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A New Class of Devices: Magnetic Gear
Differentials for Vehicle Drivetrains

Mattia Filippini∗, Riccardo Torchio∗, Member, IEEE, Piergiorgio Alotto∗, Senior Member, IEEE,
Elvio Bonisoli‡, Luca Dimauro‡, Maurizio Repetto†

Abstract—Mechanical differentials are essential drivetrain
components of automobiles and other wheeled vehicles, allowing
the outer drive wheel to rotate faster than the inner drive wheel
during turns. This paper presents a comprehensive description
of a novel and recently patented alternative based on magnetic
gears, which achieves the same functionality while providing
distinctive advantages such as reduced maintenance, absence of
lubrication, high efficiency. The paper describes the operation
principle of such magnetic gear differential and two alternative
constructive options, provides a dynamic model which allows the
study of the device in driving conditions, presents a description
of a prototype and validates finite element simulations with
experimental results.

Index Terms—Magnetic Gears, Magnetic Differential, Mag-
netic Drivetrain, Magnetic Transmission

NOMENCLATURE MECHANICAL SYMBOLS

MG Magnetic gear.
MD Magnetic differential.
MG1, MG2 The two MGs used in an MD.
MDA, MDB Magnetic differential type A and B.
Pi Inner rotor pole pairs.
Po Outer rotor pole pairs.
ns Ferromagnetic poles of middle rotor.
TM Maximum MG torque on the outer rotor.
θe, θe1, θe2 Load angles of MG, MG1, MG2.
θi, ωi, Ti Inner rotor angle, speed, external torque.
θo, ωo, To Outer rotor angle, speed, external torque.
θs, ωs, Ts Middle rotor angle, speed, external torque.
ωo1, ωo2 Output wheels speed in MDA.
ωs1, ωs2 Output wheels speed in MDB.
Ji∗, bi∗ MG inner rotor inertia and damping.
Jo∗, bo∗ MG outer rotor inertia and damping.
Js∗, bs∗ MG middle rotor inertia and damping.
Ji, bi MD inner rotor inertia and damping.
Jo1, Jo2 MDA wheels rotor inertia.
bo1, bo2 MDA wheels rotor damping.
Js, bs MDA interconnected (middle) rotors inertia

and damping.
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via Gradenigo 6/a, 35131 Padova, Italy (e-mail: mattia.filippini@unipd.it;
riccardo.torchio@unipd.it; piergiorgio.alotto@unipd.it).

Elvio Bonisoli and Luca Dimauro are with DIMEAS – Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy (e-mail:
elvio.bonisoli@polito.it; luca.dimauro@polito.it).

Maurizio Repetto is with DENERG – Politecnico di Torino, Corso Duca
degli Abruzzi, 24, 10129, Torino, Italy (e-mail: maurizio.repetto@polito.it).

Js1, Js2 MDB wheels rotor inertia.
bs1,bs2 MDB wheels rotor damping.
Jo, bo MDB interconnected (outer) rotors inertia

and damping.
To1, To2 MDA External wheels torques.
Ts1, Ts2 MDB External wheels torques.
Y A
ij MDA transfer function between input i and

output j.
Y B
ij MDB transfer function between input i and

output j.
M1 Prototype traction motor.
M2 Prototype differential control motor.
M3, M4 Prototype wheels motors.
G Nominal gear ratio, with fixed interconnected

rotor.
G1, G2 Input-output gear ratios of MG1 and MG2.
Gi Mechanical ratio coupling source.
Go Mechanical ratio coupling outer rotor.
Goo Mechanical ratio coupling interconnection.

I. INTRODUCTION

Differentials are particular gear trains with one input (the
traction motor) and two outputs (the wheels), allowing the
outputs to have different rotational speeds [1]. These devices
are normally used in vehicles and allow for transmitting the
torque in steering conditions when the wheels have to rotate
at different speeds. Such gear trains, ubiquitously adopted in
automobiles, also electrical ones [2], are mechanical devices,
based on the combination of lubricated gears. Despite their
simplicity, they suffers from intrinsic drawbacks, such as
friction, noise, vibrations, need for lubricant replacement, and
relatively low efficiency [3]. These factors limit the gears’ life
and could lead to premature failures if not monitored.

Magnetic gears are good candidates to replace their mechan-
ical counterparts since the power transfer is contact-less [4].
The structure of a radial flux coaxial magnetic gear is shown
in Fig. 1: it consists of three coaxial rotors with permanent
magnets (PMs) mounted on the inner and the outer ones,
while the middle rotor consists of a set of ferromagnetic poles.
Pi is the number of inner magnetic pole pairs, Po is the
number of outer magnetic pole pairs and ns is the number
of ferromagnetic poles. If ns = Pi + Po, the middle rotor
acts as a field modulator, allowing for transmitting a constant
torque (if ripple is neglected) between the inner and outer
rotors, rotating with speed ratio Po

Pi
(the reader is referred to

[3] for further details on the operating principle). The contact-
less nature of the electromagnetic interaction results in almost
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ωo
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Inner rotor

Poles rotor

Outer rotor

Fig. 1: One fourth of a typ-
ical magnetic gear. Materi-
als: magnets (blue-red), fer-
romagnetic iron (grey), poly-
mer (green), shaft (black).

Fig. 2: Components of the
prototyped magnetic gear: (a)
inner rotor, (b) outer rotor, (c)
poles rotor back and (d) poles
rotor front.

noiseless devices that do not require lubrication (except for
the bearings), achieve high efficiencies and are potentially
maintenance-free. Another aspect that is worth considering
is the intrinsic over-slip operation offered by the contact-less
transmission: instead of designing clutches to avoid torque
peaks to be transferred by the gearbox, the magnetic gear
simply slips when the torque limit is reached. This can be
a great advantage for the optimization of space, weight and
complexity of an automotive drive-train. On the contrary, the
absence of direct contact directly impacts the torsional stiffness
of the coupling [5], which is much lower than the one of
mechanical transmissions (ideally infinite).

Several topologies appeared in the last decades with the
main goal of increasing the torque density and the possibility
of obtaining devices with variable gear ratio has been consid-
ered in several works [6], [7], [8], [9].
For a typical magnetic gear, shown in Figs.1 and 2, the rotor
speed relationship in stationary conditions reads [7], [10]:

ωo = − Pi

ns − Pi
ωi +

ns
ns − Pi

ωs (1)

where ωo, ωi, and ωs are the speed of outer, inner, and poles
rotor, respectively.

Magnetic gears are synchronous machines, thus the load
speed ωo in stationary conditions is defined once ωs and ωi

are fixed; this means that slip cannot occur during the nominal
operation (otherwise (1) will not hold true). Thus, magnetic
gears would be unsuited for a vehicle differential application
with a single motor where an asynchronous operation is
requested. A simple solution adopting magnetic transmissions
could be obtained with two magnetic gears with fixed ratio
and two independent electrical motors or geared motors [11],
i.e. an electric differential as in [12], [13], but this solution is
costly. Some mechanical setups can also be used to obtain a
variable gear ratio, but these solutions are rather complex and
require maintenance [14] or achieve only discrete variations
of gear ratios [15].

