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Receding-horizon energy-maximising optimal
control of wave energy systems based on moments

Nicolás Faedoa, Yerai Peña-Sancheza and John V. Ringwooda

Abstract—In this study, we address the issue of real-time
energy-maximising control for wave energy converters (WECs),
by proposing a receding-horizon optimal control framework
based on the concept of a moment. This approach is achieved
by extending the so-called moment-based framework, recently
published in the WEC literature, to effectively solve the associated
optimal control problem within a nite time-horizon, allowing
for real-time performance, and a straightforward inclusion of the
wave excitation force Fe estimation and forecasting requirements,
which are intrinsic to the wave energy control application. We
present a case study, based on a CorPower-like device, subject
to both state and input constraints. We show that the proposed
strategy can perform almost identically to the ideal performance
case, where full knowledge of Fe over the time-horizon is
assumed available. Moreover, a sensitivity analysis is provided,
addressing the impact of wave excitation force estimation and
forecasting errors in the computation of the moment-based
control input. Two main conclusions can be drawn from this
analysis: Forecasting mismatch has a negligible impact on the
overall performance of the strategy, while potential differences
arising from estimating Fe, in particular, phase errors, can
substantially impact total energy absorption.

Index Terms—Wave energy, WEC, receding-horizon, energy-
maximising control, optimal control, moment-domain.

I. INTRODUCTION.

OPTIMAL energy extraction for wave energy converters
(WECs) has the capabilities of reducing the levelised

cost of energy extracted from ocean waves, hence greatly
helping in the roadmap towards the commercialisation of
WEC technologies [1]. Such an objective is virtually always
formulated in terms of an optimal control problem (OCP).
Not only has this real-time OCP to be solved efficiently in
computational terms, but energy-maximisation can only be
achieved by having full (instantaneous and future) knowledge
of the wave excitation force Fe, i.e. the force experienced by
the WEC due to incoming waves. Unfortunately, for the WEC
case (i.e. a moving body), Fe is, in general, immeasurable.
Consequently, unknown-input state estimation strategies are
virtually always required to provide instantaneous values of
Fe (see [2]). Based on these estimates, a number of fore-
casting techniques have been proposed to predict future wave
excitation force within a certain time interval [3]. Naturally,
the uncertainty of such a prediction increases with longer time
horizons, offering a relatively precise prediction (in realistic
sea state conditions) for no more than 3 ∼ 10 [s].

Motivated by both the real-time requirements, and the intrin-
sic estimation and forecasting needs associated with this OCP,

aNicolás Faedo, Yerai Peña-Sanchez John V. Ringwood are with the
Centre for Ocean Energy Research, Maynooth University, Maynooth, Ireland
nicolas.faedo@mu.ie

receding-horizon approaches to WEC control became popular
over the last decade, where a number of solutions emerged,
stemming from the basic principles of model predictive con-
trol (MPC) [4]. Nevertheless, MPC formulations, which are
typically based on zero- or first-order hold discretisations
(i.e. compactly supported basis functions), have (at least)
two main drawbacks. Firstly, the objective function employed
departs from pure energy-maximisation, given that the problem
(discretised as described above) is inherently non-convex, so
that the control objective has to be modified to render the
OCP tractable. Secondly, the computational requirements of
MPC-based strategies can render this approach unsuitable for
real-time control of WECs [4]. Spectral [5] and pseudospectral
[6], [7] approaches have been proposed, aiming to solve these
issues, in which both the OCP and system variables are
discretised using sets of global basis functions. [6] effectively
provides a computationally efficient solution, but the OCP is
modified (similarly to MPC) to solution existence. In contrast,
[5] and [7] provide strategies that both consider a purely
energy-maximising objective function, and are appealing from
a computational perspective, but the existence of solutions to
the OCPs proposed is neither guaranteed nor discussed, so
that it is not clear under which conditions these OCPs admit
an energy-maximising solution, compromising the feasibility
of the corresponding pseudospectral approaches.

Recently, a novel energy-maximising control strategy has
been presented in [8], [9]. This formalism is based on the
system-theoretic concept of a moment [10] and maps the
original energy-maximising OCP into a concave quadratic
program (QP), systematically guaranteeing a unique global
solution for the original energy-maximising control objective,
subject to both state and input constraints. Though [8], [9]
accomplishes the energy-maximising objective, subject to state
and input constraints, the mathematical formalism assumes a
sufficiently long time interval, where Fe is known into the
future, to solve the OCP, which is limiting in terms of real-
time implementation.

This paper directly addresses the issue of real-time energy-
maximising control of wave energy converters, including the
estimation and forecasting needs associated with the WEC
control problem, as detailed in the following. Motivated by the
appealing features of the moment-based approach, we propose
an extension of the strategy proposed in [8], [9] (which is
limited in terms of real-time implementation), by introducing
a finite (receding) horizon moment-based OCP framework. In
particular, this paper provides the following contributions:

• Unlike [8], [9], which requires full knowledge of the
wave excitation force Fe throughout a sufficiently large
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time-interval, the representation of Fe in the moment-
domain is adapted to finite (short) prediction horizons
by an appropriate mathematical definition. To that end,
and inspired by the technique employed in [5], we
propose the use of a family of apodisation mappings
[11], which effectively alleviate the effects of ‘ignoring’
the assumptions on Fe, required in [8], [9].

