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It is common knowledge that noble metals are excellent conductors but do not exhibit superconductivity.
On the other hand, quantum confinement in thin films has been consistently shown to induce a significant
enhancement of the superconducting critical temperature in several superconductors. It is, therefore, an im-
portant fundamental question whether ultrathin film confinement may induce observable superconductivity in
nonsuperconducting metals. We present a generalization, in the Eliashberg framework, of a BCS theory of
superconductivity in good metals under thinfilm confinement. By numerically solving these new Eliashberg-type
equations, we find the dependence of the superconducting critical temperature on the film thickness L. This
parameter-free theory predicts a maximum increase in the critical temperature for a specific value of the film
thickness, which is a function of the number of free carriers in the material. Exploiting this fact, we predict
that ultrathin films of gold, silver, and copper of suitable thickness could be superconductors at low but
experimentally accessible temperatures. We demonstrate that this is a fine-tuning problem where the thickness
must assume a very precise value, close to half a nanometer.

DOI: 10.1103/PhysRevMaterials.8.L101801

It is well known that the three best conducting metals,
Au, Ag, and Cu, are also among the few metallic elements
that are not superconductors even when subjected to high
pressures [1,2]. In this Letter, we demonstrate, by exploiting
the phenomenon of quantum confinement, that it is possi-
ble to make these materials superconducting as long as they
are cast into ultrathin films of a very well-defined thickness.
The superconducting critical temperatures will still be low
but not so low that they cannot be measured experimentally.
The standard one-infinite-band s-wave Eliashberg theory [3,4]
is a powerful tool to compute all superconductive proper-
ties of elemental superconductors [4] such as as Pb, Sn,
Al, etc. In this regard, many studies have been devoted to
rationalizing the dependence of the superconducting critical
temperature Tc on confinement and on the thin film thickness
L [5–10]. In the past, due to the vapor-deposition technique
[11], superconducting thin films were mostly amorphous,
while nowadays, thanks to the modern preparation techniques,
also crystalline thin films can be fabricated. Early numerical
studies based on BCS theory [5] have suggested a possible
enhancement of Tc upon decreasing the film thickness L, al-
though a mechanistic explanation has remained elusive. More
recently, experiments on ordered thin films [9,10,12], besides
the abovementioned regime of Tc enhancement upon reducing
L, have also highlighted a second regime at lower (nano-
metric and subnanometric) thicknesses L, where, instead, Tc

grows with increasing L. This behavior results, overall, in
a nonmonotonic trend with a peak or maximum of Tc as
a function of L. Travaglino and Zaccone in a recent paper
[13] developed the first fully analytical theory of confinement
effects on superconductivity of thin films in the framework
of the simplified weak-coupling BCS formalism. The math-
ematical predictions were verified for experimental data of

crystalline thin films and were able to reproduce the trend of
Tc vs L, including the maximum of Tc at L = Lc = (2π/n)1/3,
where n is the concentration of free carriers. This maximum
coincides with a topological transition of the Fermi surface,
from the spherical-like Fermi surface of bulk metals to a
nontrivial topology with homotopy group �Z. This topolog-
ical transition marks the change from a situation where free
electrons get crowded at the Fermi level upon decreasing the
film thickness (due to the growth of hole pockets internal to
the spherical Fermi surface) to a regime of strong confine-
ment where the new topology of the Fermi surface allows for
spreading out the free electron energy states at the surface.
This phenomenon provides a mechanistic explanation to the
maximum in Tc vs thickness L observed experimentally.

In this Letter, we formulate a generalized Eliashberg the-
ory of strong-coupling superconductivity of noble-metal thin
films that takes into account effects of quantum confinement
on the free carriers, as well as a realistic electron-phonon
spectral density. To this aim, we use a generalization of the
standard s-wave one-band Eliashberg theory [3] where the
new Eliashberg equations are more complex than the usual
ones, because the normal density of states is not approxi-
mated by its (constant) value at the Fermi level. The material’s
physical and chemical features are taken into account in this
framework via the Eliashberg spectral function α2F (�). For
our calculations on noble metals, we use ab initio calculated
α2F (�) spectra for crystalline materials [14]. In the future,
structural disorder effects can be taken into account by using
the α2F (�) spectra measured experimentally for polycrys-
talline or amorphous thin films [15].

This theory is shown to yield predictions for Au, Ag, and
Cu thin films, with no adjustable parameters. Moreover, the
calculations predict that the noble metals, Au, Ag, and Cu,
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become superconductors at precise values of the film thick-
ness L. These predictions have the potential to change our
fundamental understanding of superconductivity in nanostruc-
tured materials, with many relevant technological applications
ranging from Josephson junctions to quantum computing.

