the time dependency of the unknown variables is not 
reported here. 

The expression of transverse shear strains is written as follows: 
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 (3.9) 

The auxiliary strain measures 1 2,  [103] are introduced: 
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 (3.10) 

Moreover, substituting (3.10) into Eq. (3.9), we rewrite : 
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In a more convenient matrix form, 
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 (3.12) 

The transverse shear stresses, using the constitutive material relation,  can be 
expressed as follows: 
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with 
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 (3.14) 
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The continuity of the transverse shear stress, as defined by Eqs. (3.13) and 

(3.14) is limited to ( )
3( , )C k

t xτ x , as typical in the RZT formulation. Thus, the 

continuity conditions at the N-1 interfaces read as follows:  

 
       

       
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    
    







  (3.15) 

The number of kinematic variables can be reduced by enforcing the vanishing 
condition on the top and bottom external surfaces only on the continuous part of 
the transverse shear stresses. If applied on the external top and bottom plate 
surface, the discontinuous term ensures the in-plane tractions equilibrium with the 
transverse shear stresses. However, since the transverse shear stresses considered 
in this model are those assumed from integrating the local equilibrium equations, 
the traction conditions are satisfied by that contribution.  

In formula, the vanishing condition reads: 

 
3 3

( ) ( )
13 3 23 3/2 /2

0;    0( , ) ( , )C k C k

x h x h
x x 
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 x x  (3.16) 

Developing Eq. (3.16): 
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  (3.17) 

After some mathematical manipulations, the following relations are obtained: 
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 

(1) ( )

0
2

( ) (1)
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( ) ( ) ( )

2

3
2

1

2

N

N

h

h

 

   

 
 



β β I
ω x ψ x ω ψ x

χ x β β ψ x χ ψ x

 (3.18) 

The relations in Eq. (3.18) reduce the number of unknown kinematic variables 
from thirteen to nine, linking the new ones introduced for the parabolic and cubic 
terms in the in-plane displacements to the zigzag rotations. 
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Substituting Eq. (3.18) into the kinematic field described by Eq. (3.1), the 
reduced kinematic field can be obtained as shown in Eqs. (3.5) and (3.6), where 
the higher-order zigzag functions are defined as follows: 

  ( ) 2 3 ( )
3 3 0 3 0 3( ) ( )k kx x x x  μ χ ω φ  (3.19) 

It can be noted that the new set of higher-order zigzag functions is dependent 

on the thickness coordinate and on the linear zigzag slopes, i.e. ( )kβ . In order to 

compute the ( )kβ  values for each layer, Eq. (3.15) is enforced at each layer 

interface. The last conditions required to define the zigzag functions completely 
are the zero values on the top/bottom external surface of the higher-order zigzag 
functions. Thus,  

 (1) ( )
3 3( / 22 )( / ) N x hx h     μ μ 0  (3.20) 

 

3.2.4 Assumed transverse normal stress 

The assumed transverse normal stress distribution is here considered as a 
third-order power function of the transverse coordinate [40]: 

   2
33 3 0 3 3 3

3
1 2 3, ) ) ) )( ( ( (a z z z zx x x x    x x x x x    (3.21) 

As done previously, for the sake of clarity, the time dependence of the 
assumed stress variable is not reported. 

Enforcing at the top and bottom external surfaces the traction boundary 
conditions, i.e. 

 
33 3 3( )

33 3 3( )

( , / 2)

( , / 2)

a
B

a
T

x h p

x h p





   

 

x

x
 (3.22) 

The assumed transverse normal stress is rewritten as follows: 

 33 3 3 3( ( ) ), ) ) ( )( (a
zxx x   x P q x L q x  (3.23) 

where 



Chapter 3 The mixed {3,2}-enhanced Refined Zigzag Theory 
__________________________________________________________________ 

62 

 

 

3 3
3

2 2
2 2

3 3 3 3

3( ) 3( ) 2 3

1 1

2 2

( )
4 4

( (

( ) ;   

;   

) ;   )T T z z
z B T

x

p p

x x

h h

h h
x x x x

 

       
   

    
      

    
      

 
  

 



σ

L

P
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 (3.24) 

3.2.5 Assumed transverse shear stresses  

The assumed transverse shear stresses follow the formulation proposed by 
Auricchio and Sacco [26], where they have been derived by the integration of the 
local three-dimensional equilibrium equations neglecting the volume body forces, 
i.e. 
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

x x x

x x x
 (3.25) 

According to the formulation reported in Ref. [26], the assumed transverse 
shear stresses are deducted by Eq. (3.25) , in which the in-plane stresses come 
from the constitutive relations. Whereas the strain quantities are assumed 
independently with respect to the kinematic field. This assumption can be reported 
as follows: 
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 (3.26) 

where the vectors of the new assumed strain variables are defined as follows:

   11 22 12 11 22 12 11 22 12 21;    ;    T T Te e e k k k k k k k         e k k . 

Considering the mixed version of the material constitutive relations, the in-
plane stresses have the following expression: 
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
 (3.27) 

However, the in-plane stresses expressed by Eq. (3.27) could not be yet used 
to operate the variable substitution of Eq. (3.26) and then the integration part of 
Eq. (3.25) to obtain the assumed transverse shear stress functions. A further step is 
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necessary to link the assumed variables of the transverse normal stress distribution 

33 3( , )a x x  to the kinematic variables using the weak strain compatibility of the 

governing functional.  

 

3.3 Variational statement, governing equations and 
boundary conditions 

In this Section, the ( )
{3,2}en-RZT m  is formulated by using the variational 

statement as described by Auricchio and Sacco [26]. The first term ( int ) is the 

work done by the internal stresses. The second term ( HR ) is the Hellinger-

Reissner (HR) functional, in which the compatibility between the transverse shear 
and normal strains is weakly enforced. Since the assumed transverse shear stresses 
depend on the new strain quantities, a new penalty functional is added to the 
variational statement ( ). This penalty term guarantees the weak enforcement of 
the compatibility relations between the strains from the displacement field and the 
new independent strain variables. According to this assumption, the variational 
statement can read as follows: 

 int 0HR ext in               (3.28) 

where int is the virtual work done by the internal stresses defined as 

follows: 

  3
( ) ( ) ( )

3nt 3i 3
k T k k T

p p
a

t

V

t
a dV         ε σ γ τ  (3.29) 

the HR  is the virtual variation of the Hellinger-Reissner functional for the 

transverse shear and the transverse normal stress and it reads: 

    ( ) ( ) ( )
33 33 33

T k k a a k a
HR t t

V

t
a dV           τ γ γ  (3.30) 

The virtual variation of the work done by inertial forces in  is expressed as 

follows; 
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where ( )k  is the density of the kth layer. The overdot represents the derivation 

with respect to the time variable. Remembering 
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The is the virtual variation of the penalty functional, introduced to ensure 
the compatibility condition between the assumed strain field and the strains 
obtained by the assumed displacement field. Thus, it reads: 
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 (3.32) 

The penalty parameter  , which needs to be numerically determined, 

expresses the importance of this term in the governing functional. 

Finally, the ext  is the virtual variation of the external applied traction loads 

(for the sake of clarity, the traction forces F are neglected): 
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 (3.33) 

In the previous expressions, superscript a  denotes the quantities related to the 
assumed fields and 𝛿 defines the arbitrary virtual variation. It is recalled from Eq. 

(3.8) that in Eq. (3.29), ( ) ( ) ( ) ( )
21 21 12

k T k k k
p      ε  is the vector of in-plane strains 

obtained by the displacement field; ( ) ( ) ( ) ( )
11 22 12

k T k k k
p      σ  is the vector of in-

plane stresses; ( ) ( ) ( )
13 23

k T k k
t     γ  is the vector of the transverse shear strains 

computed by the assumed displacement field and 33  is the transverse normal 

strain according to the strain-displacement relations.  
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In virtue of the independent assumption of the kinematics, Eq. (3.5), and the 
transverse normal stress, Eq. (3.23), the variational statement can be split into two 
contributions: 

  
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33 33 33
a k a

V
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and 
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that can be solved separately. 

Firstly, Eq. (3.34) is solved as a weak form compatibility constraint between 
the transverse normal strain expressed in terms of the kinematic variables and that 
coming from the assumed transverse normal stress. Thus, Eq. (3.34) is solved for 
the assumed stress variables (for the sake of brevity, the final results are reported 
here, whereas the full expressions are reported Appendix A), and the assumed 
transverse normal stress has the following expression: 
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 (3.36) 

where 3 3 3 3 3( ),  ( ),  ( ),  ( ),  ( )zwu qx x x x x 
    A A A A A  are the shape functions of 

the transverse coordinate, and their definition is reported in Appendix A. 

Secondly, the expression of the transverse normal stress Eq. (3.36) is 
introduced in Eq. (3.27) and after introducing the new strain variables, i.e. Eq. 
(3.26), the integration of Cauchy’s equations is performed to obtain the full 
expression of the assumed transverse shear stresses. After some mathematical 
passages that, for the sake of clarity, are reported in Appendix B, the final 
expression of the assumed transverse shear stresses follows: 

 3 3 3 3, ) ) ) )(( ( ) ( ) ( ( ) (a
t p t t qz zx x x x  pτ x Z q x Z q x Z q x  (3.37) 
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where ( )zq x  represent the derivatives of the transverse distributed load, i.e. 

3( ),1 3( ),1 3( ),2 3( ),2( ) B T B T
T

z p p p p   q x ; )(pq x  is the vector of the prescribed 

tractions in the x1 and x2 direction at the bottom and top external surfaces, i.e. 

1( ) 2( ) 1( ) 2( )) .( B B T T
T p p p p   pq x   

Moreover,  ) ) ) )( ( ( ( ()T T T T T
t

     q x e x k x k x w x   is the vector of 

the derivatives of the strain unknowns and 3 3 3( ),  ( ) and ( )p t qzx x xZ Z Z  are the 

through-the-thickness functions that describe the transverse shear stress 
distribution and their full expression is reported in Appendix B. 

Once the assumed transverse shear stresses are obtained, the Eq. (3.35) can be 
solved. It represents the variational expression of the work done by strains and 
stresses and that done by external forces, and it contains a contribution deriving 
from the weak form compatibility constraint between the transverse shear strains 
plus the penalty constraint of the strains quantities and performing the integration 
by parts results in the governing equations with the variationally consistent 
boundary conditions.  

Introducing the assumed transverse normal stress defined by Eq. (3.36) and 
the assumed transverse shear stresses defined by Eq. (3.37) into the variational 
statement Eq. (3.35), and performing the conventional integration by parts, the 

governing equations of the ( )
{3,2}en-RZT m plate can be obtained (the full expression of 

the various terms are reported in Appendix C) for the static linear bending and the 
free vibration problems. 

3.3.1 Linear bending 

Here follows the expressions of the governing equations specified for the 
linear static bending analysis. Some of the terms inside of the equations are 
specified in Appendix C. 
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3.3.2 Free vibrations 

Here follow the expressions of the equations of motions specified for the free 
vibrations problems. Some of the terms inside of the following governing 
equations are defined in Appendix C, with the care of neglecting the applied 
tractions: 
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The consistent boundary conditions are (for the sake of brevity, the full 
expressions of some terms are reported in Appendix C): 
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(3.76) 

In Eq. (3.76), 1 1 )cos( ,n x n  and 2 2 )cos( ,n x n  are the components 

(direction cosines) of the unit outward normal vector to the cylindrical plate 
edges. 

The resultant forces and moments are defined as:  
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Moreover, in Eqs. (3.38)-(3.44), 
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 (3.78) 

By using the mixed material constitutive relations and the expressions for the 
assumed transverse normal and shear stresses, i.e. Eqs. (3.36) and (3.37), the 

following constitutive relations for the ( )
{3,2}en-RZT m , are expressed as follows: 
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 (3.79) 

 z Nz Nz Nz Nz Nz
m z    N A ε B ε C ε D w E q  (3.80) 
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 (3.81) 

Appendix D reports, for the sake of brevity, the definition of the matrices of 
the constitutive relations, Eqs. (3.79)-(3.81), and the other matrices in the 
governing equations, Eqs (3.38)-(3.56), and in the boundary conditions, Eq. (3.76)
. Moreover, the inertial quantities that appear in the equations of motions, i.e. Eqs. 
(3.57) - (3.75) are defined as follows: 
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Chapter 4 

Beam finite elements based on the 
mixed {3,2}-enhanced Refined 
Zigzag Theory 

This Chapter proposes a new beam mixed model to investigate the 
elastodynamic behaviour of multilayered composites and sandwich structures. 

The model is based on the previously developed ( )
{3,2}en-RZT m , simplified to analyse 

multilayered composite and sandwich beams. However, due to the lamination 
schemes considered in this Chapter and considering the experimental campaign, 
the beam formulation neglects the effect of transverse shear coupling in 
anisotropic multilayered structures. 

In the first part of this Chapter, the formulation of the beam problem is 
presented, and the governing equations and consistent boundary conditions are 
obtained by using the mixed functional as shown in Chapter 3. 

Based on this new higher-order RZT-mixed beam, a finite formulation is also 
addressed to solve the governing equations in more general cases. Two types of 
beam elements are formulated considering two interpolation schemes to 
approximate the kinematic variables and the strain quantities. In order to reduce 
the total number of variables and to achieve a simple node configuration in which 
only the nodal degrees of freedom related to kinematic quantities appear, the 
nodal strains dof’s are omitted by implementing the static condensation. 
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4.1 Introduction 

This section presents a brief literature review of the existing RZT-beam-based 
model and finite element formulation strategies. 

The first attempts to formulate a class of simple beam elements based on RZT 
are given by Gherlone et al. [107] and Oñate et al. [109]. Both groups 
independently formulated a class of two-node C0-continuous elements to analyse 
multilayered composite and sandwich beams. However, like the low-order FSDT-
based elements, RZT finite element formulation also suffers from the shear-
locking phenomenon. The implemented strategies to overcome this problem are 
numerous in the literature but are not reviewed here for clarity. However, it is 
worth citing the anisoparametric interpolation strategy adopted by Gherlone et al. 
[107]. In its methodology, the transverse displacements have been interpolated by 
polynomial shape functions of one order degree higher than the others. As a 
result, a locking-free three-node beam element is obtained where the transverse 
displacement is interpolated using three nodes, whereas the other degrees of 
freedom are interpolated with only two extreme nodes. The internal node is then 
condensed out by enforcing a constraint condition on the second derivative of the 
auxiliary strain measure along the entire element, reobtaining a simple two-node 
configuration.  

In a different way, Oñate et al.  [109] implemented in its element formulation 
the reduced integration technique, a numerical technique able to under-integrate 
the shear contribution of the stiffness matrix. It has been demonstrated by Tessler 
[48] that the reduced integration and the anisoparametric strategy can give the 
same results for beam elements. Regardless of the adopted methodology to 
overcome the shear-locking problem, the proposed RZT elements are 
demonstrated to be very accurate in global response predictions for deflections, 
frequencies and in-plane axial stress. 

The RZT finite element formulation has been extended by Ejio et al. [160] to 
the analysis of laminated structures with the inclusion of delamination defects. An 
iterative process has been implemented by the authors to update the zigzag 
functions when the material shows degraded properties. 
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The formulation of higher-order elements to increase the convergence rate has 
been shown in Di Sciuva et al. [108]. Nallim et al. [161] implemented the 
hierarchical definition of the shape functions to formulate locking-free beam 
elements based on the RZT. The kinematic variables are interpolated with two 
groups of shape functions: Lagrangian polynomials and orthogonal Gram-Schmidt 
polynomials that vanish at the element's end. This solution guarantees a much 
more accurate description of displacements, strains, and stresses with low 
discretization patterns.  

In Iurlaro’s PhD dissertation [132], a two-node element has been formulated 
using the exact RZT shape functions to increase the accuracy of the stiffness 
matrix approximation. As a matter of fact, these elements are able to guarantee no 
errors in the stiffness matrix evaluation and a superconvergent behaviour.  

An alternative method has been proposed by Wimmer and Nachbaguer [162] 
in which the RZT beam formulation has been used in conjunction with the 
transfer matrix method to increase the accuracy of the stress predictions without 
involving any smoothing techniques. 

The RZT beam predictive capabilities using the finite element formulation 
have also been tested for buckling analysis of heterogeneous sandwich beams. 
Involving a non-linear RZT finite element formulation, Ascione and co-workers 
[163,164] have investigated numerically and experimentally the buckling analysis 
of multilayered composite beams. The provided results by the RZT beam model 
are very close to the experimental ones and with the numerical obtained with 
computationally expensive high-fidelity FE models. 

As highlighted in the previous Chapter, the model accuracy of stress 
predictions could be increased by adopting appropriate mixed formulations. In the 
framework of mixed-RZT models, it is worthy of citing the work of Groh and 
Tessler [123]. Their model considers the delamination effect for the beam's 
response along with the anisoparametric interpolation strategy to formulate 
locking-free elements. Using the RMVT, Iurlaro et al. [131] developed a third-
order RZT model that considers the transverse normal deformability. Using the 
anisoparametric interpolation strategy and the constraint condition on the 
auxiliary strain measure, the formulated finite element has demonstrated to be 
very accurate in global and local response of multilayered beam structures. 
Similarly, Flores et al. [165], starting from Iurlaro’s third-order RZT model, 
extended the range of model applicability by including discontinuities in the 
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cross-section for buckling analysis, revealing the greater accuracy of the mixed 
model for stress description and critical load predictions. 

More recently, Kutlu [120] formulated a linear RZT mixed model using the 
Hellinger-Reissner functional without reducing the variables as done in the 
RMVT. The provided results in Ref. [120] encourage using the HR formulation to 
increase the global beam responses prediction of stress quantities. 

According to the provided literature framework regarding the RZT-based 
models, the strength of the mixed formulations in stress predictions and the wide 
range of applications of RZT model has been shown.  

The new mixed higher-order RZT beam model is formulated in the following 
sections. First, the kinematic assumptions and the constitutive material relations 
are shown. Then, the transverse normal stress field is assumed as a smoothed 
function of the transverse coordinate and transverse shear stress distribution is 
derived from the integration of the local equilibrium equations. Finally, the mixed 
formulation that involves the penalty term to enforce in a weak manner the strain 
compatibility has been applied here to obtain the governing equations, along with 
the consistent boundary conditions, for static and dynamic problems. 

Lastly, a finite element formulation is presented based on the newly 
formulated beam mixed model. Based on two different interpolation schemes, two 
elements are obtained. The first involves the isoparametric interpolation with the 
linear shape functions, whereas the second adopts the anisoparametric constrained 
strategy for the new strain variable. The additional node is then condensed by 
appropriate strain enforcement to achieve a simple-two node configuration. To 
further reduce the computational cost of the formulated elements and to take 
advantage of simplified element formulation for the applied loads, the strain nodal 
dof’s are statically condensed. 

4.2 The new-mixed RZT for beams 

The basic assumptions of the ( )
{3,2}en-RZT m  model applied to beam structures 

are recalled here. The governing equations and consistent boundary conditions for 
bending and free vibration problems are derived using the mixed variational 
statement, as introduced in Chapter 3.  
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It is considered a beam of length L and cross-section area A b h  , where b 
is the width, and h is the thickness. The beam points are referred to an orthogonal 

reference system  1 2 3, ,x x x , where x1 corresponds to the coordinate of the beam 

longitudinal axis and 3x , the transverse coordinate corresponds to the beam 

thickness, as shown in Figure 9. Moreover, 3 ,2 2
h hx      . According to the 

cylindrical bending assumption, beam deformations are allowed only in the 

 1 3,x x  plane, indicating that no out-of-plane displacements are considered. Thus, 

the transverse shear coupling is neglected here. 

As reported in Figure 9, the mechanical loads applied to the beam's external 

bottom and top surfaces are the distributed transverse loads, 3( ) 1)(Bp x  and 

3( ) 1 )(Tp x , and the distributed axial loads, 1( ) 1)(Bp x  and 1( ) 1 )(Tp x . 

 

Figure 9: Beam geometry, reference frame and applied loads. 

 

4.2.1 Kinematics, strains and stresses and assumed fields 

The displacement components of the orthogonal displacement vector of the 
( )

{3,2}en-RZT m  beam, read: 

 
           
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  
(4.1) 
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where, ( )
1

kU  and 3U  are the displacements in the 1x  and 3x  directions, 

respectively. Such as the ( )
{3,2}en-RZT m , the transverse displacement is assumed with 

a smeared parabolic function of the thickness coordinate, independent of the layer. 

The kinematic variables that appear in Eq. (4.1) are u  and (0)w  the uniform axial 

and transverse displacements, 1  the average bending rotation, 1  the zigzag 

rotation,  ,  , (1)w  and (2)w  are the kinematic variables related to the higher 

order terms. 

The strain-displacement relations for a beam structure read: 
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 (4.2) 

Here follow the beam stress-stress relations written in an appropriate mixed 
form [166]: 
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 (4.3) 

where 
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33 33

( ) ( )
13 13

1 /k k

k k

S C

R 




 (4.4) 

It can be noted that the displacement field reported by Eq. (4.1) for a beam 

structure derived from the ( )
{3,2}en-RZT m is formally the same as those introduced by 

Iurlaro et al. [131]. The only difference relies on the transverse displacement 
definition. For the sake of conciseness, the passages to reduce and simplify the 
displacement field are a particular case of the plate problem defined in Chapter 3 
and lead to the result provided by Iurlaro et al. [131]. The final expression of the 
displacement field in which the third-order zigzag function appears is reported as 
follows: 
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 (4.5) 

where ( )k  is the new third-order piecewise continuous zigzag function and its 

full expression for beam reads: 

 ( ) 2 3 ( )
3 3 0 3 0 3( ) ( )k kx x x x        (4.6) 

The third-order zigzag function is characterized by the partial transverse shear 
stress continuity at the layer interfaces and the vanishing condition of the zigzag 
functions at the top and bottom beam surfaces. 

