
26 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Seeing Beyond the Order: a LEN5 to Sharpen Edge Microprocessors with Dynamic Scheduling / Caon, Michele; Petrolo,
Vincenzo; Mirigaldi, Mattia; Guella, Flavia; Masera, Guido; Martina, Maurizio. - ELETTRONICO. - (2024), pp. 47-50.
(Intervento presentato al  convegno 21st ACM International Conference on Computing Frontiers tenutosi a Ischia (Italy)
nel May 7 - 9, 2024) [10.1145/3637543.3652880].

Original

Seeing Beyond the Order: a LEN5 to Sharpen Edge Microprocessors with Dynamic Scheduling

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3637543.3652880

Terms of use:

Publisher copyright

© ACM 2024. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in CF '24 Companion: Proceedings of the 21st ACM International Conference
on Computing Frontiers: Workshops and Special Sessions, http://dx.doi.org/10.1145/3637543.3652880.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989944 since: 2024-10-07T15:55:08Z

ACM



XXXX, XXXX, 2024, XXXX Caon, et al.

Seeing Beyond the Order: a LEN5 to Sharpen Edge
Microprocessors with Dynamic Scheduling

Michele Caon†
michele.caon@polito.it

Vincenzo Petrolo†
vincenzo.petrolo@polito.it

Mattia Mirigaldi†
mattia.mirigaldi@polito.it

Flavia Guella†
flavia.guella@polito.it

Guido Masera†
guido.masera@polito.it
†Politecnico di Torino

Turin, Italy

Maurizio Martina†
maurizio.martina@polito.it

ABSTRACT
In recent years, the shift towards data-driven workloads has un-
derscored the limitations of traditional Von Neumann embedded
computers and centralized processing infrastructures. Heteroge-
neous embedded Systems on Chip have emerged as a promising
alternative offering the performance and energy efficiency benefits
of specialized accelerators alongside the versatility of CPU-based
systems. However, optimizing operation scheduling and resource
utilization at compile time remains a challenging task. In this con-
text, modular Instruction Set Architectures like RISC-V enable the
development of tightly-coupled coprocessors that share the code
with the host CPU. Techniques exploiting Instruction-Level Par-
allelism can mitigate the high latency of specialized hardware by
dynamically reordering and speculatively executing instructions.
This paper presents the first iteration of LEN5, a 64-bit RISC-V mi-
croprocessor featuring a modular, dynamically scheduled execution
pipeline with Out-of-Order execution and commit. Preliminary im-
plementation figures and benchmarking results over the Embench
suite show significant improvements in Instructions Per Cycle of
more than 20% compared to simpler in-order microarchitectures.
Additionally, LEN5 achieves a 20% higher operating frequency
when integrated into a small, edge-oriented microcontroller. The
64-bit architecture also enables up to a 2.4× reduction in the number
of instructions required to execute precision-sensitive workloads.
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1 INTRODUCTION
While the advancements in the semiconductor manufacturing pro-
cess have yielded undeniable benefits since the introduction of
embedded computers in the 1970s, they have also represented a
paradoxical limitation to innovation in the field of computer archi-
tecture. The status quo was disrupted in the last decades by the
combined action of a shift in the software programming paradigm
towards data-driven algorithms and the ever-increasing difficulties
and costs involved when trying to keep pace with Moore’s Law.
The inherent limitations of traditional Von Neumann architectures
have amplified the imperative to relocate computation closer to
the data source, driven by the saturation of network infrastructure
within the existing centralized computing paradigm.

Heterogeneous embedded Systems on Chip (SoCs) like [3] have
emerged as a promising solution to the performance and energy
efficiency challenges faced by edge devices. In such systems, com-
putationally intensive tasks are delegated to specialized domain- or
application-specific accelerators, offering superior execution speed
and energy efficiency compared to the main Central Processing
Unit (CPU). These accelerators are typically integrated as memory-
mapped peripheral units, communicating with the host CPU via
the system bus. Consequently, dedicated software libraries and dri-
vers are essential for data exchange and control of their operation.
However, optimizing scheduling andmemory bandwidth utilization
presents significant challenges, often leading to underutilization of
the accelerator’s potential performance and energy benefits.

