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a b s t r a c t

In this paper we elaborate on homogeneous and heterogeneous SIR-type epidemiological
models. We find an unexpected correspondence between the epidemic trajectory of a
transmissible disease in a homogeneous SIR-type model and radial null geodesics in the
Schwarzschild spacetime. We also discuss modeling of population heterogeneity effects
by considering both a one- and two-parameter gamma-distributed function for the initial
susceptibility distribution, and deriving the associated herd immunity threshold. We
furthermore describe how mitigation measures can be taken into account by model
fitting.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The SARS-CoV-2 pandemic led, in many countries, to lockdown measures aiming to control and limit the spreading of
he virus. A key role when facing global events of this type is played by mathematical modeling of infectious diseases,
hich allows direct validation with real data. This consequently permits to evaluate the effectiveness of control and
revention strategies, giving support to public health.
In this context, Susceptible–Infected–Removed (SIR) models of epidemics (see e.g. [1–8]) capture key features of a

preading epidemic as a mean field theory based on pair-wise interactions between infected and susceptible individuals,
ithout aiming to describe specific details. In particular, in the presence of I infected individuals in a population of N

ndividuals, the infection can be transmitted to susceptible individuals S. They stay infectious during an average time
−1, after which they no longer contribute to infections. The fraction of immune individuals in the population beyond
hich the epidemic can no longer grow defines the herd immunity threshold (HIT).
Simple SIR models commonly assume the population to be homogeneous; each individual has the same probability of

eing infected by the disease. However, in order to take into account that the infection probability actually depends on
ge, sex, connections with other individuals, etc., SIR models for heterogeneous populations have been considered [9–15].
n these models, a parameter, usually denoted by α, is commonly introduced to describe population heterogeneity and,
ence, variation in susceptibility of individuals.
Studying the transmission of the virus SARS-CoV-2, in [9] it was shown that the percentage of a homogeneous

opulation to be immune given some value for R0 (which is the basic reproduction number, namely the average number
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f new infected generated by an infected individual at the early epidemic stage) noticeably drops if the population is
onsidered to be highly heterogeneous. More specifically, while herd immunity is expected to require 60–75 percent of
homogeneous population to be immune given an R0 (that is the basic reproduction number) between 2.5 and 4, these
ercentages drop to the 10–20 percent range for the coefficients of variation in susceptibility considered in [9] between
and 4. In particular, it was shown that individual variation in susceptibility or exposure (connectivity) accelerates the
cquisition of immunity in populations due to selection by the force of infection. More susceptible and more connected
ndividuals have a higher propensity to be infected and thus are likely to become immune earlier. Due to this selective
mmunization, heterogeneous populations require less infections to cross their HITs than homogeneous (or not sufficiently
eterogeneous) models would suggest. In [9] the initial susceptibility was considered to be gamma-distributed, with a
ne-parameter gamma distribution. Besides, the case of a lognormal distribution was treated numerically. The gamma
istribution was also considered in [16] to model the first-wave COVID-19 daily cases, and it was proven, in this context,
o provide better results than the Gaussian, Weibull (and Gumbel) distributions.

Taking into account heterogeneity effects has proven to be relevant also in the spread of smallpox (cf. [12]), where
omogeneous models are not capable to explain the data, as well as for tuberculosis and malaria (see, e.g., [9] and
eferences therein).

In this work we discuss modeling of population heterogeneity effects by considering both a one-parameter gamma-
istributed function and a two-parameter one for the initial susceptibility distribution, deriving the associated HIT. The
atter is computed analytically in both cases. We also describe a possible way to take into account mitigation measures
hen performing model fitting in the case of the one-parameter initial gamma distribution, while the two-parameter

nitial gamma distribution appears to automatically accommodate this external action on diseases spread. On the other
and, regarding homogeneous SIR models, we present an intriguing feature of a simple model of this type, which paves
he way to future analytically tractable studies of epidemiological models.

The remainder of this paper is structured as follows: In Section 2, we review homogeneous SIR-type models of
pidemics and, in Section 2.1, we present a correspondence between the epidemic trajectory in a homogeneous SIR model
nd radial null geodesics in the Schwarzschild spacetime. Subsequently, in Section 3, we discuss modeling of population
eterogeneity effects to capture the fact that the probability of being infected is not the same for all individuals. Section 4
s devoted to final remarks and possible future developments of our analysis.

