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ABSTRACT
Various applications running in network-based, mobile, Internet of
Things, or embedded systems environments exploit the Transport
Layer Security (TLS) protocol to secure communication channels.
However, in the last decade, several attacks have been discovered
that exploit weaknesses in the protocol specification, the extensions,
the cryptographic algorithms, or in the implementation and deploy-
ment of TLS-enabled software or libraries. A classical solution to
counter TLS attacks on a target is to scan the installed TLS software
(via dedicated software or services) and update it with versions that
are resistant to attacks. However, an (internal) attacker might even
temporarily corrupt the end node so that it becomes vulnerable to
TLS attacks. So, the TLS scanning operations should be performed
often, wasting resources of the monitored target. We propose a
network-based intrusion detection tool named Threat-TLS, aimed
to individuate weak, suspicious, or malicious TLS connections in
intercepted traffic by looking for TLS patterns that contain features
exploited to perform attacks, like old protocol versions, weak algo-
rithms, or extensions. We have tested the proposed tool in a testbed
environment by exploiting two famous tools, namely Suricata and
Zeek, illustrating its performance in detecting some TLS attacks.
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1 INTRODUCTION
TLS protocol provides communication security on the Internet, as
it ensures confidentiality, integrity, data and peer authentication, as
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well as protection from replay and cancellation attacks for the data
exchanged between two end points, namely a client and a server. To
this end, they negotiate a combination of cryptographic algorithms
(symmetric and asymmetric) grouped in cipher suites along with
suitable keys, while the X.509 certificates [20] are exploited for
authentication purposes, especially for the server side. TLS is also a
flexible protocol, because for each session the parties may negotiate
different cryptographic algorithms in the handshake phase, which
is executed when establishing a TLS connection. Flexibility means
that the deployed TLS software may be configured with different
protocol versions and cipher suites. However, the latest protocol
version recommended is TLS 1.3 [38], all the versions prior to ver-
sion 1.1 are considered insecure, while the TLS 1.2 [37] is still used
in a small percentage, though it’s highly recommended to adopt
and use the latest TLS version. Moreover, several cryptographic
algorithms became obsolete and should no longer be used, e.g.,
MD5 or SHA-1.

This paper introduces Threat-TLS, a tool meant to individuate
weak, suspicious, or malicious TLS connections. Such connections
might be established by attackers to hide and distribute potentially
dangerous data content, like malware [22]. For this reason, we name
them malicious or suspicious. Alternatively, weak TLS connections
could be opened by (legitimate) systems or servers that have been
compromised and are prone to TLS attacks, such as systems whose
TLS configuration has been changed to use an old TLS version,
like TLS 1.0, or an outdated cryptographic algorithm. Lastly, some
systems have vulnerabilities that can be exploited in case a specific
hardware is used or if a particular TLS software is running. For
example, as documented in CVE-2016-6307 1, “implementation in
OpenSSL 1.1.0 before 1.1.0a allocates memory before checking for
an excessive length, which might allow remote attackers to cause a
denial of service (memory consumption) via crafted TLS messages,
related to statem/statem.c and statem/statem_lib.c”. So, an attacker
might attempt to install or replace an OpenSSL installation with a
weak one to set up a DoS attack against a target node. In general,
the attacker’s final goal is to exploit the TLS weaknesses to obtain
sensitive data (like a server’s private key kept in a protected area),
to set up a malicious MITM to capture the data exchanged between
the client and the server, or to mount a DoS attack against a target
node running vulnerable TLS software. Since it is difficult to prevent
an attacker from (even temporarily) compromising a TLS-enabled
node, we concentrate on monitoring and detecting vulnerable or
malicious TLS connections that might affect target end nodes.

Motivations of proposal. To detect changes in the node config-
uration/ installation, one approach could consist of using trusted
computing and remote attestation techniques [18] [11]. However,

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6307
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this solution is not always feasible, as not all devices (especially
the embedded or IoT systems) can support them [10] [9]. To detect
vulnerable TLS servers, one method currently applied is checking
the TLS server’s configuration periodically, e.g., daily. Some dedi-
cated tools already exist for this purpose, such as the SSL Server test
(powered by Qualys SSL Labs) or TLSAssistant [33], even though
more tools exist for this purpose, as indicated in Sect. 2.2. Never-
theless, checking the configuration provides information about the
resistance of the TLS server to the known attacks only when the
tools are run. That is, they provide a “shot” (picture) of the server’s
resistance to specific TLS attacks when the TLS scanning tool or
service is run.