• Based on the representation of Fe proposed in the item
immediately above, a moment-based receding-horizon
real-time controller is proposed. We show that the
proposed framework retains the intrinsic computational
efficiency, and the uniqueness of the corresponding
solution, facilitated through the parameterisation of the
corresponding OCP using moments.

• Using the unknown-input estimation strategy presented
in [12], and the autoregressive (AR) model of [3], we
present performance results, in terms of energy-capture,
for a full-scale state-of-the-art heaving CorPower1-like
device, subject to both state and input constraints.

• Finally, we provide a sensitivity analysis, addressing
the impact of estimation and forecasting errors on the
computation of the moment-based optimal control input
and, hence, on total energy absorption. Using the results
of this sensitivity analysis, we give a set of recom-
mendations, related to the design of estimation and
forecasting techniques for WEC control applications.

The remainder of this paper is organised as follows. Section
II introduces the basics behind moment-based theory, while
Section III introduces the energy-maximising problem for
WECs, using a receding-horizon approach. Section IV details
the receding-horizon moment-based control formulation pro-
posed in this paper, while Section V discusses an application
case, including a corresponding sensitivity analysis. Finally,
Section VI articulates the main conclusions of this study.

A. Notation and Preliminaries.

Standard notation is considered throughout this study. R+

(R−) denotes the set of non-negative (non-positive) real num-
bers. C0 denotes the set of pure-imaginary complex numbers,
and C<0 denotes the set of complex numbers with negative
real part. The symbol 0 stands for any zero element, dimen-
sioned according to the context. The notation Nq indicates
the set of all positive natural numbers up to q, i.e. Nq =
1, 2,    , q. The symbol In denotes the identity matrix of
the space Cn×m, while the notation 1n×m is used to denote
a n × m Hadamard identity matrix (i.e. a n × m matrix
with all its entries equal to 1). The spectrum of a matrix
A ∈ Rn×n, i.e. the set of its eigenvalues, is denoted as λ(A).
The symbol


denotes the direct sum of n matrices, i.e.n

i=1 Ai = diag(A1, A2,    , An). The notation <z and
=z, with z ∈ C, stands for the real-part and the imaginary-
part operators, respectively. The Kronecker product between
two matrices M1 ∈ Rn×m and M2 ∈ Rp×q is denoted
by M1 ⊗ M2 ∈ Rnp×mq , while the Kronecker sum of two
matrices P1 and P2, with P1 ∈ Rn×n is denoted as P1⊕̂P2.

1The reader is referred to [13] for further detail on the CorPower device.

The convolution between two functions f and g over the set
Ω ⊂ R, i.e.


Ω
f(τ )g(t − τ)dτ is denoted as f ∗ g. Finally,

the symbol εn ∈ Rn denotes a vector with odd entries equal
to 1 and even entries equal to 0.

II. MOMENT-BASED THEORY: FUNDAMENTALS.

We provide, in this section, a brief summary of moment-
based theory, including the definition of moments, for linear
systems (see [10]). Consider the dynamical system

ẋ = Ax+Bu, y = Cx, (1)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, the triple of
(constant) matrices (A,B,C) is dimensioned as A ∈ Rn×n

and B,Cᵀ ⊂ Rn. Assume that system (1) is minimal
(i.e. controllable and observable). Let the external input u,
be written as the output of the so-called signal generator:

ξ̇ = Sξ, u = Lξ, (2)

with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν .
Lemma 1. [10] Consider system (1) and the autonomous
signal generator (2). Assume that the triple (L, S, ξ(0)) is
minimal, λ(A) ⊂ C<0, λ(S) ⊂ C0 and the eigenvalues of S
are simple. Then, there is a unique matrix Y ᵀ ∈ Rν such that
the steady-state response of the output of the interconnected
system (1)-(2) is yss(t) = Y ξ(t).
Remark 1. The minimality of the triple (L, S, ξ(0)) implies
the observability of (S, L) and the excitability2 of (S, ξ(0)).
Remark 2. For linear systems excitability is equivalent to
reachability, i.e. with ξ(0) as the input matrix, see [14].
Definition 1. The matrix Y is the moment of system (1) at the
signal generator (2).
Remark 3. From now on, we refer to the matrix Y as the
moment-domain equivalent of y.

III. OPTIMAL CONTROL FOR WECS.

A. WEC dynamics.

We begin this section by recalling from, for example,
[15], some well-known basics behind control-oriented WEC
modelling, where we assume a 1-degree-of-freedom (DoF)
device, to simplify the notation used throughout this paper3. In
particular, linear potential flow theory is adopted [15], which
directly stems from the Navier-Stokes equations, under linear
wave theory, and assuming inviscid and incompressible flows.
Remark 4. Note that the modelling assumptions considered
herein are consistent (and predominant) across a wide variety
of WEC control and estimation applications presented in the
literature (see [4]).