The Eliashberg equations, in their simpler version (one
infinite band with isotropic order parameter), are given in
terms of the gap function �(iωn) and the renormalization
function Z (iωn) [4,16–21]. When the Migdal’s theorem holds
[22], they read as

�(iωn)Z (iωn) = πT
∑
ωn′

�(iωn′ )√
ω2

n′ + �2(iωn)
[λ(iωn′ − iωn) − μ∗(ωc)θ (ωc − |ωn′ |)],

Z (iωn) = 1 + πT

ωn

∑
ωn′

ωn′√
ω2

n′ + �2(iωn)
λ(iωn′ − iωn), (1)

where ωn are the Matsubara energies and n are integer num-
bers, μ∗(ωc) is the Coulomb pseudopotential that depends, in
a weak way, on a cutoff energy ωc (ωc > 3�max, where �max

is the maximum phonon or Debye energy) [17], and θ (ωc −
|ωn′ |) is the Heaviside function. λ(iωn′ − iωn) is a func-
tion related to the electron-phonon spectral function α2F (�)
through the relation

λ(iωn′ − iωn) = 2
∫ ∞

0

�α2F (�)d�

�2 + (ωn′ − ωn)2
. (2)

The strength of the electron-phonon coupling is given by
the electron-phonon coupling parameter λ = 2

∫ ∞
0

α2F (�)d�

�
.

In general, it is impossible to find exact analytical solutions
of Eliashberg’s equations except for the case of extreme
strong-coupling (λ > 10) [4]. Hence, we solve them numer-
ically with an iterative method until numerical convergence
is reached. This numerical procedure is easy to perform in

the formulation on the imaginary axis, but less so on the real
axis. The Tc value can be calculated either by solving an
eigenvalue equation or, more easily, by giving a very small
test value to the superconducting gap and then by checking
at which temperature the solution converges. In this way, a
precision in the Tc value is obtained that is much higher than
the experimental confidence interval. The simplest thing to
do to generalize the Eliashberg equations is to remove the
infinite band approximation (which works very well for most
metals in the bulk state) and to no longer approximate the
normal density of states as a function of energy with its value
at the Fermi level. By removing these approximations, the
Eliashberg equations become slightly more complex and they
become four equations [17]. However, in the particular case
where the density of states is symmetrical with respect to the
Fermi level [N (ε) = N (−ε)], it is possible to simplify the
theory in the way that the self-energy terms remain just two,
Z (iωn) and �(iωn)Z (iωn), and the equations read as [23,24]

�(iωn)Z (iωn) = πT
∑
ωn′

�(iωn′ )√
ω2

n′ + �2(iωn)

[
N (iωn′ ) + N (−iωn′ )

2

]

× [λ(iωn′ − iωn) − μ∗(ωc)θ (ωc − |ωn′ |)] 2

π
arctan

⎡
⎢⎣ W

2Z (iωn′ )
√

ω2
n′ + �2(iωn′ )

⎤
⎥⎦, (3)

Z (iωn) =1 + πT

ωn

∑
ωn′

ωn′√
ω2

n′ + �2(iωn)

[
N (iωn′ ) + N (−iωn′ )

2

]
λ(iωn′ − iωn)

2

π
arctan

⎡
⎢⎣ W

2Z (iωn′ )
√

ω2
n′ + �2(iωn′ )

⎤
⎥⎦, (4)

where N (±iωn′ ) = N[±Z (iωn′ )
√

(ωn′ )2 + �2(iωn′ )] and the
bandwidth W is equal to half the Fermi energy, EF /2.

When the system is confined along one of the three
spatial directions, such as in thin films, the density
of states features two different regimes depending
on the film thickness L [13]: when L > Lc and
EF > ε∗, the density of states has the following form:
N (ε) = N (0)C[θ (ε∗ − ε)

√
EF
ε∗

|ε|
EF

+ θ (ε − ε∗)
√ |ε|

EF
], where

C = (1 + 1
3

L3
c

L3 )
1/3

, ε∗ = 2π2 h̄2

mL2 , Lc = ( 2π
n0

)1/3, m is the electron
mass, L is the film thickness, n0 is the density of carriers, and

EF,bulk is the Fermi energy of the bulk material. In this case, it
is possible to demonstrate the following relations [13]:

EF = C2EF,bulk, (5)

N (EF ) = CN (EF,bulk ) = CN (0), (6)

with N (EF,bulk ) = V (2m)3/2

2π2 h̄3

√
EF,bulk. In the regime ε < ε∗, the

density of states has a new, linear dependence on the energy,
in contrast with the standard square-root dependence which is
retrieved for ε > ε∗ [13]. We can summarize the main features
that change in this version of the Eliashberg equations: (i) the
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FIG. 1. Panel (a) shows the physical parameters used in the theory for silver (Ag) films: λ (black line and squares), μ∗ (red line and circles),
EF /5 × 104 (blue line and up triangles), and ε∗/5 × 104) (green line and down triangles). All the parameters are plotted as a function of the
film thickness L. Panel (b) shows the critical temperature Tc versus the film thickness L for silver (Ag): solid red circles represent the numerical
solutions of the Eliashberg equations. In the inset, the Eliashberg electron-phonon spectral function of silver is shown, from Ref. [14].

