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Abstract—Exploiting additional low loss bands of optical fibres
is a promising solution to expand the capacity of optical transport
networks. Recently, extended bandwidth bands (super bands)
have been proposed, having a total bandwidth of 6 THz, instead
of the regular 4.8 THz. We compare network performance for
bands with regular and extended bandwidths when employing
transparent and translucent network designs with and without
reinforcement learning on the US-NET reference network topol-
ogy. A total of four MBT scenarios are considered, namely super
C, C+L, super C+L, and C+L+S1-band, where S1 denotes half of
the S-band bandwidth. We show that the use of super bands and
reinforcement learning significantly improves network capacity
compared to the use of regular bands and traditional network
design methods.

Index Terms—Optical Networks, Multi-band Transmission,
Reinforcement Learning, Routing and Wavelength Assignment

I. INTRODUCTION

The ever-increasing volume of IP data traffic requires

network service providers to increase capacity in their

wavelength-division multiplexing (WDM) networks. Multi-

band transmission (MBT) optical networks are being investi-

gated as a cost-effective solution to achieve this objective [1].

With MBT, the full low-loss spectrum of the widely-deployed

single-mode ITU-T G.652.D optical fibers is explored, increas-

ing the bandwidth of WDM systems from ≈ 4.8 THz (C-

band only) up to ≈ 50 THz (when considering L- to O-band

transmission [2]–[4]). Extending the bandwidth of existing

bands (i.e., using super-bands) is another option to increase the

available capacity, as an alternative or to complement MBT.

Currently, this consists of adding 1.2 THz of bandwidth to

each of the traditional C- and L-bands, resulting in a total

transmission bandwidth of ≈ 6 THz [5]. Furthermore, the

available network capacity can also be augmented by exploit-

ing state-of-the-art coherent transceivers (TRXs) to improve

spectral efficiency [4], [6] and/or by performing optical signal

regeneration at intermediate node(s), i.e., using a translucent

network design [7]–[10], where long lightpaths (LPs) are

divided into several shorter and more spectral efficient LPs.

Although signal regeneration increases network throughput,

it does so at the expense of increasing the cost and energy

consumption of a network, since additional TRX pairs are

required to realize the regenerator function [4]. Several works

have investigated how to manage regenerator placement to

limit network costs while increasing capacity. For instance,

the authors have investigated the planning and deployment

of re-amplification, re-shaping, and re-timing (3R) regenera-

tors based on the network and traffic data in [11]. In [12],

an optimized regenerator assignment strategy based on the

quality of transmission (QoT) of the LPs was proposed.

Considering optical networks exploiting MBT, in [4] three

QoT-based regenerator placement algorithms were proposed

– General, Power Optimized (Pow. Opt.), and Hybrid

– for a translucent network design. This work showed that

performing signal regeneration in a band with a poor QoT such

as the S-band can increase network capacity while curbing

the increase in cost and energy consumption [3]. On the topic

of power consumption, Multi-Source-Agreement (MSA) Open

ZR+ TRX have been proposed as a power-efficient and cost-

effective TRX [13]. A MSA Open ZR+ TRX supports different

modulation formats with a symbol rate of ≈ 60 GBaud. Rout-

ing and wavelength assignment (RWA) methods play a key

role in efficiently exploiting the available network bandwidth.

Recently, several machine learning (ML)/reinforcement learn-

ing (RL) methods have been proposed [14]–[16] to maximize

the allocation of requested services (i.e., reduce blocking),

aiming to replace traditional algorithms such as the k-Shortest

Path/First-Fit (KSP-FF). Early works suggest that implement-

ing RL techniques can result in better resource management in

a network and consequently leads to an increase in the optical

network throughput.

In this work, we explore these approaches in MBT sys-

tems, considering “super” and “regular” band transmission in

transparent and translucent network designs. In Sec. II, the

generalized signal to noise ratio (GSNR) as a QoT metric is

evaluated in a single span for the investigated MBT scenarios.