In this context, modular and extendable Instruction Set Archi-
tectures (ISAs) offer an alternative solution by enabling the inte-
gration of custom domain-specific instruction set extensions along-
side tightly-coupled Execution Units (EUs) or coprocessors which
share both code and memory space with the host CPU. This ap-
proach enhances efficiency compared to memory-mapped devices
and benefits from compiler assistance in automatically mapping
and scheduling accelerated tasks within the program. However,
offloaded instructions usually implement computationally inten-
sive operations that result in a latency, possibly variable, of tens
to thousands of cycles. Optimizing coprocessor utilization while
mitigating stalls on the host CPU presents therefore challenges
that cannot be fully resolved at compile time. This issue is par-
ticularly pronounced in scenarios where the same ISA extension
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may be implemented differently across various microarchitectures.
Instruction-Level Parallelism (ILP) and dynamic execution sched-
uling are valuable tools that embedded systems can borrow from
application-class and high-performance computing systems to im-
prove the overall system performance and hide the latency of the
offloaded instructions. The same benefits also apply to covering the
access time to memory-mapped peripherals. On the other hand, dy-
namic scheduling implies more complex control and consequently a
significant increase in area and energy consumption [7]. Therefore,
it is important to balance the trade-off between the performance
improvement and the efficiency degradation. Modularity and con-
figurability are key features to mitigate this issue, allowing the
designer to tailor the processor characteristics to the specific de-
ployment requirements and the expected workload.

This paper presents LEN5, a highly configurable, modular, spec-
ulative, 64-bit RISC-V microprocessor featuring in-order issue, Out-
of-Order (OoO) execution and OoO commit. The main features of
LEN5 architecture presented in Section 2 are:

• A scalable and modular core infrastructure that allows for
easy configuration to meet various computing requirements.

• Efficient latency masking and dependency handling to ensure
high utilization of the EUs with diverse workloads.

• Wide configurability to tailor the base microarchitecture to
the area and timing constraints of the target application.

The preliminary results when running the Embench benchmark
suite, discussed in Section 3, highlight the potential benefits of the
proposed architecture compared to simpler in-order architectures.
On the other hand, they expose some limitations of the current
implementation when dealing with workloads with a complex and
data-dependent control flow. The area and timing characteristics
obtained show the potential for a significant improvement in terms
of clock frequency at the cost of a moderate system-level area
increase when targetting small, edge-oriented SoCs.

LEN5 RTL description and benchmarking software is available
under an open-source library at: https://github.com/vlsi-lab/len5.

2 CPU MICROARCHITECTURE
The primary goal of LEN5microarchitecture is to provide a modular
core infrastructure that can a) be easily configured and extended
to meet diverse computing needs, and b) mask the latency of and
dependencies of any executed instruction to guarantee high per-
formance even when hosting serial or heavily pipelined EUs. To
achieve this, LEN5 leverages a combination of branch prediction
in its fetch stage (based on [1]), speculative OoO execution and
OoO commit in its backend. The top-level block diagram of the
microprocessor is shown in Fig. 1. In its current state, LEN5 mini-
mal configuration supports the RV64I base instruction set and the
Zicsr ISA extension. The M extension can be optionally enabled,
with or without a hardware integer divider. Both a 32-bit serial
and a 64-bit pipelined divider are currently available. The choice
to implement the 64-bit instruction set was made to cover those
applications that benefit from larger operands and to pave the way
for broader Operating Systems (OSs) support [4]. The possibility to
switch to a 32-bit version of the core is still under development.
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Figure 1: Block diagram of the LEN5 microprocessor.