The strain components expressed in terms of the kinematic unknowns for the 
beam model are reported here for clarity: 

 

( ) ( )
11 1 3 ,1 1 3 ,1 1 3 ,1 1

(1) (2)
1 3 1 3 1

( ) (0) (1) 2 (2) ( )
13 1 3 ,1 1 3 ,1 1 3 ,1

33

1 1 ,3 3 1

) ) ) )

) ) )

) ) ) ) ) )

( , ( ( ( ) (

( , ( 2 (

( , ( ( ( ( ( ) (

k k

k k

x x u x x x x x

x x w x x w x

x x w x x w x x w x x x x

   



   

  

 

     

 (4.7) 

Since the transverse normal deformability in thick multilayered structures 
could not be neglected, a smeared cubic function for the transverse normal stress 
is considered in which the traction conditions at the top and bottom surfaces are 

enforced. Its expression recalled from the ( )
{3,2}en-RZT m  is here reported for clarity:  

 33 1 3 3 1 3 1, ) ) ( ) )( ( ) ( (a
zxx xx x x   P q L q  (4.8) 

where, 
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The assumed transverse shear stress distribution is obtained by integrating  
Cauchy’s equation under the hypothesis of cylindrical bending and in the absence 
of body forces: 
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 ( ) ( )
11,1 13,3 0k k    (4.10) 

The in-plane stress comes from the constitutive relation expressed in Eq. (4.3)
, with the strains quantities, i.e. the derivatives of the kinematic variables see Eq. 
(4.7), that are assumed as new independent variables. The in-plane strain, 
according to this assumption, reads: 
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where the new assumed strain variables are ,   and e k k . However, the 

expression for the in-plane stress could not be used yet in Cauchy’s equation since 
it is necessary to enforce prior the compatibility condition between the assumed 
and derived transverse normal strains given by the Hellinger-Reissner functional 
described in the following Section. 

 

4.2.2 Mixed variational principle and expressions for the assumed 
normal and shear transverse stress functions  

The mixed variational statement adopted in Chapter 3 for the ( )
{3,2}en-RZT m  

plate problem is here specified for the beam problem. Its general expression is 
here recalled: 

 int 0HR ext in                (4.12) 

where int  is the virtual variation of the internal energy, and it is expressed 

as: 

  int 11 11 13
(

3
( ) ( ) )

13 3 33
a ak k k

V

dV             (4.13) 

Moreover, HR  is the Hellinger-Reissner variational contribution that 

enforces the weak compatibility between the transverse normal and shear strains: 
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The penalty functional expressed by the symbol   is defined by a penalty 
parameter   that plays the role of weight function of this term in the governing 

functional. Its expression according to the new beam ( )
{3,2}B-RZT m is: 
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The virtual work done by the inertial forces in is expressed as follows: 
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with ( )k  the material mass density of the kth layer; the overdot indicates the 

differentiation with respect to time. Moreover, 2
3 3 3( ) 1z x x xH      and 

(0) (1) (2)T u w w w     d  is the vector of the kinematic unknowns. It is 

worth noting that the new strain variables do not contribute to the system's inertia. 

At last, the virtual work done by the externally applied tractions, ext , reads: 
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As done in Chapter 3 for plate structures, the first step for the beam model is 
to enforce the transverse normal strain compatibility in the Hellinger-Reissner 
functional. The compatibility condition reads: 

  
33

( )
33 33 33 0a a

V

k dV        (4.18) 

Due to the independent assumption of the stress field, the condition of Eq. 
(4.18) results in a relation between the stress variables and the kinematic 
variables. Using the constitutive material equations, i.e. Eq. (4.3), the assumed 
transverse normal strain reads: 

 ( ) ( ) ( )
1 3 33 33 1 333 113 1 1 3, ) , ) , )( ( (a k a k kx x S xx xR x     (4.19) 

After some mathematical passages, here not reported for the sake of clarity, 
the transverse normal stress is rewritten as a function of the kinematic variables: 

 
1 3 3 1,1 1 3 1,1 1
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 A w A q
 (4.20) 

where the functions of the transverse coordinate that appear in Eq. (4.20) have 
the following expressions: 
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( )

;

;

( )

;

z

w

q

u k T T k
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P P P P

A P P P P H

A L P P P P L

 (4.21) 

By taking into account the final expression of the transverse normal stress, i.e. 
Eq. (4.20) and substituting into the constitutive relations, i.e. Eq. (4.3), and 
considering the new strain field variables, the complete expression of the in-plane 
stress reads: 
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 (4.22) 

Substituting the expression of the transverse normal stress Eq. (4.20) and 
integrating by parts Eq. (4.10), yields 

 
1 3 1( ) 1 3 ,1 1 3 ,1 1
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( , ) ) )
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
z zE w F q

    

      (4.23) 

where 1)(z xq  represent the derivatives of the transverse distributed load, i.e. 

3( ),1 3( ) 11 ,( ) B T
T

z p px    q ; 1)(xpq  is the vector of the prescribed tractions in the 

x1 direction at the bottom and top external surfaces, i.e. 1( ) (1 1 )( ) B
T

Tx p p   pq ; 

1 ,1 1 ,1 1 ,1 1 1) ) ) ) )( ( ( ( (T T
t x x k x k x xe    q w  is the vector of the derivatives of 

the strain unknowns and transverse variables. Note that 
(0) (1) (2)

1 ,1 ,1 ,1)( T w w wx     w . Moreover, the through-the-thickness functions are: 
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(4.24) 

Enforcing the in-plane traction conditions at the top surface of the beam  
yields: 
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 (4.25) 

Where 
( )

3 3

( 1)
3

( )
(T)

( )
3(B)1

3 3
1

( ) ( )
k

kk

kN Nx x

x x
k k

b dx b dx


 

        , indicates the integration 

performed along the cross-section area. 

Substituting Eq. (4.25) into Eq. (4.23) the complete final expression of the 
assumed transverse shear stress distribution is obtained: 
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where  
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 (4.27) 
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4.3 Governing equations, boundary conditions and new 
( )

{ , }- 3 2B RZT m beam constitutive relations 

By substituting the displacement field expression, i.e. Eqs. (4.5) into the 
strain-displacements relations and taking into account the mixed material 
constitutive equations, i.e. Eq.  (4.3), the assumed transverse normal (4.20) and 
transverse shear  (4.26) stresses into the variational statement Eq. (4.12) and 

integrating by parts, the governing equations of the new ( )
{3,2}B-RZT m are obtained: 

   (0) (1) (0)
,11 , 1,1 1

1
:    p u mm mu N u e   
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       (4.28) 
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  ,1

1
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   (4.36) 

Moreover, the consistent boundary conditions follow: 
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 (4.37) 

Moreover, the resultant forces and moments are defined as:  
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In Eqs. (4.28) - (4.32) the sum of the distributed loads and moments read: 
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By using the mixed material constitutive relations, i.e. Eq. (4.3), the assumed 

transverse normal and shear stresses, i.e. Eqs. (4.20)  and (4.26), the ( )
{3,2}B-RZT m



Chapter 4 Beam finite elements based on the mixed {3,2}-enhanced Refined 
Zigzag Theory 

__________________________________________________________________ 

87 

 

beam constitutive relations in terms of the kinematic and strains unknowns are 
expressed as follows: 
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where the various stiffness matrices are defined as follows:   
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 (4.43) 

Defining ( ) ( )
131 /k k

tS G  the remaining quantities are expressed as follows: 
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 (4.44) 

Lastly, the inertia quantities that appear in the governing equations read: 

 
   
   

(0) (1) (2) (3) (4) ( ) 2 3 4
3 3 3 3

(0) (1) (2) ( ) ( ) ( ) ( )2
3

, , , , 1, , , , ;

, , , ,

k

k k k k

m xx xm m m m x

m m m x  



   




 (4.45) 

For clarity, the other quantities that appear in the governing equations and 
consistent boundary conditions not defined here are reported in Appendix E. 
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4.4 The new-mixed RZT beam elements  

The governing equations of the developed ( )
{3,2}B-RZT m  model shown in the 

previous Section can be solved analytically only for particular load cases and 
boundary conditions, typically sinusoidal pressure and simply-supported edges. 
Finding a different method to achieve the searched solution is necessary for other 
cases. Therefore, this Section aims to provide a finite element formulation based 

on the ( )
{3,2}B-RZT m  that can approximate the solution of the governing equations for 

different lamination schemes, load cases or boundary conditions. 

The kinematic and strain variables that appear in the governing functional, i.e. 
Eq. (4.12), exhibit the highest derivative order with respect to the longitudinal 
coordinate of the first order. Thus, only the C0-continuity condition of the shape 
functions is required to approximate the unknown variables in the finite element 
formulation.  

With the aim of experimental validation, the present finite element 
formulation is limited only to free vibration problems and bending analysis of 
thick sandwich structures in which only concentrated loads applied in the node are 
considered. This simplification clearly restricts the range of applicability of these 

elements; however, it leads to a simplified expression of ,   and HR HR HRE K K  

terms in which the effect of applied distributed loads is not in their expression. 
Thus, it is possible to achieve a simplified formulation involving the static 
condensation to reduce the total degrees of freedom by maintaining only the 
unknown variables of the displacement field. 

As stated in the previous literature framework, the shear-locking phenomenon 
affects the RZT-based elements when applied to investigate the response of thin 
multilayered structures. However, the range of the span-to-thickness ratios 
considered in this work is limited to the value for thick multilayered beams; thus, 
this problem is not addressed here. 

According to the C0-continuity requirement, the simplest formulated element 
implemented is a two-node with linear Lagrange polynomials as shape functions 
(isoparametric interpolation) for approximating all kinematic and strain variables.  

However, a further consideration should be done: the importance of the 
penalty term in the governing functional. As highlighted in the previous Sections, 
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the penalty term weakens the compatibility with the new strain variables and the 
strains computed from the displacement field. In the finite element approximation 
using the isoparametric interpolation with the linear Lagrangian polynomials, the 
derived quantities of the kinematic unknowns are approximated by constant 
functions. Conversely, the strain variables that appear in the penalty term are still 
approximated by the linear shape functions. By starting from the strategy adopted 
to manage the shear-locking problem in Refs. [48,51,107], and in order to 
improve the element performances, the anisoparametric interpolation strategy is 
adopted. The variables that appear as the first derivative in the penalty functional 
are approximated by a polynomial shape function of one-degree order higher than 

the others. It results that 1( )u x , 1( )x  and 1( )x are approximated with parabolic 

shape functions, whereas 1( )e x , 1( )k x  and 1)(k x  are still approximated by the 

linear Lagrangian functions. As anticipated, the anisoparametric interpolation 
results in a three-node finite element where the internal mid-node approximates 

only the 1( )u x , 1( )x  and 1( )x  variables. 

A final consideration is done due to the complexity introduced by the penalty 
functional. From a numerical point of view, the penalty parameter value 
influences the accuracy and convergence of the formulated finite elements. For 
this reason, an appropriate value should be considered to avoid ill-conditioning of 
the stiffness matrix.  

4.4.1 A new 2-node mixed RZT beam element: the ( )
{ , }- 3 22B RZT m

element 

The first element considered is a two-node element based on the ( )
{3,2}B-RZT m  

model, hereafter named with the acronym ( )
{3,2}2B-RZT m .  For clarity, the kinematic 

and the strain variables are divided into two groups: the first is represented by the 

variables of the kinematic field, i.e. (0) (1) (2)T
d u w w w  d      and the 

second is represented by the strain variables that come from the expression of the 

transverse shear stress, i.e. T
s e k kd     . The topology of the ( )

{3,2}2B-RZT m  

element is represented in Figure 10. 
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Figure 10: Topology of the ( )
{3,2}2B-RZT m  element. 

 

According to the finite element notation, the unknown quantities interpolated 

by the nodal values of the ( )
{3,2}2B-RZT m  element are grouped in the two vectors ( )e

dq  

and ( )e
sq  as follows: 

 
 
 

 
 

( )
11

( )
11

);

)

(

; (

e
d d

e
s

d

s s

t t

t t

xx

xx

N 0d q

0 Nd q

    
    
    

 (4.46) 

where the shape function matrices that interpolate the kinematic and strain 
quantities, respectively, have the following expressions 

 

.

d

sym

L 0 0 0 0 0

L 0 0 0 0

L 0 0 0
N

L 0 0

L 0

L

 
 
 
 

  
 
 
 
 

 (4.47) 

 

.
s

sym

 
   
  

L 0 0

N L 0

L
 (4.48) 

In Eqs (4.47) and Eq. (4.48) the elemental shape functions matrices are 
constituted by the Lagrangian shape functions defined in the natural coordinate 
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system 1
( )

2
1 [ 1,1]

e

x

L
     , where ( )eL  is the beam element length. Moreover, the 

vector of the linear shape functions is defined as follows, 

 
     

   

1 2

1 1
1 1

2 2

L L  

 

   
   

 


L
 (4.49) 

Furthermore, the vectors of the nodal degree of freedoms divided according to 
the two groups of variables are defined as follows: 

 

2( )

( )

0 1e T uT T T T T T
d

e T eT kT k T

w w w

s

 



   
   

q q q q q q q

q q q q
 (4.50) 

with the nodal values vectors: 

 

(0) (0)
1 1 1

0 1 (1) (1)
2 2 2

2 (2) (2)
2 11 1 22

; ; ;

; ; ;T

w w

w

uT T T

T T

u u w w w w

w w     

           
          

q q q

q q q
 (4.51) 

 2 2 1 21 1; ;eT kT k Te e k k k k             q q q  (4.52) 

The elemental stiffness, mass matrices, and the elemental load vector 
( )

{3,2}2B-RZT m  element are derived according to the mixed variational statement, i.e. 

Eq. (4.12). The variational statement, neglecting the applied distributed loads, 
reads: 
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 (4.53) 
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where fF is the fth generic transversal concentrated force applied in the fx point 

on the top beam surface.  

By substituting Eq. (4.46) into Eqs. (4.53) and taking into account the Eqs. 
(4.3), (4.20) and (4.26) it is possible to obtain the full expression of stiffness and 
mass matrices and consistent load vector 
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 (4.54) 
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 (4.55) 

with 
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where 
( )( )

1 2

ee
n nF FF      represents the vector of the forces applied to the 

eth element left and right node, respectively. 

4.4.2  A new 2-node mixed RZT anisoparametric constrained 

beam element: ( )
{ , }- 3 22Bc RZT m element 

This paragraph presents the formulation of another new mixed beam element. 

As shown in the previous Section, the ( )
{3,2}2B-RZT m  element presents all the 

kinematic and strain variables interpolated by the linear Lagrangian shape 
functions. In this newly formulated element, the attention is focused on the 
penalty term. The kinematic variables that appear as derivatives in the penalty 
term are approximated with a polynomial function of one order degree higher than 
the strain counterparts. It results in an anisoparametric interpolation 
configuration. This strategy introduces a mid-node for the uniform axial 
displacement for bending and zigzag rotations. The topology of the three-node 

( )
{3,2}B-RZT m element, here named ( )

{3,2}3B-RZT m , is represented in Figure 11. 

 

Figure 11: Topology of the new ( )
{3,2}3B-RZT m element 

According to the finite element notation, in a similar way to what has been 

done for the ( )
{3,2}2B-RZT m  element, the kinematics and strain variables of the 

( )
{3,2}3B-RZT m  element are approximated as follows: 
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where the new shape function matrix that interpolates the kinematic variables 
reads:  

 

.

new
d

sym

 
 
 
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  
 
 
 
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S 0 0 0 0 0

L 0 0 0 0

L 0 0 0
N

L 0 0

S 0

S

 (4.59) 

Moreover, the shape function matric for the strain variables reads: 

 

.
s

sym

 
   
  
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N L 0

L
 (4.60) 

 

In Eq. (4.59),      1 2L L     L  are the linear Lagrangian shape 

functions defined for the ( )
{3,2}2B-RZT m  element, and the higher order shape 

functions are the Serendipity shape functions defined as follows: 

 

 

     

1 2

2

( ) ( ) ( )

1 1
1 11

2 2

mS S S   

    

S    
    

 (4.61) 

According to this interpolation, the nodal dof’s vectors are rewritten as 
follows: 

 

0
1 2 2

1 (1) (1) 2 (2) (2)
2 2

1 1

(0) (0)
1

2

1 1

2

; ;

; ;

; ;

uT T
m

T T

T T
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w

w w

u u u w w

w w w w

      

      
       

       

q q

q q

q q

 (4.62) 

 1 2 2 1 21; ;eT kT k Te e k k k k             q q q  (4.63) 
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The total number of dof’s can be reduced by enforcing a constraint condition 
on the distribution of the derivative of the strain variables at the element level. 
The constraint conditions read: 

 

2

( )2 ( )
1 1

2

( )2 ( )
1 1

2

( )2 ( )
1 1

e e

e e

e e

d u de

dx

d dk

d

x

x

dd

d dk

dx

x

dx













 (4.64) 

By adopting Eq.(4.64) it is possible to condense the mid-node nodal dof’s, 
reobtaining a simple two-node configuration. In fact, after some mathematical 
passages, the internal degrees of freedom are made dependent on the external 
dof’s, it yields, 

 
( ) ( )

1 1 2 2 1 2( ) ( ) ( ) ( )
8 8

e e

m m

L L
u L u L u S e S e        (4.65) 

 
( ) ( )

1 1 2 2 1 2) ) ) )( ( ( (
8 8

e e

m m

L L
L L S k S k          (4.66) 

 
( ) ( )

1 1 2 2 1 2( ) ( ) ( )
8 8

e e

m m

L L
L L S k S k           (4.67) 

Thus, the shape function matrix is rewritten as follows: 

 

.

n

n

n

sym

 
 
 
 
 
 
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L 0 0 S

L 0 0

L 0

L

  (4.68) 
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where 
( )

( () () )
8

e

n m m

L
S S     S  is the new shape function introduced by 

the condensation procedure. The resulting element is named after with the 

acronym ( )
{3,2}2Bc-RZT m . 

The ( )
{3,2}2Bc-RZT m  elemental stiffness, mass matrices and load vector are 

obtained according to the mixed variational statement, i.e. Eq. (4.12). For the sake 
of clarity, the variational statement, neglecting the applied distributed loads, is 
here briefly recalled reads: 
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 (4.69) 

where fF  is the generic transversal concentrated force applied in the fx  point 

on the top beam surface. 

By substituting Eq. (4.46) into Eqs. (4.53) and considering the Eqs. (4.3), 
(4.20) and (4.26), the full expression of stiffness and mass matrices and consistent 
load vector are obtained: 

 

(0) (1) (0) (0)

(0) (1) (2) (2)

(2) (3) (2)

(4)

( ) (2) (1)

(2)

(0)

(2)

(2)

.

T T T T
n

T T T T
n

T T T
n

T

e T T

T

T
n n

T
n n

T
n n

m m m m

m m m m

m m

y

m

m

m m

m

m

ms

m

m











L L 0 0 0 L L L L L S 0 0

L L L L L L 0 0 0 L S 0

L L L L 0 0 0 0 L S

L L 0 0 0 0 0

M L L L L 0 0 0

L L 0 0 0

S S 0 0

S S 0

S S

 
 
 
 
 
 
 
 





 

( )e








(4.70) 
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with 
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( )2

( )

2 4

e

e T h h
F 0 F F F 0 0 0 0 0

 
  
 

 (4.73) 

with  
( )( )

1 2

ee
n nF FF      represents the vector of the forces of the eth element 

applied to the left and right node, respectively. It is worth noting that the 
elemental nodal force vector has the same expression for both elements. 

Moreover, for ( )
{3,2}2Bc-RZT m element, due to the constraint condition to condense 

the mid-node dof’s, the elemental mass matrix have not null values on the 
diagonal for the strain degrees of freedom and presents coupling terms with the 
corresponding in-plane displacement and rotations. 
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4.5 The static condensation procedure 

As a result of the previous element formulations, both elements involve 
eighteen dof’s (nine dof’s for each node), which could be computationally 
expensive. Therefore, it is possible to adopt the static condensation technique to 
reduce the computational cost but maintain the same accuracy. At the element 
level, the governing equations are expressed as follows 

 ( ) ( ) ( ) ( ) ( )e e e e e M q K q F  (4.74) 

Explicitating in Eq. (4.74) the two groups of variables: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

e e e e e e e
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e T e e e T
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e e

d ds sss ss s

M M q K K q F

M M q K K q 0
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      

       
 

 
 
      

 (4.75) 

The second line of Eq. (4.75) could be solved statically by making ( )
s
eq  

depending on the ( )e
dq variables. It reads:  

 
( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( )

ss s s
e T e e e e e e T e

ds d ds dssK q K q 0 q K K q     (4.76) 

Substituting Eq. (4.76) into Eq. (4.75), it yields a new expression of the 
equations of motions: 

  ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )
ss

e e e e e T e e
dd d dd ds d d

  M q K K K q F  (4.77) 

Moreover, 

 
( ) ( ) ( ) ( ) ( )ˆe e e e e
dd d dd d dM q K q F  

 (4.78) 

with  ( ) ( ) ( ) 1 ( )ˆ e e e e T
dd dd s ss dK K K K  . 

It is important to note that for ( )
{3,2}2Bc-RZT m , ( ) ( ) and e e

ds ssM 0 M 0  . This 

effect introduces an approximation on the mass matrix that neglects the inertia 
effect of the strain quantities introduced by the constraint element conditions. 
However, the condensation of the strain dof’s is able to provide the exact stiffness 
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matrix for both reduced elements when the static analysis with only concentrated 
nodal forces is considered.  

The total number of dof’s of both elements is reduced from eighteen to 
twelve. For clarity, the full expressions of the reduced mass and stiffness matrices 

of ( )
{3,2}2B-RZT m  and ( )

{3,2}2Bc-RZT m  elements are not reported here; however, they 

could be easily obtained by substituting the expression of elemental stiffness and 
mass matrices in Eq. (4.77). 
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Chapter 5 

Numerical assessments 

In this Chapter, the previously developed plates and beams models are 
numerically assessed to evaluate the global and local response of multilayered 
composites and sandwich structures. The numerical results are compared with 
those coming from the three-dimensional solutions available in the current 
literature. Whenever the exact elasticity solutions are unavailable, the reference 
results are obtained through appropriate high-fidelity FE models using MSC -  
PATRAN®/NASTRAN®  commercial codes. 

