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Abstract 

This study aims to develop a framework for automated 

fault detection and diagnosis (AFDD) in district heating 

(DH) substations by comprehensively understanding 

typical faults. AFDD is presently dependent on manual 

detection and diagnosis, leading to limitations. To address 

this issue, the study utilized data from 158 fault reports 

and smart heat meter data from residential buildings in 

Denmark to investigate common faults and conduct a 

fault impact assessment. The study suggests additional 

indicators for use by DH utility companies to detect 

anomalies in the future. The findings indicate that greater 

attention to fault detection and diagnosis can decrease 

energy usage and return temperatures, demonstrating the 

significance of AFDD implementation. 

Highlights 

• The study analyzed 158 fault reports from DH 

systems, categorized according to the type of fault 

detected. 

• A subset of 90 buildings with both faulty and non-

faulty data points was used to benchmark different 

fault detection (FD) indicators. 

• A novel FD indicator was proposed based on water 

volume and temperature difference in DH substations. 

• DH system faults significantly impact energy use, and 

more efficient detection can reduce DH customers’ 

energy usage on average by 14%. 

• The proposed FD method shows promise in detecting 

anomalies for future use by DH utility companies and 

integration into an AFDD framework. 

Introduction 

District heating (DH) systems are becoming increasingly 

popular in many countries as an effective and centralized 

solution to provide heating to large agglomerates of 

buildings while reducing energy waste and integrating 

with other renewable energy sources. Nevertheless, like 

any complex system, DH networks are prone to faults that 

can lead to reduced energy efficiency and increased costs. 

By identifying and repairing these faults in DH systems, 

we can move towards more efficient and sustainable 

heating solutions, particularly in the context of 4th 

generation district heating (4GDH) systems prioritizing 

lower supply temperatures and higher energy efficiency 

(Li and Nord, 2018). 

A successful transition towards 4GDH systems calls for 

the parallel transformation of the primary/supply and 

secondary/demand sides. Apart from the renovation of the 

building stock, the low-hanging fruits are the detection, 

diagnosis and fixing of the faults in the end-users' heating 

installations, which often cause high energy use and high 

return temperatures. According to Gadd and Werner 

(2015), from the analysis of a smart heat meters (SHM) 

dataset of 135 substations, 100 (74%) presented patterns 

that could indicate a faulty operation of the system. If this 

result is representative for the existing DH systems in 

operation today, it means that three-quarters of the heating 

distribution grid is underperforming. This presents a 

sizeable economic potential (approx. 0.05 to 

0.5€/MWh∙⁰C) by fixing the existing faults in the DH end-

user installations and consequently reducing the return 

temperature (Frederiksen and Werner, 2013; Gadd and 

Werner, 2014). 

Background 

There is significant research on fault detection and 

diagnosis (FDD) in DH systems, with studies focusing on 

developing automated algorithms to identify different 

symptoms and detect and diagnose faults in DH 

substations using SHM and other sensor data.  

Gadd and Werner (2015) established a fault detection 

(FD) framework based on SHM and outdoor temperature 

measurements of a dataset of 135 Swedish substations. 

Månsson et al. (2019) presented a survey-based study to 

describe the current status of the Swedish DH utilities 

regarding FDD. The survey concluded that the common 

methods used by the utilities to evaluate the faulty 

customers are from within the Gadd and Werner (2015) 

framework. This FD framework finds customers with 

faulty substations through hourly SHM data when it is 

observed at least one of the three fault symptoms: a) 

Unsuitable heat load pattern: Any building with heating 

usage measurements different from what is expected from 

their occupancy profiles; b) Low average annual 

temperature difference: Any building with a yearly 

average ΔT significantly lower than 45⁰C; c) Poor 

substation control: Any building with irregular energy 

oscillations and low correlation between heating usage 

and outdoor temperature. 