The linearised equation of motion of a 1-DoF WEC can be
expressed, in the time-domain, as:

mẍ = Fr + Fh + Fe − u, (3)

2We refer the reader to [14] for further detail on the concept of excitability
for a general class of systems.

3We note that a similar analysis can be carried out for multi-DoF devices
following the moment-based multiple-input, multiple-output framework pre-
sented in [9].
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with m the mass of the buoy, x : R+ → R the device
excursion (displacement), Fe : R+ → R the wave excitation
force (external input), Fh the hydrostatic restoring force, Fr

the radiation force, and u : R+ → R the exerted power-
take off (PTO) control force. The hydrostatic force can be
written as Fh(t) = −shx(t), where sh = ρgrD denotes
the hydrostatic stiffness, with ρ the water density, D the
characteristic area of the device, and gr the gravitational
constant. The radiation force Fr is modelled using the well-
known Cummins’ equation [16], can be written as

Fr(t) = −µ∞ẍ(t)−
∫

R+

k(τ )ẋ(t− τ)dτ, (4)

where µ∞ = limω→+∞ Ã(ω), µ∞ > 0 represents the added-
mass at infinite frequency, Ã(ω) is the radiation added mass
[15], and k : R+ → R is the (causal) radiation impulse
response function, containing the memory effect of the fluid
response. Finally, the equation of motion of the WEC4 is

Mẍ+ k∗ ẋ+ shx = Fe − u, (5)

with M = m+ µ∞.
Remark 5. The hydrodynamic characteristics of the WEC
device under analysis (including the impulse response mapping
k, Ã(ω), and µ∞) can be readily computed using boundary
element method solvers, such as NEMOH (open source) [17].

B. Energy-maximising control as a finite-horizon OCP.

To appropriately present our moment-based strategy, we first
provide a formal definition of the energy-maximising control
problem within a receding-horizon framework.

Let the set of state and input (inequality) constraints be:

x(t) ≤ Xmax, ẋ(t) ≤ Vmax, u(t) ≤ Umax, (6)

with t ∈ R+, and where Xmax, Vmax, Umax ⊂ R+ define the
displacement, velocity, and control input limits, respectively.
The control objective is to maximise the useful energy ab-
sorbed from incoming waves, converted in the PTO system,
over a finite-time interval, while consistently respecting physi-
cal limits associated with device and actuator dynamics (PTO).
This can be written in terms of the following receding-horizon
optimal control problem as

uopt
N = argmax

uN

1

Th

∫

ΞN

uN (τ )ẋ(τ )dτ,

subject to:




WEC dynamics (5),
state and input constraints (6),
x(tmN ) = xm(tmN ),

ẋ(tmN ) = ẋm(tmN ),

(7)

with Th ∈ R+ the time-horizon, where we optimise energy-
capture within the time-window ΞN = [N∆h, N∆h + Th] ⊂
R+, N > 0 integer, by means of the control input uopt

N : ΞN →
R, and where ∆h is denoted as the receding time-step.

4Note that equation (5) describes the motion of a generic floating body,
under linear potential flow theory.

Fig. 1. Sets and time constants involved in the receding-horizon OCP defined
in (7). The solid- and dashed-black lines represent estimated and forecasted
values of Fe (i.e., the approximated excitation force), respectively, while the
solid grey line is the target excitation force Fe. The solid-grey circle represents
the current time instant.

Remark 6. Note that the definition of the time-window ΞN is
strongly linked to the estimation and forecasting requirements
of the wave excitation force (see [18]), and the representation
of Fe in moment-domain (see Section IV).

Following Remark 6, we formally write the set ΞN as

ΞN = [N∆h, t
m
N ) ∪ tmN ∪ (tmN , N∆h + Th],

= Ξe
N ∪ tmN ∪ Ξf

N ,
(8)

where Ξe
N and Ξf

N correspond with past (estimated) and future
(forecasted) values of Fe, respectively. The variable tmN ∈ ΞN

corresponds to the current time instant, which (without any
loss of generality) is located in the centre of the time-window
ΞN , i.e. tmN = Th2 +N∆h. The distribution of the sets and
time constants described above is illustrated in Fig. 1. The
additional set of (two) equality constraints in (7) are used
to guarantee continuity of the state variables x and ẋ, under
the optimal control action uopt

N , where xm and ẋm denote the
measured values of displacement and velocity, respectively.

We can summarise the receding-horizon OCP of equation
(7) in three basic steps5:
1) uopt

N ← Solve (7) for the time-window ΞN .
2) Apply uopt

N in the interval Ξu
N = [N∆h, (N + 1)∆h].

3) Replace ΞN by ΞN+1 accordingly and go back to 1).

