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Abstract

The research described in this dissertation explores three distinct technological
domains: programmable networks, network-wide distributed blockchain technologies,
and cloud gaming. Nevertheless, these domains may appear distinct, the first two
often coexist and interact closely in modern distributed applications, and the last one
is an example of a modern distributed application. In the context of enhancing overall
performance, it’s crucial to recognize that each component can potentially serve as a
bottleneck that needs improvement. The primary research question underlying this
work is centered on optimizing network-wide distributed applications to minimize
latency, reduce resource consumption, and alleviate network overhead. Through
tailored solutions for each domain, such as novel mechanisms for state replication
in 5G networks, optimization of blockchain internal processes for latency-sensitive
applications, and development of efficient algorithms for game engine module
placement in distributed gaming environments, this dissertation aims to address these
challenges comprehensively. By acknowledging the interconnectedness of these
technological landscapes and their impact on performance, this research contributes
to a holistic approach to improving network-wide distributed applications.

As the first research domain, we consider modern 5G networks capable of
providing ultra-low-latency and highly scalable network services by employing
modern networking paradigms, such as Software-Defined Networking (SDN) and
Network Function Virtualization (NFV). The latter enables performance-critical
network applications to be run in a distributed fashion directly inside the infrastructure.
Being distributed, those applications rely on sophisticated state replication algorithms
to synchronize states among each other. In such a scenario, we propose STARE,
a novel state replication system tailored for 5G networks. At its core, STARE
exploits stateful SDN to offload replication-related processes to the data plane,
ultimately reducing communication delays and processing overhead for virtual
network functions. We provide a detailed description of the STARE architecture
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alongside a publicly available P4-based implementation. Furthermore, our evaluation
shows that STARE is capable of scaling to large networks while introducing low
communication overhead.

Regarding the second research domain, blockchains offer trust and immutability
in untrusted environments, but they are typically not fast enough for latency-sensitive
applications. Hyperledger Fabric (HF) is a common enterprise-level platform offered
as a fast Blockchain-as-a-Service (BaaS) by cloud providers. In HF, every new
transaction requires a preliminary endorsement by multiple mutually untrusted
organizations, contributing to the delay in storing the transaction in the blockchain.
The endorsement policy is specific for each application and defines the required
approvals by the Endorser Peers (EPs) of the involved organizations. Given an
input endorsement policy, we study the optimal choice to distribute the endorsement
requests to the proper EPs. We propose the OPtimal ENdorsement (OPEN) algorithm,
devised to minimize the latency due to network delays and the processing times
at the EPs. Through extensive simulations, we show that OPEN can reduce the
endorsement latency by up to 70% compared to the state-of-the-art solutions and can
approximate well the optimal policies while offering a negligible implementation
overhead compared to them.

In the third research domain, online gaming has seen a significant surge in
popularity, becoming a dominant form of entertainment worldwide. This growth has
necessitated the evolution of game servers from centralized to distributed models,
leading to the emergence of distributed game engines. These engines allow for the
distribution of Game Engine Modules (GEMs) across multiple servers, improving
scalability and performance. However, this distribution presents a new challenge:
the game engine module placement problem. This problem involves strategically
placing GEMs to maximize the number of accepted placement requests while
minimizing the delay experienced by players, a critical factor in enhancing the
gaming experience. We show that the problem can be formulated as an Integer
Linear Programming (ILP) model. It provides an optimal solution but suffers from
high computational complexity, making it impractical for real-world applications.
To address this challenge, our research introduces two novel heuristic algorithms,
MAP-MIND and MAP-MIND*. The MAP-MIND algorithm demonstrates superior
performance, achieving near-optimal delay and more than 92% GEM request accepta-
nce in the worst heterogeneous scenarios. The MAP-MIND* algorithm, while
slightly under-performing MAP-MIND in terms of delay, proves to be significantly
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faster, making it a viable alternative for real-world applications with equal GEM
request acceptance. The trade-off between the two algorithms offers a flexible
approach to GEM placement, balancing performance and computational efficiency.
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Chapter 1

Introduction

Nowadays, modern network technologies are evolving more towards increasing
performance and functionality. The integration of novel technologies into this
dynamic world is more and more promising as it introduces new use cases and
opportunities. Nevertheless, to achieve these advances, some new challenges must
be addressed through carefully advised solutions. In other words, the modern
infrastructure of the current fast-evolving systems (e.g., distributed applications)
needs to be optimized to enhance performance. This would need some advancements
designed thoughtfully for these demands, which may require the integration of some
cutting-edge technologies to meet the specific needs of this digital age.

In modern distributed applications, managing state sharing across distributed
components is critical for maintaining consistency and preventing data inconsistencies,
often achieved through techniques like distributed locking, replication, and event
sourcing. Trusted decision-making and data integrity are safeguarded through
robust authentication and authorization mechanisms, encryption techniques, digital
signatures, and consensus mechanisms, fostering trust and reliability in distributed
environments.

Efficient performance in modern distributed applications hinges on minimizing
latency, a task that necessitates the utilization of streamlined communication protocols,
edge computing, caching mechanisms, and asynchronous processing models. Resear-
chers have delved into numerous strategies to optimize latency, including refining
communication protocols, harnessing edge computing resources, implementing
caching systems, and embracing asynchronous processing techniques to reduce



2 Introduction

round-trip times and enhance user satisfaction. Our efforts in this domain have
been marked by thorough research and innovative proposals aimed at addressing
key challenges such as latency reduction while facilitating secure state-sharing
among potentially untrusted parties, or simultaneously optimizing user experience
by expediting request acceptance and minimizing latency in applications like cloud
gaming. Through our relentless pursuit of optimized solutions, we aspire to establish
resilient, high-performing distributed systems capable of meeting the demands of
modern computing environments while prioritizing trustworthiness and integrity.

We start our research by deepening into two different and distinct areas of
modern technology, namely programmable networks, and blockchains which are
undoubtedly intersected by the ever-growing networking field. Finally, we considered
cloud gaming, as an obvious example of a next-generation distributed application
with a new paradigm in the entertainment industry, to be investigated.

Each of these works provides unique facilities in terms of solutions for the recent
challenges we face day-by-day in this dynamic landscape.

1.1 5G Network Evolution: NFV-SDN Synergy with
P4 Switches

The evolution of modern networking infrastructures is characterized by transformative
changes driven by Software Defined Networking (SDN) [1], Network Function
Virtualization (NFV) [2], and Programmable Data Planes, particularly with the
emergence of technologies like Programming Protocol-independent Packet Processors
(P4) [3]. These domains collectively represent a paradigm shift in how networks
are designed, managed, and operated, offering unprecedented flexibility, agility, and
efficiency in meeting the evolving demands of modern communication environments.
Rapid growth in demand for fast and reliable services has made NFV and SDN the
main pillars of modern 5G management infrastructures, as emphasized by ETSI [4].

SDN revolutionizes network management by decoupling the control plane from
the data plane, enabling centralized control and programmability of network behavior
through software-based controllers. SDN introduces flexibility and scalability by
abstracting network control functions from the underlying hardware, allowing for
dynamic provisioning, traffic engineering, and policy enforcement across heterogene-
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Fig. 1.1 SDN model [1].

ous network environments. This architectural shift is depicted in Fig. 1.1, illustrating
the separation of control and data planes and the centralized control provided by the
SDN controller [1]. SDN controllers, such as OpenDaylight [5] or ONOS [6], provide
a centralized point of control for managing network resources and implementing
network policies.

Network Function Virtualization (NFV) transforms traditional network architectu-
res by virtualizing network functions previously implemented in dedicated hardware
appliances. NFV replaces proprietary hardware with software-based virtualized
network functions (VNFs) running on commodity servers, enabling on-demand
service deployment, scaling, and chaining to meet changing service requirements.
Fig. 1.2 showcases the concept of NFV, illustrating the virtualization of network
functions [2].

Furthermore, Programmable Data Planes, exemplified by technologies like P4,
extend the programmability and customization of network devices to the packet
processing level. P4 provides a high-level language for defining packet processing
logic, allowing network operators to tailor packet forwarding behavior based on
specific applications, protocols, or policies. P4 allows for the definition of flexible
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Fig. 1.2 NFV model [2].

Fig. 1.3 The P4 abstract switch model. [8].

and customizable packet processing pipelines, enabling the implementation of
complex forwarding behaviors tailored to specific network requirements. Fig. 1.3
demonstrates a general P4 workflow showcasing the customizable packet processing
pipeline and the ability to define packet forwarding rules based on application
requirements [7]. Moreover, this programmability at the data plane level complements
the centralized control provided by SDN, allowing for fine-grained control and
optimization of packet forwarding behavior.

Network operators now face a scenario where general-purpose devices are
widespread and easily programmable, opening opportunities for deploying new
control and management applications and running applications close to end customers.



1.2 Network in Blockchains: The Hyperledger Fabric Endorsement case 5

However, new challenges arise related to the necessity of richer coordination schemes
among network applications, which rely on shared global states across multiple VNFs.
Additionally, while speed and availability remain crucial, application transparency
becomes fundamental in modern infrastructures, demanding a simple, adaptable
system for facilitating data exchange across various VNFs with minimal modification
to their fundamental setup.

Advancements in SDN have impacted SDN switches’ architecture and greatly
improved SDN controllers’ scalability and performance. NVF enables efficient
resource utilization and reduces operational costs compared to traditional hardware-
based network deployments. Programmable data-planes provide a novel methodology
that is changing next-generation SDN switches, enabling customers to incorporate
custom code directly into switches for customized packet processing without introdu-
cing latency. Technologies like P4 describe how data plane devices process packets,
promoting creativity in applications for traffic control and monitoring [9].

These technological advancements offer unparalleled flexibility and control
over network operations, empowering organizations to build agile, efficient, and
scalable networks capable of supporting a diverse range of applications, services,
and deployment scenarios.