The overflow indicator, presented by Frederiksen and 

Werner (2013), is also used by few utilities for fault 

detection purposes. However, even though these methods 

have proven useful in detecting faulty systems based on 

SHM measurements, they lack the knowledge of what 

type of faults the different indicators detect. 



Also, based on Swedish DH systems and taking into 

account the FD framework mentioned above, Månsson et 

al. (2018a) developed a statistical algorithm to detect 

faulty substations based on their patterns of energy, 

temperature difference between supply and return DH 

water (ΔT), and return temperature signatures (i.e., 

variables' variation due to outdoor temperature). A similar 

approach was proposed by Calikus et al. (2018), which 

analyzed the energy signature generated by a robust linear 

regression model of the substations to detect abnormal 

data points that are significantly deviated from the linear 

trend. Both methods relied on threshold settings and 

statistical methodologies to detect anomalous data points 

(outliers), which are most likely due to faulty heating 

system operations caused by technical or occupant 

behavior (Schaffer et al., 2022). Focusing on specific 

faults in components of DH substations, Guelpa and Verdi 

(2020), developed and tested a methodology based on 

measurements in the primary and secondary circuits to 

detect fouling in the heat exchanger in some buildings 

connected to the DH network of Turin, Italy.  

In the machine learning (ML) discipline, Månsson et al. 

(2018b) proposed an ML algorithm using gradient 

boosting regressor to model the flowrate of a well-

performing substation based on the external temperature 

and ΔT to compare it with the same dataset with faulty 

data points induced by the authors. Xue et al. (2017) 

proposed a data mining algorithm consisting of data 

cleaning, clustering, and analysis of two substations in 

Changchun, China, to extract more information from 

SHM data. On a larger scale, Calikus et al. (2019) 

advanced the field of FDD in the DH systems by applying 

unsupervised clustering methodologies in a 1,385 

Swedish buildings dataset to detect buildings with 

abnormal heating profiles, and after they investigated the 

reasons behind the anomalous measurement profiles.  

The described methods above are significant steps 

towards detecting and diagnosing the various faults in DH 

substations more efficiently than today’s process. 

However, to a certain extent, all these methods lacked 

adequately labeled data regarding the occurring faults, 

thus hindering the further development and testing of 

these FDD methodologies. As Månsson et al. (2021) 

outlined, labeled data with ground truth is a historical 

register of specific faults that occurred in a particular 

substation. Furthermore, according to the authors, these 

ground truth datasets must be gathered on a large scale 

and be combined with SHM data to understand the 

difference between "faulty" and "well-performing" 

heating installation operations.  

Contributions 

Some DH utilities apply the indicators proposed by Gadd 

and Werner (2015) framework for automated FD while a 

human user still carries out the diagnosis process. This is 

due to, as explained above, the lack of adequately labeled 

data with ground truth or an infrastructure to record and 

gather this information. This study attempts to investigate 

this matter by: 

• Coupling approximately 351 fault reports (labeled 

dataset with ground truth) issued by technicians with 

measurements from SHM data. 

• Providing an overview of typical faults occurring in 

DH end-user heating installations. 

• Assess the efficacy of the current indicators for FDD 

purposes and propose a new one to assess the DH 

customers. 

• Perform a fault impact assessment of the different 

faults to investigate their consequences on the 

buildings’ energy usage. 

Methodology 

Dataset description 

The dataset used in this study combines SHM data from 

351 residential buildings connected to the DH grid with 

faults assessment reports made by technicians when 

visiting the installations in Aalborg, Denmark. The SHM 

dataset consists of the energy use, water volume, and ΔT 

measurements with an hourly resolution for 2022 for the 

heating demand of space heating (SH) and domestic hot 

water (DHW). Each building has an individual meter ID 

associated with the customer, and its fault assessment 

report is generated after a visit by a utility company 

technician. These visits were triggered when the 

substation's SHM registers ΔT-values below 10⁰C. The 

weather data is extracted from the Danish Meteorologic 

Institute (DMI) portal. The selected weather station is 

Tylstrup, the station nearest to Aalborg, available in the 

DMI database. 