In this paper, two novel magnetic differential topologies
are proposed as additional layouts to the ones presented in
[16]: the basic drivetrain is composed of two magnetic gears,
one mechanical gear, one power source (electrical or thermal).
These configurations are also briefly described in [17], where

Fig. 3: Ackerman’s steering geometry. The cornering radii are
different from inner to outer wheels, thus a differential device
is needed to avoid slip between tire and ground.

the main features are outlined. In the proposed solution the
output shafts speeds are equal when the loads are equal, while
the magnetic gears provide torque to asynchronously-rotating
shafts when the loads are speed-unbalanced.

In the literature, some works have applied standard control
theory to magnetic transmissions in order to study the dynam-
ics and to prevent the asynchronous operation [18], [19], [20].
In this paper, the proposed configuration is studied through the
same control theory approaches in order to assess the stability
of the system of dynamic equations.
The paper is organized as follows: Sec. II introduces the
concept of differential and its role in drivetrains. In Sec.
III, two configurations of magnetic differential are proposed
and their relative advantages are described. Sec. IV presents
a simplified analysis of the device, with a focus on the
control theory perspective and a simplified test case where
the differential operation is verified.

In the second part of the paper, i.e. Secs. V to VIII, a
prototype of one of the proposed topologies is designed in
detail, with the aid of numerical models validated through
measurements. In these sections, all aspects related to con-
struction, assembly, and validation are discussed. Finally, Sec.
IX provides some comments concerning the manufacturing
issues of magnetic gears and magnetic differentials.

II. VEHICLE DYNAMICS STEERING

Fig. 3 represents the Ackermann steering geometry [21].
Generally, when a vehicle is steering, each wheel has a
certain radius referred to the center of rotation, and all radii
are different. Since the wheels are supposed to have the
same geometry, the rotational speed of the wheels should be
different (in the hypothesis of equal negligible slip VS ground)
since the distance to travel is different, and this is normally
achieved with differential gearboxes.
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Fig. 4: Cross section of the proposed MDA topology. A
mechanical gear with ratio k = −1 is adopted for the counter
rotation of the iron poles rotors.

If the wheels are connected through a rigid axle, the torque
and speed expressions are:{

Tdrive = Touter + Tinner

ωdrive = ωouter = ωinner

(2)

where Tinner, Touter, ωinner, ωouter, are torques and rota-
tional speeds of the inner and outer wheels referred to the
center of rotation, while Tdrive and ωdrive are the ones of
the traction motor. For a rigid axle, the inner wheel will have
a positive slip while the outer wheel have a lower or even
negative slip. This leads to a larger force on the inner wheel
that counteracts the vehicle steering motion. The differential is
used to overcome these drawbacks. The simplest differential
type is the open one. For this device the speed and torque
equations holds:{

0.5 · Tdrive = Touter = Tinner

ωdrive = 0.5 · (ωouter + ωinner)
(3)

Thus, torques on the two wheels are equal and are not de-
pendent on the rotational speeds. The maximum wheels speed
ratio depends on the vehicle steering capability. For example,
if Rmin

steer is the minimum outer steering radius and w is the
rear axle wheel to wheel distance, by setting Rmin

steer = 5 m
and w = 2 m, the maximum ratio between outer and inner
wheel speed is

Ψmax =
Rmin

steer

Rmin
steer − w

=
5

3
= 1.67

The proposed magnetic differential will have the same me-
chanical characteristic of (3) in its basic implementation.

III. PROPOSED CONFIGURATIONS

As previously stated, two magnetic differential (MD) so-
lutions are considered although only one will be prototyped.
The two magnetic differential solutions are shown in Fig. 4
and Fig. 5, and these will be referred as type A (MDA)
and type B (MDB). Both configurations adopt two coaxial
magnetic gears MG1 and MG2 and the gears inner rotors
(high speed) are connected together and to a power source
(e.g. internal combustion engine). A similar structure could
be obtained with axial flux MGs [22] or other structures
[23] but because of the higher mechanical complexity these

Controller

MG1 MG2

Motor

1 : −1

Mech. Gear

Outer rotor
Poles rotor
Inner rotor

Wheel 1 Wheel 2

Fig. 5: Cross section of the MDB topology. A mechanical gear
with ratio k = −1 is adopted for the counter rotation of the
outer rotors.

solutions will not be discussed in this paper. The low speed
outer rotors of the magnetic gears are connected to the wheels
and the iron poles rotors are connected together through a
classical mechanical gearbox with gear ratio Gm = −1 in
MDA. Instead, in MDB, the poles rotors are connected to the
wheels while the outer rotors are connected to the mechanical
gearbox. The connection of poles rotors and gearbox in MDA
will be referred to as interconnected rotor (conversely, in
MDB the interconnected rotor consists of the outer rotors
plus the mechanical gearbox). It is worth highlighting that
the layouts of Figs. 4 and 5 are schematic representations
of the assembly: e.g. the traction motor in these figures is
a 2-axis one and is coaxial with the gears, while the torque
topology is not specified in the scheme. Different layouts, e.g.
where the traction motor is in a different position/orientation
or with a specific mechanical system coupling with ratio −1
(e.g. a planetary gear set or a hydro-static coupling), are
completely equivalent and the easiest manufacturing solution
can be adopted.
Recalling Sec. II, the role of the differential is to deliver torque
from the power source to the two rotating wheels with different
speeds. In MDA, during the normal operation of the drivetrain,
i.e. when the vehicle is moving along a straight path, the load
torques and wheels speeds are balanced. This means that equal
torques are developed on the iron poles rotor and because
of the mechanical coupling the global torque acting on the
rotor is nil. In this condition, the interconnected rotor is still,
thus ωs = 0 in (1) and this means that both MG1 and MG2
have gear ratios G1 = G2 = G, where G1 and G2 are the
input-output gear ratios ωi

ωo
of MG1 and MG2, respectively,

and G = Po

Pi
is the nominal ratio. This is no longer true in

the case of unbalanced loads, e.g. when the vehicle steers.
The load unbalance results in a poles rotor unbalance, thus
the interconnected rotor will rotate at speed ω given by
the new mechanical equilibrium. Because of the mechanical
coupling, in MG1 ωs = ω while in MG2 ωs = −ω, thus
through (1) MG1 and MG2 will have different gear ratios, e.g.
G1 < G < G2: the result is indeed a differential operation of
the transmission. According to (1), if ωo is positive and tends
to decrease because the vehicle is steering, ωs has to increase
if ωi is kept constant. In turn, for the other gear ωs tends to

3

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2022.3208628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 30,2022 at 13:42:47 UTC from IEEE Xplore.  Restrictions apply. 



decrease and ωo tends to increase. The combined action gives
the steering capability. The same principle applies to the MDB
topology, substituting ωo with ωs and setting the nominal gear
ratio to G = ns

Pi
.