2.1 Instruction Fetch
The gshare branch predictor and the Branch Target Buffer (BTB) in
the frontend Branch Prediction Unit (BPU) speculatively update the
Program Counter (PC) when known branch and jump instructions
are fetched to cover the latency of branch and jump resolution in
the backend. An early jump-and-link decode unit featuring a Return
Address Stack (RAS) also recognizes unknown static jumps (jal)
and known subroutine return instructions (ret) and speculatively
updates the PC in advanced to mitigate the jump misprediction
penalty in these cases as well. New instructions are finally pushed
to an Issue Queue (IQ), waiting to be decoded and dispatched for ex-
ecution by the main instruction decoder in the backend. To recover
faster from branch or jump mispredictions, the fetch unit is notified
of the misprediction as soon as the Branch Unit (BU) detects it, so
the PC can be updated to the correct target address and the IQ can
be populated with new instructions while the backend waits for all
previous instructions to complete before flushing the in-flight ones.

2.2 Instruction Execution
The microarchitecture of the OoO instruction execution pipeline
is based on an enhanced version [2] of Tomasulo’s approach to
dynamic scheduling [6]. Instructions are decoded in program order
and dispatched to a buffer, referred to as Reservation Station, inside
the target EU. At the same time, they are pushed into the ReOrder
Buffer (ROB), where they wait for execution completion and com-
mit. Each instruction source operand can be forwarded from the
Common Data Bus (CDB) or the ROB if produced by some previous
instruction that has already been executed, or fetched from the
register file if no in-flight instruction is writing the corresponding
register. If the instruction operands are not all available at dispatch
time (i.e., they are produced by an in-flight instruction that has
not been executed yet), the instruction waits for them in the tar-
get Reservation Station (RS) until they are broadcast on the CDB
once the producing instruction completes its execution. During this
time, instructions in the same RS whose operands become available
can be executed, possibly out of program order. All the in-flight
instructions write their result in the ROB using the CDB, which
also broadcasts it to all the waiting RSs. This enables dynamic OoO
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execution scheduling while resolving all the operand dependencies
among instructions without the need for a large centralized instruc-
tion status table. As a consequence, the only modifications that
are required to add hardware support for custom extensions are
to extend the main instruction decoder and add dedicated RS and
compute engine to the backend. LEN5 microarchitecture provides
all that is necessary to handle hazards, operand forwarding, and
result commit regardless of the latency of the new EU. Also, thanks
to the distributed control flow and execution isolation, adding new
EUs does not significantly impact the timing performance of the
system, resulting in a highly scalable microarchitecture.

2.3 Instruction Commit
LEN5 commit stage picks instructions that have completed their
execution from the ROB and schedules them for commit. While the
ROB keeps track of the oldest instruction and prioritize it for com-
mit, an alternative commit slot can select a newer instruction for
commit, provided that it does not cause Write-After-Write (WAW)
hazards on the register file and all previous instructions can no
longer disrupt the execution flow (e.g., by triggering an exception or
a branch misprediction). This allows LEN5 to commit instructions
out of program order whenever the oldest instruction in the ROB
has not yet completed its execution. The commit of memory access
instructions (loads and stores) is handled separately by the LEN5
Load-Store Unit (LSU). The LSU contains an OoO Load Buffer (LB)
and an in-order Store Buffer (SB). Both buffers support outstanding
memory requests and OoO memory responses, regardless of the
memory access latency. Besides working as RS for store instruc-
tions, the SB is also used as a level-zero cache by holding committed
store instructions until new space is needed and forwarding their
store value to any future same-width load that accesses the same
memory address, saving a load access to the memory hierarchy.