Moreover, network assessment process with KSP-FF and RL

methods are described in this section. Sec. III presents the

network simulation results in terms of network throughput

as well as link congestion with different percentages for the

investigated MBT network scenarios and using KSP-FF and
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Fig. 1: GSNR value for a single span of 75km in an SSMF.

RL methods.

Network simulations show that not only do super-bands in-

crease capacity, as expected, but that when combined with RL

for RWA, a more efficient use of the network infrastructure can

be achieved. These findings also highlight that the benefits of

employing RL techniques for RWA are likely more significant

in MBT networks due to the fact that this optimization problem

becomes significantly more complex.

II. QOT ABSTRACTION, NETWORK ASSESSMENT AND

REINFORCEMENT LEARNING

For all scenarios considered we assume a WDM grid with

a spacing of 75 GHz and channels transmitting 64 GBaud

signals. Four different scenarios are modelled: (1) super C with

80 channels, (2) regular C+L with 128 channels, (3) super C+L

with 160 channels, and (4) regular C+L+S1 with 192 channels.

The notation S1 emphasizes that only half of the S-band is

used. Noteworthy, the bandwidth of super bands is higher

than that of regular bands. More precisely, the bandwidth of

super and regular bands is assumed to be 6 and 4.8 THz,

respectively. QoT can be estimated using the GSNR, which

considers both amplified spontaneous emission (ASE) and

nonlinear interference (NLI) generation as noise sources [17],

[18]. The NLI is computed using the generalized Gaussian

noise (GGN) model, which also accounts for the interaction

between the NLI and the stimulated Raman scattering (SRS)

effect [19]. In a disaggregated optical network, the total GSNR

of a LP, consisting of multiple spans (s), can be computed

based on the GSNR of each span in each frequency, i, as

expressed in (1).

GSNRi,LP =
1

∑
s∈LP (GSNRi,s)−1

. (1)

The GSNR value for the investigated MBT scenarios in a

single span of 75 km of standard single mode fiber (SSMF)

is shown in Fig. 1. To illustrate the width of each band, the

frequency limits of regular bands (C, L, and S1-band) is shown

via dashed vertical gray lines connecting the corresponding

GSNR curves and the bottom horizontal axis, whereas the

frequency limits of super bands (super C and L-band) are

TABLE I: Average GSNR value for each band in investigated

MBT scenarios.

Scenario L-band C-band S1-band

Super C – 30.0 –

C+L 30.6 29.9 –

Super C+L 30.6 29.6 –

C+L+S1 31.2 30.0 26.6

highlighted by vertical red lines connecting the GSNR curves

to the upper horizontal axis.

The average GSNR in each band for all MBT scenarios is

summarized in Tab. I. This figure is obtained by averaging

the GSNR value over all channels of a given band. According

to this table the average GSNR value for the super C-band

is 30.0 dB. For the C+L-band scenario the average GSNR

values are 29.9 and 30.6 dB in the C- and L-band, respectively,

which changes to 29.6 (C-band) and 30.6 dB (L-band) in the

super C+L-band scenario. In the C+L+S1-band configuration

the average GSNR values are 30.0, 31.2 and 26.6 dB in

the C-, L- and S1-band, respectively. Note that the noise

figure (NF) assumed for the optical amplifiers is the same

as in [4], with the NF profile interpolated for the appropriate

frequency ranges for the super band scenarios. As expected,

adding more bands/channels to the transmission system may

lead to performance degradation, which can be observed in

Fig. 1 for the case of an individual fiber span.

Network assessment is carried out using the Statistical

Network Assessment Process (SNAP) framework [2], [3],

considering the US-NET network topology, which consists

of 24 ROADM nodes and 43 links, with an average link

length of 971 km and an average nodal degree of 3.58 [4].