Torques developed on the three rotors of a magnetic gear
depend only on the load angle θe if losses and cogging torque
are neglected. For the MDB case, the load angles of MG1 and
MG2 are θe1 and θe2:{

θe1 = Poθo + Piθi − nsθs1

θe2 = −Poθo + Piθi − nsθs2
(4)

where the same notation of (1) has been adopted, i.e. θi, θo,
θs1 and θs2 are the inner rotor position (equal for MG1 and
MG2), interconnected rotor position (opposite for MG1 and
MG2), and wheels positions. In steady state operation, the
load angles θe1 and θe2 are stationary, thus differentiating the
rotational speed equations we obtain:

Poωo + Piωi − nsωs1 =
dθe1
dt

= 0 (5)

−Poωo + Piωi − nsωs2 =
dθe2
dt

= 0 (6)

In steady state cornering conditions, when ωs1 = ksteerωs2,
the interconnected rotor speed is expressed as:

ns(ωs1 − ωs2) = ns(ksteer − 1)ωs2 = 2Poωo (7)

The equation above also applies to the angles choosing the
same angular reference for s1, s2, o:

ns(θs1 − θs2) = ns(ksteer − 1)θs2 = 2Poθo (8)

Substituting (8) in the last two of (4), the load angles in steady
state cornering are:{

θe1 = Poθo + Piθi − nsθs2 − 2Poθo

θe2 = −Poθo + Piθi − nsθs2
(9)

From (9), the load angles are equal for the two magnetic gears,
thus the input torque from the inner rotor is equally distributed
to the wheels, as in a mechanical open differential (see Sec.
II). The same conclusion holds for the MDA topology.

As already mentioned, since a clutch is intrinsically included
in a magnetic gear, some considerations are needed regarding
the stability of the whole system (for example to handle
the asynchronous operation when a gear torque capability is
exceeded). The easiest method to control the device would
be to adopt a second motor on the poles rotor that forces the
appropriate speed according to the steering radius. This would
allow to implement advanced control techniques [24], such as
differential locking and torque vectoring. Since the wheels are
coupled to the road, the interaction between wheels and road
gives a natural steering capability limited by the maximum
grip force. The motor controller connected to the mechanical
gear could also be replaced by a cheaper mechanical brake
that has to ensure stability. When for example the torque limit
is reached on the wheels, the magnetic gears operation turns to
asynchronous and the interconnected rotor speed in (1) tends
to grow (since the wheels load is lost, the torque balance
is now at much higher speed). The braking torque value

is controlled through a proportional-integral (PI) regulator
linked to the overload speed ∆ω of the interconnected rotor
referring to the fixed limit (from the design parameters and the
maximum load unbalance the speed limit can be estimated).

It is worth noting that the mechanical gear has just the role
of torque inverter and there are several solutions that can be
used. Here the classical solution with 3 bevel gears have been
chosen for its simplicity. Anyway, the key difference with
a pure mechanical differential is that this component does
not transmit power in nominal conditions, while in steering
conditions the rotational speed is limited in the hypothesis
of small slip. The component lifetime is therefore extended
if compared to the standard differential operation and the
conversion efficiency comes into play only during steering on a
limited amount of power transferred between MG1 and MG2.

IV. SIMPLIFIED ANALYSIS

In this section, the dynamic model of the whole differential
system is analyzed. These equations are useful to determine
the relations between each input and output of the system and
how the electro-mechanical parameters of each rotor affect the
dynamic response of all the output speeds. This is a mandatory
analysis that allows for comparing the magnetic differential
performance with the one of the mechanical differential, where
the system can be assumed as infinitely stiff.

The simplified analysis of the magnetic gear relies on the
hypothesis of negligible torque ripple and unitary conversion
efficiency. According to [6], the dynamic equations of the ro-
tors of a single magnetic gear with maximum torque capability
TM (of the outer rotor) can be expressed as:
J∗
i
d2θi
dt2 + b∗i

dθi
dt = Ti − Pi

Po
TM sin(Poθo + Piθi − nsθs)

J∗
o
d2θo
dt2 + b∗o

dθo
dt = To − TM sin(Poθo + Piθi − nsθs)

J∗
s
d2θs
dt2 + b∗s

dθs
dt = Ts +

ns

Po
TM sin(Poθo + Piθi − nsθs)

(10)
where J∗

i , J∗
o and J∗

s are the inner, outer and pole rotor inertia,
b∗i , b∗o and b∗s are the inner, outer and pole rotor damping
coefficients and Ti, To and Ts are the external torques applied,
respectively. The approximation of torques related to the load
angle through the sin function holds especially when the gear
ratio is fractional, since the torque ripple is low.

A. Configuration A

In this configuration, (10) is extended with the equation set
of a second magnetic gear. The argument of the sin function
can be referred as load angle θe = Poθo+Piθi−nsθs. The load
angles of MG1 and MG2 in Fig. 4 are θe1 and θe2, respectively.
The dynamic set of equations of Fig. 4 is thus:

Ji
d2θi
dt2 + bi

dθi
dt = Ti − Pi

Po
TM (sin θe1 + sin θe2)

Jo1
d2θo1
dt2 + bo1

dθo1
dt = To1 − TM sin(θe1)

Jo2
d2θo2
dt2 + bo2

dθo2
dt = To2 − TM sin(θe2)

Js
d2θs
dt2 + bs

dθs
dt = Ts +

ns

Po
TM (sin θe1 − sin θe2)

θe1 = Poθo1 + Piθi − nsθs

θe2 = Poθo2 + Piθi + nsθs

(11)
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where Ji, bi and Ti are the inertia, damping and torque of the
inner rotor in Fig. 4. Js, bs and Ts are the inertia, damping
and torque of the whole interconnected rotor, Jo1, bo1, To1,
Jo2, bo2, To2 are the inertia, damping and torque of the two
outer rotors in Fig. 4. The dynamic equation set in (11) is a
multiple input multiple output model (MIMO), where the 4
inputs are the torques Ti, To1, To2, Ts and the outputs are
the rotational speeds of the 4 rotors ωi = dθi

dt , ωo1 = dθo1
dt ,

ωo2 = dθo2
dt and ωs =

dθs
dt .

ωi

ωo1

ωo2

ωs

 =


Y A
11 Y A

12 Y A
13 Y A

14

Y A
21 Y A

22 Y A
23 Y A

24

Y A
31 Y A

32 Y A
33 Y A

34

Y A
41 Y A

42 Y A
43 Y A

44

 ·


Ti
To1
To2
Ts

 (12)

(12) shows the transfer function matrix, where Yij is the
transfer function between the ith output and the jth input
when all the other input torques are nil. Because of the sin
functions, the system has to be linearized for the transfer
function evaluation. In this paper, the model is linearized
considering sin(x) ≃ x, hypothesis which is verified when
the load angles θe1 and θe2 are small.

B. Configuration B

With the same approach of Sec. IV-A, the dynamic set of
equations of Fig. 5 is:

Ji
d2θi
dt2 + bi

dθi
dt = Ti − Pi

Po
TM (sin θe1 + sin θe2)

Js1
d2θs1
dt2 + bs1

dθs1
dt = Ts1 +

ns

Po
TM sin(θe1)

Js2
d2θs2
dt2 + bs2

dθs2
dt = Ts2 +

ns

Po
TM sin(θe2)

Js
d2θo
dt2 + bo

dθo
dt = Ts − TM (sin θe1 − sin θe2)

θe1 = Poθo + Piθi − nsθs1

θe2 = −Poθo + Piθi − nsθs2

(13)

where Ji, bi and Ti are the inertia, damping and torque of the
inner rotor in Fig. 5. Jo, bo and To are the inertia, damping and
torque of the whole interconnected rotor, Js1, bs1, Ts1, Js2,
bs2, Ts2 are the inertia, damping and torque of the two poles
rotors in Fig. 5. As for the previous case, the dynamic equation
set in (13) is a multiple input multiple output model (MIMO),
where the 4 inputs are the torques Ti, Ts1, Ts2, To and the
outputs are the rotational speeds of the 4 rotors ωi = dθi

dt ,
ωo1 = dθo1

dt , ωo2 = dθo2
dt and ωs =

dθs
dt .