IV. RECEDING-HORIZON MOMENT-BASED APPROACH.

Based on the receding-horizon OCP posed in (7), and
the theoretical framework developed in [8], [9], we now
formally propose a moment-based receding-horizon controller.
In particular, Section IV-A discusses the representation of the
input Fe in the moment-domain, for this receding-horizon
approach, while Section IV-B effectively proposes an energy-
maximising real-time controller for WECs.

A. Input representation in the moment-domain.

Though highly computationally efficient, a standing as-
sumption for the moment-based control strategy presented
in [8], [9] is that the wave excitation input Fe can be

5Note that these steps are standard for any receding-horizon technique [4].



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

characterised by a periodic mapping. The following framework
aims to alleviate the effect of this assumption.
Remark 7. Note that, if the time-horizon Th is considered
to be sufficiently large, then the signal Fe can be effectively
considered Th-periodic, for any practical purposes.

Remark 7 itself poses a contradiction: while the moment-
based controller [8], [9] would require a sufficiently large
time Th, state-of-the-art forecasting algorithms are not usually
able to provide an accurate prediction of Fe for more than a
couple of seconds [12]. In addition, a large Th can potentially
challenge the real-time capabilities of [8], [9].

Motivated by the fact that this periodicity (or sufficiently
large Th) condition is limiting in terms of real-time im-
plementation, we introduce, in this section, a framework to
alleviate the effects of this standing assumption. Suppose
F̃eN : ΞN → R denotes the approximated wave excitation
input for the time-window ΞN , composed of both estimated
and forecasted values (see Fig. 1). Using the underlying
philosophy of the short-term Fourier transform (see [11]), we
write the apodised wave excitation force input as

bF̃eN cϑ = ϑF̃eN , (9)

where the apodisation mapping ϑ : ΞN × R+ → [0 1] is
used to smoothly bring the excitation force signal, defined
for a time-horizon Th, down to zero at the edges of the set
ΞN . This effectively reduces the spectral leakage produced
by the discontinuities arising from truncating the signal F̃e

on the (potentially) short time-horizon Th. In other words,
the apodised signal bF̃eN cϑ is smoothly brought to zero at
the boundaries so that the derivative of its periodic extension
is sufficiently smooth. The family of apodisation functions
considered herein are the so-called Planck-taper mappings
[19]. This set of functions was first suggested within the theory
of gravitational waves, and stem from the basic functional form
of the Planck distribution, i.e.

ϑ(t, γ) =





1

eZ+(t,γ)+1
, tiN ≤ t < γtfN ,

1, γtfN ≤ t < (1− γ)tfN ,

1

eZ−(t,γ)+1
, (1− γ)tfN ≤ t ≤ tfN ,

0, t < tiN ∨ t > tfN ,

(10)

where tiN , tfN ⊂ ΞN are defined as tiN = N∆h and tfN =
N∆h + Th, and the mapping Z is such that

Z±(t, γ) =
2γ

1±
(

2γ

tfN
− 1

) +
2γ

1− 2γ ±
(

2γ

tfN
− 1

)  (11)

An example, showing both F̃e and bF̃eN cϑ for a time-window
ΞN and parameter γ = 05, is shown in Fig. 2.
Remark 8. The selection of the set of apodisation functions
(10) is motivated by its intrinsic optimality with respect to
the preservation of the power spectrum of the wave excitation
input (see [19]), being the latter a key variable in the OCP
(7). Nevertheless, different apodisation functions6 can be con-
sidered straightforwardly, without further modifications.

6The reader is referred to [11] for further detail on different apodisation
mappings.

Let ω0 ∈ R+ be the fundamental frequency for the time-
horizon Th, i.e. ω0 = 2πTh. Following the theoretical frame-
work proposed in [8], [9], both the apodised wave excitation
force bF̃eN cϑ and control input u are expressed in terms of a
signal generator described by the set of equations

ξ̇ = Sξ, bF̃eN cϑ = LeN ξ, uN = LuN
ξ, (12)

where ξ(t) ∈ Rν , Lᵀ
uN

, Lᵀ
eN  ⊂ Rν and the dynamic matrix

S ∈ Rν×ν can be written in block-diagonal form as

S =

f⊕

p=1


0 pω0

−pω0 0


, (13)

while ν = 2f , f > 0 integer. The initial condition is set to
ξ(0) = εν and the pair (S, LeN −LuN

) is assumed observable.

Remark 9. λ(S) = ±jpω0fp=1 in (12), i.e. the apodised
excitation force is assumed to be a Th-periodic mapping, com-
posed of a finite number f of harmonics of the fundamental
frequency ω0. In particular, the maximum frequency used to
describe the apodised excitation force, i.e. the so-called cut-off
frequency ωc, is simply given as ωc = fω0.