density of states will no longer be a constant but a function
of energy; (ii) the electron-phonon interaction is a function
of the film thickness L, via λ = Cλbulk; (iii) the value of the
Fermi energy is also a function of the film thickness L: EF =
C2EF,bulk (of course, in the symmetric case discussed above, it
is W = EF /2); and (iv) the Coulomb pseudopotential μ∗ also
depends on the film thickness via μ∗ = Cμbulk

1+μbulk ln(EF /ωc ) , where

μbulk = μ∗
bulk

1−μ∗
bulk ln(EF,bulk/ωc ) . Instead, when L < Lc and EF < ε∗,

we have [13]

N (ε) = C′N (0)

√
EF

ε∗
ε

EF
, (7)

where N (ε = EF ) = C′N (0), EF = C′2EF,bulk, and C′ =
2√
L

( 8π
3 )2/3 1

(n(2π )3 )1/6 . In this regime, the density of states is

given by [13] the following: N (ε) =
√

EF
ε∗

|ε|
EF

. The electron-
phonon coupling and the Coulomb pseudopotential become
thickness dependent through C′:

λ = C′λbulk, μ∗ = C′μbulk

1 + μbulk ln(EF /ωc)
. (8)

We have seen that, if the normal density of states is sym-
metrical, the theory is simplified and we always have two
Eliashberg equations to solve. Instead, if the normal density of
states is aymmetrical, the equations to be solved are three and
the theory becomes more complex. In general, the important
thing is that, if the normal density of states is not a constant,
then usually the asymmetry becomes a problem of second
order. The effect of asymmetry becomes important only in
very particular situations [25]. We underline that this theory is
completely general because the physical and chemical prop-
erties of the specific material (including, e.g., the degree of
disorder, if any) are enclosed in the electron-phonon spectral
function α2F (�). Of course, this theory can also be easily
generalized to multiband metals [26,27].

It is well known that all three noble metals (Au, Ag,
and Cu) have a very weak electron-phonon coupling (λ <

0.25), which does not allow them to be bulk superconductors.

However, if we consider very thin films with a thickness very
close to the critical length Lc, which is of the order of 5 Å
(0.5 nm), our calculations using the above theory show that the
electron-phonon interaction is greatly enhanced. Therefore,
the possibility exists that, in a narrow range of thickness,
the noble metal film becomes superconducting. This is the
scenario revealed by our calculations in Figs. 1–3.

Let us start by considering the case of silver and exam-
ine how the fundamental parameters vary around the critical
thickness Lc. In Fig. 1(a) the physical quantities of silver used
in the theoretical calculations are plotted as functions of the
film thickness L. The bulk electron-phonon spectral function
of silver [14] with λbulk,0 = 0.16 is shown in the inset of
Fig. 1(b). The bulk value of the Coulomb pseudopotential
[14] is μ∗(ωc) = 0.11, the cutoff energy is ωc = 75 meV,
and the maximum electronic energy is ωmax = 80 meV. The
values of the bulk Fermi energy and the carrier density are re-
spectively EF,bulk = 5490 meV and n0 = 0.0586 × 1030 m−3.
This produces a critical thickness of Lc = 4.75 Å. As we can
see from Fig. 1(a), precisely around this critical thickness
value, the coupling constant λ has a slight increase. To check
whether this increase is sufficient to produce the supercon-
ducting state, we solve the modified Eliashberg equations and
calculate the critical temperature Tc. The result is shown in
Fig. 1(b). We find that, for the film thickness L = 5.00 Å
(very close to the critical value Lc = 4.75 Å), the material
becomes a superconductor with Tc = 0.294 K. We notice that
the thickness range that allows superconductivity to exist is
quite narrow, which can be understood based on the under-
lying topological transition [13]. We now turn to the case of
gold. In Fig. 2(a), the physical quantities for Au used in the
theory are shown as functions of the film thickness. The bulk
electron phonon spectral function of gold [14] with λbulk,0 =
0.22 is shown in the inset of Fig. 2(b). The bulk value of the
Coulomb pseudopotential [14] is μ∗(ωc) = 0.11, the cutoff
energy is ωc = 55 meV, and the maximum electronic energy
is ωmax = 60 meV. The values of the bulk Fermi energy and
the carrier density are, respectively, EF,bulk = 5530 meV and
n0 = 0.0590 × 1030 m−3. This produces a critical thickness
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FIG. 2. Panel (a) shows the physical parameters used in the theory for gold (Au) films: λ (black line and squares), μ∗ (red line and circles),
EF /5 × 104 (blue line and up triangles), and ε∗/5 × 104) (green line and down triangles). All parameters are plotted as a function of the film
thickness L. Panel (b) shows the critical temperature Tc versus the film thickness L for gold (Au): solid red circles represent the numerical
solutions of Eliashberg equations. In the inset, the Eliashberg electron-phonon spectral function of gold is shown, from Ref. [14].