The analysis considers progressively loading the network with

100 Gb/s traffic requests. For the transparent network design,

the most spectral efficient modulation format among the ones

that allow to bridge the source and destination nodes is

selected. We assume usage of MSA OpenZR+ TRX [13],

which supports 16QAM, 8QAM, and QPSK dual-polarization

modulation formats. Each of these modulation formats has
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Fig. 2: Total allocated traffic as a function of blocking probability for the US-NET topology, using the KSP-FF or RL methods,

and considering (a) transparent and (b) translucent network designs.

a minimum required GSNR (RGSNR) [20], which must be

observed to allow their utilization over a given LP. For the

translucent network design, a regenerator assignment is used,

corresponding to “Algorithm 1” in [4]. This algorithm divides

the candidate LP into the minimum number of sub-paths that

allow using the most spectral efficient modulation format,

without considering wavelength conversion after each signal

regeneration. In this work, two different RWA strategies are

also employed and their performance compared. Firstly, we

considered a k-shortest path (assuming kmax = 5) routing

algorithm and a first-fit wavelength assignment policy (KSP-

FF). The KSP-FF strategy allocates the request to the first

available channel of the shortest available path, following a

best-effort approach. Secondly, we considered a RL approach,

with the key components: (i) environment, (ii) action space,

(iii) observation space, and (iv) reward. For the environment,

the SNAP framework is used and the KSP-FF method is

replaced with an RL agent. In the action space (A), the RL

agent selects a path among the k candidate paths (for fairness

of comparison, the same total of kmax = 5 possibilities is

considered). The observation space is an array defined as

f = {s, d, {QoT
1
, ch1, n1, G1}, ..., {QoTk, chk, nk, Gk}} for

all k ∈ K, where s and d are the source and destination nodes,

respectively, in the one-hot format. QoTk is the QoT of the

candidate LP, chk and nk are the number of common free

channels and number of intermediate nodes in the candidate

LP, respectively, whereas Gk represents the available free

capacity in existing LPs with the same source and destination

nodes. When there is free capacity from already allocated

LPs between the same source and destination Gk equals 1,

otherwise it is set to 0. To be more clear regarding Gk, if an

LP establishes for a first time, Gk=0, and if its QoT supports

16QAM (400 Gb/s) – the size of used traffic in this work is

100 Gb/s –, the vacant capacity of this LP, 300 Gb/s, can be

used for the next requests. In that case for the same source

and destination, Gk value in the observation space considered

equal to 1 which improves its probability to establish among

other paths. All values of the observation space, f , which

have different magnitudes are normalized between -1 and 1

before being fed to the deep neural network (DNN). In RL,

an agent takes an action every time step (following a policy) in

an environment in order to maximize the expected cumulative

reward.

For RL, the shaping of a reward function plays a crucial

role in an agent’s learning, and so RL gives reshaped rewards

for an action taken [21]. The reward returned by the software-

defined network (SDN) unit is 1 if the request is allocated to a

new LP. As we wish to better utilize existing LPs, a reward of

10 is returned if the request can be allocated to free capacity in

existing LPs. A reward of -1 is instead returned if the request is

blocked. The RL hyperparameters were set to 0.95, 10−5, 50,

2 and 512 for discount factor, learning rate, batch size, number

of hidden layers and neurons set, respectively. Moreover, for

the training state the “Adam” algorithm [22] is used. When

using RL, first the state array, ft, is collected for an arriving

connection request, t. The DNN unit [14] reads this data,

generating a policy, πt(A|ft, θ), which is a set containing the

probability of each action, at ∈ A, and where θ is the DNN

value between the source and destination. Then, according to

the probabilities of πt, the SDN unit takes an action, at, to

attempt to establish the LP with the corresponding path. After

taking an action, the SDN unit returns a reward, and stores

the state, the reward, and the action in a buffer, as an array,

for the training section. Since the objective of RL methods

is to maximize long-term cumulative rewards, RL attempts to

improve this factor. The SNAP framework is executed using

the KSP-FF and RL methods for each iteration/epoch, until the

specific threshold blocking probability (BP) to stop loading the

network is achieved (set to 20%).