The excitation force input vector LeN , for a particular time-
window ΞN , can be straightforwardly obtained using a least-
squares approach: Let Tξ = tiPi=1 ⊂ ΞN be a finite set
of P > ν (integer) uniformly-spaced time instants, and let
ΛTξ

∈ Rν×P and Λᵀ
bF̃eN

cϑ
∈ RP be defined as

ΛTξ
=


ξ(t1)    ξ(tP )


,

ΛbF̃eN
cϑ =


bF̃eN cϑ(t1)    bF̃eN cϑ(tP )




(14)

Then, we define LeN using the following expression:

LeN := ΛbF̃eN
cϑΛ

ᵀ
Tξ
(ΛTξ

Λᵀ
Tξ
)−1, (15)

where the invertibility of the matrix ΛTξ
Λᵀ
Tξ

is guaranteed by
the excitability of the pair (S, εν), see [14].
Remark 10. Though real-time performance is already available
with (15) (see Section V), we note that, if required, extra
computational speed could be achieved using a recursive least-
squares implementation instead of (15).

B. Receding-horizon moment-based controller.

Analogously to [8], [9], we can equivalently write the WEC
dynamics, expressed in (5), as

ϕ̇ = Aϕ−B(k∗Cϕ) +B(Fe − u), y = Cϕ, (16)

where ϕ(t) = [ϕ1(t),ϕ2(t)]
ᵀ = [x(t), ẋ(t)]ᵀ ∈ R2, is the

state-vector of the continuous-time model and y = ẋ is the
output of the system (assuming velocity to be the measurable
device output). Using this representation, the triple of matrices
(A,B,C) parameterising equation (16), is given by

A =

[
0 1

−shM−1 0

]
, B =

[
0

M−1

]
, Cᵀ =


0
1


 (17)

Based on the moment-domain representation of the
(apodised) wave excitation force (see Section IV-A), and the
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Fig. 2. Target estimation force FeN (solid grey), and the (apodised)
approximated excitation force bF̃eN cϑ = LeN ξ (black), with LeN as in
(15), for the time-window ΞN . The apodisation mapping ϑ is plotted with a
dash-dotted grey line, while the solid-grey circle represents the current time.

equation of motion (16), we now propose a receding-horizon
moment-based energy-maximising controller subject to state
and input constraints. In particular, under this moment-based
framework (and following [8], [9]), the steady-state output
response of system (16) can be computed as (see Lemma 1)

y = Y ξ, Y = (LeN − LuN
)ΦR

ϕ , (18)

where Y is the moment-domain equivalent of the velocity of
the device (i.e. the output y in (16)), and where the matrix
ΦR

ϕ ∈ Rν×ν , depending on the system dynamics defined in
(16), is defined as

ΦR
ϕ = (Iν ⊗ C)Φ−1

ϕ (Iν ⊗−B),

Φϕ =

S ⊕̂A


+Rᵀ ⊗−BC

(19)

Finally, the matrix R, representing the moment-domain equiv-
alent of the radiation force term in (16), is given by

R =

f⊕

p=1


<K(jpω0) =K(jpω0)

−=K(jpω0) <K(jpω0)


, (20)

with K : C0 → C the frequency-response mapping associated
with the radiation impulse response function k.

Let Tρ = tiNρ

t=1 ⊂ ΞN be a set of uniformly-distributed
time-instants7 (collocation points), and define Λ ∈ Rν×Nρ and
∆ ∈ Rν×2Nρ as

Λ =

ξ(t1)    ξ(tNρ

)

, ∆ =


Λ −Λ


 (21)

With the definition of Λ and ∆ in (21), and introducing the
moment-domain equivalent of the velocity (18) in the objective
function (7), we can write the moment-based control input
uopt
N , for a given time window ΞN , as uopt

N = Lopt
uN ξ, where the

vector Lopt
uN is the unique global maximiser of the concave QP

(see [8], [9]):

Lopt
uN

= arg max
Lᵀ

uN
∈Rν

−1

2
LuN

ΦRᵀ
ϕ Lᵀ

uN
+

1

2
LeNΦRᵀ

ϕ Lᵀ
uN

subject to:
LuN

Ax ≤ Bx, LuN
Aẋ ≤ Bẋ, LuN

Au ≤ Bu,

LuN
Aeq

x = Beq
x , LuN

Aeq
ẋ = Beq

ẋ ,
(22)

7See [8], [9] for a discussion on the selection of the set Tρ.

where the pairs of matrices (Ax,Bx), (Aẋ,Bẋ) and (Au,Bu)
are associated with the state and input inequality constraints
in (6) on displacement, velocity and control (PTO) input,
respectively. In contrast to [8], [9], we now include the pairs of
matrices (Aeq

x ,Beq
x ) and (Aeq

ẋ ,Beq
ẋ ) to fulfill the equality con-

straints in (7) at each current time instant, i.e. at t = tmN ∈ ΞN .
In particular, the explicit expressions for the pairs of matrices
involved in (22) are given by