ωi

ωs1

ωs2

ωo

 =


Y B
11 Y B

12 Y B
13 Y B

14

Y B
21 Y B

22 Y B
23 Y B

24

Y B
31 Y B

32 Y B
33 Y B

34

Y B
41 Y B

42 Y B
43 Y B

44

 ·


Ti
Ts1
Ts2
To

 (14)

Again, Yij is the transfer function between the ith output
and the jth input when all the other inputs are nil, and the
sin functions have to be linearized by setting sin(x) ≃ x,
hypothesis which is verified when the load angles θe1 and θe2
are small.

C. A Note on System Stability

System stability is one of the first concerns when dealing
with dynamic systems. In this section, the bounded input

bounded output (BIBO) stability will be proved for the lin-
earized system in (12) and (14).
The following coefficients are adopted for the analysis of
solution MDA:

d1 = Jis
2 + bis

d2 = Jo1s
2 + bo1s

d3 = Jo2s
2 + bo2s

d4 = Jss
2 + bss

K1 = Pi/Po

K2 = ns/Po

n1 = Pi; α1 = K1TMn1

n2 = n3 = Po; α2 = TMn2; α3 = TMn2

n4 = Ps; α4 = K2TMn4

(15)

With the same notation, for the configuration MDB, the set of
parameters is:

d1 = Jis
2 + bis

d2 = Js1s
2 + bs1s

d3 = Js2s
2 + bs2s

d4 = Jos
2 + bos

K1 = Pi/Po

K2 = ns/Po

n1 = Pi; α1 = K1TMn1

n2 = n3 = ns; α2 = TMn2; α3 = TMn3

n4 = Po; α4 = K2TMn4

(16)

Substituting (11) with the coefficients expressed in (15), and
(16), (17), and (18) are obtained, respectively. The inverse
of G can be written as G−1 = adj(G)/det(G), where adj
is the adjoint matrix and det is the determinant function.
The system is BIBO stable if and only if an irreducible
representation of the determinant has all negative real part
roots. The determinant of GA and GB in (19) is a polynomial
with degree 8. Through the symbolic expression of the matrix
determinant it is not possible to find a factorized expression,
but since all the coefficients pi and ri in (19) are always
positive (sum of positive combinations of the terms J , b, Pi,
Po, ns), all the roots of the determinant have negative real
parts. This implies that both configurations MDA and MDB
are BIBO stable.

D. Loop Without Road Transfer Function

In this section, the open loop operation of the MIMO system
MDA is analyzed: the load of the two wheels are considered
as independent, thus there is no closed loop between the input
torques To1 and To2 and the relative shaft speeds ωo1 and
ωo2 for MDA (Ts1 and Ts2 with relative shaft speeds ωs1

and ωs2 for MDB). The transfer function loop is still closed
because in (11) the gears provide a torque that depends on the
angular positions thus, when a load unbalance occurs, the new
steady state equilibrium is defined by the damping coefficients
of the MIMO system. The steady state responses have been
obtained considering sin(x) ≃ x, hypothesis that is verified
when the load angles θe1 and θe2 are small. The expression
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ωi

ωo1

ωo2

ωs

 =
s

1 + sc


d1 + 2α1 α1 α1 0

α2 d2 + α2 0 −α2

α3 0 d3 + α3 α3

0 −α4 α4 d4 + 2α4


︸ ︷︷ ︸

GA

−1

· diag


n1
n2
n4
n3

 ·


Ti
To1
To2
Ts

 (17)


ωi

ωs1

ωs2

ωo

 =
s

1 + sc


d1 + 2α1 −α1 −α1 0
−α2 d2 + α2 0 −α2

−α3 0 d3 + α3 α3

0 −α4 α4 d4 + 2α4


︸ ︷︷ ︸

GB

−1

· diag


n1
n2
n4
n3

 ·


Ti
Ts1
Ts2
To

 (18)

det(GA) = p0 + sp1 + s2p2 + s3p3 + s4p4 + s5p5 + s6p6 + s7p6 + s8p8

det(GB) = r0 + sr1 + s2r2 + s3r3 + s4r4 + s5r5 + s6r6 + s7r6 + s8r8
(19)

TABLE I: MDA topology parameters adopted for the simpli-
fied simulation.

Parameter Name Value Unit
Ji Inner inertia 0.1 kg m2

bi Inner damping 0.01 kg m/s
Jo1 Wheel 1 inertia 6 kg m2

bo1 Wheel 1 damping 0.6 kg m/s
Jo2 Wheel 2 inertia 6 kg m2

bo2 Wheel 2 damping 0.6 kg m/s
Js Poles inertia 0.1 kg m2

bs Poles damping 0.3 kg m/s
Jo2 Wheel 2 inertia 6 kg m2

TM Torque capability 100 Nm
Pi Inner pole pairs 3 −
Po Outer pole pairs 10 −
ns Pole pieces 13 −

Rwheel Wheel radius 0.25 m
|ωi−max| Inner maximum speed 4000 rpm
|ωs−max| Poles maximum speed 500 rpm

G Magnetic differential gear ratio −10/3 −

limits with s → 0 are shown in (20)-(26) and (27)-(33) for
MDA and MDB, respectively: these expressions are useful to
compute the steady state transfer functions for all the input-
output combinations of the differential, which in open loop
depend on the mechanical properties of the system (this will
be the principal working operation when the wheels are in no-
load condition in Sec. VIII).
The parameters adopted for the simulation are shown in
Table I; the wheels rotor inertia is much bigger than the
other rotor’s one since the vehicle mass m is included
Jadd = mR2

wheel. With this hypothesis the mechanical model
is simplified and an equivalent wheel load is used to model
the whole vehicle load.

For the model test, an input torque step Ti = 43 Nm
is applied to the input shaft. The input torque value can
be modulated through a PI controller in order to avoid the
gear asynchronous operation that can be triggered if during
the dynamic transient the maximum torque capability TM
is exceeded. In this paper, the traction motor control with
feedback is not implemented. At t = 50 s a load torque step
∆T = 10 Nm is applied to the wheel 2 and this torque
perturbation is removed at t = 70 s. Substituting in (20)
and (23) the parameters of Table I, the steady state values
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with open loop.

are 81.9 rpm and 14 rpm, respectively, thus the expected
inner speed in steady state is ωi = 43 · 81.9 = 3483 rpm,
while the speed deviation of the wheel 2 in steady state is
∆ωo2 = 14 · 10 = 140 rpm.
Figs. 6 and 7 show the inner and wheels speed response.
Because of the torque step, some oscillations are present
before t = 40 s. In balanced conditions the estimated output
speed is ωo1 = ωo2 = 1045 rpm and this value is in accordance
to the steady state speed obtained from the simulation.

Fig. 8 shows the gears ratios of MG1 and MG2 while Fig. 9
shows the poles rotor speed. As explained in Sec. III, when the
loads are balanced the poles are fixed since the torques applied
by MG1 and MG2 cancel out. When the step torque is applied,
the poles rotor start to rotate and the two gear ratios changes
accordingly, while when the torque perturbation is removed
the poles speed starts to decrease till zero.

In Fig. 10, the step responses of the MIMO system are

6

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2022.3208628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 30,2022 at 13:42:47 UTC from IEEE Xplore.  Restrictions apply. 