Another solution is to use TLS-enabled Intrusion Detection
and Prevention Systems (IDPS) that inspect data or messages ex-
changed in the TLS handshake phase, like the X.509 certificates
exchanged, the algorithms or the protocol version negotiated, or
other connection-related information, such as flow IDs or TLS fin-
gerprints. Some IDPS, like Suricata, Zeek, or Corelight have already
rules used to analyze network traffic by processing the certificates,
TLS fingerprints, or by analyzing handshake messages intercepted
[32]. SELKS from Stamus Network2 is a famous Suricata-based
system for threat hunting.

However, in our approach, we aim to identify patterns of TLS
attacks in addition to the ones already considered by the traditional
IDPS. Such TLS threat patterns are not (always) trivial to express
through specific IDS rules since they are closely related to the
internals of TLS attacks described in academic papers or security
blogs. We aim to define in the end TLS threat patterns for TLS
attacks that could span several connections or data at different
layers, though in this work, we start with some simple one(s). As
mentioned, some attacks apply only to specific platforms, so the
TLS-related alarms should be combined with platform information
in an efficient way instead of periodically scanning the devices for
all possible vulnerabilities. Thus, we consider TLS vulnerabilities
specific to platforms as reported in the Common Vulnerabilities
and Exposure (CVE) database3, namely attacks that could exploit
deficiencies in the TLS implementations and could manifest only in
case of use of specific platforms or particular software (versions).
Once a potential vulnerability is signaled, Threat-TLS checks the
effectiveness of the TLS attack alarm through TLS threat validation
tools, like Metasploit or Nmap.

We observe that many frameworks or platforms impose require-
ments on the cryptographic algorithms or protocols to use, but few
or even nomechanism or tool is put in place to checkwhether those
requirements are fulfilled. For example, the eIDAS Network, a Eu-
ropean digital identity infrastructure [7] connecting the electronic
identity systems of various countries across European through
national eIDAS nodes requests all the eIDAS nodes installed in
Member States to use (only) TLS 1.3 in communicating with the
other eIDAS nodes [4]. However, we are not aware of any specific
mechanism or verification utility recommended or imposed to mon-
itor the TLS protocol version employed by a single eIDAS node, so
the operator of each eIDAS node (governmental agency, ministry,
contract company, a.s.o.) individually decides the mechanism(s) it

2https://www.stamus-networks.com/selks
3https://cve.mitre.org

could employ to respond to such requirements. For example, the
proposed Threat-TLS could be used to verify such requirement and
generate an alert in case a different TLS version is negotiated in
the connections.

Threat-TLS identifies vulnerable or suspect TLS connections by
performing the following operations: 1) monitors the traffic toward
and from a target TLS-enabled system (e.g., a server) with one
or more IDPS systems that have been configured with rules for
weak, suspicious, or malicious TLS connections. To detect such
connections, Threat-TLS performs deep analysis on the TLS-related
captured traffic, e.g., data exchanged in the TLS handshake includ-
ing the TLS version negotiated, the ciphersuites, the extensions,
and the server certificate. Moreover, since specific vulnerabilities
are related to software or operating system versions, or hardware
characteristics of the device, Threat-TLS uses context information
about the software installed on a target as well as the hardware, and
information about common vulnerabilities along with their “criti-
cality” indicator, as obtained from the CVE database. Currently, as
shown on MITRE website 4, there are more than 1110 CVE records
related to TLS protocol, and probably new ones will appear. 2) in
the case of alarms, Threat-TLS checks their effectiveness by em-
ploying dedicated TLS threat verification tools and X.509 certificate
verification utilities and tools. Finally, it generates reports on the
results obtained with the TLS threat verification tools.