1.2 Network in Blockchains: The Hyperledger Fabric
Endorsement case

Nowadays, Blockchains have become an important asset across a wide range of
ICT applications, serving as a foundational pillar that fosters trust and reliability
among various entities or parties amidst uncertainties in untrusted environments.
Beyond their fundamental role, Blockchains offer a multifaceted enhancement to the
ICT domain by addressing crucial aspects of security and privacy while promoting
a decentralized organizational structure. The immutability intrinsic to Blockchain
technology ensures not only the integrity of stored data but also provides unique
visibility and traceability, attributes particularly beneficial in sectors such as banking,
supply chain management, IoT, healthcare, and the energy industry [10–12].

A Blockchain is essentially a digital ledger that securely and transparently records
transactions across a network of computers. Each transaction is bundled into a
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Fig. 1.4 Blockchain structure. [13].

“block” and added to a chain of previous transactions, creating a chronological and
unalterable record (see Fig. 1.4). In simple terms, think of a Blockchain as a shared,
tamper-proof database that enables secure and transparent transactions without the
need for intermediaries.

The applications of Blockchain technology are diverse and far-reaching. One
of its primary use cases is in financial transactions, where it enables secure and
efficient peer-to-peer transfers of digital assets such as cryptocurrencies like Bitcoin.
Beyond finance, Blockchain has been applied to supply chain management, ensuring
the traceability and authenticity of goods from origin to destination. It also holds
promise in fields like healthcare, where it can securely store and share patient records
while maintaining privacy and security. Essentially, Blockchain technology offers
a decentralized solution to various challenges associated with trust, security, and
transparency, making it a powerful tool for innovation across industries.

The classification of Blockchains introduces a spectrum of accessibility and
permissions. A Blockchain is named public when its ledger is open for everyone to
inspect, whereas it will be considered private when access is restricted. Additionally,
the main distinction between permissioned and permissionless Blockchains revolves
around the participation requirements for validating transactions, a nuanced consider-
ation underscored by the literature on the subject [14]. Unlike public permissionless
Blockchains like Bitcoin [15], the realm of enterprise applications demands performa-



1.2 Network in Blockchains: The Hyperledger Fabric Endorsement case 7

nce metrics that often surpass the capabilities of their permissionless counterparts.
This is especially evident in scenarios where use cases dictate the necessity of
knowing the identities of involved participants.

Looking ahead, the future of blockchains holds immense promise for further
innovation and adoption. With ongoing research and development efforts focused
on improving scalability, privacy, and usability, blockchain technology is poised
to revolutionize various industries, including finance, supply chain management,
healthcare, and identity verification. As the technology continues to mature and
overcome existing limitations, it has the potential to reshape the global economy and
empower individuals and organizations with unprecedented levels of trust, security,
and transparency.

For instance, in the complex landscape of financial transactions, where adherence
to notary service regulations is paramount, a delicate approach becomes indispensable.
It is in response to these intricate demands that private-permissioned blockchains
come to the fore. Platforms such as Hyperledger Fabric (HF) [16] and Corda [17]
appear as tailored solutions, adeptly meeting the exact regulatory and performance
requirements of these specialized domains. These private-permissioned blockchains
not only assure compliance but also offer a flexible and customizable framework,
aligning seamlessly with the complex needs of current ICT applications.

HF blockchain serves as the framework for constructing modular apps or solutions.
It supports replaceable components, such as consensus and membership services,
allowing for a plug-and-play environment. It is also intended to fulfill the needs of
a wide range of industries. Scalability and speed are two main drawbacks of most
blockchains which mostly relate to their consensus. In contrast, HF provides a novel
way to consensus that allows for scalable performance while protecting anonymity.

Smartly, HF uses an architecture called Execute-Order-Validate for transactions,
enabling the definition of endorsement policies. The endorsement policy is a logical
combination of the participants that based on it a transaction should be approved by
participants (e.g., from four participants namely A, B, C, and D, we need A and one
among B, C, and D). This design in which HF executes transactions before reaching
a final agreement on their order departs completely from the formal order-execute
way (e.g., Proof of Work (PoW) consensus). During the execution phase, the client
sends the transaction to some nodes called Endorser Peers (EPs), based on the user’s
specified endorsement policy. Each EP processes the transaction by only simulating
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it without applying the results on the blockchain. The simulation result, denoted
as “endorsement”, is signed by the EP and returned to the client. Finally, if the
endorsement policy is satisfied through the participants that calculated and signed
the transaction, the signed and endorsed proposal of the transaction will be sent to
the blockchain nodes to be stored. This important but smart change led to a massive
increase in the scalability of HF.

Hyperledger Fabric deserves to be on any pragmatic assessment of blockchain
systems’ shortlist. When combined, Fabric’s unique features allow it to be a highly
scalable permissioned blockchain system with flexible trust assumptions. This allows
the platform to support a wide range of industry use cases, including supply-chain
logistics, government, banking, healthcare, and much more [18].

1.3 Gaming Evolution: From Online Gaming to Cloud
Gaming

In recent years, a notable trend in the world of video games has been observed.
They are increasingly evolving into online services. In an online game, the gaming
experience mostly relies on a server that provides a shared exchange point for many
players. This central point may provide a single-user (i.e., single-player) experience
as well as a shared virtual environment for the users to interact with each other. In
any case, the server is responsible for efficiently managing the shared resources
among the players, independently of the game mechanics.

Online games’ evolution has seen many stages. In the beginning, a centralized
(physical) server was in charge of managing all gaming sessions, with obvious
scalability issues. In the second generation, with the increasing availability of cloud
computing, gaming servers have been distributed (replicated) in the cloud and run as
a combination of virtualized software services. Even though the adoption of cloud
computing to implement partial cloud gaming allowed for significant cost reduction
and a scalability increase, this paradigm may require special proprietary hardware
and/or software from the user side to use the gaming platform.

In the last generation, complete cloud gaming has been introduced. In complete
cloud gaming (or just cloud gaming which is also known as game-streaming), the
computation is completely offloaded to the remote (cloud-based) server, and a video
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Fig. 1.5 Game Engine (GE) evolution (a) Monolithic GE. (b) Cloud GE. (c) Distributed
GE. [23].

stream is sent to the player. A client handles the player’s inputs, which are sent back
to the game server. This paradigm shift eliminates the need for gamers to acquire
and maintain cutting-edge hardware while making high-quality gaming experiences
more accessible than ever before. As a result, the number of players using game
streaming is ramping up, opening up new business opportunities for modern game
companies. Services like Google Stadia [19] (now discontinued), Amazon Luna [20],
GeForce Cloud Gaming [21], and Microsoft Xbox Cloud [22] exemplify this model,
where the player’s device is only responsible for displaying the game scene streamed
from private data centers equipped with dedicated hardware.

Hopefully, as discussed in [23], the new way to provide gaming services will
move millions of existing and next-generation players from legacy platforms to cloud
gaming (see Fig. 1.5.

Anyway, such a large-scale migration might generate a workload able to overtax
even hyper-scaling cloud architectures. While the capability to scale up in terms of
raw computation power can be given for granted, modern cloud architectures are
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not designed to organize internal modules while taking into account strict Quality of
Service (QoS) requirements.

1.4 Organization of the thesis

This thesis focuses on addressing additional research questions motivated by the
incorporation of programmable data planes into modern 5G use cases (Chapter 2). In
Chapter 3, we analyze the role of the network in the distributed world of blockchain
applications, exploring more specifically the platforms such as Hyperledger Fabric.
We also discuss the growing area of cloud gaming (Chapter 4).

We carefully investigate the ways that programmable data planes can improve
the efficiency of data flows over wide-area networks. Through our shift to rapid
and effective resource use in blockchain settings, we want to find solutions that
improve the overall effectiveness of these decentralized systems. Ultimately, we go
into the complexities of effectively allocating resources for distributed game engines,
focusing particularly on coordinating the procedure with users’ perceived Quality of
Experience (QoE).



Chapter 2

Data-plane assisted state replication

A part of the work presented in this chapter has been published in [24] and is reported
here for the reader’s convenience:

• I. Lotfimahyari, G. Sviridov, P. Giaccone and A. Bianco, "Data-Plane-Assisted
State Replication With Network Function Virtualization," in IEEE Systems
Journal, vol. 16, no. 2, pp. 2934-2945, June 2022.

2.1 Background and Context

Rapid growth in demand for fast and reliable services has made NFV and SDN the
main pillar of modern 5G management infrastructures, as emphasized by ETSI [4].
SDN facilitates centralized network management by separating the data-plane in
switches from the control plane in a network controller, allowing for precise control
over network operations. NFV transforms the network infrastructure by replacing
dedicated hardware devices with general-purpose machines like commodity servers,
resulting in the virtualization of legacy devices as VNFs. This shift enables diverse
applications, such as IoT and real-time applications, and the deployment of control
and management applications for detailed network statistics. However, as new
applications emerge, challenges arise in coordinating between VNFs. Network
applications like DDoS detection algorithms, stateful load balancers, and user
mobility services require communication and cooperative decision-making, relying
on shared global states across multiple VNFs.
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In modern infrastructures, alongside speed and availability, application transparen-
cy is crucial. The current implementation of VNFs deeply impacts the existing
production network infrastructure, necessitating a flexible scheme for data sharing
across VNFs with minimal modification to their original structure. The possibility
of replicating local states on remote devices is the main pillar of most modern
distributed applications. It allows systems to efficiently scale to large sizes, thus
providing higher service availability and resilience.

The replication procedure typically involves a set of states, defined as generic
data structures that are to be shared among different devices. Noteworthy, an efficient
replication algorithm must guarantee that all shared states are kept “fresh” with
respect to one another, i.e., all replicas should have the same value. An important
example of such a necessity comes from distributed database systems, in which data
is located in different regions. In the case of real-time services, freshness becomes
of paramount importance, as otherwise it may introduce ambiguity or preclude the
correct functionality of the service. To this end, multiple-state replication schemes,
tailored for different applications, have been proposed.