Step Response

Time (seconds)

A
m

p
lit

u
d

e

0 20 40 60 80

From: Torque poles

0 20 40 60 80

From: Torque out 2

0 20 40 60 80

From: Torque out 1

0 20 40 60 80

-5

0

5

T
o

: 
S

p
e

e
d

 p
o

le
s

-30

-20

-10

0

10

T
o

: 
S

p
e

e
d

 o
u

t 
2

-30

-20

-10

0

10

T
o

: 
S

p
e

e
d

 o
u

t 
1

0

50

100
From: Torque inner

T
o

: 
S

p
e

e
d

 i
n

n
e

r
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parameters in Tab. I for the MDA topology.

depicted adopting again the hypothesis of linearized system
with sin(x) ≃ x. All the responses in the anti-diagonal are
flat, meaning that the coupling of these in-out combinations is
very weak.

E. Loop With Asynchronous Braking

When the torque limit of a magnetic gear is reached, the
device starts the asynchronous operation. In this condition the
average transmission torque is zero, thus if the traction motor
injected torque is constant, the new equilibrium point is at
a much higher speed, limited only by the inner mechanical
damping. In the connection under investigation since all the
three parts of the gear can rotate, three speeds have to be
checked in order to detect the asynchronous operation.

In this paper, the traction motor torque control is a simple
torque limiter based on the over-speed calculated referring to
the maximum input shaft speed ωi−rpm. The same strategy is
adopted for the poles rotor since if only one wheel becomes
asynchronous, the poles rotor new equilibrium speed can be
higher than the mechanical limit ωs−max. The speed error
∆ωs = |ωs−max| − |ωs| is set as input of a PI controller
with outer upper limit Fmax = 0 (antiwind-up system on the
integrator has to be implemented). The PI output is the force
F (F <= 0 always holds ) applied to the brake that gives a
resistive torque TR = 4sign(ωs)FRbrakekr according to Fig.
11, where Rbrake is the equivalent radius of the brake, the
sign function sign(x) is nil if x = 0 and the ratio kr is the
diameter ratio between the inputs bevels and the free bevel
(kr > 1 in Fig. 11). It is worth noting that the coefficient kr
and the brake radius Rwheel should be the highest possible
since the braking toque has a linear relation with the term
Rwheelkr.

Fig. 12 shows the inner rotor speed with and without brake
when a torque perturbation is added on wheel 2. As shown, the
perturbation without brake forces the input shaft to a negative
speed, while the shaft reaches its maximum speed when the

TABLE II: PI settings adopted.
Parameter Name Value
Kppi−s Kp pole’s rotor PI 1
Kipi Ki pole’s rotor PI 3

Kppi−i Kp inner rotor PI 1
Kipi−i Kp inner rotor PI 0.1

torque step is removed. The new equilibrium point after the
torque step is different from the one prior to the perturbation.

Fig. 13 shows the output speed of the wheels with and
without brake. The step torque tends to increase the speed
of wheel 2 and in case of brake the tip speed is higher than
the case without brake. In both cases because of the step
torque the wheel 2 becomes asynchronous and its equilibrium
point is now established only by the outer rotors mechanical
coefficients. Wheel 1 remains synchronous and its equilibrium
point is different with and without brake: this is due to the
different speed of the poles’ rotor which is now limited by the
brake action.
Fig. 14 shows the poles rotor speed with and without brake.
Clearly the speed exceeds the maximum allowed speed in the
case without brakes, while with the brake the steady state
speed approaches the speed limit. This means that the poles
rotor is still coupled with the inner rotor, but the average torque
transmitted to the outer rotor is zero. In this paper a brake PI
controller is implemented in order to limit the poles over-speed
to zero, but alternative solutions could be used.
In order to design the PI controller, the transfer function Y44
in (12) is needed. The zero of the PI can be designed in order
to delete the pole with time constant T = Js/bs.

F. Loop With Road Transfer Function

When the overall system is considered, the wheel dynamics
are governed by the vehicle dynamic equations [25]. These
equations have to be implemented in order to obtain the entire
closed loop. In this paper, a simplified model will be adopted
for the wheel dynamic since the focus is the operation of
the drivetrain rather than the whole vehicle. Several works
in vehicle dynamics adopt the so called ”Magic Formula”,
an empirical based equation introduced by [26] capable of
modelling the force-slip curves. Although several expressions
for the Magic Formula have been proposed, the basic law is:

Fx = DFz sin(C arctan(Bσx − E(Bσx − arctan(Bσx))))
(34)

where B,C,D,E are parameters that depend on the geometry
and material of the tire and of the road. Fz is the vertical
load on each tire and σx = ωR−v

v is the longitudinal slip
where ω is the wheel speed and R is the wheel radius and
v is the vehicle speed. Fig. 15 shows the reaction force as
slip function for different vertical load conditions. As can be
noted, the curves have a peak value and after this limit curve
becomes unstable and the wheel starts to slip permanently.

In order to add the road transfer function, the slip is first
computed from the actual wheel tangential speed. Since the
whole vehicle dynamics is not included in this first simplified
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between input bevels and freewheel bevel is kr.
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model, the reference vehicle speed for the two wheels is
considered as:

vref =
1

2
(ωo1 + ωo2)Rwheel

(
1± w

2Rc

)
(35)
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Fig. 16: Reciprocal of the steering radius adopted for the
simulation. The radius rc is positive when the drivetrain in
Fig. 4 steers towards left.

where the higher reference speed is the one of the external
wheel in the road curve. w is the wheels distance and Rc is the
vehicle curvature radius. This vehicle model is approximated
since the wheels just transmit force when the vehicle is
steering. A more accurate vehicle model should consider that
the vehicle is accelerated through the grip forces, but (34)
also has to be changed since the slip calculation fails when
the vehicle speed is close to zero.
The magnetic transmission is tested varying the steering radius
and direction with a set of discrete values; for the simulation
Rc−min = 16 m and Rc−max = 26 m. In Fig. 16 the
reciprocal of the steering radius is plotted.

Fig. 17 shows the wheels rotor speed and in Fig. 18 the poles
rotor speed is reported. The drivetrain remains synchronous
and, as expected, the pole’s rotor speed is 2 order of magnitude
lower than the other rotors’ speed.

V. MAGNETIC DIFFERENTIAL DESIGN

In this section, a specific magnetic differential is chosen and
prototyped. The MDB configuration has been chosen since
its gear ratio is higher than MDA for a given MG design
(the manufacturing is also slightly easier). The rotational
speeds are set to typical automotive ones, where internal
combustion engines are normally in the range of 0− 4 krpms
and the differential gear has a ratio around 4. The car gearbox
reduction is supposed to be fixed to 1, which is normally the
gear ratio for the 4th or 5th gear. The inner rotor nominal speed
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with the time dependent steer-
ing radius shown in Fig. 16.