3 EXPERIMENTAL RESULTS
The first part of this section analyses LEN5 area and timing charac-
teristics obtained from the logic synthesis. It compares them with
the 32-bit in-order cv32e40p core [5] to evaluate the implementa-
tion cost of supporting the 64-bit RISC-V ISA. The impact of inte-
grating LEN5 in a small, edge-oriented Microcontroller Unit (MCU)
system is also evaluated by taking the X-HEEP MCU [3] as a ref-
erence. Later, the performance of LEN5 in terms of Instructions
Per Cycle (IPC) is evaluated using cycle-accurate Register Transfer
Level (RTL) simulation when running the Embench benchmark.

3.1 Logic Synthesis
LEN5 synthesis is performed using Synopsys Design Compiler
(DC) with the TSMC 65 nm LP CMOS technology library, suitable
for power-constrained edge devices, using worst-case operating
conditions. The modularity of LEN5 is showcased by synthesizing
three core configurations targetting deployment scenarioswith very
different area and performance constraints. The first variant, shown
in Table 1 as Max Perf features supports the rv64im ISA with a
2-stage pipelined 64-bit multiplier and a serial divider, and achieves
the highest performance on disparate application benchmarks while
relaxing the area constraints. The size of the data structures is
tailored to minimize structural hazards in the EU RSs, support up

to 32 in-flight instructions and 16 cached stores to reduce stalls
due to long latency division operations and memory dependencies.
Min Area is an alternative variant suitable for area-constrained
systems and workloads that tolerate longer execution times due
to the absence of the hardware multiplier and divider. The Avg
Perf variant is an intermediate variant featuring no divider and a
32-bit multiplier executing 64-bit operations in 3 cycles to 4 cycles,
still achieving comparable IPC to Max Perf on most applications
while limiting area. Table 1 shows that the Min Area and Avg Perf
variants have respectively 0.5× and 0.6× the area of Max Perf. The
different area contributions ofMax Perf configuration are analyzed
in Figure 3. The parallel multiplier accounts for the highest portion
of the EUs area, followed by the Arithmetic Logic Unit (ALU) due
to its 8-instruction RS. The serial divider takes about 7% of the
area of the Execution Stage. This analysis motivates our choices to
configure the Avg Perf variant with a serial multiplier, that has a
1.8× smaller area than the parallel one at the expense of throughput,
a 4-instruction in place of an 8-instruction RS for the ALU, and not
include a hardware divider. Two timing scenarios are considered
for the logic synthesis of LEN5 and cv32e40p, as shown in Table 1:
(1) a bus input delay of 2.2 ns and an output delay of 0.4 ns to
reproduce a commonMCUmemory configuration using single-port,
32kiB, 65 nm SRAM banks under worst-case operating conditions;
(2) an input and output delay of 0 ns to obtain best-case timing
performance. In scenario (1), the memory input delay determines
the critical path delay for both the CPUs, except for LEN5 Avg Perf
variant where the serial multiplier dominates. When the memory
input and output delays are neglected, the critical path of the Max
Perf variant is in the pipelined multiplier. The maximum frequency
the core can achieve at 65 nm is 578MHz.

Table 1: Area and Clock Frequency Comparison

Memory Input
Delay [ns] Max Perf Avg Perf Min Area cv32e40p

Conf 1 [4,4,8,4,8,4,4, [4,4,8,2,4,4,-, [4,4,8,2,4,-,-, -4,1,0,1,16,8,32] 4,1,1,0,8,4,8] 4,0,-,0,8,4,8]
Clk Freq [MHz]

2.2
438 406 448 360

Area [µm2] 422879 251329 204928 56064
Area [kGE] 2 294 174 142 39

Clk Freq [MHz]
0

490 394 578 465
Area [µm2] 395352 223211 200117 55908
Area [kGE] 2 274 155 139 39

1The Conf string encodes the size of the data structures in this order: BTB bits, BPU bits, RAS size, IQ size, ALU RS size, MULT RS size,
DIV RS size, BU RS size, MULT (1 if instantiated), MULT arch. (0: pipelined, 1: serial), DIV (1 if present), SB size, LB size, ROB size.
2GE is the 2-input drive strength-one NAND gate equivalent area.