In this numerical assessment, particular attention is paid to lamination 
schemes in which the effect of transverse shear coupling is not negligible. The 
angle-ply multilayered structures represent a class of laminated plates studied in 
this chapter. In the following sections, the novelties and limitations of the 

enhanced models (en-RZT and ( )
{3,2}en-RZT m ) in predicting the global and local 

responses of multilayered angle-ply structures are presented. Moreover, 
multilayered cross-ply and sandwich plates are also assessed to highlight the 
computational advantages introduced by the newly developed mixed model the 

( )
{3,2}en-RZT m . In particular, the latter model is applied to the analysis of thick 

multilayered structures for bending and free vibration analysis since the transverse 
normal deformability has been considered in the formulation. 

The newly mixed beam model has been used to evaluate the global and local 
responses of displacement, strain and stress distributions, and natural frequencies 
of thick multilayered composite and sandwich beams. In addition, analytical and 
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finite element solutions have been assessed with the high-fidelity FE models with 
NASTRAN® finite elements, better representing those created for the 
experimental campaign. 

Some of this Chapter’s contents have been subjected to publications in 
International Journals [136,137,150] or presented at International Conferences 
[149,167,168]. However, in this thesis’s work, some of the already presented 
results are further commented on and better explained to highlight the significant 
novelties and the limitations of the presented approaches. 

 

5.1 En-RZT assessment 

In this Section, the linear en-RZT plate model is assessed for static, dynamic 
and stability analysis. For simplicity, numerical examples are related to 
rectangular flat plates with the edges parallel to the axis (x1,x2), as shown in 
Figure 12. The length of the plate (in the x1 direction) is denoted with a, and the 
width (in the x2 direction) is denoted with b. The origin of the axes corresponds to 
the lower-left corner of the plate. 

 

Figure 12: Rectangular plate dimensions and coordinate system. 

  

Table 1 and Table 2 report the materials properties and laminate stacking 
sequences, respectively, of the investigated multilayered composite and sandwich 
plates for the en-RZT assessment. 
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Table 1:Material nomenclature and properties. The elastic moduli are given in GPa, 
and the mass density in kg/m3. 

Material 
Name 

E1 E2 E3 ν12 ν 13 ν 23 G12 G13 G23 ρ 

A 175 7 7 0.25 0.25 0.25 3.5 3.5 1.4 - 
B 157.4 9.584 9.584 0.32 0.32 0.49 5.93 5.93 3.227 - 
C 0.104 0.104 0.104 0.3 0.3 0.49 0.5 0.5 0.35 - 
D 40 1 1 0.25 0.25 0.25 0.6 0.6 0.5 1 
E 15 1 1 0.3 0.3 0.35 0.5 0.5 0.35 1 
F 1 1 1 0.3 0.3 0.3 0.39 0.39 0.39 - 
G 14 1 1 0.3 0.3 0.49 0.533 0.533 0.323 1 

 

Table 2: Laminate stacking sequences (starting from the bottom layer) and 
nomenclatures. The orientations are given in degrees. 

Laminate 
ID 

Normalized thickness 
𝒉(𝒌)/𝒉 

Lamina 
materials 

Lamina orientations [°] 

L1 (0.5/0.5) (A/A) (0/90) 
L2 (0.25/0.5/0.25) (A/A/A) (0/90/0) 
L3 (0.5/0.5) (A/A) ( /  ) 
L4 (0.05/0.05/0.8/0.05/0.05) (B/B/C/B/B) (30/-45/0/45/-30) 
L5 (0.25/0.5/0.25) (A/A/A) (30/-30/30) 
L6 (0.25/0.25/0.25/0.25) (D/D/D/D) ( / / /     ) 

L7 
1 1

/
nn n

 
 
 

 (E/E)n ( /  )n 

L8 (0.25/0.5/0.25) (E/E/E) (+45/-45/+45) 
L9 (0.1/0.1)5 (E/E)5 ( /  )5 
L10 (0.3333/0.3333/0.3333) (A/A/A) (45/-45/45) 
L11 (0.25/0.25/0.25/0.25) (G/G/G/G) (45/-45/45/-45) 

L12 
1 1

/
nn n

 
 
 

 (D/D)n (45/-45)n 

S1 0.05/0.05/0.8/0.05/0.05 (D/D/F/D/D) (+45/-45/0/-45/+45) 
S2 0.05/0.05/0.8/0.05/0.05 (D/D/F/D/D) (+45/-45/0/+45-45) 

5.1.1 Enhanced zigzag functions 

As shown in Chapter 2, one of the major novelties of the en-RZT is its 
generalized formulation for the analysis of multilayered plates. The enhanced 
zigzag functions are characterized for general laminated structures in which the 
effect of transverse shear coupling is assumed to be present. However, if the 
lamination scheme does not exhibit this behaviour, the zigzag functions 
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formulated according to the standard RZT are easily recovered. In order to 
highlight this important aspect of generalization, in the following examples, the 
enhanced zigzag functions and the standard ones are computed and compared for 
several lamination schemes that include/neglect the effect of transverse shear 
coupling. In the following figures, the label “standard” means the zigzag functions 
computed according to the formulation of the standard RZT. Whereas the label 
“enhanced”  refers to the zigzag functions computed according to the enhanced 
linear RZT model. 

The first laminate considered is a two-layered anti-symmetric cross-ply 
named L1. A second laminate type that does not include the transverse shear 
coupling effect, named L2, is a three-layered symmetric cross-ply. 

 

 

Figure 13: Standard and enhanced zigzag functions for anti-symmetric cross-ply 
(L1). 
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Figure 14: Standard and enhanced zigzag functions for symmetric cross-ply (L2). 

It is clear from Figure 13 and Figure 14 that the zigzag functions 𝜙ଵଶ and 𝜙ଶଵ 
are not evaluated in the standard zigzag formulation. However, as expected in the 
enhanced formulation, they remain null across the entire thickness because the 
effect of transverse shear coupling is not present in these laminate configurations. 
Moreover, the through-the-thickness distributions of the two zigzag functions 
reported in Figure 13 and Figure 14 are the same and no differences in their 
values are obtained. 

The novelty introduced by the enhanced model is shown in Figure 15. A two-
layered anti-symmetric angle ply (L3) is considered with 15° as absolute value of 

the lamination angle. The standard zigzag functions are null due to the anti-
symmetric lamination scheme in which the transformed transverse shear stiffness 

coefficients, i.e. ( )
44

kC


and ( )
55

kC


, are constant along the whole thickness. In addition, 

the standard RZT cannot describe the expected transverse shear coupling, whereas 
the en-RZT is able to include it. Moreover, it is worth noting that in the enhanced 

model, zigzag functions, 11 22 and   , are still null. Furthermore, considering the 
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three-dimensional elasticity solution provided by Savoia and Reddy [13], the 
transverse shear coupling effect produces layer-wise distributions very similar in 

their shapes to those represented by 12 21 and    functions. Moreover, the two 

enhanced zigzag functions allow using the RZT kinematics to investigate these 
structures.  

Thus, the standard RZT is not able to investigate this typology of multilayered 
structures, in which the lamination scheme is characterized by periodic laminates 
with the same absolute value for the lamination angle. As a result, the zigzag 
functions are null in such cases, and the RZT model degenerates into the FSDT. 

 

 

Figure 15: Standard and enhanced zigzag functions for anti-symmetric angle-ply 
(L3). 

Figure 16 reports the computed standard and zigzag functions related to an 
anti-symmetric multilayered sandwich plate. The same plate has been studied 
statically in the original standard RZT formulation, see Ref. [103]. The presence 
of the isotropic core layer in the laminate stacking sequence allows the standard 
formulation to compute the zigzag functions. However, it is important to note that 
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the enhanced formulation can also compute the coupling functions. Particular 
attention should be paid to the order of magnitude of the coupling function: its 
value is almost negligible with respect to the values of the other two functions. 

Although the 11 22 and    seems to be the same for the two formulations, very few 

differences are present. However, the coupling effect neglected in the original 
formulation has been a valid approximation explained a-posteriori, thanks to the 
enhanced zigzag functions. 

  

 

 

Figure 16: Standard and enhanced zigzag functions for an anti-symmetric angle-ply 
sandwich (L4). 

Even if the standard RZT model works well, i.e. angle-ply sandwich plates, 
the enhancement must be considered in a general way to achieve more reliable 
results without any approximations. 
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5.1.2 Static, free vibration and stability problems 

In the following examples, the static, stability and free vibration problems are 
assessed. Specifying the boundary conditions and loads applied to the plate is 
necessary to compute the structure's response. The boundary conditions provided 
in Chapter 2 for the en-RZT plate are expressed in terms of the plate dimensions 
and lamination schemes. 

For cross-ply multilayered composite and sandwich plates simply-supported 
on all edges, the set of boundary conditions, here named SS-1, reads 

 Along the edges 1 0,x a : 12 1 11 11 0u w N M M       

 Along the edges 2 0,x b : 21 2 22 22 0u w N M M      

For anti-symmetric angle-ply simply-supported on all edges, the boundary 
conditions, here named with SS-2, read 

 Along the edges 1 0,x a : 21 1 11 11 0u w N M M       

 Along the edges 2 0,x b : 22 1 22 22 0u w N M M      

The traction-free boundary conditions read, 

 Along the edges 1 0,x a :

 11 12 11 12 11 12 1 0N N M M M M Q         

 Along the edges 2 0,x b :

 12 22 12 22 12 22 2 0N N M M M M Q         

At last, the clamped boundary conditions read 

 Along the edges 1 0,x a : 1 2 1 2 1 2 0u u w            

 Along the edges 2 0,x b : 1 2 1 2 1 2 0u u w            

Due to the mathematical difficulty in obtaining an exact analytical solution of 
the governing equations for any boundary conditions and load cases, the en-RZT 



Chapter 5 Numerical assessments 
__________________________________________________________________ 

111 

 

analytical solutions using Navier’s method are obtained only for plates with 
simply-supported edges under bi-sinusoidal load pressure.  

For cross-ply plates (SS-1) under bi-sinusoidal transverse pressure and free 
vibration problems, the assumed solution involves the following trigonometric 
expansions [135]: 

 

   

   

   

1

1

1 1 1

1 1
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  
  


  (5.1) 

where  1 2 1 2, , , , , ,U V W      are the unknown amplitudes of the kinematic 

variables.  

For simply-supported (SS-2) anti-symmetric angle-ply laminates, the 
trigonometric expansion that satisfies the equations of motion and BCs differs 
from Eq. (5.1) only for the u1 and u2 variables. They are given by  

    
   

21 1

12 2

sin / cos /

cos / sin /

u U a b

u xV a

x x

x b

 

 




 (5.2) 

For any other boundary conditions cases or more general lamination scheme, 
the en-RZT exact analytical solution does not exist, and an approximated method 
should be used. An approximated solution has been developed using the Ritz 
method and has been implemented in Ref. [169], where it has been assessed that 
11 orthogonal polynomials in each direction are enough to obtain the converged 
approximate solutions. 

The non-dimensional quantities, if not otherwise specified, are defined as 
follows: 
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where (1)
2E  and (1)  are the Young modulus in the in-plane transverse 

direction and the mass density of the first layer, respectively. Moreover, in Eq. 
(5.3), 0p is the maximum intensity of applied transverse pressure. 

 

5.1.2 Linear bending 

In this section, the linear bending analysis of general simply-supported 
multilayered composite and sandwich plates is assessed. Since the enhanced 
zigzag functions are able to give the same results as the standard ones for cross-
ply lamination schemes, only angle-ply stacking sequences are considered in this 
study. The three-dimensional solution for the investigated angle-ply plates has 
been obtained by Savoia and Reddy [13]. 

Problem 1 

This first numerical assessment considers a simply-supported (SS-2) two-
layered angle-ply plate (L3) subjected to a bi-sinusoidal transverse pressure 

   3 1 2 0 1 2sin n( , i /) / sp bx x p x a x  . Table 3, Table 4 and Table 5 report the 

normalized central maximum deflections computed using the en-RZT compared 
with the 3D solution of Savoia and Reddy [13] for various span-to-thickness ratios 
and plate geometry. For comparison purposes, other models are also considered, 
the CLT [170], FSDT [29] with Raman and Davalos shear correction factor [33], 
Reddy’s TSDT [54] and the linear Di Sciuva’s ZZT [89]. The shear correction 
factor for the investigated laminates has been reported at the bottom of each plate. 
As remarked previously, the RZT has not been considered in this assessment since 
the null zigzag functions lead to degenerating into the FSDT. 
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Table 3: Normalized maximum deflections for simply-supported (SS-2) thick 
(a/h=4) square (a/b=1) angle-ply plates (L3) under bi-sinusoidal transverse pressure. 

 oΥ [ ] 3D [13] En-RZT ZZT TSDT 
FSDT 

൫𝒌𝟏
𝟐 = 𝒌𝟐

𝟐 = 𝒂𝒅 𝒉𝒐𝒄൯ 
CLT 

15 1.7059 1.6054 1.5111 1.6594 1.7571(a) 0.6205 

30 1.7297 1.6358 1.3250 1.6005 1.8765(b) 0.6842 

45 1.6887 1.5926 1.2106 1.5497 1.9154(c) 0.6547 
(a) 𝑘ଵ

ଶ = 𝑘ଶ
ଶ =  0.8384; (b) 𝑘ଵ

ଶ = 𝑘ଶ
ଶ =  0.7605; (c)𝑘ଵ

ଶ = 𝑘ଶ
ଶ =  0.7176. 

 

Table 4: Normalized maximum deflections for simply-supported (SS-2) moderately 
thick (a/h=10) square (a/b=1) angle-ply plates (L3) under bi-sinusoidal transverse 
pressure. 

 oΥ [ ] 3D [13] En-RZT ZZT TSDT 
FSDT 

൫𝒌𝟏
𝟐 = 𝒌𝟐

𝟐 = 𝒂𝒅 𝒉𝒐𝒄൯ 
CLT 

15 0.8027 0.7821 0.7724 0.7952 0.8062(a) 0.6205 

30 0.8568 0.8388 0.8085 0.8355 0.8751(b) 0.6842 

45 0.8250 0.8068 0.7774 0.8028 0.8564(c) 0.6547 
(a) 𝑘ଵ

ଶ = 𝑘ଶ
ଶ =  0.8384; (b) 𝑘ଵ

ଶ = 𝑘ଶ
ଶ =  0.7605; (c)𝑘ଵ

ଶ = 𝑘ଶ
ଶ =  0.7176. 

 

Table 5: Normalized maximum deflections for simply-supported (SS-2) thick 
(a/h=4) rectangular (a/b=1/3) angle-ply plates (L3) under bi-sinusoidal transverse 
pressure. 

 oΥ [ ] 3D [13] En-RZT ZZT TSDT 
FSDT 

൫𝒌𝟏
𝟐 = 𝒌𝟐

𝟐 = 𝒂𝒅 𝒉𝒐𝒄൯ 
CLT 

15 2.4903 2.3578 2.2711 2.4302 2.5883(a) 1.0778 

30 3.4118 3.2606 2.8696 3.2462 3.6599(b) 1.8257 

45 4.7596 4.5650 3.9749 4.5582 5.1791(c) 2.8142 
(a) 𝑘ଵ

ଶ = 𝑘ଶ
ଶ =  0.8384; (b) 𝑘ଵ

ଶ = 𝑘ଶ
ଶ =  0.7605; (c)𝑘ଵ

ଶ = 𝑘ଶ
ଶ =  0.7176. 
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As shown in Table 3, Table 4 and Table 5, the en-RZT is able to provide 
enough accurate results for maximum deflection of thick and moderately thick 
square and rectangular angle-ply plates. Although the FSDT seems to give more 
accurate results, the en-RZT does not require any shear corrector factor to achieve 
the same level of accuracy. Therefore, the TSDT can give accurate results in this 
case, but it is known that from a computational point of view, this theory requires 
C1-continuity of the shape functions. Moreover, it cannot predict the correct 
transverse shear stress distributions at clamped edges and satisfy the transverse 
shear stress continuity at the layer interfaces. In addition, the TSDT, when used 
for thick angle-ply laminate, cannot predict the correct variation of stiffness with 
the lamination angle. As a further comparison with other existing zigzag models, 
the linear ZZT is accurate enough for moderately thick plates to predict the 
maximum transverse displacements. However, it leads to higher errors for thick 
cases, in which the non-linear effect on the through-the-thickness distributions 
and the transverse normal deformability are predominant.  

 

Problem 2 

In this second problem, an anti-symmetric angle-ply sandwich plate (L4) 
under bi-sinusoidal transverse pressure and simply-supported on all edges (SS-2) 
is here considered. This kind of laminate could be investigated using the standard 
RZT since the presence of the core layer in the lamination scheme guarantees the 
model's ability to compute the zigzag functions. 

In Table 6, the results of maximum central displacements are reported and 
computed using different methods in defining the zigzag functions. It is important 
to remark that the standard RZT is able to investigate this multilayered angle-ply 
structure only because it is a sandwich structure. Moreover, the reported results 
indicated with the label RZT(CIα) are obtained through the standard formulation 
of RZT but compute the zigzag slope differently. Its expression is here reported 
from Ref. [134], and it reads: 

 
( )

( )

1

( ) ( ) )
1

;        1            ( 1,2k k
kN
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C h S
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 
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  . 
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It should be noted that this particular expression is able to give the same 
zigzag slope of en-RZT only for ( ) ( )

1 1 2 2,k k  , but it cannot compute the transverse 

shear coupling contributions necessary for the most general angle-ply laminates. 

 

Table 6: Normalized maximum deflections for simply-supported (SS-2) thick 
(a/h=5, a/b=1) angle-ply sandwich plate (L4) under bi-sinusoidal transverse pressure. 

3D [134] En-RZT RZT [134] RZT (CIα) [134] ZZT [134] 

44.2299 44.1582 44.1629 44.1663 36.7866 
 

As shown in Table 6, the en-RZT and RZT with the (CIα) method for the 
zigzag functions are more accurate than the other models if compared with the 
three-dimensional result.  As anticipated in the previous section in the enhanced 
zigzag function assessment, a transverse shear coupling is expected to be 
negligible for this laminate configuration due to the presence of the isotropic core 
layer. In fact, as reported in Table 6, the values for the normalized maximum 
deflection given by these models are almost the same. Furthermore, despite its 
ability to include the transverse shear coupling effect and enforce the complete 
transverse shear continuity across the entire laminate, the Di Sciuva’s zigzag 
model overestimates the core layer's stiffness resulting in lower values for the 
displacements with respect to the exact 3D solution. 

Problem 3 

To further assess the accuracy of en-RZT, especially in through-the-thickness 
distributions of local quantities, the case of a three-layered symmetric angle-ply 
laminate (L5) is studied. The problem considered here is the case of cylindrical 
bending under transverse pressure. For this problem, the three-dimensional 
elasticity solution has been obtained by Pagano [5]. In order to study this 
configuration according to the provided Navier’s solution, it should be replicated, 
as highlighted by Pagano [5], the plane strain condition in which the kinematic 

variables do not have any variation along the 2x  axis. This condition could be 

reached using the proposed Navier’s method with the trigonometric functions 

indicated previously by considering the plate along the 2x  axis of infinite width or 
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a value sensibly higher (such as / 1000b a  ) than the length in 1x  direction. This 

particular configuration guarantees that the simply-supported edges at 2 0,x b  

do not influence the plate behaviour under cylindrical bending assumptions, and 

the applied load tends to assume the form of a single sine along the 1x  direction, 

i.e.  3 1 0 1( ) sin /p x p x a .  

The three-dimensional elasticity solution for anisotropic laminated structures 
in cylindrical bending has been provided by Pagano [5], and it has been used as 
reference solution. The FSDT has also been used for comparison purposes, and 
the provided results consider a shear correction factor 2 2

1 2 5 / 6k k  . 

The transverse shear stress distributions obtained using the FSDT,  Di 
Sciuva’s ZZT and en-RZT are compared with the exact three-dimensional 
solution. The transverse shear stresses are evaluated by integrating the 3D local 
equilibrium equations to evaluate the prediction capabilities of through-the-
thickness behaviour better. Even if the transverse shear stresses computed using 
the constitutive material relation are correct in an average sense, the integrated 
ones are considered only in evaluating the maximum values and the distribution at 
the layer interfaces.  

Figure 17  shows the through-the-thickness distributions of in-plane and 
transverse displacement and stresses of thick (a/h=4) angle-ply laminate (L5). 
The effect of transverse normal deformability has made less influence in the three-
dimensional solution by dividing equally the transverse normal load into two 
pressures applied on top and bottom external surfaces. 
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Figure 17: Cylindrical bending of symmetric angle-ply laminate (L5), simply-
supported under sinusoidal transverse pressure (a/h=4). In f) and g), the values are 
computed using the integration of local equilibrium equations. 

 

As shown in Figure 17-a) and b), the en-RZT through-the-thickness in-plane 
distributions are very close to the three-dimensional ones. In Figure 17-c), the en-
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RZT is the constant value closer to the transverse displacement pattern. Although, 
as expected, the three-dimensional behaviour demonstrates a through-the-
thickness non-linear pattern of the displacements and stresses, see from Figure 17-
a) to Figure 17-e), the linear en-RZT distributions agree with the 3D Pagano’s 
solution, whereas the other theories are less accurate.  

The transverse shear stress distributions, computed a-posteriori through the 
integration of local equilibrium equations, are very close to the exact 3D results, 
especially at the layer interfaces. Furthermore, the en-RZT with respect to Di 
Sciuva’s zigzag model gives a through-the-thickness distribution closer to the 
exact one in the internal layer. One of the advantages of the en-RZT and the 
standard RZT is the partial transverse shear stress continuity for the definition of 
the zigzag functions that are able to predict the transverse shear deformability 
more precisely. 