Traditionally, simple gossip protocols have been widely employed to disseminate
information among different sites by optimistically propagating information in the
network [25]. Although easy to implement and requiring low computational and
storage overhead, this family of algorithms inevitably incurs practical limitations
related to data freshness and resilience to faults [26]. To solve these issues, modern
services rely on a broad variety of replication algorithms with specific algorithms
being chosen to satisfy particular service requirements [27]. Such requirements are
summarized by the CAP theorem [28] which states that for a replication algorithm,
out of Consistency, Availability, and Partition-tolerance only two properties can be
chosen at the same time. More formally, the CAP theorem defines three fundamental
properties a replication algorithm should satisfy:

1. Consistency: Any read performed on any replica of the state will always return
the most (globally) recent value of such a state, or eventually an error. It
follows that all non-faulty replicas will always contain the same value for a
given state.

2. Availability: The availability property guarantees that any read performed on
any replica will yield a non-error result independently from the freshness of
the state value. It follows that no service disruption is possible in the case of
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faulty replicas. Yet, if consistency property is not satisfied, the system must be
designed in such a way as to guarantee correct functionality in the presence of
out-of-date state values.

3. Partition-tolerance: Partition-tolerance defines the reliability property of the
replication algorithm. If this property is satisfied, the replication system is
guaranteed to operate correctly even in the case of an arbitrary number of
state-update messages being dropped or delayed by the network.

Being reliability a crucial factor in modern infrastructures, it follows that no
practical replication algorithm can operate without satisfying the partition-tolerance
property. This reduces the freedom of picking the possible property combinations
down to Availability-Partition-tolerance and Consistency-Partition-tolerance, which
leads to strong consistency1 and eventual consistency2 models for replication algorith-
ms, respectively.

In the rest of this chapter, we discuss the issues of state sharing especially
for synchronizing them across various Virtual Network Functions (VNFs). We
provide an overview of how existing technologies are based on stateful data-planes
and highlight possible future directions. Then, we propose our STAte REplication
(STARE) mechanism and explain its implementation details alongside its operation
modes. Subsequently, we evaluate STARE in an emulated test-bed to validate the
approach, showing that it is feasible to be implemented and run in a real P4-based
network. Alongside the evaluation, we quantify the resource occupancy to understand
the scalability of the approach. Then, we compare it against alternative solutions,
either centralized or distributed ones. Finally, we draw our conclusions.

2.2 Related works

The work in E-State [30] presents a state management framework to share the states
between VNFs by creating a logically distributed state memory. It provides fast reads

1The strong consistency in distributed computing, guarantees that all data replicas provide the
same value for a given operation at any time. It ensures immediate and uniform agreement across all
replicas, achieved through mechanisms like distributed transactions or consensus protocols [28].

2The idea of eventual consistency, pivotal in distributed computing, suggests that data replicas
might briefly diverge but will eventually align to a consistent state. It recognizes the complexities of
distributed setups, prioritizing availability and resilience while ensuring eventual harmony among all
replicas [29].
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and writes to flow-related states on the local VNF instance, and when global reads
are used, it provides an eventual consistency model, exactly as STARE assumes. In
E-State, replication is managed directly within the application layer, thus reducing
the net resources devoted to the VNF, especially when the replication is directed to a
very large number of VNFs. On the contrary, in STARE, the replication is offloaded
into P4 switches through a middleware running outside the VNF application. This
reduces the resources required within each VNF, which is not involved anymore
in the replication process. Furthermore, replication latency in STARE is mainly
affected by network congestion and communication details, not by the CPU load
on the VM or container running the VNF. Moreover, STARE is providing a simple
interface to the middleware to facilitate VNF development.

The work [31] addresses the problem of live-migrating VNFs. The migration
requires to transfer of the internal state of the original VNF to the new one in real
time. Thus, the problem is similar to our state-sharing problem between VNFs, but
with the peculiarity that the replication process occurs just once and in one direction.
The proposed framework SHarP separates the state migration problem from the
traffic steering scheme that reroutes the flows from the old VNF to the new one.
By decoupling the state replication by the traffic management, the framework is
compatible with any replication scheme, and in particular, it is compatible with our
STARE scheme, offloading the state replication into the data-plane.

There is a substantial ongoing effort to investigate application-level acceleration
and state replication via programmable data-planes. This is enabled by multiple
stateful switch architectures capable of holding persistent states and performing
custom packet processing, as proposed in the last few years. OpenState [32], which
introduces a minor architectural extension to the OpenFlow data-plane and control
plane, is capable of supporting custom persistent states inside the switch, which
can be interacted with by custom routines upon packet arrival, internal switch
signals, or timers. Open Packet Processor (OPP) [33] extended OpenState by adding
additional features that allow the execution of Extended Finite State Machines
(EFSM) directly in the data-plane. Similarly, P4-enabled switches [34] switches are
capable of performing the same tasks as OPP-based switches, yet they also provide a
comprehensive high-level programming language for the definition of custom packet
processing routines.
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In NetPaxos [35] the authors propose to move part of the traditional Paxos
consensus protocol into the network to accelerate its application-layer performance.
Being one of the most deployed protocols in distributed systems and a fundamental
building block for several distributed applications [36–38], NetPaxos showed the
potential benefit programmable data-planes can bring to the application level. On the
contrary, in SwingState [39] a first attempt has been made to perform state migration
entirely in the data-plane. The authors were able to dynamically migrate an in-
switch internal state across different switches but assumed a single copy of the state
that is on-demand migrated across the network. A step forward towards full data-
plane solutions has been made in [40], which proposed LOADER, a programming
abstraction for defining distributed network applications based on replicated states.
Yet, similarly to [39], the authors of LOADER focused just on internal states available
at the switches, thus without providing any interaction with other elements of the
network such as servers or VNFs. STARE, instead, closes this gap by providing a
comprehensible middleware between the application layer and the network. The
consistency model for the state replication adopted in STARE is the same as the one
considered in [40], for which the P4 implementation on the data-plane provides a
prototypal idea for the implementation of the publish-subscribe scheme in STARE.

More related to our work, the work in [41] proposed to use the concept of group
tables introduced in OpenFlow 1.3 to implement a publish-subscribe scheme to
increase the performance in terms of data delivery and notification process. While it
takes a step towards providing application-layer acceleration using SDN, it remains
highly dependent on the remote controller for any change in the subscriptions, while
STARE manages the subscription directly on the data-plane. The idea of [42] which
is source-routing pubsub with P4, is that the publisher sends the notification packet
containing a stack of headers similar to MPLS after the Ethernet header. Each stack
has two fields containing the switch ID and a bit-mask of the ports of the mentioned
switch that the copies of the Publish packet (notification) should be sent out of.

The authors of [42] propose a content-based publish-subscribe based on source-
routing multicast which exploits P4 programmable data-planes. They show that their
approach is better than competing schemes, including different implementations of
Application Layer Multicast (ALM) with software brokers, unicast, and broadcast
while having a similar structure to OpenFlow Multicast (OFM) [43]. In our work,
we compared STARE with the same approach. We show that our solution behaves
similarly to [42] in terms of the number of packets and network overhead during



16 Data-plane assisted state replication

the notification publish. Furthermore, apart from lacking scalability due to the
absence of a complete decoupling of publishers and subscribers, the authors of [42]
do not clarify how the subscription problem is handled in dynamically changing
scenarios. Indeed, dynamic subscriptions and publishes are completely supported
by construction in STARE, where they are handled without interaction with the
SDN controller. The work in [44] has addressed the problem of how to optimally
place replicated states within a programmable data-plane-enabled network. This has
been performed by taking into consideration both the data traffic and the replication
traffic overheads. The work has proposed a framework to optimize the number
of replicas and their placement within the network, taking into account the main
trade-off between data traffic and replication traffic. Differently from [44], STARE
does not optimize the placement of the VNFs within the network. Yet, we foresee
optimizing VNF placement as a potential future work.

2.3 State sharing

Recently, different proposals have emerged as substitutes for classic replication
algorithms. Motivated by the ever-rising number of connected devices and an ever-
growing number of different applications common to many devices, schemes such
as publish-subscribe [45] have been proposed.

Traditional publish-subscribe algorithms work in three phases. i) A given
subscriber can express their interest in a particular topic by specifying it to the
broker. ii) The broker builds and keeps track of a map between specific topics and the
subscribers interested in those topics. iii) Each time a publisher sends an update on a
specific topic to the broker, the broker forwards the update to all of the subscribers
to that topic. This scheme effectively enables one-to-many communication while
decoupling in time and space the publishers from the subscribers. An example of a
publish-subscribe model is demonstrated in Fig. 2.1.

2.3.1 Publish-Subscribe for VNF state synchronization

Low latency is among the main requirements for modern real-time network applicatio-
ns as it affects system reactivity and dramatically impacts user satisfaction. The
latency requirement is made even more crucial for sharing application-critical states



2.3 State sharing 17

Fig. 2.1 Publish-Subscribe model [46].

across different applications as it may affect the correct functionality of applications
relying on those states. From the point of view of a replication scheme, this translates
into the necessity of providing availability. Furthermore, since the majority of modern
distributed systems, such as IoT or cellular networks, operate in a loosely coupled or
fully autonomous way, supporting partition tolerance becomes fundamental. Indeed,
no network is immune to faults, so algorithms that implement some degree of
resilience to network failures are required. As a consequence, the Consistency-
Partition-tolerance model is typically deployed.

Publish-subscribe has been introduced as a possible solution for such kinds of
environments by closely mimicking the eventual consistency models, thus providing
fast and reliable state replication. Publish-subscribe protocols provide a message
exchange mechanism between the two main types of actors involved in the algorithm,
namely the publishers and the subscribers. The peculiarity of such schemes is that,
differently from the traditional replication algorithm, most of the complexity is
moved out of the endpoints and pushed inside a central entity, namely the broker,
which is responsible for collecting the data from the publishers and distributing it to
all the relevant subscribers.

The publisher is responsible for generating and sending messages (or events)
to the messaging system. These messages contain information that the publisher
wishes to distribute to interested parties. Publishers do not need to know who the
subscribers are. They simply publish messages to a topic or a channel without
concerning themselves with the specific recipients. Subscribers are entities that
express interest in receiving specific types of messages or events from the messaging
system. Subscribers subscribe to topics or channels, indicating which messages they
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are interested in receiving. When a publisher sends a message to a topic/channel,
the messaging system ensures that all interested subscribers receive the message.
Subscribers can receive messages in real-time or retrieve them from a message queue,
depending on the messaging system’s capabilities.