Contributions. The main contributions of our work are: 1) def-
inition of TLS threat patterns encountered in weak, malicious, or
suspicious TLS connections. The patterns are various: they can be
algorithm names, X.509 certificates, protocol extensions, protocol
versions, or even string of bits that could be exploited to mount
TLS attacks or create vulnerable TLS connections. We individuate
some common patterns and express them in a format recognized
by network analyzers or IDSs (such as Suricata, Zeek, Wireshark,
...) to identify vulnerable or malicious TLS connections. 2) design
and implementation of the Threat-TLS tool exploiting the patterns
we have specified so far, indicating the tools that may be exploited
in each building block. 3) evaluation of Threat-TLS performance in
an experimental testbed.

Organization. The paper is organized as follows: Section 2 de-
scribes the related work on TLS attacks and TLS monitoring tools,
Section 3 describes the design of the proposed Threat-TLS tool,
Section 4 describes the implementation performed so far and the
results obtained. Finally, Section 5 resumes the conclusions and
indicates future work.

2 BACKGROUND AND RELATEDWORK
2.1 TLS attacks
If we look at the TLS protocol through a magnifying glass, we ob-
serve that it is composed of several elements (base blocks) that can
carry or potentially introduce different vulnerabilities. In fact, as
with its predecessor SSL (Secure Sockets Layer) protocol, the TLS
protocol has also been subject, since its creation, to continuous
investigation to individuate attacks. Any vulnerability in each of
these base blocks can compromise the TLS protocol as a whole.
Some TLS attacks exploited deficiencies in the protocol specifica-
tion (especially in the SSL 2.0 and SSL 3.0), others have exploited
4https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=TLS
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weak cryptographic algorithms (like RSA, or MD5), the cipher block
chaining (CBC) mode of application, the compression, or software
errors in the protocol implementation. Examples of such attacks
are the Bleichenbacher attack [14], DROWN (Decrypting RSA with
Obsolete and Weakened eNcryption) [3], transcript collision attack
[13], Heartbleed [23], Vaudenay et al. attack [19], CRIME (Compres-
sion Ratio Info-leak Made Easy) [29], BREACH (Browser Reconnais-
sance & Exfiltration via Adaptive Compression of Hypertext) [26],
BEAST (Browser Exploit Against SSL/TLS) [27], POODLE (Padding
Oracle On Downgraded Legacy Encryption) [35], Lucky 13 [2], Log-
jam [1], ROBOT (Return Of Bleichenbacher’s Oracle Threat) [15],
ROCA (Return of Coppersmith’s Attack) [36], or truncating attack
[40] [5]. The latest TLS 1.3 protocol has been also investigated, and
some attacks have been documented [31] [28] [24]. Other attacks
aim to manipulate the configuration of the TLS server or the client,
e.g., changing the X.509 certificate and the corresponding key on
the server side or inserting a malicious root Certification Authority
(CA)certificate in the list of trusted anchors at the client side. Such
attacks can occur after the TLS-enabled software has been installed
or deployed on an end node. An Adversary-in-the-Middle (AitM)
attacker could exploit self-signed or malformed X.509 certificates
[41] combined with other techniques (e.g., social engineering) to
set up spoofed websites looking similar to the legitimate ones but
whose purpose instead is to steal sensitive data, like authentication
credentials.

Since the TLS vulnerabilities and attacks have exploded in the
last ten years some works have proposed a classification for them.
For example, Meyer and Schwenk [34] divided the attacks into four
groups: a) attacks on the TLS Handshake protocol, b) attacks on
the TLS Record and Application Data Protocols; c) attacks on the
TLS Public key Infrastructure, and d) various other attacks.

Another classification [8] groups the attacks as follows: 1) attacks
to SSL/TLS protocol functionality - due to flaws in the specification,
2) attacks to SSL/TLS library implementations - caused by errors
in the TLS code, 3) cryptography attacks - due to the use of old
or outdated cryptographic algorithms, and 4) attacks to SSL/TLS
configuration - target the configurable parameters in any TLS in-
stallation (either on the client side or the server side) such as server
certificate and client certificate (if used), or intermediate and root
CA certificates. A well-detailed classification of various TLS attacks
and their evolution is given in [17].

2.2 TLS Scanning and TLS monitoring tools
Several TLS scanning tools can be employed to scan the TLS con-
figuration of specific targets, either when needed or periodically.
Examples of these tools are: SSL Server test powered by Qualys
SSL Labs 5, SSL Checker 6, TLS Assistant 7, SSL/TLS Scanner 8,
SSLyze 9, TLSSLed 10, SiteLock 11, Sensu 12, or TrackSSL 13.