5.1.3 Linear buckling 

This section evaluates the critical buckling loads of multilayered angle-ply 
laminated plates computed using the en-RZT. Based on the static results' 
accuracy, this numerical investigation aims to provide some benchmark results for 
future comparisons. In addition, the effects of in-plane load combination, 
boundary conditions, geometries and lamination stacking sequences are addressed 
to investigate the critical behaviour of laminated angle-ply plates. Due to the lack 
of three-dimensional results in the literature framework related to the buckling of 
angle-ply structures, the numerical comparisons shown in this Section are made 
with other existing refined higher-order models. The results reported in this 
section have been presented in Ref. [137] and are further explained. If not 

otherwise specified, the normalized critical buckling load ( cr ) is computed as 

follows: 

 
2

(1) 3
2

cr E

a

h

   (5.5) 

where (1)
2E is the Young’s modulus in the in-plane transverse direction of the 

first layer. Note that 11P   and 22
11

11

Pr
P

 . 

As highlighted in Chapter 2, for anti-symmetric angle-ply lamination 
schemes, the pre-buckling state where the plate remains flat is possible only when 
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only in-plane normal loads are applied and for simply-supported and clamped 
boundary conditions. Thus, no in-plane shear loads are applied in the investigated 
examples for these multilayered plates. Clearly, this condition does not apply to 
the symmetric angle-ply structures since the plate remains flat till the buckling 
load is reached when in-plane compressive and shear loads are applied  

Problem 1  

This first numerical example for buckling analysis considers a simply-
supported (SS-2) four-layered (L6) antisymmetric angle-ply plate subjected to a 

uniaxial compressive load  11P  acting in the 1x  direction. The solution has been 

obtained using the Ritz method, where eleven orthogonal Gram-Schmidt functions 
have been used. The results taken as reference solution for this problem have been 
provided by Matsunaga [171]. However, as stated by Matsunaga in Ref. [171], his 
developed two-dimensional higher-order theory underestimates the stiffness of 
laminated structures when applied to the bending problems with respect to the 
three-dimensional solution. Thus, this similar behaviour is expected for critical 
buckling loads and needs to be addressed in the comparison. 

Table 7: Critical buckling loads (in N/mm) for uniaxial compressive loads of 
laminate L6, simply-supported on all edges (SS-2). 

  a/b 

a/h  oΥ [ ] 0.5 1 2 

  Ref. [171] En-RZT Ref. [171] En-RZT Ref. [171] En-RZT 

10 

30 0.1592 0.1786 0.2889 0.3381 0.7939 0.9833 

45 0.1269 0.1425 0.3134 0.3714 1.0806 1.3760 

60 0.08547 0.09378 0.2889 0.3381 1.2924 1.6228 

20 

30 0.5307 0.5512 0.1054 0.1115 0.3417 0.3751 

45 0.04114 0.04269 0.1169 0.1244 0.5078 0.5699 

60 0.02630 0.02706 0.1054 0.1115 0.6369 0.7142 

50 

30 0.009377 0.009440 0.01939 0.01959 0.06927 0.07057 

45 0.007188 0.007234 0.02174 0.02199 0.1093 0.1120 

60 0.004503 0.004525 0.01939 0.01959 0.1416 0.1452 
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The comparison provided by Table 7 shows the combined effect of lamination 
schemes, plate geometry and span-to-thickness ratio. As expected, the en-RZT 
critical values are slightly higher than the reference ones. Furthermore, with the 
increasing of the span-to-thickness ratio, the en-RZT results are closer to those of 
Matsunaga’s model. In fact, the effect of shear deformability decreases when the 
span-to-thickness ratio reaches the values of thin plates. As expected, the critical 
buckling loads are very sensible to the lamination angles and geometry for thicker 
plates. Therefore, the combination of them could increase/decrease its value, 
confirming the tailoring properties of composite material to optimize the structural 
response. 

 

Problem 2  

In this second example, the effect of various design parameters, such as the 
number of layers, ply orientations, aspect ratio, boundary conditions, and 
lamination symmetry/asymmetry, has been addressed in the computation of the 
critical buckling loads.  

Due to the impossibility of obtaining the analytical solution for the various 
cases, the provided results are computed through the approximated Ritz method. 
The minimum number of orthogonal Gram-Schmidt polynomials used to reach the 
converged solutions is eight. In the following, S stands for the edge simply-
supported and C for clamped edge. In the next examples, the simply-supported 
condition is referred to the SS-2 case since antisymmetric angle-ply lamination 
schemes are considered. 

In Figure 18 and Figure 19,  the normalized buckling loads are reported for 
different boundary conditions, number of layers and lamination angles. Figure 18 
and Figure 19, respectively, address the effect of uniaxial or biaxial (r11=1) 
compressive loads. All the plates have a span-to-thickness ratio equal to eight 
(a/h=8). Three different sets of boundary conditions are considered: simply-
supported on all edges (SSSS); simply-supported (SS-2) on two edges 
perpendicular to x1 axis, the other two edges are clamped (SCSC);  fully clamped 
plate (CCCC).  
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Figure 18: Uniaxial buckling parameters for L7 square plates. 
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Figure 19: Biaxial buckling parameters for L7 square plate. 

 

The effect of the number of layers on the critical buckling loads is represented 
in Figure 18 and Figure 19. As expected, the critical load parameter is higher for 
plates with more layers at the same geometric configuration (aspect ratio and 
span-to-thickness ratio). In fact, this typical behaviour could be commonly found 
in the literature framework, and its trend is to approximate the isotropic behaviour 
of metal panels. It is interesting to note the effect on the buckling load parameter 
given by the material anisotropy as a consequence of the lamination angle. In the 
SSSS case for the uniaxial compressive load, the maximum values of the critical 
buckling load do not correspond to the 45° case, as Jones [2] reported for the 
Classical Laminate Theory. In fact, the en-RZT is able to predict more precisely 
the effect of transverse shear coupling due to the more pronounced laminate 
anisotropy.  Differently, when the plates are under biaxial compressive loads, the 
effect of anisotropy of the lamination angle in two-layered structures is almost 
irrelevant at the various boundary conditions. In addition, in biaxial compressive 
cases and multilayered plates with more than two layers, the highest value for the 
critical buckling load is reached at 45°.  

Figure 20 shows for a four-layered antisymmetric angle-ply (a/b=1) plate (L6) 
the effect of boundary conditions on the buckling loads for uniaxial and biaxial 
cases. As expected, the boundary condition strongly influences the buckling load 
parameter, and the fully clamped case can give the highest critical values for any 
orientation angle. 
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Figure 20: Effect of BCs on buckling parameter for a) uniaxial (r11=0) and b) biaxial 
(r11=1) compressive load on L6 plate. 

  

In the following examples, symmetric square and rectangular angle-ply plates 
are investigated. Due to the symmetric lamination scheme, the simply-supported 
SS-1 conditions are considered here. Moreover, different combinations of 
boundary conditions and load combinations are addressed. 

The laminate (L8) is manufactured with three layers oriented with an absolute 
value of the lamination angle of 45°. Table 8 reports the buckling load parameters 
computed for a span-to-thickness ratio of eight, varying the boundary conditions 
and the aspect ratio. 

Table 8: Buckling load parameters for symmetric angle-ply rectangular plate (L8). 

 
r11=0 r11=1 

a/b 0.5 1 2 0.5 1 2 

SFSF (SS-1) 2.444 2.044 1.369 2.118 1.774 1.254 

SSSS (SS-1) 5.384 12.942 21.783 4.299 6.569 10.618 

SCSC (SS-1) 9.659 14.369 21.773 8.081 8.524 11.030 

CCCC 9.931 15.288 21.898 8.145 9.743 14.606 

 

As expected, Table 8 shows a significant reduction in critical values for  
biaxial load compression cases. On the contrary, the geometry effect could 
increase or decrease these values, depending on the boundary conditions.  
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As a final comparison, the effect of boundary conditions and lamination 
scheme is investigated for sandwich plates with symmetric and antisymmetric 
face-sheets. For this numerical example, two cases are considered: simply-
supported on all edges (SS-1) and fully clamped on all edges (CCCC). In Figure 
21 are displayed the corresponding buckling mode shapes and normalized 
buckling loads for uniaxial compression. 

It is interesting to note, from Figure 21, that for the lowest buckling load 
value, the corresponding buckling mode shape is not typical, with one half-wave 
in each direction. 

 

 

Figure 21: Buckling mode shape for sandwich S1 (a-b) and S2 (c-d) under uniaxial 
compressive load. Simply-supported on all edges (SSSS) for cases a) and c), fully 
clamped (CCCC) for c) and d). 

5.1.4 Free vibrations 

In this Section, the free vibration problem for general multilayered composite 
plates is numerically assessed using the en-RZT. More specifically, the en-RZT 
results for the fundamental frequencies have been compared with those available 
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in the current literature, coming from the three-dimensional elasticity or other 
higher-order models. According to Navier’s method, the analytical solution can be 
obtained for the simply-supported condition on all plate edges. The trigonometric 
functions that satisfy the boundary conditions of simply-supported (SS-2) angle-
ply multilayered plates read: 
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 (5.6) 

where  1 2 1 2, , , , , ,U V W      are the unknown amplitudes of the kinematic 

variables and 0  is the fundamental circular frequency. 

An approximate solution is available using the Ritz method for the other 
boundary conditions or different lamination schemes. The converged solution for 
the fundamental frequency is ensured by using eleven orthogonal Gram-Schmidt 
polynomials. 

Problem 1 

In this first example, the fundamental frequencies of a squared ten-layered 
anti-symmetric angle-ply (L9) plate are evaluated using the en-RZT. The square 
plate (a/b=1) is simply-supported (SS-2) on all edges, and for this laminate, 
various span-to-thickness ratios (a/h) are considered. The exact three-dimensional 
solution of the fundamental frequencies varying the lamination angle has been 
obtained by Noor and Burton [12], and it has been considered here as the 
reference solution. 

In Table 9 are listed the fundamental non-dimensional frequencies computed 
using various models. In the FSDT, it has been considered a shear correction 
factor 𝑘ଵ

ଶ = 𝑘ଶ
ଶ = 1 to compute the fundamental frequency. The CLT results 

include the contribution of rotary inertia. From Table 9, the fundamental 
frequencies are predicted using the en-RZT with errors that do not exceed 7% for 
very thick plates (span-to-thickness ratio of 4). Although the en-RZT includes the 
effect of transverse shear coupling in its formulation, the transverse normal 
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deformability is still neglected, and this assumption limits the range of 
applicability. Similar results have also been obtained using the linear Di Sciuva 
ZZT. Reddy’s TSDT seems to predict the fundamental frequencies of angle-ply 
structures quite accurately, but it should be noted (from the static analysis) that the 
transverse shear description is not always correct. As expected, the FSDT results 
are sensitive to the shear correction factor and when it is not considered, the 
predicted frequencies differ from the exact solution. As expected, CLT 
overestimates the non-dimensional fundamental frequencies but is considered a 
benchmark test when the en-RZT is applied for thin plates. As shown in Table 9, 
the en-RZT non-dimensional frequencies are coherent with those computed with 
other theories, especially with the linear ZZT in which the local kinematic field is 
formally consistent. The differences in the zigzag function formulation are the key 
to the predictivity capabilities of the two zigzag models.  

Table 9: Non-dimensional fundamental frequencies (1) 2 (1)
0 0 2/ Eh    of simply-

supported (SS-2) ten-layered anti-symmetric angle-ply square plate (L9). 

oΥ 15  

a/h 3D [12] en-RZT ZZT [89] TSDT [54] FSDT [29] CLT [170] 
4 0.4934 0.5192 0.5157 0.4958 0.5202 0.7898 
5 0.3588 0.3748 0.3729 0.3601 0.3755 0.5147 
10 0.1162 0.1184 0.1182 0.1163 0.1185 0.1319 
100 0.001328 0.001328 0.001328 0.001328 0.001328 0.001330 

oΥ 30  

4 0.5286 0.5629 0.5456 0.5374 0.5666 0.8992 
5 0.3889 0.4105 0.3983 0.3940 0.4127 0.5858 
10 0.1296 0.1328 0.1305 0.1303 0.1331 0.1500 
100 0.001510 0.001511 0.001510 0.001510 0.001511 0.001513 

oΥ 45  

4 0.5400 0.5773 0.5547 0.5517 0.5825 0.7854 
5 0.3993 0.4231 0.4056 0.4061 0.4263 0.6186 
10 0.1351 0.1388 0.1349 0.1361 0.1392 0.1585 
100 0.001595 0.001595 0.001594 0.001595 0.001595 0.001598 

 

Problem 2 

Another example shows the analysis of the fundamental frequencies of a 
square symmetric angle-ply plate (L10) under different boundary conditions. Due 
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to the lamination scheme and the considered boundary conditions, an 
approximated solution using the Ritz method has been used to compute the 
fundamental undamped frequencies. Since the three-dimensional solution is not 
available, the results of the higher-order zigzag model of Di Sciuva and Icardi 
[172] have been compared. The author combined Reddy’s TSDT and the linear 
zigzag model in their model, obtaining the Refined Higher-order Shear 
Deformation Theory (RHSDT). In Table 10 are quoted the non-dimensional 
fundamental frequencies obtained by Di Sciuva and Icardi [172] using finite 
elements formulated with RHSDT. Further comparisons are made with finite 
elements formulated using the FSDT with shear correction factor  𝑘ଵ

ଶ = 𝑘ଶ
ଶ = 5/

6, the TSDT and the linear Di Sciuva’s ZZT (RFQ40). The fundamental 
frequencies are evaluated for three sets of boundary conditions: the first is the 
simply-supported (SS-1) on all edges, here named SSSS; the second considers two 
opposite edges simply-supported clamped the others (SCSC); the third assumes a 
fully clamped plate (CCCC). The fundamental frequencies computed using the 
en-RZT, as shown in Table 10, agree with those predicted by other models. As 
expected, the frequency estimation differences using various models decrease 
with the increase of the span-to-thickness ratio. 

Table 10: Non-dimensional fundamental frequencies for symmetric angle-ply square 
plate (L10) for various boundary conditions. 

 FSDT [172] TSDT [172] ZZT [172] RHSDT [172] en-RZT 

a/h SSSS 

10 13.766 13.163 12.692 12.909 12.604 

50 16.606 16.545 16.505 16.467 16.594 

               CCCC 

10 18.969 17.586 17.606 17.242 15.934 

50 27.207 26.936 26.917 26.794 26.417 

               SCSC 

10 15.571 15.519 15.487 15.177 14.084 

50 22.253 22.088 22.061 21.981 21.633 

A second plate case with a different lamination scheme is also considered.  
The fundamental frequencies of an anti-symmetric four-layered angle-ply (L11) 
under various boundary conditions have been computed using the en-RZT and 
compared with the reference results provided by Di Sciuva and Icardi [172] using 
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finite elements for FSDT, TSDT and RHSDT models. In Table 11 are reported the 
results for the non-dimensional fundamental frequencies considering a span-to-
thickness ratio of 20.   

 Table 11: Non-dimensional fundamental frequencies for relatively thick 
(a/h=20) anti-symmetric angle-ply square plate (L11) under various boundary 
conditions. 

 

FSDT [172] TSDT [172] RHSDT [172] en-RZT 

SSSS 13.769 13.645 13.576 13.364 

SCSC 18.117 17.814 17.783 17.298 

CCCC 21.710 21.255 21.242 20.650 

Results of Table 10 and Table 11 prove that en-RZT is able to guarantee the 
same accuracy as the higher order zigzag theory (RHSDT) to predict the 
fundamental frequency for relatively thick angle-ply plates. 

Problem 3 

As a final comparison, the non-dimensional frequencies of various simply-
supported (SS-2) anti-symmetric angle-ply square plate is done. The laminate 
named (L12) presents three different lamination schemes (reported in Table 12). 
For each lamination scheme and various aspect ratios, the fundamental frequency 
of the en-RZT is compared with the reference results computed using a twelve-
variable refined theory developed by Swaminathan and Patil [173]. It is revealed 
that the en-RZT results are coherent with those provided by other refined models 
for a wide range of lamination schemes and span-to-thickness ratios. 

Table 12: Non-dimensional fundamental frequencies for simply-supported angle-ply 
(L12) square plate. 

 
a/h 4 5 10 25 50 100 

(45/-45) 
Ref. [173] 8.8426 10.0350 12.9115 14.3500 14.6012 14.6668 

en-RZT 8.7596 9.9353 12.8211 14.2899 14.5481 14.6150 

(45/-45)2 
Ref. [173] 10.0731 11.9465 17.8773 22.2554 23.1949 23.4499 

en-RZT 11.4573 13.4370 19.0657 22.5932 23.2830 23.4660 

(45/-45)4 
Ref. [173] 10.7473 12.7523 19.1258 23.8713 24.8959 25.1741 

en-RZT 11.6321 13.7316 19.9614 24.1221 24.9647 25.1900 
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5.2 Assessment of the ( )
{ , }- 3 2en RZT m  

In this section, the ( )
{3,2}en-RZT m

 is numerically assessed for static bending and 

free vibration problems. As anticipated, some of the contents of this assessment 
have been published in Ref. [150]. However, the published results are here further 
commented on and assessed. By considering a rectangular plate, the boundary 
conditions expressed in Chapter 3 can be specified as follows: 

 SS-1  Simply-supported cross-ply and sandwich plates 
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 SS-2  Simply-supported antisymmetric angle-ply 
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Due to the lack of numerical results available in the literature that consider the 
effect of the in-plane tractions and in order to use the analytical solution provided 
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by Navier’s method, the in-plane prescribed tractions on top and bottom surfaces 
are neglected, thus: 

 1( ) 1( ) 2( ) 2( )0; 0; 0; 0B T B Tp p p p     (5.9) 

If not otherwise specified, the transverse pressures (assumed as sinusoidal 
functions) applied to the bottom and top surfaces have the following expressions: 
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where 3( )Bq and 3( )Tq  are the maximum values. 

The exact analytical solution is available through Navier's method for this 
boundary value problem. For cross-ply rectangular multilayered plates with 
simply-supported boundary conditions (SS-1) under bi-sinusoidal transverse 
pressure, the equilibrium equations and the boundary conditions can be satisfied 
by the following set of trigonometric functions: 
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where ;  m n
m n

a b
     (m, n are half-wave numbers in x1 and x2 

directions, respectively). 

Furthermore, for antisymmetric angle-ply laminated plates, simply-supported 
(SS-2) on all edges is possible to use Navier’s method to obtain the exact 
analytical solution. In this case, the trigonometric functions that satisfy the 
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governing equations and the consistent boundary conditions are the following 
ones: 
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When the applied load corresponds to the bi-sinusoidal pressure, as those 
described by Eq. (5.10), in the trigonometric expansions, it is posed: 1m n  . 

The non-dimensional quantities, if not otherwise specified, are defined as 
follows: 
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 (5.13) 

Note that 3 3( ) 3( )B Tp q q   , and (1)
2E is the Young’s modulus in the in-plane 

transverse direction of the first layer. 

Table 13 and Table 14, respectively, report the materials and laminate 
stacking sequences of the investigated multilayered composite and sandwich 
plates for the RZT mixed assessments. 
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Table 13: Material nomenclature and properties. The elastic moduli are in MPa, and 
the mass density is in kg/m3. 

Material 
Name 

E1 E2 E3 ν12 ν 13 ν 23 G12 G13 G23 ρ 

A 25 1 1 0.25 0.25 0.25 0.5 0.5 0.2 1000 

B 110000 7857 7857 0.33 0.33 0.49 3292 3292 1292 1600 

C 40.3 40.3 40.3 0.3 0.3 0.3 12 12 12 112 

D 15 1 1 0.3 0.3 0.35 0.5 0.5 0.35 1 
 

Table 14: Laminate stacking sequences and nomenclature. The orientations are in 
degree. 

Laminate 

ID 

Normalized 
thickness 

𝒉(𝒌)/𝒉 

Lamina materials 
Lamina orientations 

[°] 

L1 A/A/A 0.25/0.5/0.25 0/90/0 

L2 A/A 0.5/0.5 -15/15 

L3 A/A/A/A 0.25/0.25/0.25/0.25 -30/30/-30/30 

L4 A/A/A 0.3333/0.3333/0.3333 0/90/0 

L5 (D/D)5 (0.1/0.1)5 (-θ/+ θ )5 

S1 B/B/C/B/B 0.05/0.05/0.8/0.05/0.05 0/90/Core/90/0 

 

5.2.1 Penalty parameter estimation 

As highlighted in Chapter 3, the accuracy of the ( )
{3,2}en-RZT m  results strictly 

depends on the value considered for the penalty parameter 𝜂. This quantity is 
related to the penalty functional for the weak enforcement of the strain quantities 
compatibility.  

For lower values of  𝜂, the compatibility between the assumed strain variables 
and the strains derived from the kinematic field is significantly important in the 
governing functional. Vice versa, for increasing 𝜂 the compatibility is less 
important in the global functional, and discrepancies could arise.  
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In order to evaluate the best range of 𝜂 values that can guarantee good 
accuracy of the results, firstly, a parametric investigation has been performed. 
Both simply-supported (SS-1) cross-ply laminate L1, and the simply-supported 
(SS-2) anti-symmetric angle-ply L2 have been considered under a bi-sinusoidal 
transverse pressure. The central deflection has been computed for both cases and 
compared with the three-dimensional analytical solution of Pagano [4,5]. Since 

the ( )
{3,2}en-RZT m  and Pagano’s model are able to describe through the thickness 

variation of the transverse displacements, to compare the percent errors, an 
average value integrated along the thickness direction is computed. The results 
varying the value for 𝜂 parameter are reported in Table 15. At the same time, the 
sum of absolute errors is evaluated between all the new strain variables and the 
components of the corresponding strains derived from the displacement field in 

1 2/ 2, / 2a xx b  for both plates. 

 

Table 15: Percent errors for averaged central deflections and sum of absolute strain 
errors in the central point. 

