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Abstract 

Quality is one of the key factors in the customer’s selection process between competing products. 

Producing high-quality, defect-free products that meet consumer expectations is crucial for 

manufacturing companies to gain a competitive advantage. Accordingly, developing appropriate 

defect generation models is essential in modern manufacturing companies to predict defects and plan 

efficient quality control and production.  On the other hand, with its ability to support new business 

models and decision support systems, digital twin technology is one of the new technologies emerging 

to support digital transformation. Faster optimisation algorithms, more powerful computers and a 

massive increase in available data are just some of the features of digital twins that can be used to 

advance simulation towards real-time quality control and optimisation of products and production 

systems. This paper aims to model the generation of defects of product variants in assembly and 

disassembly processes and evaluate their integration within a digital twin system to prevent the 

occurrence of defects and ensure product quality. The proposed strategy is expected to improve the 

optimization, monitoring and diagnostic capabilities of complex product variants' assembly and 

disassembly systems, realising an upgrade from a single physical implementation to a combination 

of physical and digital. 

 

Keywords: quality control, prediction model, defect generation, digital twin. 

 

1 Introduction 

Digitalisation is accelerating significantly due to the development of information technologies such 

as the Internet of Things (IoT), cloud computing, big data analytics, and artificial intelligence (AI). 

Together, these technologies enable the creation of virtual versions of physical systems and entire 

environments. Digitalization is a major driver of innovation across all industries as the physical and 

virtual worlds collide. The concept of digital twins (DTs), introduced by Professor Grieves in 2002 

and refined in subsequent studies (Grieves and Vickers 2017; Grieves 2014), provides a framework 

for integrating the physical and virtual worlds. DTs are consistent with the idea of digital 
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transformation, which aims to create business models that reflect the value derived from data 

(VanDerHorn and Mahadevan 2021). DTs serve as a bridge between the physical and digital worlds. 

According to Grieves et al. (2017), DTs consist of three main elements: the real world, the digital 

world (a virtual representation of the real world), and the bi-directional data connections. Physical-

to-Virtual (P2V) connections transfer data collected by sensors in the real world to the virtual world, 

providing input to create the virtual environment. Sensors such as spectroscopic and 3D vision 

systems accurately represent the product shape without damaging the physical system. Virtual-to-

Physical (V2P) connections enable information and processes to flow from the virtual to the real 

world, allowing for physical changes based on virtual models. This bidirectional connection allows 

for physical experimentation data to improve the virtual representation. On the other hand, a Digital 

Shadow is defined as a virtual model that only replicates the physical model without this flow of 

information (Kaewunruen, Rungskunroch, and Welsh 2018). Thus, DT is distinct from conventional 

simulation and modelling activities, where analysis is typically done offline and maintains a constant 

connection between the physical and virtual worlds (Jones et al. 2020). 

The modern industrial sector has started the process of full digitalization. In the past five years, the 

need for increased productivity, quality, and performance has led to growing interest in DTs. DTs 

create a communication path between the physical and digital worlds, a critical aspect in transitioning 

to Industry 4.0 (Guo and Lv 2022). Many industries, including healthcare, manufacturing, agriculture, 

automotive, and smart cities, have effectively deployed DTs. However, literature shows that DTs 

often neglect quality control measurements in manufacturing processes (Modoni, Stampone, and 

Trotta 2022; Liu et al. 2021; De Ketelaere et al. 2022). Section 2 provides a more detailed account of 

the use of DTs in quality inspections. 

Efficient and cost-effective inspection procedures are crucial in modern industry for reducing quality-

related costs. It is a key component for establishing market competitiveness (Franceschini et al. 2018) 

because defects can significantly impact a product's quality and price. Predictive models can be used 

to monitor the production process in real time, predict quality fluctuation trends, and give early 

warnings, resulting in reduced wastage of production resources, optimized product yield rates, and 

reduced losses (He et al. 2022). Moreover, due to customers' growing need for customization, 

companies now need to produce small batch sizes, and appropriate defect generation models are 

essential for manufacturing industries to predict defects and plan effective quality controls. 

In the scientific literature, several models have been developed to identify defects in final products, 

and some of which rely on the close relationship between assembly complexity and defectiveness rate 

(Galetto, Verna, and Genta 2020; Verna et al. 2022b; Alkan et al. 2018). In this paper, the productivity 
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and the generation of defects occurring in-process and offline in manual assembly and disassembly 

processes of different product variants are analysed and modelled by using designed experiments.  

The topic of modelling assembly processes, and in particular the sequencing and reordering of 

assembly steps, has been explored in previous studies. For example, Bisgaard (1997) proposed a 

method for experimentally determining tolerance limits by reordering assembly steps for mating 

components of assembled products. Zhao et al. (2021) focused on incorporating "order of addition" 

into experimental design. Both studies demonstrate the importance of sequencing and the potential 

benefits of incorporating it into experimental design and assembly processes. In this paper, the authors 

apply a similar approach to monitoring assembly and disassembly processes using designed 

experiments by evaluating the effects of product variant complexity to develop some predictive 

models. These prediction models can forecast the productivity and quality of a manufacturing system 

based on the complexity of assembled/disassembled product variants. For instance, when introducing 

a new product variant with a certain complexity in the assembly line, these models can predict 

productivity and quality performance. Alternatively, the models can suggest the level of product 

variant complexity needed to achieve specific productivity and/or quality targets. These virtual 

models can be integrated into a DT for quality control management to continuously monitor the 

production process and improve final product quality (Zhu and Ji 2022; De Ketelaere et al. 2022). 

Thus, these models are a first step towards the construction of a DT in which real-time data from the 

production process may be collected to refine the virtual representation of the system. The DT can 

also simulate different production scenarios, identify process parameters or conditions leading to 

defects, and consequently send feedback to the physical system via the V2P connection. Additionally, 

retrospective analysis can speed up quality issue detection and improve system performance.  

The rest of the paper is organized into five sections. Section 2 provides an overview of the DTs 

applied in quality engineering and management. Special attention is given to the integration of defect 

prediction models within the DTs framework. Section 3 presents the DT framework into which the 

proposed defect generation models can be integrated. Section 4 summarizes the main definitions of 

product complexity and the approaches used to assess complexity, and presents a case study where 

the proposed methodology is applied to manual assembly and disassembly. Section 5 illustrates the 

experimental results collected in the case study and discusses the relationships with product variant 

complexity. In addition, the obtained productivity and quality performance models are presented. 