III. NETWORK SIMULATION RESULTS AND DISCUSSION

This section presents and discusses the network perfor-

mance results for the KSP-FF and RL methods using trans-

parent and translucent designs for all transmission scenarios

considered. Fig. 2 shows the total allocated traffic in the

BP range between 10−4 and 10−1 for the MBT scenarios
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Fig. 3: (a) Multiplicative factor of the total allocated traffic for all investigated scenarios at BP=1%, (b) link congestion for

KSP-FF and RL approaches in the translucent C+L+S1 network design, for a delivered traffic of 400 Tb/s.

considered, using the KSP-FF (dashed) and RL (solid) RWA

approaches. Fig. 2a reports the results of the transparent

network design, showing that in the case of super C-band

there is only minor capacity improvement from using RL

instead of the KSP-FF algorithm, for small BPs (BP<1%).

As expected, the capacity in the C+L-band scenario is higher

than that for the super C-band. In the former MBT scenario,

the delivered network capacity when using the RL algorithm

is 277 Tb/s (versus 254 Tb/s with KSP-FF) for a target BP of

1%. Moreover, for the super C+L-band, network throughput

increases by ≈80 Tb/s in comparison to the regular C+L-band

scenario. For instance, the delivered capacity by exploiting

super C+L-band is 353 and 332 Tb/s with the RL and KSP-

FF methods, respectively. Finally, the total allocated traffic in

the C+L+S1-band scenario is 397 and 369 Tb/s when using

the RL and KSP-FF algorithms, respectively. A key finding

is that RL achieves almost the same capacity in the super

C+L MBT scenario, compared to the scenario utilizing the

KSP-FF algorithm and the C+L+S1-band, for small target BP.

This suggests that the benefit of using RL tends to increase

proportionally to the number of channels available per fiber.

This is due to the ability of RL to better exploit a more

complex solution space, when compared to the simpler KSP-

FF approach.

The results plotted in Fig. 2b, which are obtained when

considering a translucent network design, are similar to those

in Fig. 2a. However, two key differences can be observed

when comparing both figures. Firstly, when considering the

same combination of MBT scenario and RWA algorithm, the

translucent network design results in lower blocking, i.e.,

higher network capacity for a given target BP. This is a

consequence of enforcing more spectrally efficient modulation

formats by using shorter LPs. Secondly, the network capacity

difference between the RL and KSP-FF methods increases for

all transmission scenarios. This can be explained by the ability

of the RL algorithm to better exploit the available capacity in

the larger number of deployed LPs.

From Fig. 2b, the traffic allocated in the super C-band, when

using the KSP-FF and RL methods, is 150 and 156 Tb/s for a

target BP of 1%, respectively. Deploying a C+L-band system

leads to a total allocated traffic of 287 and 316 Tb/s when

using KSP-FF and RL, respectively. Moreover, deploying the

extended bandwidth configuration (super C+L-band) increases

the network throughput to 379 and 404 Tb/s. Finally, these

figures are further raised to 458 and 497 Tb/s in the C+L+S1-

band scenario, again when using KSP-FF and RL, respectively.

A more concise representation of the differences in network

capacity is shown in Fig. 3a, which presents the network

capacity multiplicative factor (MF) for all scenarios at the

BP of 1%, using the transparent super C-band with KSP-FF

algorithm as the reference case (i.e., with MF = 1). It can

be seen that the super C-band increases the network capacity

×1.19 in the best case (translucent network design with the

RL method). Although these improvements are not large, they

become more relevant when considering additional bands. For

instance, considering transparent network design and KSP-FF,

it can be observed that the network capacity increases ×2.54

when instead using the super C+L-band, albeit the amount of

spectrum made available increased only ×2, and the impact

of SRS is higher. Adopting a translucent network design and

RL for RWA, the increase in capacity is more than threefold.

It is also interesting to note that the network capacity obtained

in this configuration (super C+L-band, translucent design,

RL) is higher than that reported with C+L+S1-band using a

transparent design and also RL. This occurs even though the

latter MBT scenario exploits a wider spectrum (approximately

15.6 versus 12 THz). In this case, there is a trade-off in terms

of number of optical amplifiers and TRXs: fewer amplifiers are

required with super C+L than with C+L+S1 (one third less),

but more TRXs are used to enforce the translucent design.