 η 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 

d
ef

le
ct

io
n

 

L1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

L2 0.21 0.21 0.21 0.21 0.21 0.21 0.21 

st
ra

in
s 

L1 1833.03 209.02 21.20 2.12 0.21 0.02 0.00 

L2 0.47 0.05 0.00 0.00 0.00 0.00 0.00 

 

The percent errors on the displacements decrease with the decreasing of the 
penalty parameter value and after the valued 𝜂 = 10ିହ the deflection is almost 
insensible to any variation. Similarly, the lower the penalty parameter's value, the 
better the strain compatibility is enforced between the new strain variables and the 
strains obtained by the displacement field.  

Thus, the selected penalty parameter value for this numerical analysis is 𝜂 =

10ିଵ଴, that can guarantee good accuracy on the maximum displacement and, at 
the same time, good compatibility between the strain quantities. 
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5.2.2 Linear bending 

This Section assesses the linear bending problem behaviour of general 
multilayered structures. Firstly, multilayered cross-ply and sandwich plates are 
studied to highlight the novelties introduced by the new mixed formulation. 
Secondly, angle-ply antisymmetric multilayered plates are statically assessed. 
Finally, the exact three-dimensional solution for cross-ply and angle-ply plates 
has been obtained by Pagano [4,5] and are used to obtain the reference results. 

Problem 1 – Cross-ply laminated plate 

This first numerical example considers a three-layered square (a/b=1) cross-
ply plate (L1). The plate is simply-supported (SS-1) on all edges, and the span-to-
thickness ratio is a/h=4, corresponding to the case of a thick plate. The distributed 

load is applied on the top surface only, i.e. 3( ) 0Bq  , to assess the plate behaviour 

when the transverse normal deformability is not negligible. This load condition is 
able to exacerbate the transverse normal deformability of the structure.  In Figure 
22 (a-i), the through-the-thickness distributions of the normalized quantities are 
shown for the simply-supported three-layered symmetric cross-ply. 
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Figure 22: Normalized through-the-thickness distributions for displacements and 
stresses in a simply-supported (SS-1) square (a/b=1) thick (a/h=4) three-layered cross-
ply under bi-sinusoidal pressure on the top surface.  

 

Figure 22 a) and b) show how the ( )
{3,2}en-RZT m is able to match the exact three-

dimensional distributions for in-plane displacements. Moreover, the assumed 
parabolic expansion for the transverse displacement can predict the exact 3D 
transverse displacement distribution with good agreement. As expected, the non-
linear distributions for in-plane stresses obtained using the constitutive relation of 

the ( )
{3,2}en-RZT m  are very close to the exact three-dimensional ones. Also, the 

transverse normal stress agrees with great precision with the exact three-
dimensional result. Finally, the transverse shear stress distributions given by the 
assumed functions precisely match the three-dimensional through-the-thickness 
distributions. 

 

Problem 2 – Cross-ply sandwich plate 

In the next example, a multilayered thick sandwich plate with cross-ply face-
sheets (S1) and simply-supported (SS-1) edges is considered. Again, the length-
to-thickness ratio is a/h=4 and a/b=1, with the ratio between the core's thickness 
and each face's thickness equal to hc/hf=8. Like in the previous example, the bi-
sinusoidal transverse load is applied only to the top surface of the sandwich plate. 

Figure 23 (a-i) shows the normalized through-the-thickness distributions of 
non-dimensional displacements and stresses for the simply-supported square 
multilayered sandwich plate. 
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Figure 23: Normalized through-the-thickness distributions for displacements and 
stresses in a simply-supported (SS-1) square (a/b=1) thick (a/h=4) sandwich with cross-
ply face-sheets and soft core, under bi-sinusoidal pressure on the top surface.  

 

As expected, in sandwich structures with a soft core, the effect of transverse 
normal deformability is more pronounced, affecting the through-the-thickness 
distribution of the transverse displacement and leading to more complex 
distributions of in-plane displacements and stresses. However, the assumed 
transverse normal stress can still follow the three-dimensional distribution, 
although some discrepancies exist in the core layer. Also, the parabolic transverse 
displacement provided by the present model is very close to the exact one, but the 
in-plane displacements approximation is accurate only in the face-sheets. The 
main reason is that the higher-order zigzag functions cannot represent the non-
symmetric distributions of displacements in the core. On the other hand, the in-
plane stresses are very close to the exact ones, especially at the layer interfaces. 
Also, the prediction of the transverse shear stresses computed according to the 
assumed functions is very accurate compared to the three-dimensional solution. 
The differences in the transverse shear distributions detectable in the core layer 
are due to the simplified description of the transverse displacement and transverse 
normal stress.  

Problem 3 – Angle-ply multilayered plates 

In this Section, the family of angle-ply multilayered structures is investigated. 
In this first example, a two-layered antisymmetric angle-ply plate (L2) is 
considered. The simply-supported conditions (SS-2) are considered here, and to 
use Navier's solution and to compare the results with the exact analytical solution 
provided by Pagano [5] under cylindrical bending assumptions specialized for the 
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anisotropic structures, the length b (along the x2 direction) is assumed to be much 
higher than the size along the x1 direction (b/a=1000). This particular 

configuration guarantees that the simply-supported edges at 2 0,x b  do not 

influence the plate behaviour under cylindrical bending assumptions, and the 

applied load tends to assume the form of a single sine along the 1x  direction, i.e. 

 3 1 0 1( ) sin /p x p x a . In addition, the length-to-thickness ratio here is a/h=4, 

typical for a thick plate. As observed in the previous numerical examples, the 
transverse normal stretching effect is typical of sandwich structures, where the 
core has a very low stiffness with respect to the face-sheets. In fact, in monolithic 
multilayered structures, the transverse normal deformability has an almost 
negligible effect on the laminate behaviour. For this reason, in the next examples, 
the bi-sinusoidal transverse pressure has been equally divided between the top and 
the bottom surfaces.  

Figure 24 (a-i) show the through-the-thickness normalized quantities for the 
antisymmetric two-layered angle-ply plate. 
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Figure 24: Normalized through-the-thickness distributions for displacements and 
stresses in a simply-supported (SS-2) thick (a/h=4) antisymmetric two-layered angle-ply 
[-15/15] under bi-sinusoidal pressure acting on top and bottom surfaces.  

From Figure 24, for through-the-thickness in-plane displacements and stresses 

coming from the ( )
{3,2}en-RZT m , the same accuracy with respect to the three-

dimensional solution is observed. The novelty of this mixed model in the 
transverse shear stresses assumption can provide remarkable accuracy in 
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predicting these quantities. As shown in Figure 24 h) and i), the percent errors 

between the ( )
{3,2}en-RZT m  and the exact results for the peak values are 1.93% and 

6.54% for 13  and 23 , respectively. 

In order to assess the ability of the present mixed model to predict more 
complex transverse shear stress distributions for angle-ply multilayered structures, 
an anti-symmetric angle-ply laminate with more layers is considered (L3). Also, 
for this case, the simply-supported condition (SS-2) and cylindrical bending 
assumption for the exact three-dimensional solution are considered to compare the 
numerical results with Pagano's solution [3]. Figure 25 shows the results for 
normalized through-the-thickness quantities. 
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Figure 25: Normalized through-the-thickness distributions for displacements and 
stresses in a simply-supported (SS-2) thick (a/h=4) antisymmetric four-layered angle-ply 
[-30/30/-30/30] under bi-sinusoidal pressure acting on top and bottom surfaces.  

 

As expected, thanks to the mixed formulation, the ( )
{3,2}en-RZT m  is able to 

provide very accurate results for transverse shear stress distributions also with 
more complex lamination schemes. Furthermore, the third-order zigzag functions 
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are able to provide the non-linear through-the-thickness distribution for in-plane 
displacements and in-plane stresses. As a result, the parabolic transverse 
displacement and all the transverse stress distributions are in very good agreement 
with the exact three-dimensional solution. 

5.2.3 Free vibrations 

In this Section, the natural frequencies of simply-supported multilayered 

composite and sandwich plates are evaluated using the ( )
{3,2}en-RZT m . 

For cross-ply and sandwich plates with simply-supported edges, the boundary 
conditions correspond SS-1 case, see Eq. (5.7). Whereas for anti-symmetric angle-
ply multilayered plates with simply-supported edges, boundaries correspond to the 
SS-2 case, see Eq. (5.8). 

According to Navier's method, the exact analytical solution can be obtained 
for cross-ply rectangular multilayered plates with simply-supported boundary 
conditions (SS-1) using the following approximation: 
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 (5.14) 

and for the strains variables: 
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 (5.15) 

Moreover, it is possible to obtain an exact analytical solution by Navier’s 
method for antisymmetric angle-ply laminated plates simply-supported (SS-2) 
boundary conditions. In this case, the trigonometric functions that satisfy the 
governing equations and the consistent boundary conditions differ from the 
previous only for the following variables: 
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where ;  m n
m n

a b
     (m, n are half-wave numbers in x1 and x2 

directions, respectively). In the previous expressions, mn  is the mnth circular 

frequency. 

If not otherwise specified, the circular frequencies are normalized as follows: 

 
(1)

2
(1)
2

mn mna
E

   (5.17) 

where (1) (1)
2, E  are the mass density and the in-plane transverse Young’s 

modulus of the first layer. 

Problem 1 – Cross-ply three-layered plate 

A simply-supported (SS-1) three-layered cross-ply square (a/b=1) plate is 
considered. The span-to-thickness ratio considered is a/h=4. The reference 
solution for the first seventeen flexural frequencies has been obtained using a 
high-fidelity 3D FE NASTRAN model, which used 134400 solid HEXA8 
elements, as shown in Figure 26. In the three-dimensional NASTRAN® model, 
the boundary conditions corresponding to the simply-supported case consider the 
constraints given by Eq. (5.7). In Table 16, the non-dimensional circular 

frequencies of the ( )
{3,2}en-RZT m  and the relative errors are presented. As anticipated, 

the circular frequencies for the computed modal shapes are given in terms of m 
and n, which are half-wave numbers in the x1 and x2 directions, respectively. As 

observed, it is clear the exceptional accuracy of ( )
{3,2}en-RZT m  to predict the first 

natural frequencies with a maximum value below 1.5%. As expected, the effect of 
transverse normal deformation is more pronounced for more complex modal 
shapes, and the simplified assumption on the assumed transverse normal stress 
and transverse displacement is no longer valid. 
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Figure 26: Three-layered cross-ply (L1) square plate using solid HEXA8 
NASTRAN® elements (in red, the layers oriented at 0°, in blue, the layer oriented at 90°). 

Table 16: First seventeen non-dimensional circular frequencies and percent errors of 
laminate L1 (a/b=1, a/h=4), simply-supported on all edges. 

m n 
3D – 

NASTRAN® 
en-𝐑𝐙𝐓{𝟑,𝟐}

(𝒎)  %err 

1 1 6.9220 6.9300 0.11 

1 2 11.5628 11.5538 -0.08 

1 3 17.8022 17.6968 -0.59 

1 4 24.4050 24.1394 -1.09 

1 5 31.0484 30.5973 -1.45 

2 1 14.0877 14.0804 -0.05 

2 2 16.9297 16.9312 0.01 

2 3 21.7052 21.6240 -0.37 

2 4 27.3999 27.1672 -0.85 

2 5 33.4689 33.0604 -1.22 

3 1 21.8757 21.7745 -0.46 

3 2 23.8554 23.7895 -0.28 

3 3 27.4805 27.3489 -0.48 

3 4 32.1934 31.9200 -0.85 

4 1 29.7903 29.5193 -0.91 

4 2 31.3149 31.0986 -0.69 

4 4 34.1902 33.9223 -0.78 
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Problem 2 – Cross-ply sandwich plate 

In this second example, a simply-supported (SS-1) multilayered cross-ply 
thick sandwich plate (S1) is considered. The square sandwich plate (a/b=1) has a 
core-to-face thickness ratio of 8, representing a typical value for sandwich 
applications. The span-to-thickness ratio is a/h=4, a value to assess the 

( )
{3,2}en-RZT m  also for thick sandwich case. The first thirteen nondimensional 

circular frequencies are compared with the reference solution obtained using a 
high-fidelity FE model with NASTRAN® 153600 solid HEXA8 element to ensure 
an accurate 3D solution. In Figure 27, the discretized solid model is shown. 

 

Figure 27: Cross-ply sandwich (S1) square plate discretization using solid HEXA8 
NASTRAN® elements (in red, the layers oriented at 0°, in blue, the layer oriented at 90° 
and in green, the core layer). 

In the three-dimensional NASTRAN® model, as done for the previous model, 
the boundary conditions corresponding to the simply-supported case consider the 
constraints given by Eq. (5.7). 

In Table 17, the first thirteen transverse flexural non-dimensional circular 
frequencies and the corresponding relative percent errors are reported. The 3D 
frequencies are given in terms of m and n, which are half-wave numbers in the x1 
and x2 directions of the corresponding modal shape, respectively. 
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Table 17: First thirteen non-dimensional circular frequencies and percent errors of 
sandwich S1 (a/b=1, a/h=4), simply-supported on all edges. 

m n 
3D – 

NASTRAN® 
en-𝐑𝐙𝐓{𝟑,𝟐}

(𝒎)  %err 

1 1 1553.44 1552.88 -0.04 

1 2 2890.63 2887.52 -0.11 

1 3 5093.03 5073.77 -0.38 

1 4 8085.80 8025.21 -0.75 

2 1 2977.16 2980.10 0.10 

2 2 3974.27 3977.32 0.08 

2 3 5914.13 5899.67 -0.24 

2 4 8745.63 8684.72 -0.70 

3 1 5224.87 5221.16 -0.07 

3 2 5984.38 5899.67 -1.42 

3 3 7583.41 7560.59 -0.30 

4 1 8251.34 8188.65 -0.76 

4 2 8866.66 8802.04 -0.73 

 

The results of Table 17 confirm the accuracy in frequency prediction with 
errors below the 1.5%. In sandwich structures, the effect of transverse shear and 
normal deformability is more pronounced than the cross-ply multilayered plates; 

however, the ( )
{3,2}en-RZT m  is sufficiently accurate to predict even the frequencies of 

more complex modal shapes.  

Problem 3 – Multilayered angle-ply plate 

In this example, a square anti-symmetric ten-layered angle-ply plate (L5) is 
considered. The plate is simply-supported on all edges, according to the SS-2 
conditions, since the plate belongs to the class of anti-symmetric angle-ply 
structures. The exact three-dimensional solution for the fundamental frequency is 
provided by Noor and Burton [12] and is considered as the reference result. The 

fundamental frequencies are evaluated using the ( )
{3,2}en-RZT m  for different values 

of span-to-thickness ratio and different lamination angles. In order to avoid ill-
conditioned stiffness matrix due to some combinations of the values for the span-
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to-thickness ratio and the penalty term, the penalty parameter has a value of 1e-5, 
still valid to accurately enforce the strain compatibility as reported in the previous 
section. 

 Table 18 shows the non-dimensional fundamental frequencies and the 
percent errors with respect to the frequencies computed by the exact three-
dimensional solution of Noor and Burton [12]  

Table 18: Non-dimensional fundamental frequencies (1) 2 (1)
11 11 2/h E     and 

percent errors (in brackets) of simply-supported (SS-2) ten-layered anti-symmetric angle-
ply square plate (L9). 

 
[ ]oΥ  

a/h 15 30 45 

100 0.001328 (0.02) 0.001511 (0.05) 0.001595 (0.01) 

10 0.1163 (0.07) 0.1296 (0.03) 0.1352 (0.06) 

6.667 0.2307 (0.14) 0.2533 (0.03) 0.2618 (0.04) 

5 0.3594 (0.17) 0.3890 (0.03) 0.3993 (0.00) 

4 0.4944 (0.20) 0.5286 (-0.01) 0.5397 (-0.06) 

3.333 0.6321 (0.22) 0.6687 (-0.07) 0.6801 (-0.13) 

 

Table 18 confirms the accuracy of the ( )
{3,2}en-RZT m to compute the frequencies 

for angle-ply multilayered plates accurately. It should be noted that remarkably 
low errors are obtained for the highly thick case.  

5.3 Assessment of the new ( )
{ , }- 3 2B RZT m beam model 

In this section, it is assessed the new beam ( )
{3,2}B-RZT m  model for the analysis 

of thick multilayered composite and sandwich beams. The boundary conditions 
expressed in Chapter 4 are here specified for a beam of length L and simply-
supported on both edges: 
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 (5.18) 

The constraints on (0) (1) (2),  and w w w  variables in Eq. (5.18) assume in an 

ideal way the supported condition, i.e. the transverse displacement is enforced to 
be null along the whole beam thickness. 

The numerical results provided for this model assume only a transverse 
pressure applied on the beam structures, i.e. the in-plane tractions acting on the 
bottom and top surfaces are neglected  

 1( ) 1( )0; 0;B Tp p   (5.19) 

If not otherwise specified, the transverse pressures applied to the bottom and 
top surfaces have the following expressions: 

 
 
 

3( ) 3( ) 1
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sin

si

/
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B B

T T

p q x
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q xL








 (5.20) 

where 3( )Bq and 3( )Tq  are the maximum values. 

Using Navier’s method, the exact analytical solution able to satisfy both 
governing equations and boundary conditions involves the following 
trigonometric expansions: 
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where m
m

L
   and m is the half-wave number in x1 direction. For the 

bending problem of the simply-supported beam under sinusoidal transverse 
pressure, M is equal to 1.  

The non-dimensional quantities, if not otherwise specified, are defined as 
follows: 

    
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2 2
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 (5.22) 

Note that 3 3( ) 3( )B Tp q q   and (1)
2E   is the Young's modulus in the in-plane 

transverse direction of the first layer. 
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5.3.1 Linear bending 

In this Section, the linear bending analysis is performed to assess the response 
of two types of beam structures. The first problem considers a simply-supported 
cross-ply (L1) thick beams. The second problem assesses the behaviour of a 
simply-supported cross-ply sandwich (S1) thick beam. Both beams have a length-
to-thickness ratio equal to four (L/h=4). The transverse sinusoidal distributed load 
is applied only on the top external surface to observe the effect of transverse 
normal deformability. The reference solution has been obtained by a high-fidelity 
FE model using 40000 membrane QUAD8 NASTRAN® elements. In Figure 28 
and Figure 29, the high-fidelity FE parabolic QUAD8 elements are shown, 
respectively, for L1 and S1 beams.  

 

Figure 28: High-fidelity FE model: beam L1, 40000 parabolic quadrangular QUAD8 
NASTRAN® elements (in red, the layers oriented at 0°, in blue, the layer oriented at 90). 

 



Chapter 5 Numerical assessments 
__________________________________________________________________ 

153 

 

 

Figure 29: High-fidelity FE model: beam S1, 40000 parabolic quadrangular QUAD8 
NASTRAN® elements (in red, the layers oriented at 0°, in light blue the layer oriented at 
90° and in blue, the core layer). 

The normalized through-the-thickness distributions of the displacements, 
stresses and strains for cross-ply L1 and sandwich S1 beams are reported in 
Figure 30 and Figure 31, respectively. 
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Figure 30: Through-the-thickness distributions of normalized displacements, strains 
and stresses of cross-ply (L1) simply-supported thick beam (L/h=4) 
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Figure 31: Through-the-thickness distributions of normalized displacements, strains 
and stresses of cross-ply sandwich (S1) simply-supported thick beam (L/h=4) 

 

The through-the-thickness distributions of the local quantities provided by the 
( )

{3,2}B-RZT m  model are in good agreement with the high-fidelity FE solution using 

Nastran. The in-plane and transverse displacement patterns shown in Figure 30 for 
the cross-ply beam correctly represent the three-dimensional behaviour. 
Moreover, the effect of transverse normal deformability identified by the 
transverse normal stress distribution is well described. Only a few discrepancies 
are detectable in the transverse normal stress slope next to the external surface, 
but they do not affect the transverse shear distribution in that area. As highlighted 
in the plate model, some differences in shear stress evaluation are noticeable only 
in the middle layer. This effect could be explained by considering the third 
Cauchy’s equation relating the transverse shear stress with the transverse normal 
stress, that in this model is not enforced.  
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Concerning the behaviour of the cross-ply sandwich beam shown in Figure 
31, the same considerations done for the plate case are valid here. More 
specifically, the effect of transverse deformability in the core layer is higher than 
in the other layers. Therefore, it results in a less accurate representation of the 
transverse normal stress distribution and a less accurate prediction of the core 
layer's displacements, strain and stresses. However, the values of strains and 
stresses reached at the layer interfaces are very close to the exact ones.  

 

5.3.2 Free vibrations 

In this section, the dynamic behaviour of ( )
{3,2}B-RZT m  model is assessed by 

evaluating the natural circular frequencies of multilayered composite and 
sandwich thick beams. Two beam structures are considered: a three-layered cross-
ply beam (L1) and a cross-ply sandwich beam (S1). The simply-supported 
condition has been considered in both examples, and the length-to-thickness ratio 
is equal to 4. The reference results for the flexural modal shapes and 
corresponding circular frequencies are obtained using a high-fidelity FE model 
with Nastran 40000 QUAD8 membrane elements, as reported in the static 
analysis, see Figure 28 and Figure 29. 

 

 

 

 

Table 19: First ten flexural normalized circular frequencies and percent errors of 
simply-supported cross-ply L1 beam (L/h=4). 

Mode NASTRAN® B-RZ𝐓{𝟑,𝟐}
(𝒎)  err% 

1 968.8 968.8 -0.04 

2 2278.7 2277.8 -0.08 

3 3622.7 3618.9 -0.13 

4 4991.6 4981.5 -0.22 

5 6369.6 6350.5 -0.30 
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6 7746.6 7718.0 -0.37 

7 9116.0 9081.6 -0.38 

8 10473.0 10440.9 -0.32 

9 11813.0 11796.3 -0.17 

10 13131.7 13148.6 0.08 

 

Table 20: First six flexural normalized circular frequencies and percent errors of 
simply-supported sandwich S1 beam (L/h=4). 