Ax = −ΦRᵀ
ϕ S−1∆, Bx = Xmax1

ᵀ
2Nρ

+ LeNAx,

Aẋ = −ΦRᵀ
ϕ ∆, Bẋ = Vmax1

ᵀ
2Nρ

+ LeNAẋ,

Au = ∆, Bu = Umax1
ᵀ
2Nρ

,

Aeq
x = −ΦRᵀ

ϕ S−1ξ(tmN ), Beq
x = xm(tmN ) + LeNAeq

x ,

Aeq
ẋ = −ΦRᵀ

ϕ ξ(tmN ), Beq
ẋ = ẋm(tmN ) + LeNAeq

ẋ ,

(23)

Remark 11. Following the receding-horizon approach to WEC
control discussed in Section III-B, the moment-based optimal
control problem, proposed in (22), is solved for a particular
time window ΞN , and then applied to the system for the time
interval Ξu

N = [N∆h, (N + 1)∆h], i.e. for a single receding
time-step ∆h. The time window is then subsequently shifted,
i.e. ΞN 7→ ΞN+1, and the process is repeated.

V. CASE STUDY.

To demonstrate the performance of the receding-horizon
moment-based controller proposed in Section IV, we consider
a full-scale state-of-the-art CorPower-like wave energy device,
oscillating in heave (translational motion). Fig. 3 presents
a schematic illustration of the CorPower-like WEC, along
with its corresponding hydrodynamic characterisation8, i.e.
the frequency-response K(jω) associated with the impulse
response mapping k. The dimensions of this device are based
on the experimental study performed in [13].

Fig. 3. Schematic of the CorPower-like device, along with the frequency-
response of the radiation impulse response mapping k.

In the remainder of this section, we consider waves gen-
erated stochastically from a JONSWAP spectrum [20], with
a fixed significant wave height Hs of 2 [m], peak period
Tp ∈ [5, 12] [s] and peak shape parameter γ = 33. Since
the waves are generated from sets of random amplitudes [21],
it is found that a mean of ≈ 40 simulations (per sea state) is
necessary to obtain statistically consistent performance results
for the controller presented in this study.

8K(jω) has been computed using NEMOH (see Remark 5).
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Remark 12 (On the selection of Th). The time-horizon Th,
which characterises the time-window ΞN , has to be selected
bearing in mind the following trade-off. While a larger Th (i.e.
a smaller fundamental frequency ω0) implies a more refined
description of the apodised excitation input, with respect to
the least-squares procedure described in (15) (see Remark
9), an increased number of harmonics f is required to reach
a given cut-off frequency ωc, which naturally increases the
computational requirements of the strategy (note that the order
of the matrices involved in the QP problem (22) directly
depends on f ). This trade-off can be simply assessed by means
of numerical analysis.

For this case study, and following Remark 12, the time-
horizon is selected as Th = 60 [s], i.e. we consider 30
[s] of both estimated and forecasted values of Fe. This
corresponds to a fundamental frequency ω0 = 2π60 [rad/s],
which provides accurate results with respect to the least-
square procedure described in (15), with mild computational
requirements. The receding time-step is fixed as ∆h = 01
[s], while the dimension (order) of the signal generator (12)
is chosen as ν = 60 (corresponding with a cut-off frequency
of ωc ≈ 6 [rad/s]). With respect to state constraints, we fix
the maximum allowed displacement and velocity values as
Xmax = 2 [m] and Vmax = 2 [m/s], respectively.
Remark 13. We note that the moment-based controller run-
time, i.e. the time required to compute the energy-maximising
optimal control input for the duration of the receding-step
∆h, is in the order of ∼ 1 [ms]  ∆h for the totality of
the preceding simulations (implemented in MATLAB), hence
always easily achieving real-time performance. Naturally, the
speed at which computations are performed can be further
improved (if required) by simply implementing this algorithm
in a compiled language, such as C or C++.

As discussed in Section I, the unknown-input estimation
strategy, selected to compute the estimation section of F̃eN , for
each time-window Ξe

N , is based on a combination of Kalman
filtering and the internal model principle of control theory,
as presented (and tuned) in [12]. The forecasting algorithm
considered, over the set Ξf

N , is the AR model proposed in [3],
where the order O is set to 200 (see Section V-C).

A. Results and discussion.

Initial controller performance assessment focusses on en-
ergy absorption under both displacement and velocity con-
straints. Fig. 4 shows absorbed energy for sea states with
Hs = 2 [m] and Tp ∈ [5, 12], where the displacement
and velocity of the CorPower-like device are constrained to
Xmax and Vmax, respectively. The solid-black line represents
the ideal (performance) scenario, where the excitation force
is assumed to be perfectly known over each time-window,
i.e. FeN = F̃eN , ∀N , while the dotted-grey line shows the
actual performance of the moment-based controller, where
we utilise the approximated excitation force F̃eN , computed
with both estimation and forecasting algorithms. Clearly, the
actual performance of the proposed receding-horizon moment-
based approach is almost indistinguishable from its ideal
counterpart, being able to perform optimally, with differences

of less than 5% in terms of energy absorption. Figure 4 also
includes absorbed energy obtained with a reactive (displace-
ment and velocity) feedback, used here as benchmark strategy
(see [15]).The feedback gain is computed using exhaustive
search, ensuring that the specified constraints are met for
each sea-state analysed (as in, for instance, [22]). Note that
the receding-horizon moment-based strategy is consistently
outperforming the feedback controller in terms of energy-
absorption, for the totality of the sea states.