In order to gain further insight on the how RL outperforms

KSP-FF, link congestion is shown in Fig. 3b for the translu-

cent C+L+S1-band network design for a delivered traffic

of 400 Tb/s. This figure shows that RL makes use of the

network links more evenly compared to KSP-FF. For example,

considering less congested links, i.e., with loading that ranges
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Fig. 4: The number of demanded interfaces versus total allocated traffic for both KSP-FF and RL methods for (a) transparent

and (b) translucent network designs in the BP≤1% range.

from 0 to 20%. There are 8 links with this load range with

KSP-FF, whereas with RL there are only 2 links. Considering

links with medium congestion, defined here as varying from

20% to 80% of link occupation, the number of links present are

higher when using RL than KSP-FF. In the higher congestion

range, the number of links are the same, indicating a particular

characteristic of the investigated topology. Overall, it can be

seen that RL is capable to more effectively use the link

capacity, which translates into lower blocking and higher

traffic load for a given BP.

Fig. 4 shows the number of demanded interfaces versus total

allocated traffic when using KSP-FF and RL for each network

design and scenario for the BP range of ≤1%. Considering

the transparent network design, given in Fig. 4a, it is visible

that the number of demanded interfaces for all scenarios is

almost equal for both algorithms, and exploiting more bands

permits a higher traffic allocation, and correspondingly a

higher number of demanded interfaces. We however remark

that adding extra bands requires extra amplifiers for the newly

exploited bands. For instance, the number of interfaces used to

deliver 100 Tb/s capacity is about 1000, however to double this

capacity the number of demanded interfaces is approximately

1500. Additionally, the maximum demanded interface count is

for the C+L+S1-band scenario, which is approximately 2500

interfaces at the delivered capacity of 400 Tb/s. Furthermore,

the delivered capacity by deploying a super C+L-band with the

RL method delivers almost the same capacity as a C+L+S1-

band scenario using KSP-FF (refer to Fig. 2a); however, the

number of deployed amplifiers in the C+L+S1-band is ×1/3

higher than super C+L-band scenario.

Considering the translucent network design, given in

Fig. 4b, it is visible that, in general, the number of required

interfaces for the same amount of traffic is higher than for the

transparent network design. For example, in the transparent

network design, the required number of interfaces to achieve

100 Tb/s network capacity for the super C-band is approxi-

mately 1000 for both the KSP-FF and RL methods. In contrast,

in the translucent network design this value increases to 1200

and 1373 by using KSP-FF and RL methods, respectively.

Focusing on the C+L+S1-band scenario, when the network

is first loaded we observe that the number of demanded

interfaces is less than the other MBT scenarios, as the first

loaded channels have a higher QoT. However, the difference

between the number of used interfaces between the KSP-FF

and RL implementations is smaller, as a larger number of

channels/bands are utilized. Additionally, for the C+L+S1-

band scenario, after the initial loading period is finished,

at approximately 150 Tb/s, it is visible that the number of

required interfaces progressively increases. This is due to the

last allocated channels lying within the S1-band, which have a

much lower QoT than those within other bands, consequently

requiring a larger number of regenerators.

Focusing on the difference between the two algorithms

for any total allocated traffic value, it is visible that this

difference decreases proportionally to the number of channels.

This because the RL algorithm makes better use of a larger

number of available channels and any vacant capacity of

already-established LPs – this is also visible in the C+L+S1-

band scenario in Fig. 2b, where the RL algorithm provides a

larger capacity than the KSP-FF implementation.

IV. CONCLUSION

In this work, we have compared network capacity and

link congestion between bands with regular and extended

bandwidths in transparent and translucent network designs.

We have shown that super bands provide a significant capacity

improvement compared to their regular counterparts, despite

the increased impact of SRS. Importantly, a super C+L-band

translucent network design can provide a higher level of

delivered traffic, compared to the regular C+L+S1-band with

a transparent network design, all the while requiring 33% less

amplifiers than the latter. We have found that the benefits of

using RL instead of KSP-FF are more pronounced in cases

where more channels are available.
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