Mode NASTRAN® B-RZ𝐓{𝟑,𝟐}
(𝒎)  err% 

1 177.0 177.0 -0.07 

2 430.9 431.1 0.02 

3 796.2 797.2 0.12 

4 1276.2 1273.3 -0.23 

5 1853.0 1835.6 -0.98 

6 2474.7 2450.4 -1.11 

 

Table 19 and Table 20 report the first ten and six flexural normalized circular 

frequencies of L1 and S1 beams, respectively. The ( )
{3,2}B-RZT m model predicts the 

first frequencies of both beams with less than 1.2% error. The percent errors for 
the cross-ply L1 beam are generally lower than the sandwich one due to the more 
accurate representation of the transverse normal deformability. In sandwich 
structures, both frequencies and through-the-thickness quantities are very sensible 
for correctly modelling the transverse normal deformability. 

 

5.4 The new RZT(m) finite elements assessment 

This section is dedicated to the numerical assessment of the proposed finite 

beam elements based on the ( )
{3,2}B-RZT m  model described in Chapter 4. The 

implemented elements are employed to solve static and free vibration problems of 
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cross-ply and sandwich thick beams. The aim is to assess the elements' 
improvements in predicting global and local quantities and their limitations.  

The first part is dedicated to the convergence analysis of the ( )
{3,2}2B-RZT m

 and 
( )

{3,2}2Bc-RZT m elements. Then, based on the convergence analysis results performed 

on different simply-supported thick beams, the element response capabilities are 
assessed for the three-point bending problem and for the free vibration of simply-
supported beams. 

5.4.1 Convergence analysis 

In this Section, the convergent behaviour of the ( )
{3,2}2B-RZT m

 and ( )
{3,2}2Bc-RZT m

elements is performed. The problem of simply-supported multilayered cross-ply 
(L1) and sandwich (S1) beams under a concentrated force is considered to 
evaluate the convergence behaviour. The reference solution is based on the same 
high-fidelity FE model with NASTRAN® using 40000 QUAD8 membrane 
elements, as considered in the previous Section. Since all the elements assume a 
transverse displacement varying along the thickness coordinate, an averaged value 
has been considered for the convergence analysis evaluated at the beam mid-span. 
It reads: 

 / 3 3 3)(
1

h

fem refw U x dx
h

   (5.23) 

Due to the numerical approximation introduced by the finite element method, 
the η value is settled to be 1e-5 to avoid ill-conditioning problems of the stiffness 
matrix. This assumption for the η value makes the strain compatibility given by 
the penalty functional term less important. However, this problem could be easily 
overcome by increasing the number of elements that discretize the beam structure. 

For the convergence study, the beams are simply-supported on both edges 
according to constraint conditions adopted for the analytical model, see Eq. (5.18)
, in which the whole through-the-thickness transverse displacement is enforced to 
be null on the supported edges. It should be noted from Eq. (5.18) that also the 
strain nodal dof’s need to be constrained at the edges. However, they do not 
appear in the element formulation, and only the kinematic variables are 
constrained as follows: 
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The concentrated force is applied at the mid-span point on the top surface. For 
the sake of clarity, the nodal force vector of the structure limited to the central 
node, where the force is applied, has the following expression: 
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( 0
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0
h h
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 
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 

 (5.25) 

  It is evident in Eq. (5.25) that the force is applied on the top surface by the 

term that multiplies the (1)w  nodal dof. 

Moreover, the span-to-thickness ratio considered is 4 for both beams, 
representing a typical value for very thick beam. In Figure 32, the convergence 
ratios of the L1 (Figure 32-a)) and S1 beam (Figure 32-b)) are shown. 

After some solution oscillations, when the structure is discretized with few 
elements, both proposed elements converge to the solution. For the L1 beam case, 
the error induced by the approximated solution for 4096 beam elements is 0.05%. 
Whereas for the S1 beam case, the error induced is 2.78. This different behaviour 
is due to the different transverse normal deformability, which is more pronounced 
in the sandwich beam. 

For the static analysis and free vibration problem, to guarantee the accuracy of 
the approximated solutions, 4096 elements are used to study the beams. As a 
result, the computational cost involved by high-fidelity FE Nastran model consists 
of 242002 nodal dof’s, whereas considering 4096 elements are involved, only 
24582 dof’s, which is a remarkable advantage. 

In addition, the convergence results show that for the considered 

discretization, both ( )
{3,2}2B-RZT m

 and ( )
{3,2}2Bc-RZT m  elements give the same results. 

Therefore, the following numerical analysis is focused only on ( )
{3,2}2B-RZT m  

elements. 
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Figure 32: Convergence analysis for the maximum displacement of a) cross-ply (L1) 
and b)sandwich (S1) simply-supported beams under a concentrated force in the mid-span. 

 

5.4.2 Linear bending 

In this Section, the linear bending problem using the ( )
{3,2}2B-RZT m  element is 

numerically assessed. After the convergence analysis, the converged solution is 
obtained using 4096 beam elements for both laminations. The beams are simply-
supported on the two end edges, according to the definition provided earlier, and a 
concentrated force of intensity 10N  is applied at the mid-span length of the 
beam on the top external surface. 

In Figure 33 and Figure 34 are reported the results for the through-the-
thickness distributions of in-plane displacement at the supported edge (a), and the 
transverse displacements at the beam mid-span (b). The in-plane distribution is in 
very good agreement with the reference solution, especially for the values 
assumed at the top and bottom beam surfaces. The transverse displacements 
evaluated at the top, bottom and on the axis in the beam mid-span point are close 
to the Nastran solution, especially for the L1 beam. Whereas for the sandwich S1 
beam, the effect of transverse normal deformability is more pronounced. In fact, 
the assumed parabolic function for the transverse displacement cannot follow 
exactly the through-the-thickness variation of the transverse displacement. 
Moreover, in the applied force point, the effect of transverse normal deformability 
is sensible higher, and the assumed transverse normal stress could not correctly 
represent the correct through-the-thickness variation. This effect is also noticeable 
in the transverse shear stresses, showing more discrepancies in the through-the-
thickness patterns, especially in the middle layer. 
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In Figure 33 and Figure 34 (c), the distributions of the top and bottom 
transverse displacements along the axis are reported. As expected, the transverse 
displacement results are in good agreement with the reference solution, except for 
the area near the applied force. Furthermore, in Figure 33 and Figure 34 (d), the 
distributions of the axial strains evaluated at the bottom and top interfaces of the 

internal layer are displayed. The results provided by ( )
{3,2}2B-RZT m  element are able 

to predict the variation of the axial strains at the interfaces along the longitudinal 
direction, except for the area closer to the applied force in which the reference 
strain field is more complex to follow. However, for the first time, a model based 
on the RZT kinematics has reached this accuracy has been reached for the value 
of the span-to-thickness ratio considered. 
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Figure 33: Through-the-thickness in-plane and transverse displacements a)-b) and 
transverse shear stress c). Distribution of the bottom and top transverse displacements d) 
and axial deformations at the internal layer interfaces e) for cross-ply L1. 
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Figure 34: Through-the-thickness in-plane and transverse displacements a)-b) and 
transverse shear stress c). Distribution of the bottom and top transverse displacements d) 
and axial deformation at the internal layer interfaces e) for sandwich S1. 
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5.4.3 Free vibrations 

In this section, the free vibration analysis of simply-supported multilayered 

cross-ply and sandwich beams is assessed using the ( )
{3,2}2B-RZT m  elements. As 

anticipated, the results for the dynamic analysis involve 4096 beam elements.  
Also, in this dynamic assessment, the span-to-thickness is typical for very thick 
structures, i.e. L/h=4. The constraint conditions on the nodal dof’s are those 
reported by Eq. (5.24). Such as been done for the static bending analysis, the 
reference model is a 2D high-fidelity FE model using  40000 membrane QUAD8 
Nastran elements. Only the frequencies corresponding to the flexural modes in the 

high-fidelity FE model are compared with the results provided by the ( )
{3,2}2B-RZT m  

elements.  

Table 21 and Table 22 report the normalized natural frequencies of the 
flexural modes corresponding to the cross-ply L1 and cross-ply sandwich S1 
beams.  The results agree with those obtained by the high-fidelity FE model taken 
as reference. With respect to the investigated bending case, in this analysis, the 
effect of applied forces is not considered; thus, the assumed transverse normal 
stress and transverse displacement patterns are sufficiently accurate to describe 
the exact three-dimensional behaviour.  

Furthermore, the accuracy of the ( )
{3,2}2B-RZT m  is also shown in the low error 

values for the sandwich beam frequency predictions, where the highest is for the 
third transversal symmetric mode is less than 1%, which is a remarkable result. 

 

Table 21: Normalized circular frequencies and percent errors of simply-supported 
cross-ply L1 beam (L/h=4), discretized with 4096 ( )

{3,2}2B-RZT m elements. 

Mode NASTRAN® 2B-𝐑𝐙𝐓{𝟑,𝟐}
(𝒎)  err% 

1 968.8 968.7 -0.05 

2 2278.7 2277.6 -0.09 

3 3622.7 3618.1 -0.15 

4 4991.6 4980.5 -0.23 

5 6369.6 6349.8 -0.31 
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6 7746.6 7717.7 -0.37 

7 9116.0 9080.3 -0.39 

8 10473.0 10436.1 -0.36 

9 11813.0 11784.2 -0.27 

10 13131.7 13123.6 -0.12 
 

Table 22: Normalized circular frequencies and percent errors of simply-supported 
cross-ply sandwich S1 beam (L/h=4) discretized with 4096 ( )

{3,2}2B-RZT m  elements 

Mode NASTRAN® 2B-𝐑𝐙𝐓{𝟑,𝟐}
(𝒎)

 err% 

1 177.0 176.9 -0.09 

2 430.9 430.8 -0.08 

3 796.2 796.8 0.05 

4 1276.2 1272.7 -0.28 

5 1853.0 1815.2 0.97 

6 2474.7 2304.1 -0.04 
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Chapter 6 

Experimental validations: static 
and dynamic analysis 

In this Chapter, a static and dynamic experimental assessment is performed to 
investigate displacements, strains and natural frequencies of sandwich structures. 
This experimental campaign aims to provide a set of experimental results that can 
be used to validate statically and dynamically the numerical models. The 
experiments are focused on evaluating displacements and strains of sandwich 
beam specimens by using three- and four-point bending tests and natural 
frequencies and modal shapes in free boundary conditions.  

 The sandwich beams specimens are made of EN-AW 7075T6 Aluminium 
alloy (Ergal) and Rohacell® foam cores. The specimens have been divided into 
two groups due to the different core materials and test purposes. The first is 
represented by the beam specimens tested statically, whose cores are made of 
Rohacell® IG-31 soft foam, whereas the second is tested dynamically, and the 
core material is of Rohacell® WF110 rigid foam. 

The experimental results for static and dynamic problems are compared with 

the new ( )
{3,2}B-RZT m  model. Due to the boundary conditions and load case, the 

formulated beam finite elements have been used. 

The experimental campaign has been conducted at the LAQ-AERMEC 
laboratory of the Department of Mechanical and Aerospace Engineering 
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(DIMEAS) of the Politecnico di Torino. The specimens have been manufactured 
by the Department of Science and Aerospace Technology of Politecnico di 
Milano. 

6.1 Specimens properties  

As introduced, the beam specimens present a typical sandwich lamination 
scheme used for aeronautical applications, two face-sheets of 7075 Aluminium 
alloy separated by a thick core made of Rohacell® polymethacrylamide foam. 

In order to investigate the effect of foam material, length-to-thickness ratio 
and core-to-face thickness ratio, different specimens have been manufactured. 

A first group of beam sandwich specimens was tested via three- and four-
point bending tests. The group is represented by four specimens beams made with 
IG-31 foam core with different length-to-thickness ratios. Each beam has a 3 mm 
face-sheet thickness bonded to the core layer with 0.25 mm 3M™ Scotch-Weld™ 
Structural Adhesive Film AF 163-2K.  

A second group of four sandwich beam specimens was tested dynamically to 
obtain the experimental natural frequencies and corresponding modal shapes. The 
beams’ cores are made of WF-110 foam. Different face-to-core thickness and 
length-to-thickness ratios have been considered in these specimens. Two beams 
have a 2 mm face-sheet of 7075 Aluminium alloy bonded to the core layer with 
0.25 mm 3M™ Scotch-Weld™ Structural Adhesive Film AF 163-2K. 

The sandwich beam specimens were designed by considering nominal values 
for the geometry and materials. Therefore, it is evident that in the design phase, 
the manufacturing process to produce the specimens has not been considered. 
Thus, it is necessary to measure and characterize the mechanical properties of the 
constituent materials of the specimens. 

The nomenclature and geometries of the sandwich beam specimens, statically 
and dynamically investigated, are reported in Table 23. The reported dimensions 
refer to the quantities shown in Figure 35. In addition, for the group of specimens 
considered for bending analysis (e.g. B01, B02, B03 and B04), the effective 

bending length  effL  related to the distance between the supports is also reported 

in Table 23. The same distance is not reported for the sandwich beam specimens 
of the dynamic analysis (e.g. D01, D02, D03 and D04). 
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A third group of specimens is made to experimentally determine the 
mechanical characteristics of the beam constituent materials, except for the 
adhesive layer, whose properties have been assumed from the producer 
datasheets. Table 24 presents the list of the specimens considered for the material 
characterization. Moreover, the Rohacell® IG-31 and WF-110 foam specimens 
(e.g. P07, P08, P09, P10 and P11), and Ergal specimen (e.g. P12) are also tested 
statically. The effective bending length of the beam specimens is also reported in 
Table 24. 

 
Figure 35: Geometry of the sandwich beam specimens 

Table 23: Sandwich beam specimens nomenclature and dimensions (in mm). 

Specimen 
ID 

Core 
Material 

L Leff B h hf L/h hc/hf 

B01 IG-31 640.00 600.00 90.00 44.60 3.00 14.35 12.87 

B02 IG-31 490.00 450.00 90.00 43.30 3.00 11.32 12.40 

B03 IG-31 340.00 300.00 90.00 43.50 3.00 7.82 12.50 

B04 IG-31 280.00 240.00 90.00 43.10 3.00 6.50 12.37 

D01 WF-110 500.00 - 80.00 43.32 2.00 11.54 19.66 

D02 WF-110 500.00 - 80.00 41.18 1.00 12.14 39.18 

D03 WF-110 500.00 - 80.00 33.53 2.00 14.91 14.77 

D04 WF-110 500.00 - 80.00 31.54 1.00 15.85 29.54 
Table 24: Nomenclature and specimens’ dimensions for material characterization 

(values are given in mm).  
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Specimen ID Material L Leff B h 

P01 WF-110 80.50 - 50.25 27.10 

P02 WF-110 80.53 - 50.20 18.28 

P03 WF-110 95.25 - 80.402 39.63 

P04 WF-110 179.75 - 80.45 49.99 

P05 IG-31 89.70 - 40.21 35.33 

P06 IG-31 107.17 - 89.90 40.17 

P07 IG-31 587.00 540.00 80.04 40.12 

P08 IG-31 427.67 400.00 64.74 40.10 

P09 IG-31 603.00 560.00 89.59 40.14 

P10 WF-110 1105.00 1000.00 80.36 39.83 

P11 WF-110 1105.00 1000.00 80.38 39.93 

P12 EN AW 7075 T6 1017.500 400.00 40.13 3.00 

 

 

6.2 Material characterization 

In this section, the procedure adopted to characterize the mechanical 
properties of the 7075 Aluminium alloy (Ergal) and the Rohacell® IG-31 and WF-
110 foams is reported. It is evident that material characterization is necessary to 
determine the effective properties of the specimens to make the proper 
comparisons between the numerical models and the experimental tests.  

Table 25 reports the nominal values of the material mechanical properties as 
given by the corresponding producers’ datasheets. The mass density of the 
adhesive layer has given for 0.25 mm thickness. 

 

 

Table 25: Material mechanical properties: nominal values, the Young’s and shear 
modulus are in MPa, and the mass density is in kg/m3. 
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Material E G ρ 

EN-AW 7075 T6 (Ergal) 73000 28007 2700 

Rohacell® IG-31 36 13 32 

Rohacell® WF-110 180 70 110 

AF-163-2K 1110 414.2 1210 

 

6.2.1 Mass density 

The material mass densities of Rohacell® foams are estimated by averaging 
each density mass of the P01, P02, P03 and P04 for the WF-110 and P05, P06 and 
P07 for the IG-31. The measured weights of each specimen are then divided by 
the corresponding specimens’ volume. In the same way, the material mass density 
of the 7075 Aluminium alloy (Ergal) is obtained by considering specimen P12. 
The obtained experimental results are reported in Table 26. 

Table 26: Experimentally measured material mass density in kg/m3. 

 EN AW 7075 T6 (Ergal) Rohacell® IG-31 Rohacell® WF-110 

ρ 2750.6 36.5 109.5 

 

6.2.2  Young’s and shear moduli evaluation 

In this section, the mechanical properties are estimated experimentally. The 
Young’s modulus of the Rohacell® WF-110 and IG-31 foams are characterized by 
following the standard test method described by the ASTM D790 [174]. A three-
point bending test has been performed on simply-supported beam specimens to 
determine the maximum central deflection and the deflection at a quarter of the 
effective bending length. The beam specimens tested to determine Young’s 
modulus are P07, P08 and P09 for the IG-31 foam and P10 and P11 for the WF-
110. A load cell (HBM – strain gauge load cell, 200 kg)  measures the load 
applied to the beam specimens. In Figure 36, the experimental set-up used for the 
three-point bending test on the Rohacell® foam specimens is shown: A rigid 
support; B displacement control system; F load cell; W1, W2, W3 and WL/4 
Linear Variable Transducer Displacements (LVDTs). 
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Figure 36: Rohacell® three-point bending test: sensor disposal and configuration. 

 

Two LVDTs (e.g. W1 and W2) have been positioned directly in contact with 
the load cylinder to measure the deflection at the top surface of the foam 

specimen. From the two measures, an average value, i.e. Tw , is calculated. The 

third LVDT, i.e. W3= Bw , measures the deflection at the bottom surface of the 

foam beam specimen. The three LVDTs, (e.g. W1, W2 and W2) are positioned at 
the mid-span length of the foam specimens. The maximum central deflection is 

then obtained by averaging the Tw  and Bw  measures. A fourth LVDT ( L/4W ) is 

placed on the top surface at the point corresponding to the quarter effective beam 
length. A simplified scheme of the experimental set-up for the foam specimens is 
reported in Figure 37. 
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Figure 37: Three-point bending test on foam specimens and nomenclature for 
displacements. 

A high-fidelity 2D FE model with QUAD8 membrane Nastran® elements has 
been made for each tested beam specimen. In addition, a preliminary numerical 
analysis has been performed using the nominal values for isotropic materials.  

The effect of the transverse shear deformability is considered in the high-
fidelity 2D model, although its influence is almost negligible. However, a more 
simplified beam model, Timoshenko beam theory, which includes the effect of 
transverse deformability, can be used to estimate deflections. They read: 
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where G  and E  the shear and Young’s modulus, respectively, 2k the shear 

correction factor (equal to 5/6), F  the applied force, effL   the effective bending 

length and I  the inertia of the beam section. Considering the beam specimens' 
lengths and section areas, the contribution due to the shear deformability to the 
central deflection is less than 3.4%, whereas for the quarter-length beam 
deflection is negligible. Thus, using as inputs the measured deflections to 
determine at the same time both Young’s and shear moduli using the Eq. (6.1) 
leads to an erroneous evaluation of the shear moduli. In fact, in literature, the 
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same issue has been encountered in Iurlaro’s work [140], where similar beam 
specimens were used. 

Based on these considerations and the high-fidelity 2D results on the models 
using the nominal material’s values, the beam bending behaviour can be 
approximated as the Bernoulli-Euler beam model, in which only the elastic 
modulus is considered. According to the Bernoulli-Euler model, the maximum 
deflection and the deflection at a quarter of the effective bending length are 
obtained by the following formulas: 
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 (6.2) 

It can be seen from Eq. (6.2) that, for a beam geometry known, Young’s 
modulus is a function only of the force-to-transverse displacement ratio for both 
displacements. Based on this consideration, for each beam foam specimen 
statically assessed (e.g. P07, P08, P09, P10 and P11), the elastic modulus is 
determined using the linear regression method on the experimental data. The 
experimental force-displacement curves of Rohacell® IG-31 and WF-110 are 
shown in Figure 38 - Figure 42 and are used to determine the corresponding 
Young’s modulus. The linear fitting curves for central and quarter-length 
displacements have been determined for each beam foam specimen; from the 
computed curves, the elastic modulus is then obtained using Eq. (6.2). Based on 
these results, Table 27 shows the results of the Rohacell® IG-31 and WF-110 
experimental Young’s moduli in terms of mean value and standard deviation. 
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Figure 38: Three-point bending test on specimen P07 (Rohacell® IG-31), force-
displacement curve. 

 

Figure 39: Three-point bending test on specimen P08 (Rohacell® IG-31), force-
displacement curve. 
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Figure 40: Three-point bending test on specimen P09 (Rohacell® IG-31), force-
displacement curve. 

 

Figure 41: Three-point bending test on specimen P10 (Rohacell® WF-110), force-
displacement curve. 
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Figure 42: Three-point bending test on specimen P11 (Rohacell® WF-110), force-
displacement curve. 

The elastic modulus of the Aluminium alloy (Ergal) has been determined by 
evaluating the maximum deflection at the end of the beam specimen P12. The 
beam specimen has been clamped to one edge, whereas a concentrated force has 
been applied to the other, as shown in Figure 43. The deflection has been 
measured from the reference position using a ruler positioned next to the beam 
end, as reported in Figure 43. The maximum beam deflections have been 
measured for the following value of the applied forces 0.5 kg, 1.0 kg and 1.5kg, 

considering an effective bending length ( )effL of 400.00 mm. Three tests on the 

beam specimens are conducted. The tests results are reported in Figure 44. 
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Figure 43: Aluminium alloy specimen P12 tested for Young’s modulus evaluation, 
clamped boundary condition and concentrated tip force. 