In this work, the data pre-processing consisted of 

analyzing each report individually to categorize the 

different faults. Some of the reports were found to be 

ambiguous in terms of describing the real cause of the 

fault and were therefore disregarded from this study. Later 

in the study, it is only assessed the installations where it 

is indicated by the technicians that the fault was fixed after 

the visit. Therefore, from the initial dataset of 351 

buildings, only 90 were used for this work. The data 

treatment of SHM measurements was performed by 

following the framework described in Schaffer et al. 

(2022). Customer installations differ based on country 

and DH system. Some countries have direct connections 

without hydraulic separation in the space heating system, 

while others have a prevalent indirect connection where 

the SH and DHW systems are separated from the primary 

circuit by heat exchangers (Figure 1). In this study, the 

heating installation was divided into two sections, the 

primary circuit (substation) and the secondary circuit 

(systems inside the household). 

 



Figure 1: Illustration of a residential heating 

installation. 

Definitions and FDD concepts 

The immense body of literature on FDD employs several 

different naming conventions. In this study, the authors 

have adopted the ontology from Andersen et al. (2023) for 

definitions of a symptom of a fault, fault, cause, and 

consequence for the fault report analysis. Furthermore, 

labeled dataset with faulty ground truth is defined as 

annotations of each fault within the different defined fault 

categories presented in Table 1. 

Furthermore, the framework proposed by Melgaard et al. 

(2022), originally developed for building systems, is 

applied in this study due to its overlap with the DH 

systems. The framework outlines three levels of FDD: 

fault detection, fault isolation and identification, and fault 

evaluation. Fault detection forms the fundamental basis of 

FDD, which involves determining the existence of a fault. 

Fault isolation and identification, in conjunction with 

fault detection, comprise the FDD process by pinpointing 

the fault location and identifying the cause of the fault. 

Finally, the fault evaluation stage assesses the impact of 

the fault, which can include estimating the excess energy 

or financial resources used due to the fault. 

Applied FDD indicators 

In this work, five different indicators are used to assess 

the installations' performance. Four of these are already in 

use by several DH companies, while the fifth indicator is 

a new one proposed. Moreover, to be able to compare the 

different buildings, the energy and volume measurements 

used in the indicators are divided by the building’s heated 

floor area. Regarding the SHM data, the measurements 

have hourly resolution. However, the analysis was 

performed with a minimum resolution of one day due to 

measurement truncation problems raised when 

calculating the ΔT. Additionally, some of the indicators 

were assessed for the seasons of heating (from January to 

May and from September to December) and no-heating 

(from June to August). The indicators are the following: 

Ind. 1: Overall substation’s operation: Assessing the 

annual average measurements (energy, volume, and ΔT) 

to understand each customer's overall performance. 

Ind. 2: Temperature difference intervals: Determining the 

number of days with different ΔT-values during the 

heating and no-heating seasons.  

Ind. 3: Heating and outdoor temperature correlation 

(energy signature): Analysing the relationship between 

the daily heating demand and the outside temperature, as 

described in Gadd and Werner (2015). 

Ind. 4: Overflow: Assessing the overconsumption (Vover) 

of the different buildings using equation 1 and 

considering the ΔTideal constant for all buildings equal to 

45⁰C (Gadd and Werner, 2014). 

𝑉𝑜𝑣𝑒𝑟 = 𝑉𝑖 − 𝑉𝑖𝑑𝑒𝑎𝑙 = 𝑉𝑖 −
𝐸𝑖

𝜌𝑐𝑝∆𝑇𝑖𝑑𝑒𝑎𝑙
 [𝑚3/𝑚2] (1) 

This work also proposes a novel indicator (equation 2) to 

identify faulty substations by calculating the daily ratio 

between the measured water volume per m2 (Vi) and the 

measured temperature difference (ΔTi) as a function of the 

daily average outdoor temperature (Tout). 