The broker, which is sometimes referred to as the channel or messaging middlewa-
re, acts as an intermediary between publishers and subscribers. Its primary role is to
receive messages from publishers and deliver them to the appropriate subscribers
based on their subscription preferences. The broker manages the routing and delivery
of messages, ensuring that messages are sent to all interested subscribers efficiently
and reliably. Additionally, the broker may provide other features such as message
filtering, transformation, and persistence, depending on the requirements of the
messaging system.

Utilizing a publish-subscribe scheme proves advantageous in environments
comprising diverse devices, as it necessitates minimal integration within the devices
while providing flexibility in managing various states and implementing the safety
properties inherent in traditional replication algorithms based on eventual consistency.
However, unlike traditional gossiping algorithms, publish-subscribe schemes may
encounter notable latency issues when the broker experiences excessive overload.
Consequently, the applicability of such mechanisms is constrained, particularly for
ultra-low-latency applications, such as those commonly targeted by 5G networks.

We opted for the publish-subscribe model for state sharing owing to its simplicity
and efficiency. This model operates asynchronously, enabling components to function
independently, thus streamlining implementation efforts. Additionally, it facilitates
effective communication by empowering publishers to dispatch updates without the
direct knowledge of subscribers. This characteristic renders it particularly suitable for
distributed systems where state sharing transpires across multiple nodes or services.

In fact, in a publish-subscribe system which typically has a software-based
broker, there are added constraints that can worsen latency issues during heavy loads.
Software brokers face limitations in processing power due to hardware constraints,
making it challenging to efficiently handle a surge in message volume. This can lead
to delays in message delivery as the broker struggles to keep up with the workload.
Additionally, scalability becomes an issue, especially if the broker is deployed on a
limited number of servers, hindering its ability to scale up to meet increased demand.
Resource contention further compounds the problem, as the broker competes for



2.3 State sharing 19

resources with other processes running on the same hardware during peak periods,
slowing down message processing and delivery. Moreover, the inherent overheads
in the software’s design and architecture, such as context switching and memory
allocation, add to latency under heavy load conditions. Optimizing the software
for varying load levels also poses a challenge, requiring careful configuration of
parameters like thread pool sizes and network buffers to minimize latency. Effective
management of these limitations is crucial for maintaining satisfactory performance
in pub-sub systems [47, 48].

2.3.2 Programmable data-planes in networks

Recent advances in the field of SDN led to considerable improvements not only in
the scalability and performance of SDN controllers but, most importantly, in the
architecture of SDN switches.

Programmable data-planes emerged as a novel paradigm for the next generation
SDN switches. Differently from traditional data-planes, programmable data-planes
such as Programming Protocol-Independent Packet Processors (P4) [34] and Flowbla-
ze [49] introduce the possibility of embedding user-defined programs directly inside
switches, thus enabling the possibility of executing custom code during the packet
processing pipeline at zero increased latency cost. Although commercial products
employing programmable data-planes still have numerous limitations in terms of
resources and programming semantics, the degree of programmability offered by
programmable switches remains sufficiently high. This flexibility is mainly because,
alongside programmability, programmable switches offer the possibility of keeping
persistent states inside switches thanks to the presence of stateful elements such as
registers and counters; hence, they are also usually referred to as stateful data-
planes. At the same time, numerous programmable switch architectures offer
the opportunity to define custom packet headers by directly programming the
packet parser, which was widely employed to develop novel traffic management
schemes [50] and monitoring applications [51]. The combination of all of the novel
features introduced by programmable data-planes makes them a perfect foundation to
build upon for novel algorithms targeting the in-network acceleration of application-
layer services.
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Fig. 2.2 The P4 abstract switch model [8].

P4 stands out as a revolutionary programming language designed specifically for
specifying packet processing in networking devices like switches, routers, and NICs.
Its protocol-agnostic nature empowers users to create highly customized packet
processing pipelines, offering unparalleled flexibility and efficiency in network
management. P4 benefits from a header parser based on a state machine that parses
any customer header defined by the user and operates on a match-action paradigm,
where packets are matched against predefined criteria, triggering corresponding
actions. This approach allows for fine-grained control over packet forwarding,
filtering, and modification, leading to optimized network performance and resource
utilization. An abstract of the P4 switch model is demonstrated in Fig. 2.2.

One of P4’s key advantages lies in its programmable data-plane elements, which
enable users to define packet processing behaviors directly in hardware. By moving
packet processing tasks closer to the network edge, P4 reduces latency and improves
overall network responsiveness. Additionally, P4’s target independence ensures
compatibility with a wide range of hardware platforms, including ASICs, FPGAs,
and software-based switches, offering unprecedented deployment flexibility. This
versatility allows organizations to leverage existing infrastructure while seamlessly
integrating P4-based solutions to meet evolving network requirements.

Moreover, P4 serves as a catalyst for innovation and research within the networki-
ng community. Its open-source nature encourages collaboration and experimentation,
driving advancements in network programmability, security, and performance. Resea-
rchers and developers leverage P4 to explore novel packet processing algorithms,
protocols, and architectures, leading to breakthroughs in areas such as programmable
networks, network function virtualization (NFV), and software-defined networking
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(SDN). In essence, P4 represents a paradigm shift in network programming, offering
unmatched flexibility, efficiency, and innovation in packet processing.

In this work, we propose STARE, a mechanism that mitigates the aforementioned
issues by providing an application layer-transparent method for state sharing in
5G networks. The replication in STARE is complementary to eventual replication
schemes running within clusters of distributed SDN controllers. STARE provides
seamless sharing of application-level states by partially replicating those states
across different VNFs. This is achieved by exploiting advances in the field of SDN,
specifically in the field of programmable data-planes. While in traditional SDN,
switches are left with little to no decision-making capabilities, thus fully relying on
the controller for any control plane-related operation, recent advances in the field of
SDN, introduced the concept of programmable data-planes by enhancing switches
with powerful packet processing pipelines and support of stateful operations.

To this end, STARE exploits these advances by defining a custom publish-
subscribe protocol run directly in the data-plane, thus not requiring any additional
hardware. By fully exploiting the potential of the stateful operations and programmab-
le pipelines present in programmable switches, STARE can achieve high scalability
and no additional latency while leading to memory-efficient state replication across
multiple VNFs. Furthermore, STARE simplifies the development process of the
VNFs by pushing the replication complexity down from each VNF to the network.
This is done by providing a middleware shared across all of the VNFs hosted on a
single server, which simplifies the design and provides a more transparent way for
developing state-sharing procedures.

The actual benefit of STARE is both toward the network and VNFs. Indeed,
reducing the memory consumption for the matching tables allows us to exploit the
available matching tables better. Those are typically implemented with expensive and
limited-size TCAMs and extend the applicability of network applications running in
P4 switches. Furthermore, STARE is beneficial for VNF developers since they are
exempt from the burden of managing the real-time replication protocols by being
provided with standard STARE libraries.

Our main contributions are twofold: (1) validate the approach and show that
STARE can run in a real P4-enabled network, and (2) evaluate the resource occupancy
of the proposed solution to better understand the scalability of the approach.
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2.3.3 State sharing in operational scenarios

This work has been motivated by an operational use case in the context of the
European 5G-EVE project3 targeting the tracking of users’ mobility in smart cities-
[52]. Mobility tracking enables many new applications: on-demand public transporta-
tion, crowd management, mobility planning, social distance monitoring, etc. All
these applications fit very well with the pervasive nature of mobile networks. User
mobility is of particular relevance to telecom operators. Its general knowledge
permits us to perform network planning and provisioning to guarantee continuous
and high-quality customer service. Nevertheless, in the case of novel scenarios
targeted by 5G (e.g., connected vehicles, UAV, and smart manufacturing), such
coarse-grained knowledge becomes insufficient, thus requiring more fine-grained
measurements that would not only give insight into the number of users in a given
cell but would also be able to capture the dynamics of the users’ flow.

As shown in Fig. 2.3, the use case comprises a set of WiFi scanners deployed
in an area around eNodeBs4 used in the testbed. The WiFi scanners capture the
probe request messages periodically sent by the smartphones, advertising the list of
the WiFi access points to which they have been connected in the past. A tracking-
mobility VNF runs in each edge cloud and processes the anonymized MAC addresses
of the mobile devices observed by each WiFi scanner. This enables the possibility
of tracking the device’s mobility in a completely transparent way for the users.
More details are available in [53]. To capture the mobility across an area spanning
multiple eNodeBs, it is necessary to correlate the presence and the coverage time of
any device across multiple VNFs. This requires sharing the internal states of each
VNF. Indeed, whenever a previously detected MAC address by a given VNF is later
detected by another VNF, it is possible to infer the spatial trajectory of the device and
its speed. In the example scenario of Fig. 2.3, we have two VNFs (VNFx and VNFy)
that exchange their internal states (Sx and Sy) with the timestamped list of all the
observed MAC addresses. Thanks to this state sharing, each VNF can individually
evaluate the direction of the path (either x→ y or y→ x) and the corresponding
average speed.

3https://www.5g-eve.eu/
4eNodeB is the short form for Evolved NodeB which is the evolved version of the Node B in

UMTS. It serves as the base station that directly communicates with mobile devices, acting as their
access point to connect to the LTE network.
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VNFx
Sx

VNFy
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WiFi scanners WiFi scanners

Fig. 2.3 Urban mobility tracking application with multiple WiFi scanners, leveraging a
programmable data-plane connecting the different eNodeB for replication of global states
between VNFs.

To support such an application, a centralized approach can be employed. Such an
approach would require all the WiFi scanners to send their data to a single VNF which
would aggregate the data from different eNodeB. This solution, although feasible
in many scenarios, has limited scalability and does not exploit the natural spatial
correlation of the mobile nodes. Trajectory and speed are intrinsically local properties
from a spatial point of view and can be easily evaluated through a distributed
approach. STARE finds excellent applicability in such a scenario as it enables
direct state sharing across multiple VNFs through a programmable data-plane (e.g.,
based on P4 switches) connecting the different eNodeBs. Contrary to the centralized
solution, STARE is capable of achieving this goal without incurring scalability issues,
even whenever the monitored area becomes very large.