The obtained results are compared with those for the cv32e40p
core synthesised with the same technology library and timing sce-
narios. Every variant of our core reaches a higher clock frequency
in scenario (1) since LEN5 samples the incoming data or instruction
from the memory before forwarding or decoding them. Overall,
LEN5 shows a 5 % to 20 % frequency improvement. An estimation
of the overhead of inserting our core into a MCU system is per-
formed to make fair considerations on the area overhead compared
to cv32e40p. The open-source, edge-orientedMCU system X-HEEP
with 8× 32 KiB SRAM banks and the cv32e40p CPU, synthesised
at a 4 ns clock period, is taken as a reference. Replacing cv32e40p
with LEN5 Max Perf as the system CPU would cause an overall
area increase of 12.7 %. This overhead is acceptable considering that
the performances of our CPU are estimated, by looking at Figure 3,
to increase with a super-linear trend compared to the area when
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Figure 2: Instructions Per Cycle comparison with cv32e40p over the Embench suite* (colour) and executed instruction composition (greyscale).
*huffbench and minver did not finish on LEN5 and cv32e40p respectively.

Figure 3: Area Partitions for theMax Perf LEN5 variant in Table 1.

adding multiple-issue support. This would mainly impact the issue
and commit control logic, which represent a small portion of the
total area. Moreover, LEN5 area is comparable with that of the
known 64-bit cva6 core [7]: 210 kGE.

3.2 Benchmarking
LEN5 IPC performance is compared to the cv32e40p 32-bit in-order
RISC-V when integrated inside the X-HEEP microcontroller when
running the Embench benchmark suite. All LEN5 results were ob-
tained using the Max Perf variant with a single pipeline register
in the multiply unit. A fair comparison is ensured by configuring
X-HEEP with a parallel bus and a memory layout to support parallel
instruction and data memory accesses. For both CPUs, the code
was compiled using GCC with the -O2 optimization level and the
appropriate ISA flags: version 13.2 with rv64im for LEN5 and ver-
sion 11.1 rv32imc for cv32e40p. The IPC is measured through the
performance counters mcycle and minstret. The open-source tool
Verilator (version 4.210) is used for the RTL simulation. Figure 2
reports the IPC results of the benchmarking campaign. As expected,
LEN5 demonstrates higher IPC, particularly in benchmarks with
low control-flow orientation. Notably, the crc32 benchmark stands
out with an IPC of 1.0 and an improvement of more than 20%,
showcasing the significant benefits of LEN5’s dynamic instruction
re-ordering capabilities that succeeded in hiding data dependen-
cies. Superior IPC performances are observed in tests like edn and
matmult-int for vector and matrix multiplication. Here, LEN5 can
compensate for most of the 2-cycle latency of memory accesses, rep-
resenting 30 % to 40 % of the executed instructions. However, LEN5

exhibits lower IPC as the benchmarks include more unpredictable
and data-dependent jumps, where the misprediction penalty is
higher than cv32e40p and not compensated by the BPU. This is due
to a known synchronization issue between LEN5 BPU and BU that
causes frequent jump mispredictions. The aha-mont64 benchmark,
on the other hand, represents a use case that greatly benefits from
implementing the 64-bit instruction set: when compiled for LEN5,
this benchmark retires 2.4× fewer instructions than the equivalent
32-bit version for cv32e40p, resulting in significantly lower exe-
cution time despite the slightly lower IPC. The same applies for
statemate (2×), st (1.4×), and matmult-int (1.6×).

4 CONCLUSIONS
This paper introduces a versatile RISC-V CPU featuring OoO exe-
cution and commit, demonstrating notable gains in IPC compared
to simpler architectures, along with increased clock frequencies.
Future work will focus on enhancing branch prediction to handle
more complex scenarios, supporting multiple issue capabilities, and
conducting comparative analyses against leading-edge OoO CPUs.
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