Ind. 5: Volume-temperature ratio is the proposed 

indicator to assess the heating installation behavior, and it 

is calculated with equation 2: 

𝑉𝑇𝑒𝑚𝑝 = 𝑓(𝑇𝑜𝑢𝑡) =
𝑉𝑖

Δ𝑇𝑖
 [𝑚3 𝑚2℃⁄ ] (2) 

According to the proposed indicator, a well-performing 

substation displays a ratio that changes linearly 

throughout the outdoor temperature conditions variation. 

Therefore, all data points that do not follow this linear 

profile are marked as faulty. 

This research assesses how these indicators perform in 

analyzing the different symptoms measured by the SHM 

and attempts to correlate them with the faults identified 

during the visits to the installations. Furthermore, this 

study also endeavors to discuss the presented indicators' 

advantages and disadvantages and perform the fault 

impact assessment by estimating the energy savings 

obtained from the intervention made in the heating 

installations. The energy savings calculation is made 

through the difference in the sum of energy used before 

and after the visit divided by the building’s heated area 

and the heating degree-days (in order to normalize it over 

the building size and outdoor temperature) and two case 

buildings are discussed using the indicator volume-

temperature ratio.  

Results and Discussion 

Overview of the faults in DH substations  

From a set of 351 fault assessment reports, only 158 

reports of different residential buildings were used in the 

initial stage of the study. The visit to each installation was 

prompted because the SHM registered a ΔT below 10⁰C, 

which according to the literature, is a symptom of an 

underperforming DH substation. Table 1 shows the types 

of faults, their frequency, and their identified causes. The 

categories are based on the ones proposed by Månsson et 

al. (2019).  

Table 1: Types of faults and their description. 

Fault categories 
Nr. of 

faults 
Cause of fault 

Wrong general 

settings in the 

system 

62 

(39%) 

Consists mainly of high 

settings in valves that 

control DHW heat 

exchanger/storage tank, SH 

system, etc. 

 

SH system 

(Secondary side) 

38 

(24%) 

Consisted mainly of 

defective components in SH 

systems inside the building 

(secondary side). 

Control valves 
31 

(20%) 

Consisted mainly of 

defective valves in the DHW 

heat exchanger/storage tank. 

User 

behavior/practices 

15 

(10%) 

Consisted mainly of 

sporadic usage of the SH 

systems by the occupants. 



Controllers or 

sensors 

7 

(4%) 

Consisted only of cases 

where the battery of the 

thermostat of SH systems in 

the building ran out. 

DHW 

exchanger/tank 

5 

(3%) 

Consisted only of defective 

DHW heat 

exchanger/storage tank. 

Explicitly, the highest percentage of existing faults in the 

dataset are caused by high settings in the heating systems 

and defective components in the SH system indoors. This 

corroborates two important arguments in the field of FDD 

in the DH systems. Firstly, most of the existing faults on 

the end-user side can be easily solved by changing the 

systems’ settings to better values representing a simple 

but rather impactful measure to increase the overall 

performance of the DH network (Gadd and Werner, 

2015). Secondly, these values show that most faults occur 

on the secondary side of the heating circuit (i.e., inside the 

building instead of the substation). This implies that DH 

utilities need physical access to the customer’s installation 

to fix most of its network faults. Utilities can accomplish 

this by establishing with the customers a service 

agreement on maintenance and repair of the heating 

installations, thus promoting good communication 

between the company and the customer and, in the long-

term, maintaining a well-performing substation (Månsson 

et al., 2019). 

After the intervention in each installation, some 

technicians were explicit in describing if the detected fault 

was solved. All the faults caused by occupants' abnormal 

use or high settings of the systems were fixed by the 

technicians, while the faults caused by a defective 

component that must be replaced were not fixed and must 

be addressed by a plumbing company hired by the 

customer.  Figure 2, summarises the status of the heating 

installations after the visit, showing that 57% of the faults 

were solved, while only 27% could not be fixed by the 

technicians. 