2.4 Accelerating state replication with STARE

Motivated by the flexibility of programmable data-planes and the potential of
achieving ultra-low latency, we propose STARE, a state-sharing protocol to replicate
the states between VNFs, able to fill the performance gap of traditional publish-
subscribe protocols by performing acceleration of the protocol via data-plane operati-
ons. The high-level communication pattern of the proposed approach is depicted
in Fig. 2.4.
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Fig. 2.4 Overview of STARE communication modes.

STARE removes the inevitable drawbacks that come from employing a software
broker by delegating its functionalities to the data-plane. Switches act as distributed
publish-subscribe brokers for inter-VNFs state replication while relying on a centraliz-
ed controller only for the initialization phase and in case of critical events. All
publish-subscribe messages are processed directly by programmable switches, thus
allowing packets to always follow the shortest path to their destination without any
need to be detoured to a middlebox first. At the same time, such an approach does
not introduce any processing latency, since, as previously discussed, programmable
switches can process packets at the line rate. While reducing communication latency,
STARE also provides a means for effortless integration in existing and new VNFs.
In the following section, we will discuss in detail the implementation and operation
of STARE.

At its core, STARE exploits three main components to provide fast and application
layer-transparent publish-subscribe service: i) a custom communication protocol
that is easily interpretable both by the VNFs and by the switches, ii) a middleware
running at each machine hosting VNFs that exposes clean and easily accessible
communication hooks to each VNF and iii) a data-plane algorithm running inside the
programmable switches responsible of performing broker’s tasks. In the following
section, we closely analyze the implementation and design choices behind each of
the three components.
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Fig. 2.5 STARE message format

Table 2.1 Coding and definition of different Message_kinds.

Message_kind Definition Message_kind Definition
00 Publish 01 SUB-ack
10 SUB-remove 11 SUB-register

2.4.1 STARE communication protocol

STARE heavily exploits features provided by modern programmable data-planes.
Notably, it relies on the possibility of defining custom protocol headers and the
possibility of taking switch-local decisions based on them.

STARE uses the IPv4 Administratively Scoped IP Multicast range (239.0.0.0 -
239.255.255.255) as the destination IP address to disseminate the publish-subscribe
messages. STARE exploits this 32-bit length field by including it within the essential
data required to guarantee correct message identification and forwarding. Specifically,
three custom fields are encoded by STARE within the IPv4 destination field that
is summarized in Fig. 2.5: i) a constant 8 bit-long protocol_ID(PROTO_ID) equal
to (11101111), which is required to correctly identify STARE packets, ii) a 2 bit-
long Message_kind(M_K), which permits to disambiguate among different kind
of messages present in STARE whose values are summarized in Table 2.1, and
iii) a 22 bit-long field for state_ID(STATE_ID) to uniquely identify the ID of the
state for which the message has been generated, corresponding to about 4 106

maximum number of states that could be enough for many applications. All of
the above information, combined with a dedicated destination UDP port (number
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� �
1 // ### Example of STARE logic written in P4 language
2 apply {
3 if (!hdr.ipv4.isValid ()){ // Drop non -IPv4 packets
4 drop(); return;
5 }
6 // Process the IPv4 destination field and
7 // Check if a STARE message has been received
8 ipDstCheck ();
9 if (hdr.udp.isValid ()) {

10 if (loc_metadata.ipDstProtoId == IP_STARE
11 && hdr.udp.dstPrt == PROTO_STARE) {
12 checkMsgKindAndInputPortMask ();
13 if (local_metadata.STARE_msgKind == 0) {
14 setMcastGrp ();
15 publish ();
16 }
17 else if (local_metadata.STARE_msgKind == 1) {
18 sendToCpuPort ();// Embedded controller -based
19 Drop();// Register -based
20 }
21 else if (local_metadata.STARE_msgKind == 2) {
22 updateUnsubscribe ();
23 }
24 else if (local_metadata.STARE_msgKind == 3) {
25 updateSubscribe ();
26 }
27 else {
28 drop(); return;
29 }
30 }
31 else { // process non -STARE packets
32 ipv4_lpm.apply();
33 }
34 }
35 � �

Listing 2.1 STARE message processing example in P4 language

65432 in our evaluation), ensures the correct identification of STARE packets inside
switches and endpoints. Since the IPv4 header is discarded at the endpoints once
it is received, an application layer message is placed on top of the UDP header
including: i) message_kind(M_K), ii) VNF_ID(VNF_ID), iii) state_ID(STATE_ID),
iv) update_number(UPDATE_NO), v) the update total_segments(TOT_SEGM), and vi)
segment_number(SEGM_NO). Although the definition of the format for each field
can be arbitrarily decided by the programmer, in our implementation we employed a
format represented in Fig. 2.5.

By construction, independently from the size of the network and the number
of states, the message overhead is fixed (i.e., 36 bytes for each subscription and
publish) and the number of exchanged messages is minimal, thanks to the use of
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Fig. 2.6 VNFs, middleware and replica controller running in a STARE scenario.

spanning trees connecting the subscriber and publisher nodes. Notably, the use of
UDP poses hard constraints on the maximum size of the states to be replicated. For
this reason, STARE exploits some semi-application layer segmentation to support
large states, thus appearing in a completely transparent way to the data-plane. A
general sample implementation of the switch logic for it, alongside the definition of
the IPv4 destination type in P4 language, is depicted in the Listing 2.1.

2.4.2 STARE middleware

As previously anticipated, STARE is transparent to the actual implementation of the
core logic of each VNF. This is achieved thanks to the fact that STARE incorporates
flexible middleware which is responsible for managing the overall process of state
replication. Thus, as the replication protocol runs in the network, the VNFs are
not directly involved in it. This approach permits the reduction of the computation
overhead incurred by the management of complex replication algorithms at the VNF
level and further simplifies both the development of new VNF and integration of
STARE in legacy ones. The proposed middleware acts as a single endpoint of the
replication scheme within each server, thus it is agnostic to the number of VMs and
VNFs running on each server. The main role of the middleware is de facto to act as a
proxy between local VNFs and other servers comprising the network, as shown in
the example of 4 servers depicted in Fig. 2.6.

Fig. 2.7 depicts an overview of the main components of the sample middleware
we implemented. The black lines are the regular data-paths carrying the STARE
data, the red lines are the possible Publish distribution paths which can be either
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Fig. 2.7 The software architecture for STARE middleware

intra-server or inter-server, the green lines define the Information paths used to keep
the control information updated inside the middleware, and the blue line defines the
replica controller message path.

To achieve our final goal, we implemented a simple protocol to permit the
interaction between the VNF and the STARE middleware. The architecture is made
clearer by mimicking all messages exchanged inside the middleware to the behavior
of the publish-subscribe protocol adopted at the network level by the programmable
switches.

The middleware is composed of two macro elements: i) an external module
EXT module which is responsible for managing communication between the server
hosting the VNFs and the external network and ii) a dedicated internal module
INT module which is responsible for managing communications between individual
VNFs and the EXT module.



2.4 Accelerating state replication with STARE 29

The main components of the EXT module can be summarized as follows:

1. INIT thread: The main entry point to the middleware is defined by the INIT
thread which is responsible for opening a new socket and spawning a listener
on a specific TCP port (65431 in our case). This listener provides the main
means of communication between the VNFs and the STARE middleware.
Whenever a new VNF is instantiated it will try to reach the middleware by
binding to this particular port (we assume the port number to be known in each
VNF).

2. SIG SEND and SIG RECEIVE threads: These processes implement a TCP
connection with the replica controller and are responsible for managing all
of the control information between the replica controller and the VNFs. This
control information, implemented via a set of replica controller messages,
includes connection initialization of each VNF and the management of the
publish messages losses.

3. MAIN MESSAGE-HANDLER thread: It is responsible for reading and rebuildi-
ng the signaling messages queued in the incoming IN-1 Queue. Whenever a
message from the replica controller is received, it will update the Internal data
structure and will forward the message to the input queue of the proper VNF.

4. INTERNAL DATA-STRUCTURE: The internal data structure is responsible
for keeping track of the publish and SUB-register requests made by the VNFs
connected to the middleware. This component helps the EXT module with
the distribution of the publish packets received from the network to the proper
VNFs. Furthermore, whenever required, the MESSAGE-HANDLER thread
of the INT modules can access this component for information about the
local subscribers, if any, for their publishes, to avoid extra circulation of their
published data using the possible Publish distribution paths.

5. MAIN SEND thread: All the outgoing messages generated by the VNFs, except
the replica controller messages, are managed by the MAIN SEND thread. This
process provides connectivity to the external network by writing data present
in the OUT-2 Queue on a dedicated UDP socket. Depending on the message
kind it will take care of specifying a proper destination for the IP layer, set the
UDP layer destination port to another special port number (65432 in our case),



30 Data-plane assisted state replication

and send the message to the network. Whenever a SUB-register message is
sent to the network, the employed IPv4 address is recorded in the IP-multicast
membership module of the OS. This ensures that the OS will be able to deliver
the published messages related to the sub-register to the STARE middleware.
A similar procedure will be done to remove the registration in the membership
module of the OS in the event of a SUB-remove message. To address the
current challenges, we integrate information from all of the DC networks.
In the case of receiving a subscription message, the actual IP destination is
informed to the membership module, which is updated with a new IP-multicast
group whenever a new subscription message is received internally from a
VNF.

6. MEMBERSHIP-MAKER threads: These threads permit overcoming the limita-
tions of the UNIX-based OSs for multicast-group memberships, which have
a limited membership size. Following an attempt to send a new message, an
instance of such a thread is spawned whenever the IP-multicast registration in
the IP-multicast membership module of the OS fails.