TABLE III: Single magnetic gear geometrical parameters.
Parameter Name Value

Pi Inner pole pairs 5 -
Po Outer pole pairs 13 -
ns Iron poles 18 -
G Gear ratio 3.6 -

tFeext Outer rotor yoke thickness 8 mm
tFeint Inner rotor yoke thickness 8 mm
tPMext Outer PM thickness 5 mm
tPMint Inner PM thickness 6.75 mm
tAirext Outer airgap thickness 2 mm
tAirint Inner airgap thickness 2 mm
tPoles Iron poles thickness 8.25 mm

L Axial length 20 mm
δFe Iron lamination thickness 0.35 mm
αin
PM Inner PM angle 12 deg

αout
PM Outer PM angle 6.92 deg

nPMr
in Inner PM radial segments 3 -

nPMr
out Outer PM radial segments 2 -

nPMa
in Inner PM axial segments 2 -

nPMa
out Outer PM axial segments 2 -

is set to ωi = 3000 rpm, and the differential gear ratio is set
to Gn = 3.6. The design of the two MGs included in the
MDB prototype has been carried out through the automatic
procedure described in [27]. Through this method, the gear
geometry has been optimized, in the multi-objective sense,
as a trade-off between torque density and efficiency, while
multi-physic constraints such as PMs demagnetization, thermal
aspects and mechanical limits due to the materials have been
accounted for. Among them, demagnetization turned out to be
the most severe constraint for the design of these MGs, and an
high intrinsic coercive field PM resulted from the optimization
procedure (for a comprehensive overview of optimal MGs
design versus PM grades the reader is referred to [28]). The
geometrical parameters of the single optimal magnetic gear are
reported in Tab. III, while the materials’ main characteristics
are summarized in Tab. IV.

After defining the prototype layout, each single magnetic
gear is simulated first through standard 2D magneto-static
(based on the vector potential A) and 3D magneto-static
finite element (FE) simulations (based on the magnetic scalar
potential ψ), both performed with Comsol Multiphysics. This
allows for evaluating static magnetic fields distributions and
to asses the maximum torque of the differential and the torque
ripple. After that, a 2D magneto-quasi-static FE simulation in
time domain is performed to evaluate the losses in screws
and PMs. This is used instead of a full 3D approach in
order to limit the computational time and resources: the MG
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TABLE IV: Material characteristics of the two magnetic gears
used in the prototype.

Parameter Name Value
Fe Ferromagnetic material M400-50 -
ρFe Iron density 7700 kg

m3

ρe−Fe Electrical resistivity 45 µΩcm

λ Thermal conductivity 28 W
mK

PM Permanent magnets material NdFeB 40SH -
Hc Coercive magnetic field 939 kA

m
Hi Intrinsic magnetic field 1592 A

m
Br Remanent flux density 1.26 T

Tmax Maximum operating temp. 150 ◦C
PMc PM coating Epoxy -

ρe−PM Electrical resistivity 150 µΩcm
PL Thermoplastic HD 3D PA 12
ρPL Thermoplastic density 1000 kg

m3

σPL Tensile strength 48 MPa
Screw Screws material Brass -
ρs Screws density 8500 kg

m3

σs Tensile strength 360 MPa
ρe−s Electrical resistivity 6.3 µΩcm

Fig. 19: Gear magnetic flux density and iso-Az contour for
arbitrary rotors positioning in a 2D simulation.

geometry is non-periodic thus the whole geometry needs
to be modeled, leading to prohibitive efforts for a full 3D
time domain simulation. As will be demonstrated later, this
approach delivers satisfactorily accurate results.

In Fig. 19, the magnetic field norm is depicted while in Fig.
20 and Fig. 21 the radial and azimuthal magnetic flux densities
for the inner and outer airgaps are depicted. The periodicities
Pi and Po can be clearly identified, while the modulation effect
of the iron poles makes the waveforms non-sinusoidal. This
is especially evident in the harmonic analysis of the radial
fluxes in Tab. V, where the highest harmonics are shown. For
example, in the inner airgap, the harmonic with order Pi is
responsible for the torque transmission, while all the others
induce eddy currents in the PMs and therefore contribute to
power losses.

The simulated torques for an angular sweep of inner rotor
positions and fixed iron poles and outer rotor are depicted
in Fig. 22, while the maximum values are summarized in
Tab. VI. The results are obtained with 2D and 3D magneto-
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static FE simulations, where the torque difference is due to
the end effects of the axially short geometry (L ≪ D): as
shown in [29], [30], MGs suffer particularly from end effects
if compared to conventional electrical machines, especially
when torque evaluations are performed. This is due to the
wide equivalent airgap between inner and outer rotor (which
also accounts for the middle rotor slots) and the peculiar non-
periodic MG magnetic structure, where some of the inner and
outer magnets have opposite magnetization directions.

TABLE V: Harmonic analysis of the radial flux density of in-
ner and outer rotors and normalization w.r.t. highest harmonic.

Inner airgap radial flux density Outer airgap radial flux density
Harmonic Value (T) p.u. Harmonic Value (T) p.u.

5 0.387 1 5 0.111 0.28
13 0.0276 0.07 13 0.406 1
15 0.1 0.263 23 0.039 0.09
23 0.069 0.18 31 0.03 0.07
25 0.043 0.11 39 0.06 0.15
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Fig. 23: Torque and ripples at the maximum load angle. The
fractional gear ratio gives an almost negligible torque ripple.

The torque ripple is shown in Fig. 23 and is derived from
angular sweeps of the inner and poles rotors with a relative
position that results in the maximum achievable torque.

The eddy current losses in nonlaminated materials, i.e. PMs
and screws, have been evaluated through 2D FE simulations
in time domain, where additional constraints have been added
on these solid domains to enforce the net current to be zero
(otherwise in 2D a net current would flow). The A formulation
adopted in the ith solid domain with residual magnetization
Br is:

∇× (ν∇×A) = −σi ∂A

∂t
− σiVi

L
ez +∇× (νBr)∫

Si
JzdS =

∫
Si

(
−σi ∂Az

∂t
− σi

Vi
L

)
dS = 0

(36)

where A = Azez is the magnetic vector potential, ν is the
magnetic reluctivity, Jz is the induced eddy current, σi is the
PM or screw conductivity, Si is the domain area, −σi Vi

L ez

Fig. 24: Eddy currents snapshot from 2D time domain simu-
lations along axial direction induced in permanent magnets at
ωi = 3000 rpm. The eddy current in each solid domain has
zero integral according to (36).

Fig. 25: Permanent magnet loss distribution snapshot at
ωi = 3000 rpm from 2D time domain simulation. The loss
contribution due to the asynchronous field with periodicity Pi

is clearly visible on the outer rotor.

is the additional current density term and Vi is the equivalent
voltage drop across the ith solid domain that ensures the net
zero current property. The eddy current losses in PMs and
screws are calculated through the integration

∫
Si

J2
z

σi
dS. A

different strategy to estimate the 3D PMs losses could be to
introduce a fictitious PM conductivity as in [31].

Figs. 24 and 25 show the induced eddy currents and the
associated losses in the permanent magnet materials at inner
rotor speed ωi = 3000 rpm and poles speed ωs = 833.3
rpm. A relevant induced current is developed in the poles rotor
screws according to Fig. 24. In the outer magnets the trace of
the asynchronous magnetic field with Pi periodicity due to
the inner rotor is clearly visible: the inner rotor component
generates a nil average torque and just contributes to losses.
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TABLE VI: Single magnetic gear maximum rotor torques
calculated with 2D and 3D magneto-static FE models.

Parameter Name Value Unit
T 2D
i Inner rotor max. torque 5.1 Nm

T 2D
o Outer rotor max. torque 13 Nm

T 2D
s Iron poles rotor max. torque 18.4 Nm

T 3D
i Inner rotor max. torque 3.63 Nm

T 3D
o Outer rotor max. torque 9.45 Nm

T 3D
s Iron poles rotor max. torque 13.1 Nm

∆2d−3d Delta between 2D and 3D -29 %

TABLE VII: Magnetic differential prototype maximum speeds
and mechanical couplings gear ratios.