 

Figure 2: Type of each fault according to the 

installation’s status after the intervention. 

To summarize the described faults in the DH system at the 

end-user level, some labels are proposed in this study and 

applied further. Figure 3 shows these five proposed labels 

for each fault type.  

 

Figure 3: Type of each fault according to the proposed 

labels. 

The labels are comprised of three parts. The first is 

whether the fault occurred in the central system 

(substation) or inside the building (household). The 

second part focuses on whether the fault refers to a broken 

component (defective) or the need to adjust the 

component’s settings. The third part indicates which 

system the fault occurred in, either SH or DHW. This 

work also focuses in understanding which indicators are 

accurate in detecting and diagnosing the occurring faults 

in customer’s level by assessing the system’s symptoms 

through the SHM data. This task is performed by 

calculating and analyzing the indicators described in the 

Methodology section in the period prior and following the 

intervention.  

FDD indicators performance assessment 

Indicator 1: Overall substation’s operation 

The first tested indicator is the one used to understand the 

overall substation’s operation.  Figure 4, shows how the 

different fault labels are displaced according to the annual 

average volume and ΔT before and after the intervention. 

From these results, it is concluded that there is an overall 

increase of the ΔT and reduction of the energy and volume 

after the intervention – as expected. 

 

Figure 4: Representation of the annual average ΔT and 

water volume over energy usage and fault labels. 

However, these results are as predicted when compared to 

the period before and after the intervention. There are a 

few remarks that must be highlighted regarding this 

indicator. As observed in the period before the 

intervention, a few buildings have good average 

measurements of energy, volume, and ΔT (right-top 

corner). Therefore, this indicator would not flag this 



group of buildings as faulty in the first instance. Another 

remark is the existence of buildings with low ΔT after the 

intervention that have low heating usage due to low water 

volume consumption (bottom-left corner). One of the 

reasons behind this symptom is the DHW settings that 

were readjusted after the visit to higher values by the 

occupants. Another drawback of this indicator is that it 

must have a large sample of measurements for the average 

values of the variables to be representative. Therefore, 

this indicator is relevant to detect faults for extreme cases 

(i.e., buildings with extremely low/high energy, volume, 

and ΔT-values) but might not be enough for detecting 

faults that occur sporadically during a few days of a year 

(as it happens in occupancy-based faults and high 

systems’ settings).  

Indicator 2: Temperature difference intervals 

Focusing on the temperatures measured by the SHM, it is 

investigated the density distribution of the daily ΔT-

values for the heating and no-heating seasons before and 

after the intervention in the heating installations by the 

graphs in Figure 5 and Figure 6. 

 

Figure 5: Density of ΔT during heating and no-heating 

seasons prior to the intervention. 

 

Figure 6: Density of ΔT during heating and no-heating 

seasons following the intervention. 

According to the results, it is observed that all fault labels 

are characterised by lower daily ΔT-values for both 

seasons before the intervention. The main difference 

between both seasons is that during the heating season, 

the ΔT is higher than for warmer months. The main reason 

is that the SH and DHW systems are operating 

simultaneously during the heating season, while during 

the no-heating season, the heating demand is 

predominantly due to DHW usage. Therefore, it is also 

seen that the faults due to DHW decrease even more the 

ΔT measurements throughout both seasons, but mainly 

during the warmer months. It is also seen that after the 

visit, the overall ΔT increases for both seasons in all cases. 

However, following the intervention and the fault fixed, 

some buildings still have small ΔT, meaning that this 

indicator alone is not enough to assess the heating 

installation performance because it might highlight well-

performing substations as faulty. 

Indicator 3: Heating and outdoor temperature 

correlation 

Gadd and Werner (2015) described that poor energy 

correlation with the outside temperature indicates poor 

substation control. According to Figure 7 and Figure 8, it 

is observed that after the visit, the correlation between the 

heating demand and the outdoor temperature increases, 

proving that this correlation is, in fact, related to the well 

or poor function of the substation. 