. Homogeneous SIR-type models

In an SIR-type model [1], the population is divided into susceptible, infected and recovered individuals, whose numbers
re denoted respectively by S, I , and R. Their dynamics is governed by the equations

Ṡ = −f (I, S) , İ = f (I, S) − g(I) , Ṙ = g(I) . (1)

Here f (I, S) denotes the infection force, i.e., the rate at which susceptible persons acquire the infectious disease, while
g(I) is some function to be specified below. The upper dot symbol denotes the time derivative. From (1) one obtains the
conservation law

Ṡ + İ + Ṙ = 0 ⇒ S + I + R = const. = N , (2)

with N the total number of individuals in the population. A common choice is f (I, S) = βIS, g(I) = γ I , where β is the
transmission (or infection) rate (per capita),1 and γ denotes the rate of recovery. It is related to the average recovery time
D by D = 1/γ . We have thus2

Ṡ = −βIS , İ = βIS − γ I , Ṙ = γ I . (3)

This implies
dI
dS

= −1 +
γ

βS
, (4)

which can be integrated to give the epidemic trajectory

I − I0 = S0 − S +
γ

β
ln

S
S0

, (5)

ith I0 = I(t = 0) and S0 = S(t = 0). In order to obtain the early growth of the epidemic, one linearizes (3) around
= S0 ≈ N and I ≈ 0, i.e., sets

S = N − δS , I = δI , δS, δI ≪ N . (6)

This leads to the exponential law

δI = I0 eγ (R0−1)t , (7)

1 The infection rate β can in general depend on time t; this time dependence could correspond to seasonal changes or mitigation measures [17–19].
2 In this work, we multiply the quantity β with the constant factor N with respect to the one defined, e.g., in [12], that is β → Nβ .
2
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Fig. 1. Herd immunity threshold Cmax
N of a homogeneous population as a function of R0 (more specifically, here we consider 1 ≤ R0 ≤ 10, which is

a typical range for the basic reproduction number of common diseases). The larger R0 , the more the HIT rises.

where

R0 =
Nβ

γ
(8)

is the basic reproduction number. It denotes the average number of new infections generated by an infected individual
(at the early epidemic stage).

The function I(S) has a maximum at S = γ /β . At this peak, a fraction S/N = 1/R0 of individuals remains susceptible.
The cumulative number of infections C = N − S at the maximum of I thus obeys

Cmax

N
= 1 −

1
R0

. (9)

This is the well-known formula for the herd immunity level (or herd immunity threshold, HIT), i.e., the fraction of immune
individuals in the population beyond which the epidemic can no longer grow. Here we are not considering mitigation
measures, nor reinfections. Hence, in particular, the threshold to reach herd immunity is estimated by considering natural
infections without restrictions (lockdown, social distancing, etc.) and without taking into account possible vaccinations.
The plot in Fig. 1 displays the herd immunity level (9) as a function of R0.

When the epidemic stops we have I = 0. Using (5), it is easy to show that the number of susceptible individuals left
over at the end of an epidemic is given by

Sf = −
S0
Re

W0

[
−Re exp

(
−Re

(
1 +

I0
S0

))]
, (10)

here

Re = S0β/γ = S0R0/N (11)

s the effective reproduction number, while W0 represents a particular branch of the Lambert W-function, which is defined
s the inverse of the function f : x ↦→ xex.
Let us also mention that a different choice for the functions f and g in (1) was made by Mickens [4], namely f = β

√
IS

nd g = γ
√
I , and thus

Ṡ = −β
√
IS , İ = β

√
IS − γ

√
I , Ṙ = γ

√
I . (12)

he square root leads to a power-law (instead of exponential) early growth of the epidemic. Indeed, linearizing (12)
ccording to (6), one gets

δI =

(
(β

√
N − γ )

t
+ I0

)2

. (13)

2

3
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s a consequence of this, the model (12) is particularly adapted to describe effects of mitigation measures imposed by
overnments, like social distancing and so on. From (12) we obtain

dI
dS

= −1 +
γ

β
√
S

, (14)

hich leads to the epidemic trajectory

I = I0 − (S − S0) +
2γ
β

(
√
S −

√
S0) . (15)

his has a maximum at S = (γ /β)2. In this case, the formula for the herd immunity level becomes

Cmax

N
= 1 −

γ 2

β2N
. (16)

bserve that the latter depends, in particular, on the squared of the ratio γ /β , and therefore may be also rewritten as
Cmax
N = 1 −

N
R20
.