Finally, Section 6 discusses the main results and concludes the paper. 

 

 

2 Digital Twin in quality engineering and management 
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To remain competitive, manufacturing companies aim to quickly fulfil customer demand by ensuring 

the quality of their products (Galetto, Verna, and Genta 2021). Quality inspections are now standard 

practice in almost all manufacturing systems to prevent delivering defective products to end-users, 

which could harm a company's competitiveness (Genta, Galetto, and Franceschini 2018). Inspections 

cover semi-finished items, final goods, or production-related parts and may use human inspectors, 

automated sensing equipment, or a combination of both. Effective quality control management is 

critical for continuously monitoring production systems and improving market competitiveness 

(Montgomery, Runger, and Hubele 2010). 

Product defects in a production system can be detected through in-process or offline quality controls. 

In-process inspections examine units during production, while offline inspections examine final 

products at the end of the production process (Genta, Galetto, and Franceschini 2018). Quality control 

and management of production processes are challenging due to the increasing complexity of 

manufacturing and the dynamic changes and unpredictability of manufacturing resources. The 

concept of Quality 4.0 has been introduced to address this, which involves using Industry 4.0 

technologies for quality control and maintenance of products and services (Shivam and Gupta 2022). 

Quality 4.0 offers many advantages, such as increased enterprise efficiency, performance, innovation, 

and improved business models (Sony, Antony, and Douglas 2020).  

Thanks to real-time data acquisition and data mapping on the shop floor, digital twins of production 

processes are continuously informed about the actual process and equipment condition. This 

information can be used to predict the final quality, making DTs an important alternative to traditional 

methods for quality control (see Fig. 1).  

 

Figure 1. Digital Twin components for quality control. 

Fig. 1 shows that the digital twin collects quality-related data, such as process and quality control 

data, through P2V connections. This data is then integrated with various experimental models, 

including geometric, mechanical, and material models (Guo and Lv 2022) and defect prediction 
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models. By processing the data collected with the defect generation models, the virtual space sends 

information to the real world through V2P connections to prevent critical scenarios from occurring 

and predict the overall quality of the process. Real-time data from sensors embedded in the production 

process and simulations are tightly integrated, allowing for continuous improvement of both 

experimental models and real-space components. With fast sensing technology and powerful 

computing capabilities, DTs can move from offline monitoring to an entirely in-line solution, making 

them a useful tool for quality control in various applications (Ma et al. 2019). 

A digital twin for quality control of a manufacturing process is a helpful approach in improving the 

quality of complex product variant assembly and disassembly due to its ability to predict unknown 

situations by delivering accurate simulation results and reducing the number of trials and errors. The 

DT control model should be created based on product properties, such as the types of components 

and connections, and process-related variables. Consequently, the first step toward developing the 

DT is defining the relationship between the assembly quality and process control parameters by 

implementing appropriate defect generation models (Ma et al. 2019). Integrating defect prediction 

models and DTs can support traditional quality control and optimize complex product assembly by 

combining physical and digital methods and moving from experience-driven to data-driven assembly. 

De Ketelaere et al. (De Ketelaere et al. 2022) propose integrating quality control and digital twin by 

using data from multiple sensors to create a simulation model for inspecting fruit quality during 

processing. The study emphasizes the need for field tests to verify the accuracy of defect generation 

models. By simulating scenarios in the virtual world first, only high-productivity and low-defect 

scenarios are tested in the real world. This approach reduces the need for massive testing in the real 

world. In another study, a DT of a rotating machine based on a dynamic model for gear fault diagnosis 

is presented, highlighting the monitoring, diagnosis, prognosis and analytical prescription capabilities 

of the DT (Kenett and Bortman 2022).  

Thus, an integrated production management and control method is essential in a market with 

increasingly complex and customised products. DT systems provide real-time simulation, data-driven 

analysis, and dynamic feedback for optimizing the assembly of complex products (Ma et al. 2019).  

 

3 Integrating defect generation models within Digital Twin for quality control 

In the proposed study, the developed prediction models represent a virtual shadow of the physical 

process of assembly and disassembly process and can be integrated into a DT for in-process quality 

control.  Fig. 2 shows an example of a structure that integrates the defect generation models within 

the digital twin architecture. 

The real space consists of the assembly/disassembly system and all process and quality parameters 

related to the manufacturing process and quality control procedures, respectively. The process 



6 

 

parameters are collected during normal production, while the quality parameters are used to monitor 

the quality of the assembly/disassembly process. Both process and quality data are sent to the virtual 

space, where they are processed by the different experimental models, that will be presented in 

Sections 4 and 5. In particular, these experimental models are, on the one hand, assembly/disassembly 

and quality control models based on product complexity and, on the other hand, quality and process 

performance models. These models are then used for predictive and optimization purposes in order 

to identify critical and optimal scenarios within production. At the end of the prediction and 

optimization process, the virtual space sends real-time feedback on the system status to the real space, 

modifying the process and quality parameters as necessary. Of course, in this case study, where the 

assembly is completely manual and there are no machines communicating directly with the digital 

twin, the operators could receive audible or visual feedback from the virtual space to improve the 

assembly. Furthermore, as new data is acquired from the physical system, continuous improvements 

can be made to the experimental models and, accordingly, to the real space components themselves. 

This integrated method can ensure an accurate, real-time prediction of assembly and disassembly 

performance, thus allowing the occurrence of defects to be prevented and/or corrective strategies to 

be adopted to minimize the occurrence of non-conformities. As a result, the cost and time of quality 

control can be drastically reduced, and the overall quality of the system improved. 

 

Figure 2. Structure of a digital twin for quality control in which the developed experimental models 

may be integrated. 

However, the integration of defect generation models into the digital twin can be limited by 

inaccuracies in the data used to create the twin, which can lead to errors in the integration of the 

collected data. In addition, the digital twin may not fully capture the complexity and variability of 
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real-world systems, making it difficult to calibrate and validate the predictive model. Accordingly, 

an initial calibration of the predictive models used is essential, in which data obtained from 

simulations are compared with data obtained in the real space (Yeratapally et al. 2020). In this case 

study, some initial tests could be performed to observe how assembly times and defects vary with the 

complexity of the products assembled in the real and virtual environment. The data obtained from the 

simulations can then be compared with the data obtained from the real assembly, and the parameters 

of the prediction model can be corrected in case of discrepancies. 