 

Figure 7: Energy signatures per fault category prior to 

the intervention. 

 

Figure 8: Energy signatures per fault category following 

the intervention. 

For a better overview of the correlation increase after the 

visit, the coefficient of determination (R2) obtained from 

the energy signature fitting was determined for each 

building before and after intervention for the heating and 

no-heating season (Figure 9). 



 

Figure 9: The R2 of the energy signatures of each 

building per fault category for the different seasons 

prior to and following the intervention. 

In Figure 9, one can see an increase of R2 after the 

intervention for the heating season, while in the no-

heating season, the R2 tends to decrease toward zero. It is 

also observed that the correlation is not only dependent on 

the substation level but on the components in the building 

(e.g., underfloor heating control) because in all fault 

labels, a significant change in the R2 is observed in both 

seasons after the visit. Therefore, it can be concluded that 

a well-performing system must have R2 closer to one 

during the colder months while an R2 closer to zero when 

only the DHW is mainly operating in the no-heating 

season. If this is not observed, it shows that the weather 

conditions are not the main driver of the substation’s 

performance, but also a faulty component or occupants 

controlling the system poorly. 

Even though this indicator is relevant for detecting faulty 

heating installations, it also requires a large sample of data 

points to describe this correlation accurately. Therefore, 

this indicator can only be used for long-time periods of 

collected data but not for short-term measurements. 

Another essential factor to consider for this indicator is 

that it can cause false alarms while attempting to detect 

faults due to the correlation being affected by two systems 

(SH and DHW) operating simultaneously. This is seen in 

the no-heating season, where few buildings have an R2 > 

0.5 after intervention due to the SH still operating (e.g., 

bathrooms with underfloor heating or water-heated towel 

dryers operating during summer). 

Indicator 4: Overflow 

The overflow indicator can be calculated as the difference 

between the measured volume by the SHM and the ideal 

volume when considered an ideal ΔT (usually 45 ⁰C). 

From all indicators above, the overflow does not need 

large data samples to be calculated, making it a great 

performance value for short-term measurements. As one 

can see in  Figure 10, the overflow of four different 

buildings is calculated over time. From the results, it is 

clear that the overflow is higher for faults involving DHW 

systems when this system is mainly operating (non-

heating season). While it is observed when the fault is due 

to a defective component, the overflow has a rapid large 

spike over a short period of time. 

 

Figure 10: Overflow over time of four building cases per 

fault category prior to and after the intervention.  

As expected, it is observed that there is a significant 

reduction of the overflow when a fault is fixed. This 

reduction occurs because the water volume measured in 

the building decreases while the ΔT increases. As seen, 

the overflow indicator is effective for DH customers’ 

analysis for large and small sample measurements. 

Additionally, it can evaluate the installations and rank 

them based on their overflow (Månsson et al., 2019). 

However, this indicator has two drawbacks when 

applying it. Firstly, it is a value highly dependent on the 

ΔT variation without considering possible changes in the 

volume that are not dependent on ΔT. This is due to 

equation 1, where the ideal volume is calculated only 

considering an ideal ΔT. The second drawback is the 

predefinition of an ideal ΔT as a constant value. This 

preselection may hinder the comparison between 

buildings where their ideal ΔT might be different due to 

their location in the network, and for the same reason, 

buildings with lower ideal ΔT may be accounted as faulty 

when in reality, their substations are performing well. 

Indicator 5: Volume-temperature ratio 

Because of the necessity of comparing several buildings 

in the network and knowing that each building might have 

different ideal standards of volume and ΔT, this study 

proposes a new indicator to be used by the DH companies 

when assessing their customers. The indicator is called 

volume-temperature ratio and is based on the fact that 

there is a direct proportion between the volume usage and 

the ΔT, which is linear throughout the outdoor 

temperature variation when the substation is well-

performing. This relation can be observed for four 

different building cases in Figure 11. 