Note in this context, as it was shown in [20], that certain heterogeneous models (that we will consider in the next
section) can be reduced to homogeneous models with a nonlinear transmission function f = βSpIq.

2.1. Epidemic trajectory as radial null geodesics in Schwarzschild spacetime

Remarkably, the epidemic trajectory (4) coincides with radial null geodesics in the Schwarzschild spacetime,3 which
are given by

0 = −

(
1 −

2m
r

)
dτ2

+
dr2

1 −
2m
r

⇒ dτ = ±
dr

1 −
2m
r

, (17)

here m is the black hole mass, r the radial coordinate, and τ the time coordinate (time measured by a stationary clock
at infinity).4 If we identify

I = ∓aτ , S = a(r − 2 m) , (18)

ith a an arbitrary scale factor, (4) becomes precisely (17), provided that −2ma = γ /β . One can also map the evolution
qs. (3) into

dτ
dλ

=
E

1 −
2m
r

,
dr
dλ

= ±E , (19)

hat follow respectively from the conservation law gµνuµξ ν
= −E and gµνuµuν

= 0. Here λ denotes an affine parameter,
µν is the spacetime metric, E is the conserved energy, u = d/dλ is tangent to the geodesic, while ξ = ∂τ is the timelike

Killing vector. Using (18), the Eqs. (19) reduce to (3) if E = ∓1/a and
dλ
dt

= βIS . (20)

he scale factor a is thus related to the energy E of the geodesic, and t is not an affine parameter. Since βIS is the infection
orce in this specific model, we have from (20) that λ̇ = f (I, S), so that λ can be interpreted as infection momentum.
oreover, from the first of (3) one gets Ṡ + λ̇ = 0, and therefore S + λ is constant. If we choose this constant to be equal

o N , then

λ = N − S , (21)

hich is the cumulative number of infections C .
One may now map the epidemic trajectory into a part of a lightlike (null) geodesic in (the Kruskal extension of) the

chwarzschild geometry. It is not difficult to see that the descending part of the epidemic trajectory (i.e., the part that starts
rom the point where the herd immunity is reached until the point where the epidemic has completely died out) maps into
light ray trajectory that comes out of the white hole singularity (the latter corresponding to the point where the herd

mmunity is reached), and travels towards the white hole horizon until the point r =
1
a

(
Sf −

γ

β

)
, where Sf was defined in

(10). Notice that the relation −2ma = γ /β implies a < 0 if m > 0. This unveiled correspondence between the epidemic
trajectory (4) and radial null geodesics in the Schwarzschild geometry, in practice, may be useful to obtain new analytically

3 The Schwarzschild metric describes a static, non-rotating black hole solution to the Einstein’s field equations. It was discovered by Karl
Schwarzschild within a year of Einstein’s publication of the theory of general relativity. A null geodesic is the path that a massless particle, such as
a photon, follows. It is called null since its interval (its ‘‘distance’’ in four-dimensional spacetime) is equal to zero and it does not have a proper
time associated with it.
4 We adopt geometrized units, that is c = G = 1, where c is the speed of light in vacuum and G the gravitational constant.
4
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ractable epidemiological models. In this regard, it would be interesting to consider, for instance, timelike geodesics,
onradial geodesics, or null geodesics in the Reissner–Nordström metric case, analyzing the predictions of epidemiological
odels in this context. Also, the epidemic trajectory of other models with different number of compartments (e.g., SEIR
r SI) might correspond to geodesics of some black holes as well.