4 Assembly and disassembly processes modelling 

This section presents and discusses a modelling approach for assembly and disassembly processes. 

In detail, Section 4.1 describes the assembly and disassembly processes selected as a case study and 

related quality control procedures of several different product variants. Product variants are 

characterized by different levels of complexity, modelled according to the structural complexity 

paradigm defined in Section 4.2. The specific product variants exploited in this work are described in 

Section 4.3. 

 

4.1 Case study: process and quality control description 

In the proposed study, products used for assembly and disassembly are molecular structures made up 

of balls and sticks. Such structures are widely considered in the scientific community as reference 

products that may be used for research purposes to emulate real products (Sinha 2014; Alkan and 

Harrison 2019; Alkan et al. 2017; Alkan 2019; Verna et al. 2022a).  Adopting such structures is 

dictated by the need to achieve general results regardless of product type and field of application. 

Furthermore, this enabled minimising the confounding effects typical of real productions (e.g., 

dynamic and organisational issues) and isolating and controlling the effects of product complexity, 

typical of product variants, on defect generation, as will be further detailed in the next Section 4.3. 

Twelve different variants of molecular structures are manually assembled and disassembled, 

characterized by different levels of complexity, as per Section 4.3. The structures are assembled from 

a molecular modelling kit (Orbit™ by 3B Scientific®) based on 2-D and 3-D work instructions. The 

molecular structures consisted of different atoms (i.e., balls) and bonds (i.e., sticks). As represented 

in Fig. 3, the different atom types are carbon (grey), hydrogen (white), nitrogen (blue), oxygen (red) 

and sulphur (yellow). Two types of chemical bonds make up the structure variants: single covalent 

bonds made with rigid connectors and double covalent bonds made with flexible connectors. 
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Figure 3. 3-D representation of the 12 variants of ball-and-sticks molecular structures used in the 

experiments (V1 – V12). 

In order to develop prediction models of productivity and quality performance in both assembly and 

disassembly for the twelve different product variants, an experimental campaign was designed. The 

assembly and disassembly operators were students of the "Quality Engineering" course in the 2nd 

year of the Master's degree course in Management Engineering at the Politecnico di Torino (Italy). 

The experimental campaign lasted 8 working days, in which 52 assembly and 52 disassembly 

operators were involved, for a total of 104 operators. In detail, on each day, a maximum of 7 operators 

were involved in the product assembly, each supported by a quality controller who monitored the 

work. Each operator was responsible for assembling (or disassembling) all the 12 randomly assigned 

variants of molecular structures described in Section 4.3 (see Fig. 3 and Table 1), following a full 

factorial design. The operators were divided into pairs: while the first operator assembled a randomly 

assigned structure, the second operator performed the quality inspections and was responsible for the 

subsequent disassembly. Each structure was therefore assembled 52 times and disassembled an equal 

number of times. The assembly and disassembly of the variants did not follow a particular assembly 

sequence to minimize the effects of sequence complexity, whose effects on complexity are well 

known in the literature (Gulivindala et al. 2020; Raju Bahubalendruni et al. 2015). 
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The workstation of each assembler was equipped with several boxes containing one type of atom and 

bond, and a PC with assembly instructions and files to record the results of the experiments. For 

disassembly, empty boxes were set aside to store the atoms and bonds, divided by type.  

During assembly, the quality control operator was instructed to measure each structure's total 

assembly time and count the number of in-process and offline defects. In-process defects are the 

errors that occur during assembly operations, e.g., missing, incorrect, or additional parts or 

connections, involving the disassembly of one or more parts/connections and the repetition of 

operations to correctly complete the structure. These defects, which the operator repairs during 

assembly, lengthen the assembly process and decrease the operator's productivity. On the other hand, 

offline defects are those found by the quality inspector on the finished product after assembly (such 

as additional, missing, or defective parts or connections). During disassembly, the quality inspector 

measured the total disassembly time and the number of defects, e.g., parts and connections placed in 

the incorrect box (misclassification errors), incorrectly disassembled or left on the assembly bench.  

 

4.2 Modeling product complexity 

Complexity has been widely adopted in the scientific literature to predict production performances, 

including production times and defects, as its increase leads to an increase in performances, often 

more than proportionally (ElMaraghy et al. 2012; Verna et al. 2022a; Genta, Galetto, and 

Franceschini 2018). The product structure and its complexity are also a crucial element of DT 

paradigm. Information about the individual components of a product and their complexities are 

essential for two main reasons. Firstly, product defects are often related to certain product components 

and their characteristics (Verna et al. 2022a). Secondly, the structure and complexity of the product 

itself may strongly affect production operations, e.g. assembly/disassembly order, and performances 

(Detzner and Eigner 2018). In the context of mass customisation and increasing product complexity, 

it is therefore crucial to assess product variant complexity to predict product quality. Accordingly, 

this paper analyses the possibility of integrating defect prediction models based on product 

complexity into a Digital Twin for quality control of product variants. 

One of the most accredited models to assess product complexity, which has been used in the quality 

control and management field, is the one proposed for the first time by Sinha (Sinha et al. 2012) and 

then readapted by Alkan et al. (Alkan et al. 2017; Alkan 2019) and Verna et al. (Verna et al. 2022b, 

2022a). The model relies on the analogism between molecular structures assembly and real cyber-

physical systems assembly (Sinha et al. 2012), and it was successfully applied and validated for 

industrial applications, including pressure recording devices, printing systems and wrapping 

machines (Verna et al. 2021; Alkan and Harrison 2019; Sinha 2014; Alkan et al. 2017; Alkan 2019).  
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Product complexity is defined by this model as follows:  

𝐶 = 𝐶1 + 𝐶2 ∙ 𝐶3, (1) 

where 𝐶1 is handling complexity of parts, 𝐶2 is the complexity of connections and liaisons between 

parts, and 𝐶3 is the topological, or architectural, complexity. In detail, 𝐶1 is obtained by considering 

each constituent part's complexity, according to Eq. (2): 

𝐶1 = ∑ 𝛾𝑝
𝑁
𝑝=1 , (2) 

where: 

• N is the total number of parts that compose a product; 

•  𝛾𝑝 is the handling complexity of a generic part p. The parameter 𝛾𝑝 is related to the technical 

difficulty of handling and interacting with part p under isolated conditions.  