 

Figure 11: Volume-temperature ratio over outdoor 

temperature of four building cases per fault category 

prior to and after the intervention. 

Figure 11 shows that for all the assessed buildings, the 

ratio of volume and ΔT should be constant for well-

performing substations, regardless of the system. Besides, 

it is also noted that there are no significant differences 

between heating and no heating seasons. To better 

overview the values calculated from this ratio, Figure 12 

shows the distribution of the volume-temperature ratio for 

each fault label before and after the visit. Compared to the 

overflow, the volume-temperature ratio attempts to solve 

the drawbacks of the former indicator while maintaining 

its benefits. Because there is no requirement to establish 

an ideal volume or ΔT, the ratio can be applied to compare 

all the buildings regardless of their location in the grid. It 

also, as the overflow, can be used to detect faulty singular 

data points without needing a large data sample. 

 

Figure 12: Density of the volume-temperature ratio for 

158 buildings dataset prior to and following the 

intervention. 

Energy savings due to FDD intervention 

As previously shown above, many are the types of faults 

that can occur in the heating installations in a household 

connected to the district heating leading consequently to 

significant energy bills. From the initial dataset of 351 

buildings, in 90 of them, it is mentioned in their reports 

that the fault was fixed by the technician or by the 

customer himself. Of these 90 buildings, 59 of them have 

positive energy saved after the intervention (refer to 

Figure 13), with an average energy saving of 14%, while 

31 buildings do not report energy savings (negative 

values) 

 

Figure 13: Energy saving after the intervention. 

The main reason behind these negative values is due to 

some of the technical interventions were not enough to 

improve the system’s performance, e.g., occupants 

continuing using the system suboptimal after the 

intervention, or operation changes. 

It is selected two buildings where one had a large saving 

post-intervention (+25%), and the other displayed 

negative energy savings after the technician’s visit (-

30%). Both cases are analyzed with the indicator volume-

temperature ratio, as one can see in Figure 14 and Figure 

15. 

 

Figure 14: Volume-temperature ratio of a building with 

positive energy savings. 

 

Figure 15: Volume-temperature ratio of a building with 

negative energy savings. 

The first case pertains to a building where an incorrect 

setting was detected in the SH system, while the second 

case involved a defective radiator thermostat valve. These 

instances highlight the significance of identifying and 

diagnosing faults to ensure the efficient and safe operation 

of buildings and their systems. It was observed that after 

the fault being repaired, the data points conform to a linear 

trend, as expected for this indicator. Notably, the 

significant difference in energy savings between the two 



cases is primarily attributable to the first case having a 

significantly greater number of data points that deviated 

from the trend compared to the second. This indicates that 

certain faults in DH customer installations may persist 

over extended periods while others may be momentary. 

Thus, the fault impact assessment per building must be 

performed on a data point basis rather than by time 

periods (e.g., pre- and post-intervention). 

Conclusion 

This study has demonstrated the importance of fault 

detection in DH systems and its potential impact on the 

buildings’ energy usage. Through the analysis of 158 fault 

reports, it was concluded that the faults in the highest 

amount concerned high settings on the system by poor 

regulation or occupants’ practices and defective SH 

system components indoors. This study also benchmarked 

different FD indicators using a subset of 90 buildings with 

faulty and non-faulty data points. A novel FD indicator 

based on water volume and temperature difference in DH 

substations was proposed, showing promise in detecting 

anomalies for future use by DH utility companies and 

integration into an automated fault detection and 

diagnosis (AFDD) framework. The findings suggest that 

DH system faults significantly impact energy use, and 

more efficient FD has the potential to reduce energy usage 

by customers by an average of 14%. 

Suggestions for further work 

There are numerous potential directions for further 

research in FDD in DH systems based on the findings of 

this study. One possible avenue is to explore the use of 

ML supervised algorithms to train classification models 

to analyze the relation of the volume-temperature ratio 

with its magnitude and occurrence period to diagnose 

different types of faults at the DH customer’s level. 