. Modeling population heterogeneity effects

In order to capture the fact that the probability of being infected is not the same for all individuals, we use and review
he model of [12], i.e., we introduce a distribution s of susceptibilities x, and denote by s(x, t)dx the number of individuals
ith susceptibility between x and x + dx at time t . The total number of susceptible individuals reads

S(t) =

∫
∞

0
s(x, t)dx , (22)

nd s obeys

∂s
∂t

= −βxIs , (23)

hich generalizes the first of (3). Integrating (23) over x leads to

Ṡ(t) = −β x̄(t)IS , (24)

here the average susceptibility x̄(t) is given by5

x̄(t) =
1

S(t)

∫
∞

0
s(x, t)xdx . (25)

n the special case x̄ = 1, (24) boils down to the corresponding Eq. in (3). The dynamical equations are completed by

İ(t) = β x̄(t)IS − γ I . (26)

he time course of an epidemic is often provided as the number of new cases per day. This corresponds to the rate of
ew infections per unit time,

J = β x̄IS , (27)

ith J = −Ṡ.
Notice that the authors of [9–11] considered two cases, namely variable susceptibility or variable connectivity

individuals that have many contacts are both more likely to get infected and to infect others). They describe these
ituations with a susceptible–exposed–infected–recovered (SEIR) model,

∂ts(x, t) = −xρ(t)s(x, t) , ∂te(x, t) = xρ(t)s(x, t) − δe(x, t) ,
∂t i(x, t) = δe(x, t) − γ i(x, t) , ∂t r(x, t) = γ i(x, t) , (28)

where

ρ(t) =

{
β

∫
i(x, t)dx variable susceptibility,

β
∫
i(x, t)xdx variable connectivity, (29)

while γ and δ are constants, the latter denoting the rate of progression from exposed to infectious. For variable
susceptibility, the first of (28) is identical to (23), if we set I(t) =

∫
i(x, t)dx. We see that in (28), also E(t), I(t) and R(t) are

divided into infinitely many compartments e(x, t), i(x, t) and r(x, t), which is different form the model used in [12], where
only S(t) is split. In this paper, we shall limit ourselves to the case where only effects of heterogeneity in the degree of
susceptibility to infection are taken into account, as it was done in [12].

In what follows, it will prove useful to introduce a new time variable τ , defined by [12]

τ̇ = βI . (30)

Let us stress that τ = τ (t). Eq. (23) can then easily be integrated, and (22) gives

S(τ ) =

∫
∞

0
s0(x)e−τxdx . (31)

In other words, S(τ ) is the Laplace transform of the initial distribution s0(x).

5 Notice that the average infection susceptibility x̄, which is introduced to capture effects of population heterogeneity, also allows to modulate
the infection rate β .
5
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.1. HIT for the case of a one-parameter gamma distribution

As in [9–12], we shall now assume that s0(x) is gamma-distributed with shape parameter α > 0 (here we start by
onsidering, following [9–12], the case of a one-parameter, that is α, gamma distribution with rate parameter η :=

1
θ

= α,
eing θ the scale parameter),6

s0(x) = S0
αα

Γ (α)
xα−1e−αx , (32)

here S0 is the initial value of susceptible individuals and Γ (α) denotes Euler’s gamma function. This gives for the Laplace
ransform (31)

S(τ ) =
S0(

1 +
τ
α

)α = S0
αα

(α + τ )α
. (33)

ince s(x, τ ) = s0(x) exp(−xτ ), one obtains for the average susceptibility (25)

x̄(τ ) =
1

1 +
τ
α

=
α

α + τ
, (34)

hich starts from x̄ = 1 at the initial time τ = 0 and then decays to zero for increasing τ , slowing down the epidemic.
ote that s(x, τ ) obeys the scaling law [12]

s(x, τ ) = x̄α−1s0(x/x̄) . (35)

hus, s(x, τ ) is shape invariant, i.e., the gamma distribution is kept during the whole time evolution, instead of being just
n initial condition.
Using (33) and (34), Eq. (26) can be rewritten as

dI
dτ

= S0
(
1 +

τ

α

)−1−α

−
γ

β
, (36)

hich can be integrated to give

I(τ ) = I0 + S0

[
1 −

(
1 +

τ

α

)−α
]

−
γ

β
τ . (37)

his has a maximum for(
1 +

τ

α

)1+α

= Re , (38)

ith Re the effective reproduction number defined in Eq. (11). The maximum value of I is given by