Fig. 4. Constrained (displacement and velocity) energy absorption for the
receding-horizon moment-based energy-maximising controller proposed in
this paper. The solid-black and dotted-grey lines represent the ideal and actual
performance results, respectively. The dashed-cyan line indicates performance
obtained with a reactive feedback controller.

To fully illustrate the capabilities of the proposed strategy,
Fig. 5 presents time traces of displacement (a, left axis, solid-
black), velocity (a, left axis, dashed-black) and control input
(b, left axis, solid-black), for a specific sea-state realisation
with Tp = 8 [s], where we also include a maximum control
(PTO) force constraint Umax = 1×106 [N]. We note that some
key features can be directly appreciated from Fig. 5, which
we discuss in the following. To begin with, the state and input
limits, under the action of the receding-horizon moment-based
control strategy, are being consistently respected ∀t, hence
illustrating the capability of the approach to maximise energy
absorption for WECs, while respecting the physical limitations
of both device and actuator (PTO). Moreover, we note that,
even in this fully constrained case, the velocity of the device
under optimal control conditions remains ‘in-phase’9 with Fe

(right axis, dotted-gray), agreeing with well-known theoretical
results for unconstrained energy-maximisation of WECs [15].

B. Sensitivity analysis: Estimation.

We now present a sensitivity analysis for the proposed
receding-horizon moment-based controller, concerning errors
in the estimated wave excitation force, over the time-interval
Ξe
N . From now on, aiming to simplify the presentation of

results, we fix the wave peak period to Tp = 8 [s], given
that almost identical conclusions can be drawn using different
values for Tp ∈ [5, 12].

9We use the term ‘in-phase’to indicate that the peaks (local maxima and
minima) of both signals are aligned in time.
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Fig. 5. Motion and control results for wave excitation with Hs = 2 [m] and
Tp = 8 [s]. Plot a shows displacement (left axis, solid-black), velocity (left
axis, dashed-black), and wave excitation force input (right axis, dotted-grey),
while plot b presents the corresponding control input (left axis, solid-black),
used to elicit the motion results. The dash-dotted horizontal lines represent
constraint values.

As discussed in the comparison study [2], there are two
main sources of errors affecting F̃eN , arising from improper
tuning of any unknown-input estimator: Constant errors in
instantaneous amplitude (i.e. constant deviations in envelope),
and instantaneous phase (i.e. time-delays). We represent these
imperfections within the estimation stage using the criterion
specified in what follows.
Remark 14. Another possible error source is the presence
of measurement noise, i.e. the estimator is tuned in such a
way that high frequency noise (affecting motion sensors) is
not filtered. This effect is not analysed herein: Note that the
moment-based representation for the input (discussed in Sec-
tion IV-A) can intrinsically filter high frequency components,
via a suitable selection of ν in (13).

Let Fα, Fφ ⊂ ΩF, with ΩF = [075, 125], be (error)
factors associated with10 amplitude (A) and phase (P) of F̃eN .
We analyse, for t ∈ Ξe

N , the following error sources:

A: F̃eN (t) 7→ FαF̃eN (t),

P: F̃eN (t) 7→ F̃eN (t+ (Fφ − 1)Tp)

A+P: F̃eN (t) 7→ FαF̃eN (t+ (Fφ − 1)Tp)

(24)

Case A assumes that the amplitude of the estimated signal
is not estimated correctly, i.e. F̃e is multiplied by a factor
Fα, while case P effectively considers the existence of a time
(phase) delay (positive or negative) between estimated and true
excitation force, proportional to the peak period Tp. Lastly,
case A+P combines both sources of error, by assuming that the
estimated excitation force has both amplitude and phase errors,
for all possible combinations of Fα, Fφ in [075, 125].
Remark 15. Due to the underlying linearity of the AR model
considered in this study, if F̃eN is modified either by scaling,
shifting in time, or superposing both cases, for t ∈ Ξe

N , this

10From now on, we refer to instantaneous amplitude and instantaneous
phase simply as amplitude and phase, respectively.

modification propagates within the forecasted time-window
Ξf
N in the exact same manner. In other words, the sources

of estimation error described in cases A, P and A+P affect
the forecasted signal in the exact same proportions.

Fig. 6 presents an illustrative example of an excitation force
signal affected by cases A and P, for a time-window ΞN . In
particular, we show the estimated and forecasted excitation
force with Fα = Fφ = 1, i.e. error-free (solid-black), and for
various values of Fα (a, green) and Fφ (b, green).

Fig. 6. Illustrative example of cases A (a, green) and P (b, green), for a
particular estimated (apodised) excitation force signal bF̃eN cϑ (solid-black).
The target excitation force Fe is depicted with a solid-grey line.