5https://www.ssllabs.com/ssltest
6https://comodosslstore.com/ssltools/ssl-checker.php
7https://st.fbk.eu/tools/TLSAssistant/
8https://pentest-tools.com/network-vulnerability-scanning/ssl-tls-scanner
9hackertarget.com/ssl-check/
10http://blog.taddong.com/2013/02/tlssled-v13.html
11https://www.one.com/en/website-security/sitelock
12https://sensu.io/blog/tls-monitoring
13https://trackssl.com/tls-certificate-monitoring/

The TLS monitoring tools instead are often derived or based on
powerful tools used for intrusion detection. Suricata is one such
tool, whose first version of the software was released in 2009, in
agreement with the management of the Open Information Security
Foundation (OISF), a community-run non-profit foundation orga-
nized to build an IDS/IPS (IDPS) engine of new generation. Besides
being completely open source, the other peculiarities that make
Suricata a prominent software are the multithreading support and
the ability to analyze network traffic even offline, using pcap. A
fundamental part of the use of this IDPS is the management of the
rules. In most cases, users exploit the current set of rules within
Suricata. However, it is possible to create custom rules to integrate
or replace those already present, and some of them have been in-
deed tailored for TLS. Since version 2.0, Suricata has also added
support for Lua scripting. The idea is to be able to decide if an alert
is matching based on the return of a Lua script.

Another worth-mentioning IDS is Zeek 14, which can be used
along with other mechanisms, such as JA3 and JA3S 15 (supported
also in Suricata), to profile the TLS implementations and derive
alerts. JA3 and JA3S gather information from fields that are not
encrypted in the Client Hello and Server Hello TLS handshake
messages, such as the version of SSL/TLS being used, the ciphers
supported, extensions available, and concatenates them to generate
a fingerprint of the SSL/TLS client and server.

3 THREAT-TLS DESIGN
This section provides details of the Threat-TLS architecture. The
tool is composed of four main blocks, named Capture, Analyze,
Validate, and Report (see Fig. 1).

The Capture block holds the IDPS and network analyzers used
for intercepting the network traffic and looking for suspicious, ma-
licious, or weak TLS threat patterns according to specific rules
expressed in a format or scripting language. In this block, we con-
sider two of the most widely used software tools widely used to set
up an IDPS, that is Suricata 16 and Zeek 17. Moreover, we consider
also Wireshark 18, a very famous packet analyzer, which allows to
perform in-depth inspections on the intercepted network traffic.

The Analyze block is in charge of processing in the first place
the files generated by the IDPS(s) and packet analyzer(s). Every time
there is a match between the intercepted network traffic against
(one of the) rules that have been configured for the IDPS, the Alert
Generator creates an an alert string in the following format:
|TLS Threat| #TLS threat type #TLS pattern (intercepted)

For example, a possible alert string indicating an outdated TLS
version is:
|TLS Threat| #TLS version #TLSv1.0

The alert string is then managed by an Alert Manager, which
investigates whether the related alert applies to the monitored
target device and whether it has been flagged critical. Some alerts
applies to all types of devices, while other alerts apply only to

14https://docs.zeek.org/en/master/monitoring.html
15https://github.com/salesforce/ja3
16https://suricata.io
17https://zeek.org
18https://wireshark.org/
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Figure 1: Threat-TLS Architecture.

specific operating systems or TLS libraries. For example, the CVE-
2016-2183, a vulnerability in DES and triple DES ciphers, is related to
the Sweet32 attack [12] on any platform. Assuming an alert applies
to the monitored system, the Alert Manager produces events that
are added to a queue, which is monitored by the Alert Validator in
the Validate block. This module is thought to react every time a
new TLS threat item is inserted into the TLS_Threats_queue. The
TLS threat items have the following format:
{IPaddress_target:port_target:[TLS_threat_type]:
[TLS pattern]:criticality}

For the TLS threat example considered above and the monitored
system running the TLS-enabled service on port 443 at 10.0.2.8 IP
address, the threat item is:
{10.0.2.8:443:TLS version:TLSv1.0:criticality}

Every TLS threat item is validated by launching one or more TLS
threat verification tools, such as Nmap 19, Metasploit 20, or TLS
Attacker 21, which scans the indicated target system. The results of
the scanning operations are saved in (log) files that are part of the
Report block.