𝐶2 is the complexity of connections and liaisons between parts and is calculated from the complexities 

of pairwise connections existing in the product structure, according to Eq. (3): 

𝐶2 = ∑ ∑ 𝜑𝑝𝑟 ∙ 𝑎𝑝𝑟
𝑁
𝑟=𝑝+1

𝑁−1
𝑝=1 , (3) 

where: 

• 𝜑𝑝𝑟 is the complexity in achieving a connection between parts p and r. 

• 𝑎𝑝𝑟 is the (p, r) th entry of the binary adjacency matrix AM of the product. AM is a symmetric 

matrix of size NxN where each element designates the existence of an assembly liaison or 

connection between two components. 𝑎𝑝𝑟 can assume two values: 1 if there is a connection 

between p and r and 0 otherwise.  

 

𝐶3 is the topological complexity and represents the complexity related to the architectural pattern of 

the assembled product, as follows: 

𝐶3 =
𝐸𝐴𝑀

𝑁
=

∑ 𝛿𝑞
𝑁
𝑞=1

𝑁
, 

(4) 

where: 

• N is the total number of parts;  

• EAM is the matrix (or graph) energy of the adjacency matrix, which is designated by the sum 

of the corresponding singular values 𝛿𝑞 of AM. The singular values are the absolute 
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eigenvalues of the matrix AM, as it is a symmetric matrix of size NxN with diagonal elements 

equal to zero (Li, Shi, and Gutman 2012; Sinha 2014).  

Three different regimes can be identified according to the value of 𝐸𝐴𝑀 (Li, Shi, and Gutman 2012): 

hyperenergetic regimes when 𝐶3 ≥ 2(1 − 1/𝑁), hypoenergetic regimes when 𝐶3 < 1 and transition 

regimes when 1 ≤ 𝐶3 < 2(1 − 1/𝑁). Note that for hyperenergetic regimes, 𝐶3 can be approximated 

to 2 when 𝑁 is sufficiently large. Thus, 𝐶3 increases as the system topology shifts from centralised to 

more distributed architectures (Sinha 2014).  

This approach to assessing product complexity was applied to different industrial applications in the 

electronics, electromechanical, and aerospace industries. Such a complexity model may be easily 

integrated into the virtual space of a DT for the development and implementation of 

assembly/disassembly and quality control models of product variants. 

 

4.3 Assembled and disassembled product variants 

As mentioned in Section 4.1, the twelve different variants of molecular structures manually assembled 

and disassembled are characterized by different ball and stick variety and quantities and different 

levels of product structural complexity, as specified in Table 1.  

Table 1. Structural characteristics and complexity of the product variants used in the experiments. 

Product 
variant label 

Chemical 
formula 

Atoms 
(balls) 

Bonds 
(sticks) 

Rigid 
sticks 

Flexible 
sticks 

EAM C1 C2 C3 C 

V1 C2H4 6 5 4 1 6.00 1.72 4.67 1.00 6.40 
V2 C2H11NO2S 20 19 18 1 20.95 5.75 17.52 1.05 24.10 
V3 C2H17NO6 44 49 42 7 52.41 12.65 45.55 1.19 66.90 
V4 C25H37NO4 67 68 62 6 75.85 19.26 62.90 1.13 90.47 
V5 C33H46O5 84 85 76 9 89.79 24.14 78.75 1.07 108.32 
V6 C29H41N7O9 86 88 78 10 97.74 24.72 81.58 1.14 117.44 
V7 C37H48N6O5S2 98 101 88 13 111.46 28.17 93.76 1.14 134.81 
V8 C46 H70O 117 117 106 11 123.29 33.63 108.28 1.05 147.73 
V9 C47H51NO14 113 119 103 16 130.25 32.48 110.53 1.15 159.88 

V10 C50 H64N2O12 128 133 119 14 145.73 36.79 123.21 1.14 177.07 

V11 C43H66N12O12S2 135 137 123 14 151.33 38.80  126.88  1.12 181.04 

V12 C44H64O24 132 135 126 9 151.58 37.94 124.64 1.15 181.07 

 

According to the complexity model described in Section 4.2, for obtaining complexity C1 (see Eq. 

(2)), 𝛾𝑝 is estimated using the standard time for handling the parts, in the hypothesis that all the parts 

are identical in terms of handling complexity. In a preliminary experimentation, 94 operators 

performed three time measurements, for a total of 282 measures recorded, and an average handling 

time of 2.80 s was obtained, used as a reasonable estimation of the standard handling time. In detail, 

standard handling time (𝑡ℎ) is calculated as follows (Alkan 2019):  
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𝑡ℎ = 𝑡𝑙𝑝 + 𝑡𝑟𝑝 + 𝑡𝑚 + 𝑡𝑝 + 𝑡𝑤, (5) 

where: 

• 𝑡𝑙𝑝 is the time to localize the relevant box of the part; 

• 𝑡𝑟𝑝 is the time to select the proper response; 

• 𝑡𝑚 is the time to move arm to pick positioning; 

• 𝑡𝑝 is the picking time;  

• 𝑡𝑤 is the time to move to work position. 

 

For obtaining complexity C2 (see Eq. (3)), 𝜑𝑝𝑟 is estimated considering the standard completion time 

of connecting the parts, separately for rigid and flexible connectors. In detail, the standard completion 

time of joining (𝑡𝑗) is obtained as follows (Alkan 2019): 

𝑡𝑗 = 𝑡𝑙𝑐 + 𝑡𝑟𝑐 + 𝑡𝑜 + 𝑡𝑝𝑙 + 𝑡𝑎 + 𝑡𝑐, (6) 

where: 

• 𝑡𝑙𝑐 is the time to localize the relevant box of the connection holes; 

• 𝑡𝑟𝑐 is the time to select the proper response; 

• 𝑡𝑜 is the time to orient and position the parts and connector; 

• 𝑡𝑝𝑙 is the time for placing connectors to both parts;  

• 𝑡𝑎 is the time to adjust the connections; 

• 𝑡𝑐 is the time to final check. 

 

Also in this case, 280 measures were performed by 94 operators and 8.95 s was obtained as the 

standard completion time for rigid connectors and 9.75 s for flexible connectors. Then, a 

normalization based on the maximum value (i.e., 9.75 s) was performed to derive the final values of 

complexities, which specifically are 𝛾𝑝 = 0.287, 𝜑𝑝𝑟(𝑟𝑖𝑔𝑖𝑑) = 0.918, 𝜑𝑝𝑟(𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒) = 1.  

It has to be noted that the abovementioned times were acquired in a series of short experiments 

conducted before the assembly/disassembly of the product variants by randomizing the trials to 

minimize the learning effects.  

Then, by applying Eqs. (2) and (3), complexity values C1 and C2 reported in Table 1 are obtained.   

In order to calculate complexity C3, the adjacency matrix was built for each product variant, see e.g. 

Fig. 4 for structure V3, and the corresponding singular values were derived according to the Singular 

Value Decomposition (SVD) (Sinha 2014).  
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Figure 4. Adjacency matrix of structure V3 (layered architecture). Grey cells represent a connection 

between the part 

 

5 Productivity and quality performance models in assembly/disassembly process 

As mentioned above, assembly and disassembly times were recorded during the experiments to 

measure the productivity of the processes. Total assembly and disassembly times (𝑇𝑡) are recorded in 

the experiments as follows:  

𝑇𝑡 = 𝑇𝑝 + 𝑇𝑚 + 𝑇𝑒 + 𝑇𝑐 + 𝑇𝑟 , (7) 

where 𝑇𝑝 is the perception time, 𝑇𝑚 is the mental decision time, 𝑇𝑒 is the action execution time, 𝑇𝑐 is 

the time for in-process quality control, 𝑇𝑟 is the rework time.  

In addition, the number of in-process and offline defects was recorded for assembly, and the total 

number of defects was counted for disassembly. The experimental data were collected and then 

statistically analysed to identify and delete any possible outliers. The exclusion rule used was the 

Modified Interquartile Range Method, which is widely recognized as a practical and effective method 

for identifying outliers taking into account sample size (Barbato et al. 2011). Data on times and 

defects (average values and standard deviations obtained after outliers' detection) are presented 

separately for assembly and disassembly in Tables 2 and 3, respectively.  

C1 O1 O2 C2 C3 C4 C5 C6 C7 C8 C9 N C10 C11 C12 O3 C13 O4 C14 C15 C16 C17 C18 C19 O5 O6 C20 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17

C1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C2 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C3 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C4 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C5 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

C6 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C7 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C8 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

C9 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

C11 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

C12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

C17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

C19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

H1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H6 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 2. Productivity and quality data for assembly obtained from the experimental campaign. 

 Assembly time (s) 
Assembly in-process 

defects (-) 
Assembly offline 

defects (-) 
Assembly total 

defects (-) 

Product variant 
label 

Average 
value 

Std. 
dev. 

Average 
value 

Std. 
dev. 

Average 
value 

Std. 
dev. 

Average 
value 

Std. 
dev. 

V1 0.46 0.13 0.02 0.14 0.00 0.00 0.02 0.14 
V2 3.38 1.56 0.40 0.72 0.17 0.86 0.58 1.19 
V3 10.17 3.28 1.33 1.65 0.90 2.01 2.23 2.79 
V4 12.86 5.30 1.88 5.83 0.96 3.00 2.85 6.52 
V5 18.78 5.52 3.29 5.14 3.37 6.80 6.65 8.62 
V6 20.38 7.02 2.65 3.22 2.75 6.81 5.40 8.04 
V7 22.31 7.15 2.88 5.81 2.67 4.91 5.56 7.62 
V8 22.60 7.56 3.56 2.79 5.33 9.35 8.88 10.63 
V9 31.26 8.97 1.98 2.06 5.73 13.60 7.71 14.19 

V10 36.76 10.70 4.23 6.59 6.21 11.77 10.44 13.74 

V11 45.38 16.29 6.25 6.84 12.77 16.49 19.02 18.63 

V12 44.16 17.13 9.44 12.16 16.04 18.19 25.48 22.10 

 

Table 3. Productivity and quality data for disassembly obtained from the experimental campaign. 

 Disassembly time (s) Disassembly total defects (-) 

Product variant label Average value Std. dev. Average value Std. dev. 

V1 0.30 0.11 0.04 0.28 
V2 1.63 0.50 0.04 0.28 
V3 3.28 0.87 0.27 0.66 
V4 4.36 0.96 0.56 0.98 
V5 5.34 1.30 0.60 0.96 
V6 6.02 1.50 0.67 0.81 
V7 6.80 1.69 0.69 2.17 
V8 7.00 1.48 0.81 1.07 
V9 7.87 2.32 1.08 1.23 

V10 8.49 2.21 1.58 2.40 

V11 8.75 1.79 1.65 1.94 

V12 9.23 2.24 1.67 2.17 

 

The results show that the variability of times and defects is low for product variants with low 

complexity. Indeed, when assembling/disassembling less complex products, humans can more easily 

identify the optimal method, errors and rework are unlikely, and the time for cognitive processing is 

short. On the other hand, the time required for cognitive processing and subsequent reprocessing 

increases with increasing complexity, resulting in greater variability in the data (see Tables 2 and 3).  

Productivity and quality data of assembly (see Table 2) and disassembly (see Table 3) are related to 

the complexity of product variants (see Table 1) in order to model the functions relating them for 

prediction and optimization purposes. Average values of all operators are considered for the analysis 

since the factor operator was not significant at a confidence level of 95% by performing the Analysis 

of Variance (the null hypothesis is that the factor is not statistically significant, i.e., all means are 

equal). In detail, the p-value of “operator factor” when considering the response assembly times is 

0.514, for assembly in-process defects, offline defects and total defects is, respectively, 0.761, 0.410 
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and 0.399; for disassembly time, the p-value is 0.094 and disassembly total defects is 0.911. Fig. 5(a) 

represents the two-term power curve fitting relating assembly time and product variant complexity. 

This is the best fitting model compared to various models defining the relationship between assembly 

time and product complexity, considering the goodness of fit statistics and residual analysis 

(Montgomery, Runger, and Hubele 2010). Fig. 5(b) illustrates the best fitting model for the 

relationship between disassembly time and the complexity of product variants. In this case, 

disassembly time increases linearly as product variant complexity increases, according to the function 

shown in Fig. 5(b). The 95% confidence and prediction intervals are represented on the plots, showing 

that the regression lines follow the curvature in the points closely and no systematic deviations from 

the fitted line appear (see Fig. 5(a) and 5(b)).  