Furthermore, researchers could analyze these indicators 

(e.g., energy signature, volume-temperature ratio, etc.) in 

the different existing heating system solutions 

implemented in buildings worldwide (e.g., direct/indirect 

connection, storage/instantaneous system, 

underfloor/radiator SH systems, etc.), and further on 

explore the potential for integrating FDD with other smart 

technologies in DH systems. However, to continue with 

this work, the DH companies must make a more extensive 

effort to collect good quality datasets with ground truth to 

progress in developing automated and implementable 

FDD methodologies. 

Acknowledgment 

This project has received funding from the European 

Union's Horizon 2020 research and innovation 

programme under grant agreement No. 893945 (E-

DYCE). This project has received funding from the 

European Union's Horizon 2020 research and innovation 

programme under grant agreement No. 958345 

(PRELUDE). The authors would like to acknowledge 

Aalborg Forsyning for their support in data collection.  

References 

Andersen, K. H., Melgaard S. P., and Leiria D. (2023). 

Summary of Existing FDD Frameworks for Building 

Systems. DCE Technical Reports . Department of the 

Built Environment, Aalborg University (DK).  

Calikus, E., S. Nowaczyk, A. Sant’Anna, and S. Byttner 

(2018). Ranking Abnormal Substations by Power 

Signature Dispersion. Energy Procedia 149. 

Calikus, E., S. Nowaczyk, A. Sant'Anna, H. Gadd, and S. 

Werner (2019). A data-driven approach for 

discovering heat load patterns in district heating. 

Applied Energy 252. 

Frederiksen S., Werner S. (2013). District Heating and 

Cooling. Studentlitteratur AB. Lund (SE). 

Gadd, H., and S. Werner (2014). Achieving low return 

temperatures from district heating substations. 

Applied Energy 136. 

Gadd, H., and S. Werner (2015). Fault detection in district 

heating substations. Applied Energy 157. 

Guelpa, E., and V. Verda (2020). Automatic fouling 

detection in district heating substations: Methodology 

and tests. Applied Energy 258. 

Li, H., and N. Nord (2018). Transition to the 4th 

generation district heating - possibilities, bottlenecks, 

and challenges. Energy Procedia 149. 

Melgaard, S. P., K. H. Andersen, A. Marszal-

Pomianowska, R. L. Jensen, and P. K. Heiselberg 

(2022). Fault Detection and Diagnosis Encyclopedia 

for Building Systems: A Systematic Review. Energies 

15(12). 

Månsson, S., K. Davidsson, P. Lauenburg, and M. Thern 

(2018a). Automated Statistical Methods for Fault 

Detection in District Heating Customer Installations. 

Energies 12(1). 

Månsson, S., P. J. Kallioniemi, K. Sernhed, and M. Thern 

(2018b). A machine learning approach to fault 

detection in district heating substations. Energy 

Procedia 149. 

Månsson, S., P. J. Kallioniemi, M. Thern, T. V. Oevelen, 

and K. Sernhed (2019). Faults in district heating 

customer installations and ways to approach them: 

Experiences from Swedish utilities. Energy 180. 

Månsson, S., I. L. Benzi, M. Thern, R. Salenbien, K. 

Sernhed, P. J. Kallioniemi (2021). A taxonomy for 

labeling deviations in district heating customer data. 

Smart Energy 2. 

Schaffer, M., T. Tvedebrink, and A. Marszal-

Pomianowska (2022). Three years of hourly data from 

3021 smart heat meters installed in Danish residential 

buildings. Scientific Data 9(420). 

Xue, P., Z. Zhou, X. Fang, X. Chen, L. Liu, Y. Liu, and J. 

Liu (2017). Fault detection and operation optimization 

in district heating substations based on data mining 

techniques. Applied Energy  20