19https://nmap.org
20https://www.metasploit.com
21https://github.com/tls-attacker/TLS-Attacker

In the Validator block we place a Certificate Verify module,
which is in charge of deep inspection and verification of the X.509
certificates. It is already known that if certificate validation is per-
formed incompletely or incorrectly, some attacks may occur, like
the AiTM one. Many implementations (especially on the client side)
ignore the revoked certificates [25], but also process erroneously
some extensions [6]. The Certificate Verify module is responsible
for detecting erroneous, malformed, or malicious X.509v3 certifi-
cates, by relying also on external sources, including the Certificate
Transparency logs, the OCSP responders [39], or the Certification
Authorities (CAs) to download the corresponding CRLs (Certificate
Revocation Lists) [20].

4 THREAT-TLS IMPLEMENTATION DETAILS
The building blocks of Threat-TLS have been implemented in
Python 3.10.6, through dedicated scripts developed for the Alert
Generator, Alert Manager, Alert Validator, and Certificate Ver-
ify. The Alert Generator (along with the Alert Manager) and
the Validator are currently developed as threads in a producer-
consumer multi-threaded model. In this model, the producer in-
serts a produced object into a shared dictionary, so that the con-
sumer can retrieve it and perform further processing. A dictio-
nary in Python is a collection that is ordered and changeable and
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Table 1: Threat-TLS detects weak, malicious, and suspicious connections based on specific TLS threat patterns (whose corre-
sponding rules are configured in IDS). For each pattern, we show possible TLS attacks exploiting the pattern, and the TLS threat
verification tools we have exploited to verify whether the threat applies.

TLS threat patterns Possible TLS Attack Specific HW/SW TLS threat verification tools
Heartbeat extension Heartbleed Metasploit, Nmap, TestSSL, TLS-Attacker
Compression enabled CRIME TestSSL
SSLv2 enabled DROWN TestSSL, TLS-Attacker
RSA Ciphersuites Bleichenbacher TestSSL, TLS-Attacker, Metasploit
RSA Ciphersuites ROBOT As indicated in [16] TestSSL, TLS-Attacker, Metasploit
DES/3DES Ciphersuite Sweet32 TestSSL
Export Ciphersuite LogJam TestSSL, Nmap
CBC mode (ciphersuite) Lucky13 TestSSL
RSA_CBC Ciphersuite Padding Oracle Attack TLS-Attacker
POODLE SSLv3 enabled and

RSA_CBC Ciphersuite
TestSSL, Nmap, TLS-Attacker

Certificate Self
Signed/Malformed/Revoked/
Compromised

MITM Certificate Verify

TLSv1, TLSv1.1, TLS1.2 Ticketbleed As indicated in [21] Nmap
SSLv3, TLSv1, TLSv1.1, TLSv1.2 Change Cipher Spec injec-

tion
Metasploit, Nmap

RSA Ciphersuites ROCA BitLocker with TPM
1.2, YubiKey 4 (before
4.3.5), as indicated in
CVE-2017-15361

Nmap

cannot have duplicate members. In the Alert Generator, the pro-
ducer thread is represented by a Watchdog object that monitors
an object called Handler. When the Handler object is created,
the logfile variable inside it is initialized with the path of the
IDS log file used, that is /var/log/fast.log (for Suricata) and
/usr/local/zeek/log/current (for Zeek). When the IDS inter-
cepts the network traffic (according to the rules) and modifies the
log file, the Watchdog starts a function to read the new line in the
log file. To read the log file the Watchdog calls 2 different functions:

(1) file_reader_suricata
(2) file_reader_zeek

The called function is different based on the IDS used because the 2
IDS use different kinds of log file. The Zeek log file is a table where
for each field the IDS writes the corresponding value. The Suricata
log file is written by a custom message for the msg keyword used
in the Suricata rules. The difference for the two functions is only
on how they extract the data from the logfile, but the goal for both
functions is the same: produce an object in the dictionary .