Confidence intervals of the prediction are calculated as follows:  

𝑦�̂� ± 𝑡
1−

𝛼
2

,𝑁−𝑃
𝑆𝐸(𝐹𝑖𝑡),  

(8) 

where 𝑦�̂� is the predicted value of the j-th response, 𝑡1−
𝛼

2
,𝑁−𝑃 is the value of the Student's t distribution 

with α level of significance and N-P degrees of freedom (where N is the total number of observations 

and P the number of free parameters) and 𝑆𝐸(𝐹𝑖𝑡) is the standard error of the fit.  

Prediction intervals are calculated as follows:  

𝑦�̂� ± 𝑡
1−

𝛼
2

,𝑁−𝑃
√[𝑆𝐸(𝐹𝑖𝑡)]2 + 𝑆2,  (9) 

where S is the standard error of the estimate, also known as the standard error of the regression, 

derived from the sum of the squared residuals RSS, the number of observations N and the number of 

free parameters P, i.e. 𝑆 = √
𝑅𝑆𝑆

𝑁−𝑃
 (Bates and Watts 1988). Calculations were performed using the 

software Minitab®. 

The statistical significance of the parameter estimate is then assessed by analysing the 95% 

confidence intervals for the parameters, calculated from the corresponding Standard Errors (SE) 

reported in Table 3. The parameter is statistically significant if the range excludes the null hypothesis 

value, i.e. zero in the case of parameters of power-law regression (Seber and Wild 1989; Bates and 

Watts 1988). The parameter estimates in both regression curves are verified to be statistically 

significant as their 95% confidence intervals - i.e. (0.0003, 0.0402) for a and (1.3212, 2.2817) for b 

in the assembly time model, and (0.0481, 0.0503) for a in the disassembly time model - do not include 

zero. Residual plots of the regression models for assembly and disassembly times are represented in 

Fig. 5 (c) and (d), respectively. The visual analysis of the residuals was accompanied by a statistical 

normality test, the Anderson-Darling test, where the null hypothesis is that residuals follow a normal 
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distribution, and the alternative hypothesis is that the data do not follow a normal distribution. The 

Anderson-Darling goodness-of-fit statistic (AD) measures the area between the fitted line (based on 

the normal distribution) and the empirical distribution function (which is based on the data points). 

The Anderson-Darling statistic is a squared distance weighted more heavily in the tails of the 

distribution. For the residuals of the assembly time regression model shown in Fig. 5(a), the AD 

measure is 0.343 and the corresponding p-value is 0.425. Thus, since the p-value is greater than the 

0.05 significance level, the decision is to fail to reject the null hypothesis of normality of residual 

distribution. Similarly, for the residuals of the disassembly time regression model shown in Fig. 5(b), 

the AD measure is 0.602 and the corresponding p-value is 0.272, leading to a non-rejection of the 

null hypothesis of normality of residual distribution. In Fig. 5(a) and (b), the S value is reported, i.e., 

the standard error of the regression, which is a measure of goodness of fit of the model and is used 

instead of R2 for nonlinear models (Bates and Watts 1988). Overall, the residual analysis and the 

goodness of fit tests allowed the robustness and validity of the regression models presented in Fig. 5 

(a) and (b) to be established. 

 

 Figure 5. Assembly time vs product variants complexity: (a) experimental values, regression curve, 

95% Confidence Intervals (CI) and Prediction Intervals (PI); and (c) residual plots. Disassembly time 

vs product variants complexity: (b) experimental values, regression curve, 95% Confidence Intervals 

(CI) and Prediction Intervals (PI); and (d) residual plots.  
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 Fig. 5 shows a superlinear relationship between assembly time and product variant complexity. This 

implies that assembly operations require longer deliberation times, and thus more cognitive effort, as 

product complexity increases. On the other hand, disassembly times increase linearly with increasing 

product complexity, showing that cognitive effort remains constant regardless of the level of product 

complexity.  

Regarding the relationship between defects and product variant complexity, Poisson regression 

models are adopted for the analysis since the responses are count data (Cameron and Trivedi 2013). 

Specifically, the link functions considered are the natural logarithm and the square root, and different 

models have been compared up to the third order of the predictor (i.e., the complexity). The selection 

of the most appropriate models is done according to Akaike's Corrected Information Criterion (AICc) 

and Bayesian Information Criterion (BIC), goodness-of-fit tests (Deviance and Pearson tests) and 

deviance residual plots (Cameron and Trivedi 2013). Deviance and Pearson tests assess whether the 

predicted number of events deviate from the observed number of events in a way that would not be 

predicted by the Poisson distribution. In detail, if the p-value is less than the significance level, the 

null hypothesis that the Poisson distribution provides a good fit can be rejected (Cameron and Trivedi 

2013). According to the results, the most appropriate model to describe all the relationships between 

defects and complexity is the one using the square root link function, in the form 𝑌 = (𝑎 ∙ 𝐶)2, where 

Y is the response, C is product complexity evaluated according to Eq. (1), and a is the regression 

coefficient. According to the results of the Poisson regression analysis reported in Table 4, the 

associations between responses and complexity are statistically significant, as the p-value of the 

coefficients is less than the significance level of 0.05 (the null hypothesis is that the coefficient is 

zero), the goodness-of-fit tests (Deviance and Pearson) indicate that the models fit the data well (i.e., 

the p-value is higher than the significance level of 0.05; the null hypothesis is that data follow a 

Poisson distribution), and very high values of the deviance R2 are obtained.  

Table 4. Main outputs from Poisson regression for assembly and disassembly defects vs product 

complexity. Models are in the form 𝑌 = (𝑎 ∙ 𝐶)2. 

 a SE(a) 
Coefficient p-

value 

Deviance 

R2 
Goodness-of-Fit Tests 

Assembly in-process defects vs 

Complexity 
0.0137 0.0011 <0.0001 99.74% 

Deviance Test 

p-value 

0.900 

 

Pearson Test p-

value 
0.891 

Assembly offline defects vs 

Complexity 
0.0168 0.0011 <0.0001 99.71% 

Deviance Test 

p-value 

0.572 
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Pearson Test p-

value 
0.538 

Assembly total defects vs 

Complexity 
0.0217 0.0011 <0.0001 99.79% 

Deviance Test 

p-value 
0.380 

Pearson Test p-

value 
0.331 

Disassembly total defects vs 

Complexity 
0.0069 0.0011 <0.0001 99.93% 

Deviance Test 

p-value 

0.368 

 

Pearson Test p-

value 
0.893 

 

Fig. 6 shows the predicted curves of assembly and disassembly defects with the 95% confidence and 

prediction intervals. Confidence intervals of Poisson regression were calculated according to Eq. (8), 

while prediction intervals were derived empirically by bootstrapping due to the assumption of non-

Gaussian distribution (Cameron and Trivedi 2013). 