7. SUB-* RESEND thread: As a primitive practice for ensuring the delivery of the
SUB-register and SUB-remove messages to the network, this process emulates
an ARQ protocol. It will periodically check the Internal data structure for the
SUB-register messages that have been sent but that did not receive a SUB-ack
message from the network. It will then add them to the OUT-2 Queue to be
resent. It loosely ensures the delivery of the subscription messages to at least
one of the switches participating in our protocol.

8. MAIN RECEIVE thread: Similarly to the MAIN SEND thread, the MAIN
RECEIVE thread is responsible for managing all of the incoming messages
except for the replica controller messages. Upon message reception, this
thread will forward the message to the proper INT module according to
the information stored in the Internal Data Structure. Additionally, if the
processed message is an SUB-ack message, the thread will update the informati-
on associated with the waiting list of the non-acknowledged SUB-remove or
SUB-register messages. The list will then be checked by the SUB-* RESEND
thread periodically.



2.4 Accelerating state replication with STARE 31

For each VNF the STARE middleware creates a dedicated instance of an INT
module that provides message connectivity to the rest of the middleware. The
architecture of such a module closely mimics that of the EXT module: two different
threads (SEND and RECEIVE threads) are responsible for reading and writing
from/on a dedicated socket which is continuously listened to by the VNF, thus
providing the last hop to the actual implementation of the VNFs. Analogously to the
EXT module, input and output queues are used to buffer messages with the latter
being read by a dedicated message handler which is responsible for forwarding the
message to the EXT output queue.

2.4.3 STARE replica controller

Although STARE is highly decoupled from centralized entities, it still requires minor
intervention from a central controller. In particular, during network setup, a replica
controller provides unique identifiers for each VNF, which will be later exploited
by STARE to avoid ambiguity in the communication protocol. Furthermore, these
so-called globally unique IDs (i.e., an ID that is unique among all VNFs participating
in each implementation of this scenario) are assigned to each state in an analogous
way to what already happens in classic publish-subscribe schemes. Those IDs permit
discrimination among different publish-subscribe messages and, as we will show
later, are exploited to perform message forwarding in the network. Regarding the
scalability of the proposed solution, theoretically it supports up to 4 million different
unique states, limited by the length of the IPv4 destination field. The same approaches
used for IPv4 scalability could be applied to our solution. However, adapting our
solution to the IPv6 header can significantly increase scalability.. Additionally, there
is a need to keep a backlog of published messages on the network, which must be
used to recover from message losses. The replica controller may be implemented as
a dedicated server or as an integrated process running inside the SDN controller.

Also, To address the risk of a single point of failure, particularly regarding
the replica controller, it is possible to implement a standard replica scheme for
fault tolerance. This approach involves having multiple copies (replicas) of critical
components, like the replica controller, to ensure redundancy and minimize the
impact of potential failures. It’s crucial to keep these replicas synchronized to
maintain consistency across the system. Finally, since using a master node for
system coordination introduces centralization, we need robust failover mechanisms
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and redundancy. Techniques like leader election algorithms or standby replicas are
essential for ensuring continuous operation and fault tolerance, even in the face of
failures. By employing these strategies, the system can effectively mitigate the risks
associated with single points of failure, thereby enhancing its overall reliability and
resilience in distributed environments.

2.4.4 Message loss recovery

In the case of a loss of a publish message, the event can be easily detected inside
the subscriber VNFs. This is performed by checking the application layer message
information regarding the continuity of the segment number in relation to the state
update sequence number and the total segments of the update. Whenever a VNF
detects a loss, it will notify the replica controller through a RECOVER message
containing the related information from the application message layer, in turn, and
the replica controller will provide the lost message by looking for it in the stored
backlog. The use of the replica controller for such tasks significantly reduces the
resource overhead on each server running STARE. Indeed, all of the backlogs of
the published messages are stored at the controller instead of being distributed on
every single server. This approach reduces the overall memory requirement for the
deployed servers and considerably simplifies the design of the STARE middleware.
To keep the memory utilization low, the backlog must be periodically truncated.
This can be achieved by actively querying single VNFs for the maximum segment
numbers received so far for any given state. This information can then be easily
exploited to perform backlog truncation by considering the minimum among the
received segment numbers and by truncating the backlog up to that point.

We address the recovery of the SUB-remove and SUB-register messages on
both the: i) VNF-to-switch/switch-to-VNF and ii) switch-to-switch segments. As
explained in Sec. 2.4.2, we delegate the reliable delivery of these messages to the
first P4 switch (VNF to switch segment) through a simple ARQ algorithm and by
employing the SUB-* RESEND process for both solutions. Employing such a simple
ARQ protocol implementation inside a lightweight embedded controller on each P4
switch effectively permits support for reliable delivery of these messages between
switches.
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Table 2.2 Example of a state forwarding table and the corresponding match-action rules for
messages forwarding

State forwarding table Port forwarding table

State_ID | i register[i]
Match

Dst. bitmask
Action

Forward on ports

0 00011110 00011110 {4,5,6,7}

1 10001010 10001010 {1,5,7}

2 10000000 10000000 {1}
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Fig. 2.8 The general subscription distribution tree and the possible paths traversed by the
subscription messages.

2.5 Implementation with P4-enabled dataplanes

Concerning the data-plane implementation, we consider P4-enabled devices [34]
as the main candidate for the implementation of STARE functionalities. This,
however, does not limit the generality of our approach since most of the modern
programmable switch architectures, as we discussed in Sec. 2.3.2, offer similar
capabilities. Nevertheless, in the case of computationally or resource-limited devices,
some of the requirements of the STARE data-plane implementation may be unfeasible
to implement. For this reason, we propose two alternative solutions, the first
(denoted as “Register-based”) being a pure data-plane implementation, while the
second (denoted as “Embedded controller-based”) being a hybrid data-plane/CPU
implementation.
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For further discussion, we assume that the SDN controller has already set up a
subscription distribution tree spanning all the switches to which the servers running
the VNFs are connected. An example of this tree is highlighted with the red lines
in Figs. 2.8(a) and 2.8(b). The subscribe (i.e., SUB-register and SUB-remove) and
publish messages will only be forwarded on this tree or a subset of it. Details will be
provided in the following sections.

2.5.1 Register-based implementation with P4

A pure data-plane implementation requires a considerable amount of stateful resources
inside the switch to support the broker functionalities. Analogously to a traditional
software broker, the switch must be able to correctly process three main kinds of
messages: the subscribe, the unsubscribe, and the publish messages. To do so,
switches must keep track of a data structure mapping particular state_IDs specified in
the Sub-register messages to a set of output ports on which VNFs requiring updates
of that particular state are reachable. This is achieved thanks to a dedicated data
structure, namely the state forwarding table implemented with an array of registers.
Analogously to a hashmap, given a state_ID x, the state forwarding table stores a
bitmask Bx of output ports inside the register indexed by index x. Noteworthy, such
implementation implies that the number of bits to store each bitmask is equal to the
number of ports in the switch. Table 2.2 depicts an example of a state forwarding
table for an 8-port switch storing 3 state_IDs alongside the corresponding match-
action port forwarding table responsible for multicasting the message on given
ports.

Notably, although the distribution tree spans all of the available endpoints, to
reduce the total data overhead in the network, only a subset of the links is used
each time. Each switch forwards publish messages on a given port only if an
active subscriber is reachable through that port (yellow line in Fig. 2.8a). Similarly,
whenever a subscribe message floods the distribution tree, all ports leading to an
active publisher are ignored (green line in Fig. 2.8a) since the publish connectivity is
already guaranteed up to that point.

We report here the pseudocode of the STARE procedures for handling the Sub-
register and Sub-remove messages in the P4 switches demonstrated in Fig.2.9.
Through these procedures, the switch processes the messages and updates two flags,
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“drop” and “publish”. The “drop” flag represents whether the message should be
dropped or forwarded, while the “publish” flag value determines whether the message
should be forwarded by the publishing rules (similar to what happens in the case of
a publish message) or simply be flooded on the subscription distribution tree. Those
procedures permit a reduction of the total data overhead in the network by avoiding
flooding the SUB-register and Sub-remove messages on the whole distribution tree.
Those procedures are run locally at each switch and operate on three main inputs: i)
the state_ID x carried by each packet; ii) the arrival port p of the packet; and iii) the
bitmask Bx describing the forwarding rules for publish-subscribe messages. At the
end of the procedures, each message is either dropped or forwarded following the
distribution tree by respectively setting either of the two flags “drop” or “publish” to
True. The “publish” flag value is used if the message should not be dropped (i.e., the
“drop” flag is set to false) and the default value for both of the flags is initialized to
false. The message kind is checked by the switch by parsing the STARE header.

Handling of SUB-register messages

In the case of a SUB-register message for state Sx arriving on port p (line 1), the
switch checks whether p is already registered in Bx. If p is not registered, registration
is found (line 3), the switch will register p (line 6) and check whether other prior
subscriptions from other ports exist (line 4). If no prior registrations exist, the switch
will flood the distribution tree (except for p) to ensure that the subscription message
reaches the related publishers, thus activating the distribution tree up to that switch.
This is shown by the green arrows in Fig. 2.8(a). If, instead, other registrations are
found (line 7), the switch will treat the message as redundant and drop it (line 8). If,
instead, prior subscriptions were found in Bx (scenario in Fig. 2.8(b)), the publish
flag will be set to True (line 5). This will result in the SUB-register message being
forwarded on a publish message path (red links) from the previously registered ports.
This procedure will force the SUB-register message to traverse only the required
links and avoid flooding the entire network.