Taking into account the cases defined in (24), the sensitivity
analysis with respect to estimation errors is defined in terms
of a suitable performance indicator Re

J . In particular, we
define Re

J as Re
J (Fα, Fφ) = J (Fα, Fφ)J (1, 1), where the

image of the mapping J : ΩF × ΩF → R is the absorbed
energy throughout the complete simulation time, for any pair
of values (Fα, Fφ), under controlled conditions.

Remark 16. To be precise, Re
J is the ratio between the

absorbed energy under the moment-based control strategy
(22), with and without the presence of estimation errors. In
other words, the performance indicator Re

J describes how
optimal energy absorption is affected if the unknown-input
estimator is not perfectly tuned, distinguishing explicitly be-
tween amplitude and phase errors.

Fig. 7. Re
J for cases A (a) and P (b). A value of Re

J below zero (solid-blue
line) indicates negative energy absorption. The filled black circle indicates
absorption with Fα = Fφ = 1.
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Fig. 7 shows performance results for cases A (a) and P
(b), in terms of Re

J (Fα, 1) and Re
J (1, Fφ), respectively. For

case A, it can be appreciated that, even under an ampli-
tude deviation of ±25% from its true value, the absorbed
energy always remains above 90% of its optimal achievable
performance (computed without any estimation amplitude or
phase errors). In other words, deviations in amplitude, for the
estimated wave excitation force, generate only small deviations
in absorbed energy under controlled conditions. This is clearly
not the case for phase deviations, i.e. case P, where a delay
(positive or negative) of ≈10% of the peak period (around 08
[s], for this case study), not only dramatically affects optimal
energy absorption, but actually generates negative power (the
device starts to drain energy from the electric grid). This
clearly indicates that maximal effort should be put into tuning
the estimator to guarantee phase synchronisation with the
target wave excitation signal, hence achieving optimal energy-
maximisation, under controlled conditions.

Finally, Fig. 8 shows results for case A+P, where both
errors in amplitude and phase are analysed simultaneously.
Similarly to case P, it is clear that the presence of a time-
delay (positive or negative) has a much greater impact on
energy absorption than any existing differences in estimated
amplitude. Interestingly, while positive or negative delays
have an almost symmetric effect, underprediction of the wave
excitation force amplitude has a lesser impact on performance
than overprediction. Note that this behaviour is consistent with
that of Fig. 7 (a).

Fig. 8. Re
J for case A + P. A value of Re

J below zero (solid-blue line)
indicates negative energy absorption. Cases A and B are depicted with solid-
black (empty circle) lines. The filled black circle indicates absorption with
Fα = Fφ = 1.

C. Sensitivity analysis: Forecasting.

We now consider errors arising purely from the forecasting
procedure, i.e. we assume that the unknown-input estimator is
well-tuned (achieving convergence towards the target excita-
tion force), and that any potential mismatch is only present
within the forecasted window Ξf

N . To that end, we define
the performance indicator Rf

J (tf ) = J (tf )J (5), where the
image of the operator J : R+ → R is the energy absorbed,
assuming tf < 5 seconds of forecast within 99% and 100%
of accuracy.

Remark 17. Rf
J is the ratio of absorbed energy, under con-

trolled conditions, between energy extraction assuming quasi-
perfect knowledge of the forecasted signal for a section of
Ξf
N , and the maximum time-length with achievable forecast

with more than 99% of accuracy, i.e. ≈ 5 [s], obtained
from a sufficiently large AR model order O (here chosen
as O = 200). In other words, Rf

J describes how optimal
energy absorption is affected in terms of the accuracy of the
forecasting algorithm.

Fig. 9 presents performance results in terms of the indicator
Rf

J (tf ), while Fig. 10 presents an illustrative example of a
forecasted excitation force signal with tf = 5 [s] (dashed-
black), and for tf < 5 (dashed-green).

Unlike the estimation case discussed in Section V-B, where
deviations from the target excitation force can effectively
generate negative power absorption, the impact of forecasting
errors, for the moment-based controller presented in this paper,
is almost negligible. Even with tf ≈ 1 [s], the controller is
able to perform within 99% of its optimal performance, i.e. the
performance obtained with an AR model with a sufficiently
large order.

Fig. 9. Sensitivity analysis with respect to forecasting errors in terms of the
performance indicator Rf

J .

Fig. 10. Illustrative example of a forecasted (apodised) excitation force signal
with tf = 5 [s] (dashed-black), and for tf < 5 [s] (dashed-green). The target
excitation force Fe is depicted with a solid-grey line.

VI. CONCLUSIONS.

This paper proposes a real-time receding-horizon energy-
maximising controller based on moments, by formally ex-
tending [8], [9] to a finite-horizon OCP. The representation
of the wave excitation force input, in the moment-domain, is
adapted to short prediction horizons by the use of a convenient
family of apodisation mappings. The optimal control objective
is modified accordingly, using a receding-horizon approach,
while retaining the intrinsic computational efficiency and