Finally, deviance residuals - used for Poisson regression (Cameron and Trivedi 2013) - are analysed, 

showing that the models are adequate and meet the assumptions of the analysis (see Fig. 7). In 

addition to the visual analysis of the deviance residual plots, the Anderson-Darling test was used to 

verify the normality of deviance residuals. The obtained p-values are 0.736 for deviance residuals of 

assembly in-process defects model, 0.066 for deviance residuals of assembly offline defects model, 

0.464 for deviance residuals of assembly total defects model and 0.191 for deviance residuals of 

disassembly total defects model, respectively. Thus, the normality test led to the non-rejection of the 

hypothesis of normality of deviance residual distribution.  
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Figure 6. Regression models of assembly and disassembly defects vs product complexity with 

relevant 95% Confidence Intervals (CI) and Prediction Intervals (PI). 
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Figure 7. Deviance residual plots of regression models for (a) assembly total defects, (b) assembly 

in-process defects, (c) assembly offline defects, and (d) disassembly total defects vs product 

complexity. 

Results obtained for defects occurring in assembly and disassembly processes show that the increase 

in product variant complexity leads to an increase in defects, following a nonlinear trend. 

The Poisson regression models obtained (see Table 4 and Fig. 6) can be used by researchers and 

practitioners for prediction and optimization. For example, if a new product variant is introduced into 

the assembly/disassembly line, a defect prediction with a 95% confidence level can be obtained, as 

shown in Table 5 for a new product variant with complexity C=50.  

Table 5. Assembly and disassembly defects predictions for a new product variant with complexity 

C=50. 

Defect Fit SE Fit 95% CI 

Assembly in-process defects 0.471 0.076 (0.333, 0.633) 

Assembly offline defects 0.707 0.094 (0.535, 0.902) 

Assembly total defects 1.178 0.121 (0.953, 1.427) 

Disassembly total defects 0.120 0.039 (0.056, 0.207) 

 

On the other hand, regression curves can be used for optimization purposes to achieve a certain level 

of product variant complexity that can lead to the achievement of a specific goal, e.g., minimizing 

defects or achieving a target value. Since the joint optimization must satisfy the requirements of all 

the selected responses, the more responses to be optimized, the more difficult it is to achieve high 

predictability due to the conflicting objectives (Galetto, Verna, and Genta 2021). In this study, the 

multi-response optimization is performed using a composite desirability function. The method uses 

an objective function called the desirability function and transforms an estimated response into a 

scale-free value (𝑑𝑗) called desirability. In detail, for each j-th response, the index “𝑑𝑗” represents the 

individual desirability and evaluates how the settings optimize the response. For instance, if the goal 

is to target the j-th response, the desirability 𝑑𝑗 is calculated as:  

(i) 𝑑𝑗 = ((𝑦�̂� − 𝐿𝑗)/(𝑇𝑗 − 𝐿𝑗))  if 𝐿𝑗 ≤ 𝑦�̂� ≤ 𝑇𝑗 

(ii) 𝑑𝑗 = ((𝑈𝑗 − 𝑦�̂�)/(𝑈𝑗 − 𝑇𝑗))  if 𝑇𝑗 ≤ 𝑦�̂� ≤ 𝑈𝑗 

(iii) 𝑑𝑗 = 0 if 𝑦�̂� < 𝐿𝑗 

(iv) 𝑑𝑗 = 0 if 𝑦�̂� > 𝑈𝑗 
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where 𝑦�̂� is the predicted value of the j-th response, 𝑈𝑗, 𝐿𝑗 and 𝑇𝑗 are the highest acceptable, the lowest 

acceptable and the target values for the j-th response, respectively. The desirability ranges from 0 to 

1 (least to most desirable, respectively).  A value of 1 represents the ideal case, while 0 indicates that 

one or more responses are outside their acceptable limits.   

From the weighted geometric mean of the individual desirability of the responses, the composite 

desirability “D” is obtained, which assess how the settings optimize the total set of responses. The 

factor settings with the maximum total desirability are considered to be the optimal parameter 

conditions. In detail, the formula for the composite desirability, when the importance of each response 

is equal, is: 

𝐷 = (𝑑1 ∙ 𝑑2 ∙ 𝑑3 ∙ … ∙ 𝑑𝑛)1/𝑛 (10) 

where n is the total number of responses optimized in the scenario and 𝑑𝑗 represents the individual 

desirability for the j-th response (j=1, …, n). 

For example, assuming that the assembly process should achieve 10 total defects and the disassembly 

process should achieve 1 disassembly defect, then the optimal complexity of the product variant 

should be around 144 (i.e., a product whose complexity is between V7 and V8), as shown in Table 6. 

In such a case, the composite desirability obtained according to Eq. (10) is D=98.59% since the 

desirability obtained for assembly total defects is 𝑑1 = 97.71% and the desirability obtained for 

disassembly total defects is 𝑑2 = 99.48%. 

 

Table 6. Optimal complexity to jointly achieve the target value of 10 assembly total defects and 1 

disassembly total defect. 

Optimal C Defects Fit SE Fit 95% CI 

144.01 
Assembly total defects 9.77 1.00 (7.90, 11.84) 

Disassembly total defects 0.995 0.320 (0.466, 1.721) 

 

Fig. 8 shows the correlation matrix of assembly/disassembly total defects and assembly/disassembly 

times, with indication of the Pearson correlation coefficient. All values are significant at 95% 

confidence level (p-value<0.002; the null hypothesis is that the correlation is not statistically 

significant). This analysis does not consider the distinction between in-process and offline defects  as 

both are included in the total number of defects and therefore their trends reflect those of total defects.  
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Figure 8. Correlation matrix containing pairwise Pearson correlation coefficients of 

assembly/disassembly times and total defects. 

As shown in Fig. 8, the relationships between assembly/disassembly defects and times appear to 

follow a superlinear trend, as in the evident case of assembly total defects vs assembly time. 