Such a mechanism permits the dynamic build of a global port mapping for all
of the state_IDs present in the network. Once built, this mapping permits switches
to unambiguously process the publish messages by simply indexing the bitmasks
by the value of state_ID contained in the messages and forwarding them to the
corresponding ports.
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Input: x: state_ID carried by the message
Input: Bx: bitmask of port-registration for state Sx, equal to Register[x] for register-based approach

and equal to L2_publish[x] for embedded controller-based approach
Input: p: input port of the received message
1: procedure UPDATESUBSCRIBE(x,Bx,p)
2: Publish← False, Drop← False ▷ Initializing the flags
3: if bit(Bx, p) = 0 then ▷ Check if the port is NOT in the bitmask
4: if Bx ̸= 0 then ▷ Prior subscribed ports exists on the switch
5: Publish← True ▷ Publish Subscribe message
6: Bx← or(Bx, p) ▷ Update subscription bitmask with incoming port p
7: else
8: Drop← True ▷ No forward anymore
9: procedure UPDATEUNSUBSCRIBE(x,Bx,p)

10: Publish← False, Drop← False ▷ Initializing the flags
11: if bit(Bx, p) = 1 then ▷ Check if the port is in the bitmask
12: Bx← or(Bx,not(p)) ▷ Removing the port from subscription bitmask
13: if Bx ̸= 0 then ▷ Still subscribed port/s exists on the switch
14: Drop← True ▷ Do not forward the Unsubscribe message
15: else
16: Drop← True ▷ No forward anymore

Fig. 2.9 Pseudocode of STARE procedures for subscribing and unsubscribing

Handling of SUB-remove messages

Analogous processing occurs for a SUB-remove message, but instead, Bx is updated
in such a way as to remove the original input port p of the received message, as
depicted in the procedure “UpdateUnsubscribe” (line 9). Upon packet reception,
the switch will check whether p is registered in Bx (line 11). Based on the outcome,
it will then proceed by unregistering p from Bx if present (line 12) or by considering
that packet as redundant and dropping it (line 16). If, after removing p from Bx,
Bx still contains other ports, the unsubscribe message is dropped (line 14) and the
distribution tree is maintained up to that point. On the contrary, an empty Bx would
mean that there are no active subscribers connected to that switch. In such a case,
the unsubscribe message floods the distribution tree (Publish and Drop flags set to
False) to destroy the now-inactive branch of the tree up to the first switch, leading to
more than one subscriber.

Finally, to support advanced signaling, all other kinds of messages used in
STARE protocols (e.g., Recover message, etc.) are sent to the port corresponding to
the replica controller. A partial implementation of this solution with P4 is available
on github in [54].
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2.5.2 Embedded-controller-based implementation with P4

This second solution is motivated by the fact that the scarce availability of registers
can pose hard constraints on the feasibility of the register-based solution due to the
impossibility of storing the state forwarding table. Yet, the match-action tables are
plentiful even in low-end devices which provides an alternative for building the state
forwarding table. Nevertheless, commercial switches are typically equipped with an
onboard CPU that can operate as a local embedded controller, although without the
global visibility of the SDN controller, but at a much-reduced latency. To build the
state forwarding table, The switch exploits the arrival port_ID of the Sub-register
messages and uses the state_ID as a key in the state forwarding table to retrieve and
eventually update the current destination bitmask.

This can be done by using a key-value structure, mapping the state_ID as the key
to a list of forwarding ports of the message. This implies that the possible received
subscribe-ack message will be sent to this controller to remove the input port of
this message from the mentioned list. The SUB-ack message will be dropped at
the controller. Furthermore, the controller sends back a copy of the SUB-register
or SUB-remove message to the switch adding in the Packet-out header the original
input port of the message, the Publish, and the Drop flags as well, to inform the
switch about the decision over dropping the message or how to forward it to the
proper ports if should not be dropped. In any case, if message forwarding is needed,
the Packet-out header will be removed before forwarding the message by the switch.

Unfortunately, the current implementation of the P4 programming abstraction
does not provide a means of direct match-action table manipulation, thus relying on
the controller for such a task. The Embedded controller-based implementation of
STARE, exploits an Embedded-controller using the onboard CPU, which, analogously
to the register-based solution, modifies the entries in the switch match-action table
with respect to the procedures reported in Fig. 2.9. In our specific implementation,
this is achieved by exploiting the P4-Runtime API [55].

Anytime a Sub-register or Sub-remove message arrives at the switch, it is sent
to the Embedded-controller through a Packet-In message, whose header contains
the incoming port of the packet. The controller will follow the exact procedures of
Fig. 2.9, and if needed, updates its local version of the state forwarding table and
send the corresponding instructions to update the switch L2_publish match-action
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table as well. The switch then acknowledges the configuration to the embedded
controller.

Based on the procedures reported in Fig. 2.9, if the resulted value for the “drop”
flag becomes true, the controller will drop the message and will not send it back to
the switch. In the other case, if the resulted value for the “drop” flag is false, it is
needed to forward a copy of the message to other switches, and the controller will
send the original message to the switch through a Packet-In, whose header contains
the resulted “publish” flag value and the original input port of the message. This
informs the switch about the decision on how to forward the message to the proper
ports. In any case, if message forwarding is needed, the Packet-out header will be
removed before forwarding the message by the switch.

Based on the Packet_out header flags defined by the controller, the switch will
check the “publish” flag value and after removing the Packet_out header, if the value
is false, the switch will flood the message to the ports related to the subscription
distribution tree. But, If the mentioned value is true, the switch will forward copies
of the message, to the ports subscribed for this state_ID, except to the original input
port of the message. This is similar to when a Publish message arrives at the switch.

The embedded controller can keep track of the delivery for Sub-register and
Sub-remove messages to the next step P4 switches by following a simple ARQ
protocol, like stop-and-wait between adjacent switches as well. The state_ID is used
to identify uniquely the message for the ARQ. In this case, the controller can update
the subscription’s delivery status to each of the next switches as undelivered, waiting
for a reply.

2.5.3 Comparison among the two implementations

The register-based implementation relies on a static number of registers, defined at
compilation time. This implies that whenever the number of different states present
in the publish-subscribe scheme exceeds the available ones, it is necessary to perform
switch reconfiguration. While, in theory, this reconfiguration can be operated live
on specialized hardware, in practice it may introduce a transient service outage. On
the other hand, the embedded controller-based solution can overcome this issue, as
match/action tables are plentiful in modern switches, but at the cost of increased
complexity and new rule installation latency [56].
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Indeed, the processing time of STARE subscribe messages for the Embedded
controller-based solution can be slightly higher than that for the Register-based
solution due to the time required to modify the match-action tables. More on that, the
interaction required with the embedded controller can introduce a very small latency,
and such latency is still considerably lower in comparison with the interaction with
a remote controller. Due to its general-purpose nature, the embedded controller
can implement additional capabilities, such as secure communications, e.g., by
supporting MACsec to protect network links between P4-based SDN switches, as
described in [57]. The advantages of the local controller-based solution over the
register-based one are: i) the table size, in terms of stored states, is independent of
the width used to represent the state_ID, so eliminates the need for a recompile and
reinstall the P4 STARE program again; ii) the state_IDs can be chosen in an arbitrary
range due to the similarity of a match-action table to a hash table, thus giving a
higher level of flexibility; while in the register-based implementation, the state_IDs
are bound to the register indexes and will need a hash mechanism implementation
mapping the real state_IDs to the 0 to n− 1 (where n is the number of registers
defined in the P4 switch) the switches or in the middleware.

On the contrary, in the register-based application, the STARE-related table size
is always equal to the number of defined registers for this purpose, independently
from the number of recorded states. Notably, the maximum number of registers
depends on the particular hardware architecture and is typically limited, whereas the
size of the match-action table depends on the actual use of the available memories.
In terms of performance, the processing time of STARE messages of the local
controller solution can be a little higher with respect to the register-based solution
due to the time required to interact with the embedded controller; nonetheless, this
is considerably lower in comparison with the interaction with a remote controller.
This may introduce a higher degree of unpredictability in comparison with a pure
hardware-based solution and may deteriorate performance when match-action tables
are close to their maximum capacity [56]. It is worth highlighting that both schemes
do not require the interaction of the switch and the VNF with a software broker or
with the SDN controller, since all the related operations are offloaded directly to
the data-plane. In conclusion, the register-based is suitable for the cases that have
a limited number of states on smaller scales but they need a guaranteed range of
ultra-low latency in sharing the states. On the other hand, for a more scalable solution



40 Data-plane assisted state replication

with a large number of states that can tolerate some small degree of unpredictability
in latencies, the embedded-controller-based solution is the perfect choice.

2.6 Experimental evaluation

We implemented the STARE framework and performed a set of experiments to
compare it with alternative solutions. We used Mininet [58], a network emulator that
provides software models for vanilla SDN switches and P4 switches, and BMV2 [59]
software switch to run the experiments based on P4 switches.

First, we tailored our experiments to the 5G use case described in Sec. 2.3.3,
where a VNF for mobility tracking is available at each edge cloud. Fig. 2.10a depicts
the testbed topology, which includes 4 VNFs and one P4 switch. The VNFs are
emulated through Mininet “hosts” and each of them runs the STARE middleware.
The replica controller runs in H4, and STARE middleware runs in H1, H2, and H3,
while to mimic a more heterogeneous scenario, we consider one VNF running on H1
and H3 and two VNFs running on H2. The VNFs track the users’ mobility according
to the considered 5G use case. To measure the resources required in the P4 switches
and compare the different solutions, we evaluated the memory occupancy in terms
of the Resident Set Size (RSS) of the process running the virtual switch.

We run an alternative scenario based on a pure OpenFlow approach. Ryu [60]
is the SDN controller interacting with the OpenFlow switches and P4 switches,
chosen thanks to its simplicity of deployment and its wide support of OpenFlow
standards. The STARE middleware has been developed in Python and implemented
through the standard Python socket library. For the register-based solution, we have
pre-allocated the switch resources by defining 2048 registers inside the P4 program
at the compilation time.

This metric allows us to evaluate how many resources, in terms of memory, are
associated with each process. To mimic the 5G EVE platform, each VNF generates
and receives the feed of the WiFi sensor in a JSON format every two minutes and
updates a local table mapping each listened MAC address and the corresponding
timestamp to a WiFi sensor ID. To accurately emulate the arrival process of messages
generated by the WiFi scanners, every 20 seconds, a report message is generated by
each scanner. Each message carries a list of MAC addresses (corresponding to the
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Fig. 2.10 Topologies employed in the experimental testbed.

detected mobile devices) with the corresponding timestamps, both encoded in JSON
format. The number of detected MAC addresses varies randomly between 10 and
50 to mimic the experimental conditions observed in the 5G EVE use case during
rush hours in the area between our university and the main train station of our city.
Anytime the table is updated (typically with multiple entries added to the table), the
new state must be replicated across all the other VNFs. To reduce communication
overhead, updates are incremental, so only the new entries are sent within each
Publish message.