 

Figure 44: Maximum deflection vs the applied force of specimen P12 (Aluminium 
alloy, Ergal). 
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Taking into account the Bernoulli-Euler beam model, the transverse 
displacement can be computed as follows: 

 
3

3
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L

FL
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w   (6.3) 

From Eq. (6.3), the elastic modulus can be easily obtained, and the result is 
reported in Table 27. Due to the material property of the 7075 Aluminium alloy, 
the typical Poisson's ratio has a value of 0.33 and assuming the isotropic 
behaviour, the corresponding shear modulus is obtained.  

The second step is dedicated to determining the transverse shear moduli of the 
foam specimens. It is evident from the previous results that testing a 
homogeneous isotropic material cannot provide an accurate value for the shear 
modulus. It should be addressed in a structure in which the effect of transverse 
shear deformability is pronounced. A typical example of such structure is 
represented by sandwich-like structures where the core takes the most shear 
deformability. 

Two sandwich beam specimens were considered to determine the shear 
modulus of Rohacell® IG-31 and WF-110. A three-point bending test has been 
performed on specimens B01 and D01 using the same LVDT configuration 
considered for pure foam specimen tests. The experimental deflection results have 
been compared with a 2D high-fidelity model using membrane QUAD4 
NASTRAN® elements representative of the B01 and D01 beam specimens to 
evaluate the value of shear moduli numerically. Due to the symmetry of the 
problem, only half of the beam is discretized in the FE model, using 227840 
QUAD4 elements, taking advantage of computational cost save. In the FE model, 
the material mechanical properties for Ergal face-sheets and Young’s moduli of 
the Rohacell® foams are those determined experimentally in the former step; for 
the adhesive layer, instead, are considered those given by the producer (the 
adhesive thickness is considered 0.25mm). In the NASTRAN® elements, the 
Ergal and the adhesive material are modelled as isotropic materials. 

A parametric analysis is performed to determine the shear modulus values that 
match better the experimental and numerical deflections with less than 1% of 
errors. The shear modulus, instead, assumes different values in the range 
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 0.8 :n nG G , since the expected values are below the nominal ones. The 

corresponding values have been obtained for the three measured displacements, 
top and bottom central beam and a quarter of the beam length. In this case, due to 
the possibility of having G values that could not satisfy the Poisson’s relation for 
isotropic materials, the core material properties are assumed as 2D orthotropic 
where the Poisson’s ratio value is nominal. Figure 45 and Figure 46 report the 
percent errors for IG-31 and WF-110  between the FEM and experimental results 
for central top and bottom deflection and top deflection at a quarter of the 
effective beam length. It is worth noting that for the IG-31 foam, the numerical 
shear moduli that give an error below 1 % are not almost identical for the bottom 
and quarter-length deflections, see Figure 45. Whereas, for WF-110 foam, a shear 
modulus is obtainable if the quarter-length and central bottom deflection are the 
only displacement considered. It is important to note that for both cases, the 
experimental central displacement at the top surface is always greater than the 
bottom one. Although the Rohacell® foams are made of the same plastic material, 
Polymethacrylamide (PMI), the differences in the material properties are due to 
the foam manufacturing process.  

 

Figure 45: Percent errors of numerical displacements versus the normalized shear 
modulus (B01). 
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Figure 46: Percent errors of numerical displacements versus the normalized shear 
modulus (D01).  

 

It is interesting to note from the datasheets of the material properties given for 
the IG-31 foam that two values of Young’s modulus have been given, one related 
to the traction case and the other for compression, which is sensibly lower than 
the first one. It can be seen that the traction elastic modulus is very close to those 
determined experimentally. However, this thesis’s work does not consider a 
different definition of the value for elastic modulus if the material is in traction or 
compression condition, nor is it included in the high-fidelity FE model. However, 
considering the high-fidelity FE model of B01 with nominal values for the 
material properties, it can be easily seen from the transverse normal stress plot  
Figure 47 that the core in the transverse thickness direction is mostly in 
compression or has very low-stress values. A similar effect is expected to be 
reproduced for the D01 beam, as reported in Ref. [175], where the core has been 
made of WF-110. However, from the producer datasheet for WF-110 foam, an 
elastic modulus for compression has not been given. It is reasonable that the top 
displacement where the load is applied produces a local nonlinear effect that is not 
noticeable with the current models.  Thus, the shear modulus of the WF-110 foam 
is determined only by considering the bottom central and quarter-length 
deflections. 
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Figure 47: Normal transverse stress distribution 33  in core layer for beam B01 

considering nominal material properties of Rohacell® IG-31. 

 

For the IG-31 foam, based on this numerical consideration, it seems 
appropriate to consider the value of Young’s modulus in the transverse direction 
as the corresponding compression modulus. Therefore, taking advantage of the 2D 
orthotropic material definition in the NASTRAN® model, a new parametric 
analysis has been performed to determine the shear modulus that better matches 
the displacements, considering the compressive modulus for the transverse 
mechanical property. The numerical results of the displacements, in terms of 
percent errors with the experimental results, are shown in Figure 48. 
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Figure 48: Percent errors of numerical displacements versus the normalized shear 
modulus (B01),  considering the compressive elastic modulus in the transverse direction. 

 

The central bottom and quarter-length displacement error curves shown in 
Figure 43 are closer than those in Figure 45. Thus, it is possible to obtain a value 
for the shear modulus that can ensure an error for these displacements of less than 
1%. However, considering a compressive value for Young’s modulus in the 
transverse direction guarantees a lower error also for the central top displacement. 
For the assumed value of the shear modulus of IG-31 foam, the error on top 
central deflection is less than 5% for beam B01. It should be noted that the central 
top deflection is very sensible to Young’s modulus in the transverse direction. It is 
expected that for other beam specimens, the error could be greater due to the more 
pronounced compression of the core given by the manufacturing process (the 
nominal thickness of the core has been reduced by 3 mm). 

The results of the experimental characterization are reported in Table 27. In 
addition, these values are used in the following numerical comparisons between 
the experimental and the new model results. 
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Table 27: Experimental material mechanical properties. Young’s and shear modulus 
are in MPa. 

Material E G 

EN-AW 7075 T6 (Ergal) 67545.6 1947.9  25393.1 

Rohacell® IG-31* 43.2 2.0  12.1 

Rohacell® WF-110 194.1 4.8  66.9 

* for the transverse direction, the compressive modulus is considered (E=17 
MPa). 

 

6.3 Static assessment 

In this Section, the experimental static responses of three- and four-point 
bending tests on sandwich beams (B01, B02, B03 and B04) are shown and 
compared with the new RZT mixed model.  

The novelty aspect of this static analysis is the experimental evaluation of the 
strain quantities at the interfaces between IG-31 core and Ergal face-sheets. The 
optical fibre sensors have been made by Politecnico di Milano and embedded in 
the sandwich during the manufacturing layup before the curing process. The 
sensors, of different lengths, are placed parallel to the beam's longitudinal axis. 
The sensor placement scheme is reported in Figure 49. 
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Figure 49: View from above of the optical fibre sensor positioning at the layer 
interface, the radius R=15 mm (data in mm).  

 

Moreover, a groove guide on the Ergal face-sheet has been done to keep the 
sensor in position during the curing process, and the adhesive layer is placed, as 
shown in Figure 50. Finally, the bonding process and the following cure process 
have been done in the autoclave. Then, the sandwich beams were placed in a 
mechanical press to restore the planarity between the Ergal face-sheets, modified 
as a consequence of the protecting supports for the optical fibre sensors, see 
Figure 51. 

The optical fibre sensors are connected to the acquisition system (Luna Inc. 
ODISI 610x series) through the remote modules to the first two channels, see 
Figure 52. 

In addition to the optical fibre sensors, some strain gauges were placed on the 
beams. Four strain gauges (E1, E2, E3 and E4) were placed for each beam, two on 
top and two on bottom surfaces, to measure the axial deformations. Moreover, a 
further strain gauge (E5) has been placed to verify the symmetry of the boundary 
and applied load condition during the test. The transverse displacements at the top 
and bottom surfaces have been measured using three LVDTs. Two have been 
positioned in the corresponding point of applied force (W1 and W2), and the third 
is positioned on the bottom surface at the centre of the beam (W3). 
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The load cell, LVDTs and strain gauges positioned on the beam specimen are, 
respectively, shown in Figure 53, Figure 54 and Figure 55. 

 

 

Figure 50: fibre optic sensors placed on the Ergal face-sheets, adhesive layer (in red) 
and Rohacell® IG-31 foam. 

 

 

Figure 51: manufactured beam specimen (B02) after mechanical pressing. 
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Figure 52: Luna Inc. ODISI 610x optical fibre acquisition system. 

 

 

Figure 53: HBM strain gauge load cell (200kg) 
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Figure 54: strain gauges embedded on beam top (a) and bottom (b) surfaces. 

 

a) 

b) 
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Figure 55: LVDTs positioning and nomenclature for the top (a) and bottom (b) 
displacements.  

 

a) 

b) 
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Figure 56: Supported condition on the sandwich beam specimens. 

The supported edge of the beam specimens is shown in Figure 56. For the 
numerical model, the transverse displacement of the contact point between the 
supporting cylinder and the beam specimen is prescribed to be null. 

In the numerical comparison of the experimental results with the ( )
{3,2}2B-RZT m  

elements, differently from how it has been done for the numerical analysis, the 
simply-supported condition is modelled differently. In this case, the constraint on 
the transverse displacement has been enforced only on the contact point on the 
bottom beam surface. The constraint conditions are: 
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 (6.4) 

A discretization using ( )
{3,2}2B-RZT m  beam element of 0.25 mm of length has 

been used for each beam. Concerning the high-fidelity FE model, the beams are 
discretised using membrane QUAD4 elements. In Table 28, the number of 
elements and the corresponding total dof’s for the sandwich beam models are 
reported. 
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Table 28: Number of elements and dof’s in ( )
{3,2}2B-RZT m and Nastran models for 

static analysis. 

 - (m)
{3,2}2B RZT  NASTRAN 

Beam ID 
Number of 
elements 

Dof’s 
Number of 
elements 

Dof’s 

B01 2560 30726 227840 458458 

B02 1960 23526 169540 341388 

B03 1360 16326 118320 236640 

B04 1120 13446 96320 194106 

 

6.4.1 Three-point bending tests 

The three-point bending test is performed according to the scheme given in 
Figure 57. The nomenclature for the measured displacements and strains is 
reported in the same figure. The experimental axial strains are also evaluated 
across the thickness at the layer interfaces in two sections 1 20Sx mm   and 

2 75Sx mm  . The position of strain gauge E5 is 20x mm  . 

 

Figure 57: Scheme for three-point bending test and nomenclature for strain gauges 
and displacements (in mm).  
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The measured axial strains along the axis coordinate of the three rectilinear 
lines are averaged to obtain a single strain function representative of the beam 
behaviour. The reason is dictated by the high resolution of the optical fibre 
sensors that are very sensitive to geometry imperfections. 

The experimental results are compared with those from the mixed RZT beam 
finite element model and those obtained by the high-fidelity FE Nastran model. 
The test was performed by increasing the applied load and reaching four different 
load levels to measure the quantities appropriately.  

In Table 29, the experimental and numerical normalized displacements and 
corresponding percent errors are compared. Figure 58, Figure 60, Figure 62 and 
Figure 64 show the axial strain distributions along the longitudinal axis for each 
beam specimen at the bottom and top interfaces between the Ergal face-sheets and 
the IG-31 foam core. Moreover, in Figure 59, Figure 61, Figure 63 and Figure 65, 
the trough-the-thickness distributions of the axial strains at the prescribed sections 

1Sx  and 2Sx  are reported for each beam specimen. The Nastran solution is 

reported only for half-beam length since the symmetry of the problem has been 
considered to save computational costs. 

Table 29: Comparison of normalized displacements for three-point bending test 
between numerical and experimental, in brackets the percent errors. 

Beam specimen 
ID 

Transverse 
displacement 

Experimental 𝟐𝐁-𝐑𝐙𝐓{𝟑,𝟐}
(𝐦)  

B01 
3 ( )( )TU z  3.354E-03 3.601E-03 (7.4) 

3 ( )( )BU z  3.009E-03 2.913E-03 (-3.2) 

B02 
3 ( )( )TU z  2.891E-03 2.737E-03 (-5.3) 

3 ( )( )BU z  2.269E-03 2.051E-03 (-9.6) 

B03 
3 ( )( )TU z  2.283E-03 1.865E-03 (-18.3) 

3 ( )( )BU z  1.713E-03 1.178E-03 (-31.2) 

B04 
3 ( )( )TU z  1.589E-03 1.544E-03 (-2.9) 

3 ( )( )BU z  1.062E-03 8.571E-04 (-19.3) 
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Figure 58: Axial strain distributions along the longitudinal axis for beam B01 (three-

point bending).  

 

 
Figure 59: Through-the-thickness distributions of axial strains, beam B01, at 

1 220  and 75S Smm x mmx     . 
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Figure 60: Axial strain distributions along the longitudinal axis for beam B02 (three-

point bending). 

 
Figure 61: Through-the-thickness distributions of axial strains, beam B02, at 

1 220  and 75S Smm x mmx     . 

 
Figure 62: Axial strain distributions along the longitudinal axis for beam B03 (three-

point bending). 
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Figure 63: Through-the-thickness distributions of axial strains, beam B03, at 

1 220  and 75S Smm x mmx     . 

 

 
Figure 64: Axial strain distributions along the longitudinal axis for beam B04 (three-

point bending). 

 
Figure 65: Through-the-thickness distributions of axial strains, beam B04, at 

1 220  and 75S Smm x mmx     . 
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For three-point bending, the ( )
{3,2}2B-RZT m  elements are able to estimate the top 

and bottom central deflection with errors in some cases lower than 5%. However, 
the discrepancies are due to the geometry imperfections in the thickness and the 
material characterization uncertainties, i.e. Young’s modulus in the transverse 
direction. However, for the first time, the longitudinal axial strains at the 
sandwich interfaces are evaluated and compared with the numerical models. Both 

Nastran and ( )
{3,2}2B-RZT m elements are able to predict the strain variations at the 

bottom and top interfaces. In particular, the ( )
{3,2}2B-RZT m  elements are able to 

predict the strains in the corresponding point of the supported cylinder at the 
bottom interface with remarkable precision. Moreover, the zigzag effect along the 
transverse direction has been experimentally observed. Finally, it is important to 

highlight the low computational cost given by the ( )
{3,2}2B-RZT m  elements with 

respect to the high-fidelity FE model. 

6.4.2 Four-point bending tests 

The four-point bending test is performed according to the scheme reported in 
Figure 66, where the strain gauges and displacements have been considered. Note 
that the two sections where are evaluated the axial strains at the sandwich 
interfaces are 1 20Sx mm   and 2 75Sx mm  . Whereas, the strain gauge E5 that 

controls the symmetry of the loads and supported conditions is at 20x mm  . 

  As done for the three-point bending test, the average axial strain is 
representative of the beam behaviour. 
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Figure 66: Scheme for four-point bending test and nomenclature for strain gauges 
and displacements (in mm). 

The experimental results are compared with those from the mixed RZT beam 
finite element model and those obtained by the high-fidelity FE Nastran model. 

The discretizations and dof’s of both  ( )
{3,2}2B-RZT m  and Nastran elements are 

reported in Table 28. 

In Table 30, the experimental and numerical normalized displacements and 
corresponding percent errors are compared. 

Table 30: Comparison of normalized displacements for four-point bending test 
between numerical and experimental, in brackets the percent errors. 

Beam specimen 
ID 

Transverse 
displacement 

Experimental 𝟐𝐁-𝐑𝐙𝐓{𝟑,𝟐}
(𝐦)  

B01 
3 ( )( )TU z  2.881E-03 2.938E-03 (2.0) 

3 ( )( )BU z  2.886E-03 2.858E-03 (-1.0) 

B02 
3 ( )( )TU z  2.238E-03 2.070E-03 (-7.5) 

3 ( )( )BU z  2.050E-03 1.991E-03 (-2.9) 

B03 
3 ( )( )TU z  1.334E-03 1.209E-03 (-9.4) 

3 ( )( )BU z  1.226E-03 1.125E-03 (-8.2) 

B04 
3 ( )( )TU z  9.176E-04 8.907E-04 (-2.9) 

3 ( )( )BU z  7.857E-04 8.047E-04 (2.4) 
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Figure 67, Figure 69, Figure 71 and Figure 73 report the axial strain 
distributions along the longitudinal beam axis at the interfaces between the IG-31 
foam core layer and the Ergal face-sheets. Moreover, the through-the-thickness 
distributions of numerical axial strains at the two sections are compared with the 
experimental results provided by the optical fibre sensors and the strain gauge are 
shown in Figure 70, Figure 68, Figure 72 and Figure 74.   

 
Figure 67: Axial strain distributions along the longitudinal axis for beam B01 (four-

point bending). 

 
Figure 68: Through-the-thickness distributions of axial strains, beam B01, at 

1 220  and 75S Smm x mmx     . 
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Figure 69: Axial strain distributions along the longitudinal axis for beam B02 (four-
point bending). 

 

 
Figure 70: Through-the-thickness distributions of axial strains, beam B02, at 

1 220  and 75S Smm x mmx     . 
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Figure 71: Axial strain distributions along the longitudinal axis for beam B03 (four-

point bending). 

 
Figure 72: Through-the-thickness distributions of axial strains, beam B03, at 

1 220  and 75S Smm x mmx     . 

 
Figure 73: Axial strain distributions along the longitudinal axis for beam B04 (four-

point bending). 
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Figure 74: Through-the-thickness distributions of axial strains, beam B04, at 

1 220  and 75S Smm x mmx     . 

The four-point bending tests' results confirm the ability of ( )
{3,2}2B-RZT m  

elements to follow the experimental deformations along the axis direction for all 
the beam specimens. Moreover, the errors between the experimental and 
numerical displacements are lower than those of the three-point bending tests. 
This effect is due to the lower local value of the applied force on the top beam 

surface. Furthermore, the ability of ( )
{3,2}2B-RZT m  elements to predict the bottom 

interface strains in the area closer to the boundaries confirms the accuracy of the 
zigzag model with an affordable computational cost lower than the high-fidelity 
FE model. Finally, the numerical results provided by the through-the-thickness 
values of the axial strains at the two considered sections are in good agreement 
with the experimental ones. The discrepancies between ( )

{3,2}2B-RZT m  elements and 

the experimental axial distributions at top and bottom interfaces are probably due 
to the symmetry distributions of the third-order zigzag functions that are only 
dependent on the transverse shear material properties and are insensitive to the 
effect of the transverse normal stress induced by the applied load as also shown 
for the three-point bending case. 

6.5 Dynamic assessments 

In this Section, the experimental results regarding the natural frequencies and 
the corresponding modal shapes are presented. The beam specimens D01, D02, 
D03 and D04 have been tested for free-free boundary conditions. The 
experimental modal analysis has been performed using the Laser Doppler 
Vibrometer (LVD) methodology. A Polytec PSV-500 scanning laser head and its 
frontend equipment have been used to measure the velocity responses of the 
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relevant scanning points without using accelerometers. The excitation force was 
applied using an electrodynamic shaker (K2007E01 – up to 9kHz and up to  67 N 
of applied force). Moreover, an impedance head (PCB Piezotronics, Inc. – model 
288D01) has been glued on the beam at the excitation point to measure the force 
intensity and the corresponding response acceleration. 

The specimens were hanged to the support system made of steel using cable 
ties and rubber bands to simulate the free-free boundary conditions, see Figure 75. 
The impedance head was glued to the beam structure and, due to the support 
system of the shaker, was able to excite both torsional and flexural modes. The 
experimental modal analysis to determine the modal parameter has been 
conducted on both kinds of deformation modes; however, only the results for the 
flexural frequencies and Frequency Response Functions (FRFs) have been 
considered in this assessment.  

 

Figure 75: Experimental set-up for dynamic analysis of sandwich beams.  

The scanning points are preliminary selected by a numerical modal analysis 
on a high-fidelity FE model using membrane QUAD4 Nastran elements. The 
high-fidelity FE models of the sandwich beam specimens considered for the 
dynamic experimental assessment (e.g. D01, D02, D03 and D04) model the entire 
beam length since the aim is to observe both symmetric and anti-symmetric 
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flexural modes. The effect of the adhesive layer is taken in consideration in the 
finite element models. In the Nastran model, the QUAD4 membrane elements 
reproduce the plane-stress condition typical of the beam structures. In the Nastran 
model, the coupled mass matrix has been considered in the modal analysis. In 

Table 31 are reported the number of  ( )
{3,2}2B-RZT m  and NASTRAN® elements 

considered in the dynamic assessment for each beam specimen. 

Table 31: Number of elements and dof’s in ( )
{3,2}2B-RZT m and NASTRAN® models for 

dynamic analysis. 

 - (m)
{3,2}2B RZT  NASTRAN 

Beam ID 
Number of 
elements 

Dof’s 
Number of 
elements 

Dof’s 

D01 4096 24576 87000 175350 

D02 4096 24576 41500 84344 

D03 4096 24576 34000 69314 

D04 4096 24576 32000 66162 

 

 

The position of the scanning points along the  1 2,x x  coordinate reference 

system is reported in Table 32, whereas the graphical representation is reported in 
Figure 76. All the points are positioned on the external top surface of the beam, 

i.e. 3 / 2x h  . The reference point 0, where the force is applied, is on the bottom 

surface at the coordinates 1 2 3350 , 15  and / 2x mm x mm x h     . 
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Figure 76: Scanning points representation in  1 2,x x  plane. 

Table 32: Scanning points, data are in mm. 