Parameter Name Value
ωM
i Maximum inner rotor speed 3000 rpm

ωM
s Maximum poles rotor speed 1000 rpm

ωM
o Maximum outer rotor speed 290 rpm

ωM
oo Maximum interconnection shaft speed 1450 rpm

ωM
c Maximum M2 rotor speed 1450 rpm
Gi Mechanical ratio coupling source 1:1:1 -
Go Mechanical ratio coupling outer rotor 1:5 -
Goo Mechanical ratio coupling interconnection 1:1:-1 -

From the previous sections, the equation that relates the
wheels speed in the MGB typology is:{

ωs1 = Po

ns
ωo +

Pi

ns
ωi

ωs2 = −Po

ns
ωo +

Pi

ns
ωi

(37)

In the maximum steering conditions formulated in Sec. II, the
relation between the wheels speed is ωs1 = Ψmaxωs2, thus:

ωs1 =
Po

ns
ωo +

Pi

ns
ωi = Ψmax

(
− Po

ns
ωo +

Pi

ns
ωi

)
(38)

It is therefore possible to determine the maximum speed of
the outer rotors and of the interconnection shaft:

ωM
o =

Pi

Po

Ψmax − 1

Ψmax + 1
ωi =

5

13

1.67− 1

1.67 + 1
3000 = 290 rpm

(39)
The speed of the interconnected shaft ωoo reads:

ωM
oo =

Pi

Po

Ψmax − 1

Ψmax + 1
ωi

1

Go
= 290 · 5 = 1450 rpm (40)

The nominal speeds of the prototype shafts are summarized in
Tab. VII. In Fig. 26, a schematic representation of the MDB
test rig is depicted.

VI. MOTORS DATA AND ELECTROMAGNETIC LOSSES
ESTIMATION

The permanent magnets synchronous motors main parame-
ters are summarized in Tab VIII. In this paper, only M1, M2
and M3 are used for loss and maximum torque measurement.

The electromagnetic losses in a magnetic gear are due to
time-varying fluxes in soft and hard magnetic materials and in
solid nonmagnetic materials. The power loss in PMs is PPM =
L ·
∫
SPM

ρPM · J2
z dS and the power loss in solid screws is

Ps = L ·
∫
Ss
ρs · J2

z dS, in accordance to Sec. V, where the
time domain formulation (36) is used.

In soft materials, the flux loci is rotational in the whole
volume, thus the conventional Steinmetz approaches would
provide unreliable results. The generalized Steinmetz approach

M1

M3 M4

M2
MG1 MG2

Gi

GooGo Go

Fig. 26: Schematic connection of the MDB test rig. The motors
M3 and M4 are the wheel loads. M1 is the high speed input
motor, M2 is the auxiliary motor (see Fig. 36 for a comparison
with the real prototype).

TABLE VIII: Prototype motors main parameters.
Parameter Name Value
Code Motor code MTRI 140.50
Name Motor name in Fig. 26 M3 - M4
ns Nominal speed 1500 rpm
Tn Nominal torque 9.2 Nm
Tm Maximum torque 25 Nm
J Rotor inertia 4.2 kg cm2

Vn Nominal voltage 400 V
In Nominal current 2.9 A
fn Nominal frequency 125 (10 poles) Hz

Code Motor code MTRI 96.050.001
Name Motor name in Fig. 26 M1 - M2
ns Nominal speed 3000 rpm
Tn Nominal torque 5.2 Nm
Tm Maximum torque 15 Nm
J Rotor inertia 2.88 kg cm2

Vn Nominal voltage 400 V
In Nominal current 3.5 A
fn Nominal frequency 200 (8 poles) Hz

is the natural extension to non-sinusoidal waveforms [32],
[33], and this method has been adopted for a first estimation
of the gear efficiency despite the limited accuracy when DC
biases are present.

According to the classical Steinmetz loss equation:

PFe = k · fαBβ (41)

the generalized specific loss is obtained:

P ′
Fe = k′ ·

∣∣∣dB
dt

∣∣∣αBβ−α
( W
Kg

)
(42)

where:

k′ =
k

(2π)α−1
∫ 2π

0
| cos θ|α| sin θ|β−αdθ

(43)

The values k, α and β are obtained through the fit of the
material losses with the standard formulation (41).

The specific losses for the iron adopted for the yokes and
poles are depicted in Fig. 27 for different values of polarization
and frequencies. The fitting results in k = 0.0011, α = 1.688,
β = 2.443, k′ = 1.78 · 10−4.

In Fig. 28 the 2D simulation result of the magnetic gear
losses is presented: the inner rotor speed ranges between 0
to the nominal rotation speed ωi = 3000 rpm, and the load

12

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2022.3208628

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on November 30,2022 at 13:42:47 UTC from IEEE Xplore.  Restrictions apply. 



0 500 1000 1500

Polarization (mT)

10-2

10-1

100

101

102

103

S
p

e
c
if
ic

 l
o

s
s
 (

W
/k

g
)

50 Hz

60 Hz

200 Hz

700 Hz

Fig. 27: Specific iron losses VS polarization at various fre-
quencies.

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Time (s)

0

1

2

3

4

5

6

7

8

L
o

s
s
e

s
 (

W
) 

- 
S

p
e

e
d

 (
k
rp

m
)

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1
E

ff
ic

ie
n

c
y
 (

a
d

im
)

Magnets losses

Screws losses

Iron losses

Inner speed

Efficiency

Fig. 28: Magnetic gear electromagnetic losses VS time for
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rpms (Inner speed in the legend). Losses and efficiency are
computed at maximum torque capability from 0 to ωM

i .

angle is the maximum one. As expected, the losses associated
to eddy currents increase quadratically with the speed, while
the iron losses grows sub-quadratically. A relevant loss con-
tribution is given by the screws. Figs. 29 and 30 show the
loss trend for different load angles, i.e. θe = 0, θe = π/4 and
θe = π/2. While the iron and PMs losses are independent on
the load angle, the eddy losses inside the poles screws have
a stronger dependence on the load angle, with a maximum
when θe → π/2. This trend is confirmed in [34], where the
efficiency map reaches the highest values at low speeds and
are weakly dependent on the load angle.

VII. DAMPING AND INERTIA ESTIMATION

In this section, the bearings losses and rotors inertia are
analyzed. These parameters complete the set of data needed by
the reader interested in modeling the dynamic responses of the
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Fig. 29: Magnetic gear electromagnetic losses VS inner rotor
speed for different load angles θe. The trend is always
superlinear in accordance to the standard electrical machines.
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Fig. 30: Same quantities of Fig. 29 in the speed range 1.5−3
krpm.

system. The friction is related to several factors according to
[35]. The most relevant are the lubricant type and temperature,
the axial and radial bearing loads, the rotational speed. For
the prototype two SKF spheres bearings models have been
adopted, with code 6002 and 61816. The main bearings data
have been summarized in tables IX and X. In Figs. 31, 32
the friction losses and power losses VS rotational speeds are
shown for radial loads kr = 10 N and kr = 100 N, negligible
axial load, default temperature of 70 ◦C.