The TLS_threats_queue is a dictionary containing key-value
structures, where:

• the key is the IP address of the target (as passed from the
Alert Manager)

• the value is an array with all the vulnerabilities found for a
TLS connection from that IP address

If the TLS_threats_queue reaches a max value stored in the
MAX_NUM variable, the producer thread waits until the queue
is consumed. The Consumer thread is implemented by means of a
function called verify_vulnerability. This thread waits until an

item is inserted into the TLS_threats_queue.When this happens, the
thread wakes up and retrieves an item from the TLS_threats_queue.
Depending on the TLS threat type (e.g., TLS version) and the value
of the TLS attack pattern (e.g., TLSv1.0) indicated the item, the
thread starts one or more TLS threat verification tools against the
IP address represented by the key of the item. The tools open TLS
connections configured with parameters specific for the indicated
threat. Finally, a report is generated with the verification results
produced by each TLS threat verification tool.

Independently of the IDS used, we have implemented a tool for
certificate verification, called Certificate Verify in Fig. 1. Thus,
Threat-TLS may verify the target certificate, namely the one inter-
cepted and passed from the Analyze block. The Alert Generator
puts the |CERTIFICATE| into the TLS_threat_queue along with
its value. The Alert Validator thread takes the certificate (value) and
starts its verification by performing several checks, including the
verification of the Issuer and Subject fields (e.g., to detect self-signed
certificates), of the Subject Alternative name extension (to detect
certificates issued for wrong domain names), of the validity period
(to detect expired certificates). Moreover, the module checks the
revocation status by exploiting OCSP [39] and CRL mechanisms
[20]. Finally, it verifies the SCTs (Signed Certificate Timestamps) in
the certificate [30] by exploiting the CT system.

4.1 Defining TLS threat patterns
The TLS protocol can be divided into two main phases, the TLS
handshake phase and the TLS application data transfer. Both phases
exploit the TLS Record protocol to protect the messages exchanged.
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Figure 2: Analyzing TLS Server Hello message to express Suricata rule for Heartbeat extension detection.

Additionally, the alert messages in the TLS Alert protocol are very
important, since they are used to close a legitimate connection
once the data has been transferred or to indicate errors in the TLS
connection. In the past, the alert messages have been exploited
in some TLS attacks because the attacker could deduce part of
the information based on the alert message(s) returned. Thus, TLS
threat patterns for inspecting the alert messages could be defined.

To write the rules for suspect, malicious, or weak connections
in Suricata, it is thus necessary to individuate TLS threat patterns
in the intercepted traffic and generate an alert.

In Table 1, we indicate patterns for some TLS attacks, as well as
the attack tools started by the Alert Validator when a TLS threat
pattern is found.

These patterns are been intercepted in different ways in the two
IDS we have considered. For Suricata a file called patterns.rules
is written and then enabled in the Suricata’s yaml file. For Zeek
the file /usr/local/zeek/share/zeek/base/protocols/ssl is
modified to add some messages in the log file.

We explain next how a TLS threat pattern can be expressed in a
format recognized by the ID(P)S we have considered. We will take
as example the Heartbeat extension, because this could be exploited
to mount the Heartbleed attack. The TLS threat pattern ’Heartbeat
extension’ can be expressed with the following rule for Suricata:

alert tls any any <> any any (msg:"|VULNERABILITY|
#HEARTBEAT EXTENSION# $1.0$";flow:from_server;
content:"|16 03 01|";content:"|02|"; distance:2;
within:3;content:"|00 0f|";content:"|01|"; distance:2;
within:4; sid:11;)

Explanation. The above rule is written to intercept the Heartbeat
extension for TLS v1.0. However, by changing the content with
the appropriate hexadecimal value is still possible to intercept it
for other TLS versions, i.e., SSL v3, TLS v1.1, TLS v1.2. This rule
can be divided into 2 different Suricata rules joined with an AND
logic operation. The first (part of the) rule indicates the Server
Hello message in the TLS handshake and it is used also for the
others rules. This rule verifies the bytes indicating the Server Hello
message (02) that must start after 2 bytes (distance rule) and end
within 3 bytes (within rule). The first rule is shown in Fig. 2 where
the yellow indicates the Server Hello byte, the red arrow indicates
the distance keyword and the orange arrow indicates the within

keyword. The second part of the rule checks if the Heartbeat ex-
tension in the Server Hello message is enabled. The Heartbeat
extension is represented in the TLS message structure by 2 bytes
00 0f. After these 2 bytes, there are 2 bytes representing the length
of the extension and then the byte which represents the extension
enabled 01, as shown on the last raw in Fig. 2.