Imax

S0
=

I0
S0

+ 1 −
1
Re

−
1
Re

(1 + α)
(
R

1
1+α
e − 1

)
. (39)

n the special case I0 ≪ S0 ≈ N , this boils down to Eq. (18) of [12]. Then, the cumulative number of infections reads

C(τ ) = N − S(τ ) = N
[
1 −

(
1 +

τ

α

)−α
]

, (40)

hich, evaluated at the maximum of I , becomes
Cmax

N
= 1 − R

−
α

1+α

0 . (41)

his is the generalization of the herd immunity level (9) to a heterogeneous population. In Fig. 2 we give a three-
imensional plot of the HIT as a function of R0 and α.
On the other hand, the plot in Fig. 3 displays the herd immunity level (41) as a function of α for fixed values of R0 (we

onsider R0 = 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5 as sampling values), while the plot in Fig. 4 shows the HIT (41) as a
unction of R0 for different values of α (we consider α = 0.5, 1, 2, 3, 4, 10, 100 as sampling values).

We observe that, for finite α, (41) is smaller than (9), to which it reduces in the homogeneous limit α → ∞. In
particular, for an R0 between 2.5 and 4, herd immunity is expected to require 60–75 percent of the population in the
homogeneous limit α → ∞, while these percentages drop to the range 26–50 percent for α between 0.5 and 1. In other
words, for fixed values of R0, the smaller α, the more heterogeneous the population and the lower the threshold for
achieving herd immunity.

One easily verifies that for constant α and large R0 the logarithm of Cmax
N goes like an inverse power law of R0,

ln Cmax
N ≈ −R

−
α

1+α

0 , whereas for R0 → 1 (which is the minimal allowed value for R0 in order for the epidemic to start) we

6 This subsection is mainly devoted to a brief review of the one-parameter gamma distribution considered in [9–12].
6
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Fig. 2. Three-dimensional plot of the herd immunity threshold Cmax
N of a heterogeneous population as a function of R0 and α in the case of a

one-parameter gamma distribution.

Fig. 3. HIT Cmax
N of a heterogeneous population as a function of α, for different values of R0 (indicated on the right side of the plot), in the case of

one-parameter gamma distribution.

ave the linear behavior Cmax
N ≈

α
1+α

(R0 − 1), with coefficient < 1, which lowers the HIT with respect to the case of a
omogeneous population. On the other hand, for constant R0 and large α (nearly homogeneous population), we have an
nverse power law correction to the usual formula of the homogeneous case, namely Cmax

N ≈ 1−
1
R0

−
ln R0
αR0

, again lowering
the HIT. Finally, for constant R0 and α → 0 (strongly inhomogeneous population), one gets the linear law Cmax

N ≈ α ln R0.

.1.1. A possible way to take into account mitigation measures in model fitting
Let us comment on a possible new way to take into account mitigation measures in model fitting.
When performing model fitting of J (defined in Eq. (27)), one has to deal with data, let us call them Jexp, which are

ffected by mitigation measures (lockdown, etc.). Here we propose a possible way to take this into account, which consists
n fitting J from the model (with the one-parameter initial gamma distribution), namely

J(τ ) = βIS0
(
1 +

τ

α

)−α−1
, (42)

ith Jexp from data and solve a system of differential equations at the same time, considering β = β(t) (cf. [12]). In
articular, the time dependence of the infection rate β can be seen as taking into account averaged seasonal changes or
itigation measures.
7
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Fig. 4. HIT Cmax
N of a heterogeneous population as a function of R0 , for different values of α (indicated on the right side of the plot), in the case of

one-parameter gamma distribution.