The exact friction evaluation would require a coupled elec-
tromagnetic - mechanical model. Since the friction is rather
low if compared with the nominal torque of the differential, a
constant cautelative radial load of 100 N is assumed, and the
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TABLE IX: SKF 6002 bearing parameters.
Parameter Name Value

d Shaft diameter 15 mm
B Bearing width 9 mm
m Bearing mass 0.03 kg

vlim Speed limit 32 krpm
C100 Static friction torque, 100 N 1 Nmm
b100 Speed dependent interpolation, 100 N 0.0037 Nmm s/rad

TABLE X: SKF 61816 bearing parameters.
Parameter Name Value

d Shaft diameter 80 mm
B Bearing width 10 mm
m Bearing mass 0.15 kg

vlim Speed limit 8 krpm
C100 Static friction torque, 100N 8.1 Nmm
b100 Speed dependent interpolation, 100N 0.072 Nmm s/rad

linearized damping coefficients of each rotor is derived as:
bi = n6002 · 0.0037 = 0.015 Nmm s/rad
bo = n61816 · 0.0072 = 0.072 Nmm s/rad
bs1 = bs2 = n61816 · 0.072 = 0.288 Nmm s/rad

(44)

where n stands for the number of bearings. The inertia
estimation is more precise since its dependence is based only
on the densities and geometry of the rotors. In Figs. 33 and
34 the inner rotor assembly and interconnected outer rotor
assembly are shown, respectively.

VIII. VALIDATION

In this section, the models for gear losses and the gear
maximum input torque capability are validated through mea-
surements. Fig. 35 represents simulated and measured losses
for a single magnetic gear with no load on the output rotor
(iron and bearings losses due to M3 are supposed to have a
negligible effect on the load angle θ). In order to guarantee

200 400 600 800 1000 1200 1400 1600 1800 2000

Rotational speed (rpm)

2

4

6

8

10

12

14

16

18

20

22

T
o
rq

u
e
 (

N
m

m
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
o
w

e
r 

(W
)

Torque kr=10 N

Torque kr=100 N

Power kr=10 N

Power kr=100 N

Fig. 31: Bearings 61816 the-
oretical friction torque and
power losses with radial load
kr = 10 N and kr = 100 N.

500 1000 1500 2000 2500 3000 3500 4000

Rotational speed (rpm)

0

0.5

1

1.5

2

2.5

3

T
o
rq

u
e
 (

N
m

m
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o
w

e
r 

(W
)

Torque kr=10 N

Torque kr=100 N

Power kr=10 N

Power kr=100 N

Fig. 32: Bearings 6002 the-
oretical friction torque and
power losses with radial load
kr = 10 N and kr = 100 N.

TABLE XI: Differential mechanical parameters.
Parameter Name Value

bi Inner rotor damping 0.015 Nmm s/rad
bo Interconnection rotor damping 0.072 Nmm s/rad
bs Wheel rotor damping 0.288 Nmm s/rad
Ji Inner rotor inertia 11.3 kg cm2

J ′
o Intercon. rotor inertia (from MG) 313.3 kg cm2

J ′′
o Intercon. rotor inertia (from M2) 12.53 kg cm2

Js1, Js2 Wheel rotors inertia 12.5 kg cm2

Fig. 33: Inner rotor (without traction motor) and poles rotors
(without wheels) assembly for the evaluation of the inertia.

Fig. 34: Outer interconnected rotors assembly. The inertia seen
from the gears side is different from the one seen by the control
motor M2 side because of the coupling Go.

a fair comparison between the simulated losses and the mea-
surements, the electromagnetic gear losses have been obtained
by subtracting from the input power absorbed by M1 the iron
and copper losses due to motor M1, the mechanical losses
due to Gi, the mechanical and iron losses due to M3, and
the bearings losses in the magnetic gear. By doing so, the
electromagnetic losses of a single magnetic gear are found,
and since the iron loss of M3 (which is the only contribution
to the MG load) results in a load torque less then 5% of the
gear nominal torque, thus the comparison with the simulated
no-load condition holds. The measurements are shown from
ωi = 1500 rpm in order to limit the numerical error obtained
when small values are obtained by subtraction.

In Tab. XII, the differential input torque capability is vali-
dated. This measurement has been carried out by injecting in
motors M3 and M4 a DC current I = 5 A (I ≃ 1.25·

√
2In) in

two phases in order to block the wheels rotors and measuring
the current of motor M1 with a fixed reference speed ωr = 1
rpm. The current grows with a triangular-like shape till the
peak of Fig. 22, after that the inner rotor suddenly skips to
the next stable equilibrium point. The differential torque is
in good agreement with the 3D FE simulated one (retrieved
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TABLE XII: Validation of the differential maximum input
torque T s

i = 2 · T 3D
i (where T 3D

i is the 3D magneto-static
torque in Tab. VI) VS measurement.

Parameter Name Value Unit
T s
i = 2 · T 3D

i Inner rotor max. FE torque 3D 7.26 Nm
Tm
i Inner rotor max. measured torque 6.35 Nm
∆ Difference -12 %

from Tab. VI with a multiplying factor 2 since both MGs are
connected), the differences can be justified by material and
construction tolerances.

IX. COMMENTS ON TOPOLOGY AND MANUFACTURING

This section provides some comments regarding the class of
magnetic differentials in general. On the one hand, mechanical
differentials are a standard solution which is relatively easy

Fig. 36: Picture of the prototype. The motors labels are in
accordance to the ones in Fig. 26: here the traction motor M1
is fed, while the other motors are in no load condition.

to manufacture, but suffers from noise, vibrations, relatively
low efficiency and needs maintenance. On the other, magnetic
differentials can offer precious advantages, especially where
maintenance is costly, but the system is more complex to
manufacture since it has three rotors, even if multiple-rotor
systems are quite diffused in mechanical systems (e.g. in
planetary gear sets). Thus, there is not a clear advantage of
one topology over the other, the best solution depends on the
reliability level of the application and on the impact of each
of the earlier cited factors. The MD could be used where high
efficiency is required, where the presence of the lubrication
oil could be problematic, when noise is a decisive factor or
in the applications where particular layouts of the differential
are requested.

From our experience in the manufacturing process of this
device, MG inner and outer rotor are rather standard parts
of conventional electrical machines, the challenging part is
the middle rotor, since the iron poles are laminated and the
mechanical structure should be designed in order to withstand
electromagnetic and centrifugal forces. The 3D printing of the
polymeric structure could be a good choice, but its feasibility
depends on the size of the device and on the nominal torques
of the middle rotor.

X. CONCLUSIONS

In this paper, magnetic differential devices are proposed
as alternatives to conventional mechanical differentials. Two
main topologies have been suggested and one of them has
been prototyped. Detailed finite element analyses have been
performed to estimate torque, torque ripples and losses of the
differential and the results have been validated experimentally
with very good agreement between models and measurements.
The magnetic prototype has proven to achieve high levels
of electromagnetic efficiency which grows with a superlinear
trend typical of the electrical machines iron loss, thus its
superiority over the mechanical device is especially marked
at low speeds. The main differences with respect to mechan-
ical differentials is the lower rotational stiffness (ideally the
spur gears are infinitely stiff) and the power loss which is
weakly dependent on the load (thus the highest efficiency is
at full load). A future continuation of this work will focus
on implementations of the control strategies of the magnetic
differentials together with the full operation of the prototype
with the true vehicle response emulation in steering conditions.
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