4.2 Validating Threat-TLS implementation
To test Threat-TLS we have set up an experimental testbed com-
posed of:

• a TLS Server (running Apache web server 22 and OpenSSL
library 23)

• a TLS Client (running TLS-enabled web browser, like Firefox)
• a monitoring machine on which we have installed Threat-
TLS and the exploited tools: Ettercap 24 (to deviate the traffic
exchanged between the client and server through the mon-
itoring machine), Suricata, Zeek (with the configured TLS
threat patterns), Wireshark, and the Threat-TLS scripts for
Alert Generator, Manager, Validator, and Certificate Verify,
as well as the TLS threat validation utilities, i.e. Metasploit,
TestSSL, TLS-Attacker, and Nmap.

We simulated different test cases in which an attacker managed
to compromise the (monitored) TLS server. For each test case, we
have installed on the server OpenSSL versions and Apache2 that
are weak or vulnerable to attacks, like Apache2 v2.51.4 and v2.47.2.
Table 2 summarizes the vulnerable OpenSSL versions installed and
the TLS attacks associated with each version.

After installing the specific vulnerable OpenSSL library on the
server machine, the client (web browser) connects to the vulnerable
TLS server, triggering thus the alarms on the monitoring machine.
For each vulnerability, the measurement was repeated 20 times.
The test results (obtained with Suricata and Zeek) are shown in
Fig. 3. This figure illustrates the time required by Threat-TLS to
verify the indicated threat/attack by running the TLS attack tools
for that specific vulnerability. The Heartbleed vulnerability takes
more time than the others because Threat-TLS runs four TLS threat
verification tools to verify it, namely TestSSL, Nmap, TLS-Attacker,
Metasploit. Moreover, Metasploit first checks whether the machine

22https://httpd.apache.org/
23openssl.org
24https://www.ettercap-project.org/index.html
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Table 2: TLS attacks associated with (old) Openssl versions
used in the experimental tests.

Openssl Version TLS Attack CVE Reference
OpenSSL 0.9.7 Bleichenbacher CVE-2012-0884

CCSInjection CVE-2014-0224
POODLE CVE-2014-3566

OpenSSL 1.0.1c Heartbleed CVE-2014-0160
CCSInjection CVE-2014-0224
Lucky13 CVE-2013-0169
POODLE CVE-2014-3566

OpenSSL 1.0.2 Padding Oracle Attack CVE-2016-2107
Sweet32 CVE-2016-2183
DROWN CVE-2016-0800

Figure 3: Test results for detection and verification of single
TLS attacks.

is vulnerable, then it tries to retrieve the server’s private key by
using the Heartbleed exploit integrated in Metasploit.

In all tests, the time measurement starts when the IDS intercepts
the (vulnerable) packets on the network based on the rules we have
configured for the corresponding threat and finishes when all the
TLS threat verification tools complete their execution. Fig. 3 shows
that both Suricata and Zeek require about the same amount of
time for verification, the only difference is that Zeek can’t sniff the
SSLv2 traffic. In fact, as shown in Fig. 3 it can not sniff traffic for
the DROWN vulnerability.

Next, we have performed tests by considering a scenario in which
one TLS connection is subject tomultiple possible TLS threats, sowe
have measured the time spent to verify all the attacks (with one or
more TLS threat verification tools, depending on the attack). In this
testing scenario, Threat-TLS launches all the TLS threat verification
tools for each possible vulnerability found in the packet. Each mea-
surement has been performed 10 times. Fig. 4 shows the time spent
by the tool for a TLS connection established with three vulnerable

Figure 4: Time spent to verify all the TLS attacks apply-
ing to a vulnerable TLS connection. TLS threats for values
on the X-axis: OpenSSL 1.0.1c: Heartbeat:YES, TLS Version:
1.2, Cipher:ECDHE-RSA-AES256-GCM-SHA384. OpenSSL
1.0.1c+cipher: Heartbeat:YES, TLS Version: 1.2, Cipher:DES-
CBC3-SHA. OpenSSL 1.0.2: Heartbeat:NO, TLS Version: 1.2,
Cipher:DES-CBC3-SHA. OpenSSL 0.9.7: Heartbeat:NO, TLS
Version: 1.2, Cipher:DES-CBC3-SHA.