Point 
ID 

x1 x2 
Point 

ID 
x1 x2 

Point 
ID 

x1 x2 

1 10 0 24 10 -30 47 10 30 
2 40 0 25 40 -30 48 40 30 
3 73.3 0 26 73.3 -30 49 73.3 30 
4 83.3 0 27 83.3 -30 50 83.3 30 
5 93.3 0 28 93.3 -30 51 93.3 30 
6 125 0 29 125 -30 52 125 30 
7 156.6 0 30 156.6 -30 53 156.6 30 
8 166.6 0 31 166.6 -30 54 166.6 30 
9 176.6 0 32 176.6 -30 55 176.6 30 
10 210 0 33 210 -30 56 210 30 
11 240 0 34 240 -30 57 240 30 
12 250 0 35 250 -30 58 250 30 
13 260 0 36 260 -30 59 260 30 
14 290 0 37 290 -30 60 290 30 
15 323.4 0 38 323.4 -30 61 323.4 30 
16 333.4 0 39 333.4 -30 62 333.4 30 
17 343.4 0 40 343.4 -30 63 343.4 30 
18 375 0 41 375 -30 64 375 30 
19 406.7 0 42 406.7 -30 65 406.7 30 
20 416.7 0 43 416.7 -30 66 416.7 30 
21 426.7 0 44 426.7 -30 67 426.7 30 
22 460 0 45 460 -30 68 460 30 
23 490 0 46 490 -30 69 490 30 
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Due to the material reflection, the quality of the laser measurements in the 
scanning point has been increased using reflectors. The frequency bandwidth 
investigated starts from 400 Hz to 4kHz since no frequencies were expected 
below this value. The excitation force signal is a periodic chirp function of 
constant amplitude. The amplitudes and the laser sensibilities have been chosen 
differently due to the different beam specimens. Both input force and output 
acceleration and velocities have been measured to compute the experimental 
FRFs. A complex base averaging of forty FRF scan measurements has been done 
to guarantee the accuracy response signal for each scanning point. 

The experimental FRFs of the whole scanning points have been processed by 
LSM-Siemens Test.Lab. The Polymax algorithm implemented in Test.Lab and 
based on the least square complex exponential algorithm was performed to 
estimate the modal parameters. In Table 33, Table 34, Table 35 and Table 36,  the 
experimental natural frequencies of the flexural modes up to 4kHz and those 
computed with ( )

{3,2}2B-RZT m elements are reported. The Polymax algorithm has 

been able to compute also the torsional modes due to the distribution of the 
scanning points. However, they are not considered since the numerical model 
cannot include the torsional modal shapes. In addition, the corresponding 
experimental modal damping computed using the Polymax algorithm has been 
reported for each flexural mode. The relative errors with the experimental results 
are shown in brackets, and from Figure 77 to Figure 80 are reported some of the 
experimental FRFs of the four beam specimens considered for the modal 
parameter estimation.    

The new mixed-RZT beam results appear more flexible than the experimental 
ones. An explanation of this aspect is due to the dispersion of the material 
properties (Young’s moduli and shear moduli) experimentally determined, which 
affects the numerical results. A further contribution in higher experimental 
frequencies than the numerical one is due to the effect of the stiffness induced by 
the shaker stinger. In fact, the application force point is a circular surface area of 
10 mm in diameter, which constrains displacements of that point. Moreover, the 
cable ties and rubber bands contribute to increasing the experimental frequencies, 
although their mechanical properties have a minor effect. However, these effects 
could affect the experimental results due to their uncertainties in modelling, and 
mechanical characterizations are not considered in the mixed-RZT model. A 
further explanation is the coupling between some torsional and flexural modes 
observed experimentally, which could affect the experimental frequency 
estimation. As highlighted in Chapter 5, the numerical frequencies computed 
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using the ( )
{3,2}2B-RZT m

 elements are very accurate if compared with the high-

fidelity FE model, with a maximum error of 2.5% for the highest flexural mode of 
beam D04; for this reason, the results using Nastran 2D elements are not reported. 
As expected, the errors between numerical and experimental results increase with 
flexural mode number. However, the maximum error values for higher modes do 
not exceed 15%, which is a remarkable result considering the large frequency 
range considered.  

 

Table 33: Experimental and numerical frequencies (in Hz) of the D01 sandwich 
beam (in brackets, the percent errors). 

Mode Experimental n  𝟐𝐁-𝐑𝐙𝐓{𝟑,𝟐}
(𝐦)  

1 764.95 0.68 703.67 (-8.0) 

2 1277.75 1.71 1148.85 (-10.1) 

3 1859.23 1.68 1635.65 (-12.0) 

4 2368.74 1.81 2050.93 (-13.4) 

5 2881.96 2.19 2514.79 (-12.7) 

6 3348.54 1.65 2902.10 (-13.3) 

7 3931.40 1.14 3374.78 (-14.2) 
 

 

Table 34: Experimental and numerical frequencies (in Hz) of the D02 sandwich 
beam (in brackets, the percent errors). 

Mode Experimental n  𝟐𝐁-𝐑𝐙𝐓{𝟑,𝟐}
(𝐦)  

1 794.30 1.15 734.12 (-7.6) 

2 1434.06 1.66 1309.77 (-8.7) 

3 2120.12 1.84 1894.03 (-10.7) 

4 2768.03 1.94 2416.09 (-12.7) 

5 3315.51 1.92 2956.34 (-10.8) 

6 3800.49 1.92 3440.83 (-9.5) 
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Table 35: Experimental and numerical frequencies (in Hz) of the D03 sandwich 
beam (in brackets, the percent errors). 

Mode Experimental n  𝟐𝐁-𝐑𝐙𝐓{𝟑,𝟐}
(𝐦)  

1 662.34 0.84 610.60 (-7.8) 

2 1160.15 1.57 1035.37 (-10.8) 

3 1688.45 2.08 1484.22 (-12.1) 

4 2198.60 1.54 1885.44 (-14.2) 

5 2659.24 1.87 2316.86 (-12.9) 

6 3107.86 2.16 2713.92 (-12.7) 

7 3678.10 0.84 3151.30 (-14.3) 
 

 

Table 36: Experimental and numerical frequencies (in Hz) of the D04 sandwich 
beam (in brackets, the percent errors). 

Mode Experimental n  𝟐𝐁-𝐑𝐙𝐓{𝟑,𝟐}
(𝐦)

 

1 654.10 1.33 629.75 (-3.7) 

2 1287.40 1.42 1175.62 (-8.7) 

3 1942.27 1.79 1721.04 (-11.4) 

4 2568.28 1.97 2222.18 (-13.5) 

5 3094.25 1.98 2727.28 (-11.9) 

6 3683.74 1.92 3203.43 (-13.0) 
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Figure 77: Experimental Frequency Response Functions (FRFs) of beam specimen 
D01. 

 

Figure 78: Experimental Frequency Response Functions (FRFs) of beam specimen 
D02. 
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Figure 79: Experimental Frequency Response Functions (FRFs) of beam specimen 
D03. 

 

 

Figure 80: Experimental Frequency Response Functions (FRFs) of beam specimen 
D04. 
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Chapter 7 

Concluding remarks 

The research work presented in this Thesis is devoted to the refined zigzag 
model formulations, numerical assessments and experimental validations. The 
theoretical zigzag models formulated in Chapters 2-4 are numerically assessed in 
Chapter 5 for various problems, static and dynamic. In Chapter 6, an experimental 
campaign is conducted to evaluate global and local quantities responses to 
compare with the numerical results provided by the newly formulated models. 

The starting point of this research activity has been represented by the 
structural models available in the current literature. In Chapter 1, a detailed 
overview of the existing structural theories for structural analysis in the aerospace 
engineering field has been presented. Among them, the zigzag models represent 
an interesting field of investigation thanks to their accuracy compared to the 
reduced computational cost.  

In the recent literature, the Refined Zigzag Theory (RZT) has represented a 
valuable alternative in the structural analysis of multilayered composite and 
sandwich structures. Thanks to its formulation, the global first-order kinematics 
have been improved with appropriate zigzag functions, allowing a layer-wise 
description of the in-plane displacements and more accurate in-plane strain and 
stress distributions. The through-the-thickness piecewise constant distribution 
with jumps at the interfaces of the shear stress is able to predict the global 
response of the multilayered structure without involving any shear correction 
factor. Moreover, if computed by integrating Cauchy’s equations and compared 
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with the three-dimensional elasticity solution, the obtained shear stress 
distributions have demonstrated to describe the transverse shear deformability 
with higher precision than the FSDT. Moreover, thanks to the partial fulfilment of 
transverse shear stress continuities at the layer interfaces, the RZT do not 
encounter the same inconsistencies as the ZZT in transverse shear stress 
evaluation at the clamped edge. From the provided literature,  the transverse 
stresses (shear and normal) of the RZT could be improved by using the mixed 
formulation. With particular attention to Reissner’s Mixed Variational Theorem 
(RMVT), some mixed versions of the RZT have been developed and applied to 
the analysis of the multilayered cross-ply and sandwich beam/plates. 

However, it has been highlighted that a class of laminates, the angle-ply 
multilayered structures, in which the lamination angles assume the same absolute 
value for each layer, cannot be investigated by the RZT. In fact, the RZT standard 
formulation of the zigzag function is not able to predict the transverse shear 
coupling induced by the material anisotropy of the lamination scheme. As a result, 
the RZT degenerates into the FSDT model. The generally adopted procedure to 
make the RZT useable is to slightly modify the lamination angle of each layer; 
however, this numerical strategy does not solve a problem insight in the model 
formulation. 

Taking inspiration from the literature on the previously developed zigzag 
models and from the works on the transverse shear coupling in anisotropic 
multilayered structures, in Chapter 2, the Refined Zigzag Theory has been 
enriched with two additional zigzag functions able to couple the in-plane local 
displacement refinement. The new enhanced zigzag functions are formulated 
according to the standard procedure that defines their zigzag slopes through the 
partial enforcement of the transverse shear stress continuity at the layer interfaces 
and the vanishing condition at the top and bottom external surfaces. The 
governing equations and consistent boundary conditions have been formulated for 
the static and dynamic analysis of more general laminated plates. In Chapter 5, the 
new enhanced-Refined Zigzag Theory (en-RZT) is assessed for the static bending, 
stability and free vibration problems to investigate the benefits and relative 
limitations. The numerical comparisons on the evaluation of the enhanced zigzag 
function reveal that the new enhanced model is a generalization of the standard 
RZT. In fact, for multilayered cross-ply and sandwich plates, the standard RZT 
kinematics is re-obtained since the new coupling zigzag functions are null. This 
result should not be surprising since, for such cases, the transverse shear coupling 
induced by the material anisotropy is not present, and the enhanced formulation is 
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capable of including the particular one. The numerical results also reveal the 
accuracy of the en-RZT model in displacement and stress predictions for 
multilayered symmetric and anti-symmetric angle-ply structures. The analytical 
solutions provided for the simply-supported cases are considered benchmark 
solutions enriching the list of cases treated in literature and possible comparisons. 
With respect to other zigzag or higher-order models, the en-RZT is able to provide 
the same degree of accuracy in predicting global quantities and through-the-
thickness distributions. From the results provided in Chapter 5, the en-RZT 
provides superior prediction capabilities over the FSDT and the TSDT. 

Consistent with the en-RZT assumptions, the transverse shear stress 
distribution computed using the constitutive material relation is a piecewise 
constant function with jumps at the interfaces. In an average sense, it provides an 
accurate global description of the transverse shear deformability, but it is not able 
to ensure the transverse shear stress continuity. Moreover, the model assumes a 
transverse displacement that is uniform along the whole laminate thickness, which 
is not able to describe the transverse normal deformability typical of thick 
multilayered and sandwich structures. As anticipated, a mixed version of the RZT 
has been formulated in conjunction with using the RMVT to analyse multilayered 
composite and sandwich thick structures. However, the hypothesis of cylindrical 
bending is necessary to avoid inconsistencies in transverse shear stress predictions 
due to the weak enforcement of transverse shear strain compatibilities. This 
hypothesis to determine the expression of the assumed transverse shear stresses 
cannot be applied to the multilayered anisotropic plates in which the effect of 
transverse shear coupling is not negligible. Therefore, it has been necessary to 
formulate a new mixed model based on the enhanced zigzag kinematics. 

In Chapter 3,  a novel higher-order zigzag model is proposed. Among the 
aims of this research activity, one represents the inclusion of the non-linear 
trough-the-thickness distribution of the displacement field. This nonlinearity is 
typically encountered for thick multilayered composite and sandwich structures. 
Starting from the en-RZT kinematics, the displacement field is enriched with 
through-the-thickness parabolic and cubic contributions for the in-plane 
displacement and linear and parabolic contributions for the transverse 
displacement. The total number of kinematic variables is reduced by taking 
advantage of the partial fulfilment of the transverse shear stress continuity at the 
layer interfaces and a further condition on the partial null in-plane traction 
conditions at the top and bottom surfaces. The resulting displacement field has a 
new set of third-order enhanced zigzag functions. The transverse normal and shear 
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stresses are assumed independently from the displacement field. More 
specifically, the transverse normal stress is assumed as a smeared cubic through-
the-thickness continuous function that satisfies the traction condition at the top 
and bottom external surfaces. The assumed transverse shear stresses are obtained 
from integrating Cauchy’s equations without any simplifications. The variational 
statement involves the Hellinger-Reissner principle since a new set of strain 
variables is used to interpolate the assumed transverse shear stresses. In addition, 
a new penalty term is added to the governing functional to enforce the 
compatibility conditions with the strains derived from the displacement field. 
Finally, the governing equations and consistent boundary conditions of the new 

( )
{3,2}en-RZT m  model are derived and specialized for the static bending and free 

vibration problems. In Chapter 5, the governing equations of ( )
{3,2}en-RZT m  model 

are solved analytically for simply-supported multilayered cross-ply/angle-ply and 
sandwich plates. The provided results show the accuracy of the newly mixed 
model in displacements and through-the-thickness stress predictions if compared 
with the available three-dimensional solutions. More specifically, the transverse 
shear and normal stress distributions are very accurate, even for very thick 
multilayered plates and, for the first time, also for multilayered angle-ply plates. 
Furthermore, the accuracy in dynamic analysis has been confirmed by the results 
on the natural frequencies that agree with three-dimensional results. 

In Chapter 4, the ( )
{3,2}en-RZT m  model has been restricted to the analysis of 

beam structures. The obtained displacement field is formally equivalent to 
Iurlaro’s third-order RZT kinematics; however, the variational statement is the 

same as the new ( )
{3,2}en-RZT m  model, including the Hellinger-Reissner and 

penalty terms for the weak strain compatibilities. In addition, the governing 
equations and consistent boundary conditions are specified for the beam problems 
and solved for some numerical examples in Chapter 5. The results confirm the 
predictivity capabilities and transverse normal and shear stress distributions due to 
the mixed formulation via the HR principle. Furthermore, remarkably accurate 
results have also been obtained for the free vibration problems. 

A finite element formulation is proposed in Chapter 4 to investigate 
multilayered thick beam structures under the action of concentrated forces on the 
top surface. Two beam elements are formulated, ( ) ( )

{3,2} {3,2}2B-RZT  and 2Bc-RZTm m , 

with different interpolation strategies for the kinematic and strain variables. The 
linear Lagrangian shape functions have been used for ( )

{3,2}2B-RZT m  element, 
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whereas an anisotropic-constrained strategy with Serendipity shape functions has 
been considered for the ( )

{3,2}2Bc-RZT m   element. Both elements have been assessed 

in Chapter 5. They are able to give the same results in terms of displacements, 
natural frequencies and strain distributions for the investigated numerical cases. 
The free vibration study on the element behaviours reveals the accuracy of 
frequency prediction when the model is compared with other high-fidelity FE 
models. However, it has also been revealed that for static problems, the effect of 
transverse normal deformability induced by concentrated loads is more complex 
to investigate. However, the solution regarding displacements and axial strains is 
quite accurate except for the area next to the applied force.  

Finally, in Chapter 6, an experimental campaign is conducted on a different 
series of thick sandwich beams considering different length-to-thickness ratios, 
foam core materials and boundary conditions. For the first time, the results of the 
axial strains at the interfaces between the sandwich core and face-sheets are 
measured and compared with the newly zigzag elements. Thanks to the fibre optic 
sensors, the axial deformation can be measured along the longitudinal beam axis. 
Three- and four-point bending tests have been performed to evaluate deflections 
and strains. The provided results highlight the ability of the new RZT mixed 
model to predict accurately at the bottom interfaces the axial deformations in the 
boundary area and the top interface axial deformations close to the applied force. 
It is a remarkable result since the number of dof’s involved in using the 

( )
{3,2}2B-RZT m  elements is fifteen times lower than the high-fidelity FE models. An 

experimental modal analysis has been conducted using the Laser-Doppler-
Vibrometer to evaluate the natural frequencies of another set of thick sandwich 
beam specimens. The experimental results have revealed that the beam exhibits a 
stiffer behaviour with respect to the ( )

{3,2}2B-RZT m  elements; however, due to the 

accuracy of the dynamic analysis presented in Chapter 5, the discrepancies are 
due to the standard variation of the mechanical properties of the beam and the 
disturbed induced by boundary conditions adopted in the experimental tests. The 
provided numerical results agree with the experimental ones for a wide range of 
frequencies investigated with limited errors on the wide range of frequencies 
investigated. 

The research activity herein presented, supported by the numerical and 
experimental results, wants to offer a more general and complete methodology 
based on the refined zigzag models to investigate multilayered composite and 
sandwich structures. In particular, the newly formulated models could be used to 
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analyse structures in which the material transverse anisotropy is not negligible. 
Moreover, the mixed formulation of the new models could be used to investigate 
even thick multilayered structures. The formulated elements make these new 
mixed models appealing in their predictivity capabilities and affordable low 
computational cost compared to other available models. 
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Appendix A 

Derivation of the assumed 
transverse normal stress 

In this appendix, the details are given for the solution of the weak form of the 
compatibility constraint between the transverse normal strain derived from the 
kinematic field and that derived from the assumed transverse normal stress. The 
procedure adopted here takes inspiration from those addressed by Iurlaro et al. 
[131]. However, in this newly developed model, a more general lamination 
scheme is considered that involves the enhanced higher-order zigzag functions. 

Due to the arbitrary variation of the unknown stress vector )(σq x , the Eq. 

(3.34) can be solved as follows: 

    33 33 33 33 33
( )

33 0a aa a

V

kdV          (A.1) 

where the symbol ...  denotes the integration over all the plate thickness.  

Using the material constitutive relation for the transverse normal strain, it 
reads: 

 ( ) ( ) ( )
3 33 3 33 3 33( ( ), ) , ) ( ,a k a k k
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where )
23 3

( ) ( ) (
6

) (
13

k k k kR R R   R . 

Performing the virtual variation of the transverse normal stress and 
substituting the expression of Eq. (A.2) into Eq. (A.1), it follows: 

   ( ) ( ) ( )
,3 33 0T T z k k k

z pS    σ σq P H w Lq P q R ε  (A.3) 

Substituting the expression for in-plane strain quantities, as defined by Eq. 
(3.8), yields the following expression: 
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From which it is possible to solve in terms of the vector ( )σq x that contains 

the unknown stress quantities: 

 

1 1( ) ( ) ( )
33 ,3 33 33

1( ) ( )
33

1( ) ( )
33

1( ) ( ) ( )
33

) ) )

)

)

)

( ( (

(

(

(

k T T z k T k T
z

k T T k
m

k T T k

k T T k k

S S S

S

S z

S

     

  

   

   

 













 







σq x P P P H w x P P P L q x

P P P R ε x

P P P R ε x

P P P R Μ ε x

 (A.5) 

Substituting expression (A.5) into Eq. (3.23), after some mathematics, the 
final expression reads: 
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where 
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are the shape functions of the thickness coordinate for the transverse normal 
stress. 



 

234 

 

Appendix B 

Derivation of the assumed 
transverse shear stresses 

In this appendix, the mathematical passages to obtain the full expression of 
the transverse shear stress are reported. 

Using the assumed transverse normal stress expression defined by Eq. (3.36) 
and substituting into the mixed material constitutive relations, the in-plane stress 
quantities are here defined in a compact matrix form: 
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Before substituting into the expression of local equilibrium equations defined 
by Eq. (3.25), it will be performed the substitution of the strain quantities with the 
new set of independent variables as defined by Eq. (3.26). This procedure results 
in the following: 
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Deriving the expression of Eq. (B.2) with respect to x1 and x2 directions and 
substituting into Eq. (3.25) the integration along the thickness direction is 
performed, resulting in the following expression: 
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where 3 3 3 3 3( ),  ( ),  ( ),  ( ),  ( )x x x x xz z z z zA B D E F are the shape functions in the 

transverse direction, and the derivative of the independent strain variables are 
defined as follows: 
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The shape functions are expressed as follows:  
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Since the expression (B.3) is not able to satisfy the traction condition at the 
top surface, a further term is added: 
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The expression of a is obtained by integrating the transverse shear stresses 
along the whole laminate thickness and enforcing the traction conditions in both 
directions at the top surface. It reads: 
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Substituting the expression of Eq. (B.11) into (B.10) yields: 
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where, the terms of Eq. (B.12) and Eq. (3.37) are defined as follows: 
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Appendix C 

Full expressions of the equilibrium 
equation and boundary conditions 
terms 

In this appendix, the full expressions of the terms that appeared in the 
( )

{3,2}en-RZT m equilibrium equations, i.e. Eqs. (3.40) - (3.56) are expressed as 

follows: 
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Furthermore, the terms shown in the boundary condition expression, i.e. Eq. 
(3.76), can read: 
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Appendix D 

Matrix definitions of the - (m)
{3,2}en RZT

constitutive relations 

In this appendix are resumed the matrices definitions of the constitutive 
relations for resultants of forces and moments: 
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 (D.1) 

From the HR statement related to the transverse shear strain compatibility, the 
constitutive matrices have the following expressions: 
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Appendix E 

Full expressions and constitutive 

relations - (m)
{3,2}B RZT  

In this appendix are reported the full expressions of the quantities involved in 
the governing equations and boundary conditions: 

  0 (0) (1) (2)
11 ,11 12 ,11 13 ,11 ,1 ,1
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 



       
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 (E.4) 
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 (E.6) 

Furthermore, the terms shown in the boundary condition expression, i.e. Eq. 
(4.37), can read: 
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