We start from the differential equation for β , obtained by taking the derivative of J . Indeed, this provides a differential
equation for β (more precisely, for lnβ) if lnJ(t) is given, which does not require knowledge of the amplitude of J . As
J(t) = Jexp, we get

β̇ = β

[
d
dt

lnJexp −
İ
I

+

(
α + 1

α

)(
1 +

τ

α

)−1
βI

]
, (43)

ith
İ
I

=
dI
dτ

dτ
dt

1
I

=

[
S0

(
1 +

τ

α

)−1−α

−
γ

β

]
β , (44)

here we have used (30) and (36). Moreover, recall that, integrating the latter, we find (37). Plugging all of this back into
43), we get the following differential equations:

β̇ = β

{
d
dt

lnJexp −

[
S0

(
1 +

τ

α

)−1−α

−
γ

β

]
β

+

(
α + 1

α

)(
1 +

τ

α

)−1
β

[
I0 + S0

(
1 −

(
1 +

τ

α

)−α
)

−
γ

β
τ

] }
,

τ̇ = β

[
I0 + S0

(
1 −

(
1 +

τ

α

)−α
)

−
γ

β
τ

]
.

(45)

hese have to be solved while performing the fitting of J from the model, that is

J(τ ) = βS0

[
I0 + S0

(
1 −

(
1 +

τ

α

)−α
)

−
γ

β
τ

](
1 +

τ

α

)−α−1
, (46)

with the data J(t) = Jexp.

3.2. HIT for the case of a two-parameter gamma distribution

We will now present and analyze a novel generalization of the above discussion to the case of the usual two-parameter
gamma distribution. Therefore we assume that s0(x) is gamma-distributed with shape parameter α > 0 and rate parameter
η > 0,

s0(x) = S0
ηα

Γ (α)
xα−1e−ηx . (47)

ote that the case previously discussed is obtained from the above setting η = α. For the Laplace transform (31) we get

S(τ ) =
S0(

1 +
τ
)α = S0

ηα

(η + τ )α
. (48)
η

8
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Fig. 5. Three-dimensional plot of the HIT Cmax
N of a heterogeneous population as a function of R0 and α in the case of a two-parameter gamma

istribution, for 1 ≤ η ≤ 10.

ince s(x, τ ) = s0(x) exp(−xτ ), now for the average susceptibility (25) we obtain

x̄(τ ) =
1

η

α
+

τ
α

=
α

η + τ
. (49)

ote that for τ = 0 we have x̄(0) = α/η. Then, using (48) and (49), Eq. (26) can be rewritten as
dI
dτ

= S0αηα(η + τ )−1−α
−

γ

β
, (50)

hich, integrated, yields

I(τ ) = I0 + S0

[
−

ηα

(η + τ )α

]
−

γ

β
τ . (51)

he latter has a maximum for

η−α (η + τ )1+α

α
= Re . (52)

Consequently, considering S0 ≈ N , the cumulative number of infections reads

C(τ ) = N − S(τ ) = N
[
1 −

ηα

(η + τ )α

]
, (53)

hich, evaluated at the maximum of I , becomes

Cmax

N
= 1 − ηα (αηαR0)

−α
1+α = 1 −

(
α

η
R0

) −α
1+α

. (54)

his is the generalization of the herd immunity threshold (9) to the case of a heterogeneous population with an initial
usceptibility given by a two-parameter gamma distributions. In the limit α/η → 1 we recover the HIT of the particular
ase of the initial one-parameter gamma distribution (41). The HIT homogeneous for a homogeneous population (9) is
ecovered in the limit α/η → 1, α → ∞. Besides, we can observe that, in case of the initial two-parameter gamma
istribution case, a redefinition of R0 emerges. Indeed, (54) may be rewritten as

Cmax

N
= 1 − R̂

−α
1+α

0 , (55)

here we have introduced

R̂0 = R̂0(R0, α, η) :=
α

η
R0 . (56)

In Fig. 5 we give a three-dimensional plot of the HIT as a function of R0 and α as η runs from 1 to ten. We can see that
his outlines different surfaces depending on the value of η. The larger η, the higher the threshold is raised to achieve
erd immunity, with the same R0 and α. This is better highlighted in Fig. 6, where we plot the herd immunity level Cmax

N
f a heterogeneous population, with R0 = 2.5, as a function of α for two different values of η (we take as sample values
= 2 and η = 9).
9
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H

Fig. 6. HIT Cmax
N of a heterogeneous population, for R0 = 2.5, as a function of α in the case of a two-parameter gamma distribution, for two different

values of η. The orange curve originates from taking η = 2, while the green one from η = 9.