libraries, namely OpenSSL 1.0.1c, OpenSSL 1.0.2, and OpenSSL 0.9.7.
Table 3 indicates, for each of the three vulnerable OpenSSL versions
we have installed, the potential TLS threats derived from the traffic
intercepted when establishing a TLS connection from a client to
the server running the vulnerable OpenSSL library. By using the
TLS threat patterns in Table 1, all TLS attacks are verified with the
TLS verifications tools and the total time spent on verifying them
is measured. The test with Openssl 1.0.1c occurs twice because in
the second scenario a vulnerable cipher (containing CBC mode) is
proposed in the TLS connection, thus more TLS attack tools are
started.

5 CONCLUSIONS
To detect weak, malicious, or suspicious TLS connections, we pro-
pose Threat-TLS, a tool actively looking for TLS threat patterns in
the intercepted traffic. We defined basic TLS threat patterns for a
selected set of TLS attacks, we deployed them in Suricata and Zeek,
and we tested their effectiveness with TLS threat verification tools
installed in an experimental testbed. We show that it is possible
to identify the attacks in a relatively short time. Future work will
address the definition of more complex TLS threat patterns, as well
as the enhancement of the Alert Manager component, which com-
bines the TLS threats generated with the CVE list obtained from
MITRE, to generate customized alert(s) that consider the specific
configuration of a monitored TLS-enabled device.
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Table 3: For the vulnerable OpenSSL versions exploited in tests, we show the attacks successfully tested with the TLS threat
verification tools indicated, and the ones not completed due to HW/SW requirements or not supported by the attack tools.

No. IDS OpenSSL Version Potential
attacks

TLS attack successfully tested
with TLS threat verification tool

TLS attack not successfully tested

(1) Suricata OpenSSL 1.0.1c 11 Heartbleed with Metasploit, Heart-
bleed with Nmap, Heartbleed with
TLS-Attacker, CCS-Injection with
Metasploit, CCS-Injection with
Nmap

Heartbleed with TestSSL, Bleichen-
bacher with TLS-Attacker, Bleichen-
bacher with Metasploit, Robot with
TestSSL, ROCA with Nmap, Ticket-
bleed with Nmap

(2) Suricata OpenSSL
1.0.1c+cipher

16 Heartbleed with Metasploit, Heart-
bleed with Nmap, CCS-Injection
withMetasploit, CCS-Injectionwith
Nmap, Lucky13 with TestSSL

Heartbleed with TLS-Attacker, Heart-
bleed with TestSSL, Bleichenbacher
with TLS-Attacker, Bleichenbacher
with Metasploit, Robot with TestSSL,
ROCA with Nmap, Ticketbleed with
Nmap, POODLE with Nmap, POO-
DLE with TestSSL, POODLE with
TLS-Attacker

(3) Suricata OpenSSL 1.0.2 12 Padding Oracle Attack with TLS-
Attacker

Bleichenbacher with TLS-Attacker,
Bleichenbacher with Metasploit,
CCS-Injection with Metasploit,
CCS-Injection with Nmap, Robot
with TestSSL, ROCA with Nmap,
Ticketbleed with Nmap, Lucky13
with TestSSL, POODLE with Nmap,
POODLE with TestSSL, POODLE
with TLS-Attacker

(4) Suricata OpenSSL 0.9.7 12 Bleichenbacher with TLS-Attacker,
Bleichenbacher with Metasploit,
CCS-Injection with Metasploit,
CCS-Injection with Nmap, Robot
with TestSSL

ROCA with Nmap, Ticketbleed with
Nmap, Lucky13 with TestSSL, POO-
DLE with Nmap, POODLE with
TestSSL, POODLE with TLS-Attacker,
Padding Oracle Attack with TLS-
Attacker

(5) Zeek OpenSSL 1.0.1c 11 same as (1) same as (1)
(6) Zeek OpenSSL

1.0.1c+cipher
16 same as (2), but we obtained more

false negatives
same as (2)

(7) Zeek OpenSSL 1.0.2 12 same as (3) same as (3)
(8) Zeek OpenSSL 0.9.7 12 same as (4) same as (4)
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