Furthermore, when comparing assembly and disassembly processes, disassembly time (and 

disassembly total defects) appears to grow roughly linearly as the assembly time (and defects) 

increase, but after a certain threshold the growth is much slower or almost absent. This may be due 

to the fact that for low and medium-complex products, the cognitive effort required to assemble and 

disassemble the structure is comparable. However, for highly complex structures, the cognitive effort 

required for disassembly is much lower than that required for assembly. For instance, in the 

relationship between disassembly time and assembly time, from the V8 product variant, the slope of 

the curve is much lower due to the lower cognitive effort required for disassembly compared to 

assembly, as shown in Fig. 9.  
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Figure 9. Disassembly time vs assembly time. The difference in cognitive effort influences the 

slope of the relationship at different levels of complexity. 

From the correlation matrix (see Fig. 8), relationships between defects and times are derived using 

Poisson regression models, the results of which are shown in Table 7. For each of the models, the 

significance of the regression coefficients is checked (see coefficient p-value in Table 7), and 

goodness-of-fit tests (Deviance and Pearson) indicate that the models fit the data well (i.e., the p-

value is higher than the 0.05 significance level), and very high values of deviance R2 are obtained. 

The Deviance residuals of the models were analysed graphically, and the Anderson-Darling normality 

test was performed, which resulted in the non-rejection of the hypothesis of normality of deviance 

residuals distribution. Specifically, the p-values obtained from the Anderson-Darling test for the 

assembly total defects vs assembly times model are 0.116, 0.601 for the assembly total defects vs 

disassembly times model, 0.429 for the disassembly total defects vs assembly times model, and 0.854 

for the disassembly total defects vs disassembly times model. 
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Table 7. Main outputs from Poisson regression for defects vs times in assembly and disassembly. 

Models are in the form 𝑌 = (𝑎 ∙ 𝐶)2. 

 

 a SE(a) 
Coefficient p-

value 

Deviance 

R2 
Goodness-of-Fit Tests 

Assembly total defects vs 

Assembly times 
0.1063 0.0055 <0.0001 99.83% 

Deviance Test 

p-value 
0.596 

Pearson Test p-

value 
0.481 

Assembly total defects vs 

disassembly times 
0.4407 0.0226 <0.0001 99.81% 

Deviance Test 

p-value 
0.497 

Pearson Test p-

value 
0.477 

Disassembly total defects vs 

Assembly times 
0.0339 0.0055 <0.0001 99.69% 

Deviance Test 

p-value 
0.999 

Pearson Test p-

value 
0.760 

Disassembly total defects vs 

Disassembly times 
0.1406 0.0226 <0.0001 99.92% 

Deviance Test 

p-value 
1.000 

Pearson Test p-

value 
1.000 

Furthermore, a nonlinear relationship between disassembly and assembly times is obtained, as shown 

in Fig. 10 (a). In Fig.10 (b), residual plots show that the power-law curve is an adequate model to 

describe the relationship between disassembly and assembly times (the p-value of the Anderson-

Darling normality test on residuals is 0.922). 

 

Figure 10. Disassembly time vs assembly time: (a) experimental values, regression curve, 95% 

confidence and prediction intervals, and (b) residual plots. 
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The developed experimental models of assembly/disassembly productivity and quality performance 

can be integrated into the virtual space of a DT, together with the assembly/disassembly and quality 

control models presented in Section 4. These models can be used as an infrastructure for constructing 

a twin model of the assembly/disassembly system to enhance predictive, diagnostic and monitoring 

capabilities. In particular, a DT tracking the process can be used to make predictions and 

optimizations according to the specific goal to be achieved, e.g., to identify optimal parameter settings 

for new product variants during the design phase and critical scenarios that may lead to undesirable 

quality and productivity performance. 

 

6. Conclusions 

Nowadays, companies are increasingly focusing on product customization, which involves changing 

production quickly to produce different product variants according to market demand. In this 

scenario, developing suitable approaches to perform quality control and monitoring of existing 

product variants, and to predict the quality of new variants is essential to increase business 

performance. To this end, this study investigates the integration of defect prediction models in Digital 

Twin for quality control and monitoring of product variants.  

In order to develop predictive models of productivity and quality performance in both assembly and 

disassembly processes for different product variants, an extensive experimental campaign involving 

104 operators was conducted. During the experiments, the operators were tasked with assembling and 

disassembling 12 different product variants, which were realized using a molecular kit to construct 

molecular structures typically considered in the scientific literature to effectively emulate the 

behaviour of real products (Sinha 2014). Data on assembly and disassembly times were recorded to 

measure the productivity of the processes. Additionally, the number of in-process and offline defects 

was collected for assembly, and the total number of defects was counted for the disassembly. The 

experimental results showed a superlinear relationship between assembly times and product variant 

complexity, while disassembly times increased linearly with increasing product complexity. Poisson 

regression models were used to model the relationships between defects and product variants. The 

regression models show that an increase in product variant complexity leads to an increase in defects, 

following a nonlinear trend. Moreover, the performance of assembly and disassembly processes is 

compared and related predictive models are derived. The results show a change in cognitive effort 

from assembly to disassembly when considering different product variants. Indeed, for simple 

product variants, the cognitive effort required to assemble and disassemble the structure is 

comparable, as shown by an almost linear trend. On the other hand, for complex product variants, the 
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cognitive effort required for assembly is much higher than the cognitive effort required for 

disassembly, resulting in a change in the slope of the curve.  

The proposed methodology for integrating predictive models into Digital Twin (DT) for quality 

control and monitoring of product variants has general validity and can be applied to different 

manufacturing contexts beyond the assembly and disassembly processes using molecular models, 

which were presented as an example in this paper. With the increasing focus on product 

customization, developing suitable approaches for quality control and monitoring of product variants 

is crucial for enhancing business performance. The developed prediction models, which are a virtual 

representation of the physical assembly and disassembly process, can be integrated into a DT for in-

process quality control and to enhance the monitoring capabilities of the system. This integrated 

approach can ensure an accurate real-time prediction of assembly and disassembly performance, 

enabling defects to be avoided and/or preventive and corrective measures to be taken to minimise 

defect generation. Resource consumption (including cost, time, energy consumption) associated with 

quality control can therefore be significantly reduced, and the overall system quality may be 

improved. While this study is preliminary in nature, the authors believe that integrating defect 

generation models into a DT for quality control can lead to an overall increase in productivity and 

quality performance of the production system. Future work is planned to verify the effectiveness of 

the integration in the production environment by physically developing a digital twin for monitoring 

the assembly/disassembly of product variants.  
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