Of course, as it is commonly understood also for R0, for the R̂0 = R̂0(R0, α, η) defined in (56) we have that if R̂0 < 1,
each existing infection causes less than one new infection. In this case, the disease will decline and eventually die out. If
R̂0 = 1, each existing infection causes one new infection. The disease will stay alive and stable, but there will not be an
outbreak or an epidemic. On the other hand, if R̂0 > 1, each existing infection causes more than one new infection. The
disease will be transmitted between people, and there may be an outbreak or epidemic.

For the sake of completeness, let us also say that the maximum value of I in this case is
I
S0

=
I0
S0

+
η

Re
−

1
Re

[
(αηαRe)

1
1+α − ηαRe (αηαRe)

−α
1+α

]
. (57)

ll of this suggests that the parameter η may take into account mitigation measures, which in fact affects both the average
usceptibility (in particular, the initial one) and the HIT. Such mitigation measures can be even natural, that is driven by
he epidemic history of the human being. For fixed R0 and α, decreasing η, which can also be understood as increasing
he scale parameter θ of the initial gamma distribution, can be translated into contrasting heterogeneity effects, rising the
IT, and vice versa. For fixed R0, if η is bigger enough with respect to α, its presence lowers the herd immunity threshold.

For instance, in the two-parameter initial gamma distribution case, for an R0 between 2.5 and 4 and values of α between
0.5 and 1, herd immunity is expected to require 7–29 percent of the population for η between 1 and 2, with respect to the
range 60–75 percent of a homogeneous population, with the same R0, and the range 26–50 percent for a heterogeneous
population with η = α between 0.5 and 1.

4. Final remarks

In this paper we have elaborated on SIR-type models of epidemics, especially with respect to to population hetero-
geneity effects, which capture the fact that the probability of being infected with a transmissible disease is not the same
for all individuals of a population.

We have first reviewed homogeneous SIR-models, presenting an intriguing correspondence between the epidemic
trajectory in a homogeneous SIR-type model and radial null geodesics in the Schwarzschild spacetime. The correspondence
between the SIR model and radial null geodesics in the Schwarzschild geometry may be useful to obtain new analytically
tractable epidemiological models, e.g. by considering timelike and/or nonradial geodesics, or null geodesics in the
Reissner–Nordström metric case, analyzing the predictions of epidemiological models in this context. Moreover, one could
construct an action principle that gives rise to the Eqs. (3).

Subsequently, we have analyzed modeling of population heterogeneity effects. We have first reviewed and discussed
the case in which the initial susceptibility is given in terms of a one-parameter gamma distribution, deriving the associated
HIT. The study has been done without considering mitigation measures and reinfections, which means, in particular,
that the threshold to reach herd immunity has been estimated by considering natural infections without restrictions on
individuals (lockdown, social distancing, etc.) and without taking into account possible vaccinations. Consequently, in the
same setup we have also described a possible way to take into account mitigation measures when performing model
fitting. Our proposal consists in considering a time-dependent infection rate β = β(t) to derive a differential equation for
10
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t (actually, for lnβ) to be solved while implementing the fitting of J from the model with Jexp from data (J is the number
f new cases per day).
Finally, we have derived the HIT in the case of an initial two-parameter gamma distribution. We find that the additional

arameter (η) induces a shift of R0, which can be interpreted as a possible way of taking into account mitigation measures
n this setup. One could also say that η allows to take into account the effects of whatever makes a population more or
ess heterogeneous.

It would be interesting to extract expressions for S, I or τ in the limit of small times. Such a solution, which shows
ub-exponential growth, would be important to model the initial stages of a epidemic before mitigation measures are
aken. Elements of related analysis can be found in [21,22].

To conclude, although the gamma distribution has been shown to be better than other ones in developing epidemiology
odels, it would be interesting to try to compute analytically the HIT for distributions other than gamma, in the context of
eterogeneous SIR-type models. Consequently, a fundamental study would be comparison with data. Besides, a critically
mportant question is: how variable are humans in their susceptibility and exposure to transmissible diseases (such as
ARS-CoV-2)? Hitherto, there is no definite answer to this question. Such issue, which, in particular, can be translated, in
he context of this paper, to determine the value of α from model fitting, is left to a future investigation on heterogeneous
odels of epidemic.
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