of Lc = 4.74 Å. For Au, we find that, for the thickness L =
5.00 Å, which is close to the critical value Lc = 4.74 Å, the
material becomes a superconductor with Tc = 1.042 K. Also
in this case, the thickness range that allows superconductivity
to be observed is narrow. As the last case, we study copper
(Cu). In Fig. 3(a), some typical physical quantities of copper
used in the theory are shown as functions of the film thickness
L. The bulk electron-phonon spectral function of copper [14]
with λbulk,0 = 0.14 is shown in the inset of Fig. 3(b). The
bulk value of the Coulomb pseudopotential [14] is μ∗(ωc) =
0.11 (the cutoff energy is ωc = 90 meV and the maximum
electronic energy is ωmax = 100 meV). The values of the
bulk Fermi energy and the carrier density are, respectively,
EF,bulk = 7000 meV and n0 = 0.0847 × 1030 m−3. For copper
we find that, if the thickness is L = 4.40 Å, i.e., close to the

critical value Lc = 4.20 Å, the material becomes a supercon-
ductor with Tc = 0.118 K.

We notice that as soon as we move away from the critical
value Lc of film thickness, the Tc value abruptly goes to very
small values, which we are not able to calculate as it is too
time-consuming for the code to reach convergence.

Finally, we should also point out that films that are as thin
as 0.5 nm are still effectively described by three-dimensional
physics as shown plenty of times in the literature on the
basis of experiments, theory, and atomistic simulations (see,
e.g., Refs. [10,13,28–30]), albeit with substantial correc-
tions due to confinement such as those implemented in our
theory.

In conclusion, we have studied a generalization of the
Eliashberg equations, which includes the crucial effect of

FIG. 3. Panel (a) shows the values of the physical parameters used in the theory for copper (Cu) films: λ (black line and squares), μ∗ (red
line and circles), EF /5 × 104 (blue line and up triangles), and ε∗/5 × 104) (green line and down triangles). All the parameters are plotted as
a function of the film thickness L. Panel (b) shows the critical temperature Tc versus the film thickness L for copper (Cu): solid red circles
represent the numerical solutions of Eliashberg equations. In the inset, the Eliashberg electron-phonon spectral function of copper is shown,
from Ref. [14].
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quantum confinement, to compute the superconducting prop-
erties of thin films of noble metals in a fully quantitative
way and with no free parameters. Upon decreasing the film
thickness, the formation of hole pockets growing inside
the Fermi sea [13] leads to the “crowding” of electronic
states at the Fermi level, which can significantly increase
the electron-phonon coupling and, hence, the Tc. Surpris-
ingly, the theoretical predictions reveal the possibility that
films of Au, Ag, and Cu with a thickness close to 0.5 nm
become superconducting. Particularly striking is the case of
gold (Au), which can reach a superconducting critical tem-
perature of Tc ≈ 1.1 K, which is comparable to that of bulk
aluminum, i.e., the most used material for Josephson junc-
tions. These predictions open up unprecedented avenues for
both the fundamental understanding of superconductivity as
well as for many technological applications, from supercon-
ducting logic to quantum computing. Also, in light of the
recent experimental discovery of metallic glasses made of
pure gold in Ref. [31], it will be interesting to see if an
amorphous glassy structure may lead to an even greater Tc

by taking advantage of the more close-packed structure and
of the excess of low-vibrational modes due to disorder [32].

A first step in this direction would be to use Eliashberg
functions of disordered thin films measured experimentally
using point-contacts methods [15]. Finally, the theory can
be refined in future work in several respects. For example,
one such angle could be to use ab initio phonon parameters
for thin films calculated with the electron-phonon WANNIER

package [33] (although we believe that phonon confinement
should play the role of a second-order correction compared
to the electronic confinement which, as demonstrated here,
is responsible for a dramatic increase of Tc with increasing
the confinement). Another direction could be to relax the
assumption of the density of states being symmetrical with
respect to the Fermi level and use instead an asymmetri-
cal density of states, which could be relevant for certain
applications [34,35].

A.Z. gratefully acknowledges funding from the European
Union through Horizon Europe ERC Grant No. 101043968
“Multimech,” from U.S. Army Research Office through
Contract No. W911NF-22-2-0256, and from the Niedersäch-
sische Akademie der Wissenschaften zu Göttingen in the
frame of the Gauss Professorship program.
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