As a term of comparison, we considered a pure OpenFlow implementation for
the adopted publish-subscribe protocol, based on OpenFlow 1.3. In particular, we
use Open vSwitch [61] software switch, as the replacement of the P4 software switch
(BMV2), for the experiments based on standard OpenFlow switches. Similar to the
previous test-bed with P4, we consider one VNF running on H1 and H3 and two
VNFs running on H2 and the replica controller is placed in H4. A simple topology
for this scenario is shown in Fig. 2.10b.

In such a scenario the SDN controller takes the responsibility of storing the state
forwarding table, which forces the switch to interact with the SDN controller anytime
a new subscription occurs. Thus, this scenario is representative of a centralized
solution alternative to STARE. Also, the initialization phase, required to assign the
VNFs with their corresponding unique IDs and to know the state IDs used to publish
and subscribe, is managed centrally by the SDN controller. All the subscription
messages received by a switch are sent to the SDN controller, which in turn programs
the switch flow tables to associate the corresponding incoming port of the switch
as the forwarding port for all the corresponding publish messages. This permits
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avoiding additional interaction with the SDN controller whenever an already-seen
publish message arrives since the packet will be directly sent to all the switch ports
corresponding to subscribing VNFs.

We do not report any results regarding latency measurements, since Mininet is an
emulated network environment and does not allow us to evaluate meaningful statistics
regarding the delays. Nevertheless, it is worth recalling that, by design, P4 switches
perform packet processing at the line rate, thus we expect minimum processing
delays (which depends on the internal hardware pipeline and the organization of
the programmable matching tables of the P4 switch). This implies that we expect
the gain of STARE in terms of latency to be significant in realistic implementations,
and in large networks connecting the different VNF instances, STARE outperforms
other centralized solutions in terms of latency. This is because STARE removes the
necessity of the switch to interact with a remote controller (replica or SDN) anytime
a publish message is received.

2.6.1 Resource consumption

We compare the performance of the STARE with the solution based on OpenFlow
switches in terms of internal resource consumption within the switch. The next three
figures illustrate the overall memory usage of the software-switch processes.

Registered-based with P4 solution

In the register-based solution, the memory occupied by the software switch remains
constant regardless of the operations within the registers. Therefore, we equated
the memory needed by a rule to that of one register in our setup. Instead of writing
rules, we compiled our P4 program for varying numbers of registers multiple times
to determine the memory occupied by the software switch and its confidence interval.
Fig. 2.11 reports the average RSS memory, including the 95% confidence intervals
and a linear regression over the average values. The achieved accuracy is very high
since the relative width of the confidence interval is around 0.2%. From the figure,
the average amount of memory is 119.0 bytes for each installed rule.
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Fig. 2.11 Register-based solution.

Embedded controller-based with P4 solution

In the adopted match-action table, we evaluate the width of the key. In the flow
match-action table, we use an exact matching on the IP address, so 32 bits are
needed, and the corresponding action is coded as a 32-bit number representing
the multicast group, thus we can expect a minimum of 64 bits for each rule. The
result of the measurement is shown in Fig. 2.12, which shows that the memory
occupancy increases linearly with the number of installed rules and that the average
memory occupancy is 184 bytes per installed rule. It’s important to note that, for the
Embedded controller-based solution, we did not report a confidence interval. This is
because the increase in memory occupied by one rule remained constant throughout
testing, irrespective of the initial memory occupied by the software switch. For
simplicity, we reported one of the test results.

OpenFlow-based solution

We evaluated the RSS of the OVSK process, and the measurements were collected by
the remote SDN controller. The result of the measurements is depicted in Fig. 2.13,
which shows a step-wise increasing function. Such behavior is due to the internal
memory allocation scheme, which employs a batch allocation process in memory.
The average occupancy is 586 bytes per installed rule.

In essence, Table 2.3 outlines the average memory occupancy per rule across
the three mentioned scenarios. This calculation involves subtracting the initial
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Fig. 2.12 Embedded controller-based solution.
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Fig. 2.13 Remote Controller-based solution.

Table 2.3 Average memory occupancy per rule for the three scenarios.

Scenario Average memory per rule
Register-based P4 solution 119 bytes
Embedded-controller P4 solution 184 bytes
OpenFlow-based solution 586 bytes

measurement values of software-switch memory occupancy from the final ones and
then dividing the result by the number of rules. The most efficient solution in terms
of memory is based on a register-based STARE implementation, whereas the least
efficient solution is the one based on a standard OpenFlow switch. The differences
are due to the internal memory management process internal to the BMV2 software
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switch (for both P4-based solutions) and the Open vSwitch software switch (for the
OpenFlow-based solution).

2.6.2 Network load and traffic overhead

We considered a full tree graph with three generations after the parent node, where
at each generation there exist four nodes, and the clients are connected to the graph
leaves. The graph comprises 84 links, and each of the nodes is considered a switch.
Then, we compare the register-based solution of STARE in terms of network traffic
in terms of the number of packets, protocol overhead, and the number of transmitted
bytes with the following five alternative approaches.

• Unicast: In the Unicast approach, the publisher sends one publish message
individually to each subscriber.

• Broadcast: In the Broadcast approach, the publisher sends one publish
message in the whole distribution tree.

• Application-Layer Multicast (ALM): ALM is based on a broker for each
switch, which is aware of the switch ports that are on the distribution tree
towards the subscribers. This broker will receive the Publish packet from
the switch and return the packet to the switch with a header containing the
corresponding multicast group.

• OpenFlow Multicast (OFM) [43]: OFM is an OpenFlow-based approach
that uses an IP address and a UDP port number for addressing a multicast tree
stored on the switches. We assume that all these OFM trees have already been
configured through related flow rules from the SDN controller.

• P4 source routing: This approach was recently proposed in [42] as a centralized
approach for publish-subscribe based on source-routing multicast implemented
in P4. It uses a stack of headers added to the MAC header containing the
switch identifiers of the path to the subscribers and the corresponding multicast
address for each switch. The SDN controller is responsible for receiving the
subscription and informing the publisher on how to generate this header stack.
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Fig. 2.14 Comparing the transmitted packets of the STARE with other approaches.

Transmitted packets

Fig. 2.14 demonstrates the number of packets transferred in the network for each
approach concerning the number of subscribers. The minimum number of transmitted
packets has mutually belonged to STARE, source-route P4-pubsub, and OFM. During
the distribution phase, none of these approaches uses the links except for forwarding
the published notification to the subscribers. The results of the ALM approaches
are worse because they need to forward the published notifications to the software
broker and receive the packet duplicates from them, while the ALM with MC-groups
performs better as it sends only one duplicate back to the switch rather than multiple
packets in the ALM on all nodes, and it has fewer brokers connected to the switches
as well. The ALM with MC-groups is the closest in behavior to the STARE; it only
differs in the fact that the software broker in the STARE has been merged into the P4
switches. The unicast and the broadcast perform well when the subscribers are a few
or almost all, respectively. STARE, source-route P4-pubsub, and OFM converge to
the broadcast when more of the subscribers are involved and converge to the unicast
when the involved subscribers are smaller.
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Table 2.4 Network messages to deliver a publish message.

Approach In-net(B) Out-net(B) In-net(W) Out-net(W)
Unicast 32 17 96 17
Broadcast 84 85 84 85
ALM 20 59 26 67
OFM 20 17 26 17
P4 source routing 20 17 26 17
STARE 20 17 26 17

B: Best case W: Worst case

Traffic overhead

The traffic overhead depends on the network topology. In our evaluation, we
considered a symmetric tree topology connecting the switches with 63 leaves,
distributed in 4 layers (comprising root and leaves). All nodes (except the leaves)
have 4 children. The total number of links is 84. The subscribers are connected to
the leaf switches, while the publisher is connected to an arbitrary switch through a
dedicated link. We calculated the best and the worst case with respect to selecting any
set of leaves for the subscribers and the position of the publisher. Since subscriptions
are transient and are defined only in publish-subscribe schemes, for a fair comparison,
we consider only the publish phase since it is well-defined for all of the considered
approaches. Thus, we evaluate the traffic in terms of “in-net” traffic, i.e., across links
in the considered topology, and in terms of “out-net” traffic, i.e., across the links
that will connect the publisher and subscribers VNFs (not considered in the above
topology).

Table 2.4 depicts the in-net and out-net messages needed for delivering a Publish
message to 16 subscribers in the network for the different approaches. The minimum
number of in-net traffic is achieved by STARE, P4 source-routing, and OFM since
each link in the distribution tree is used just once for each Publish message. The
results of ALM are worse since it requires each switch to forward the Publish
messages to the software broker and to receive the corresponding multicast group
from it. ALM is similar to STARE, except for the fact that in STARE the switch
does not need an external interaction. Unicast is inefficient since the same publish
message may be sent multiple times on the same link, and it would be a reasonable
solution for a few subscribers. Instead, broadcast results are the least inefficient since
each publish message is flooded across the whole distribution tree, independently
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from the subscribers. Thus, it could be used only when the number of subscribers is
maximum. Although it is not depicted in the table, the amount of traffic generated by
STARE, P4 source-routing, and OFM converges to the amount of traffic generated
by broadcast whenever all nodes act as subscribers and it converges to the unicast
case whenever there is only one subscriber.

After considering the traffic overhead in terms of the number of packets, we
consider the traffic overhead in terms of bytes, for each protocol message. All of the
considered approaches adopt standard protocol headers at layers 2, 3, and 4, except
for the P4 source routing. [42] adopts a stack of sorted labels that enable simple
processing at each switch, yet is it required to be transmitted across links even if not
required. Each label is 3 bytes long and includes the switch identifier and the bitmask
with the local destination ports. In the considered scenario with 16 subscribers at
the leaves of the topology, it can be shown that, in the best case, the stack comprises
between 16 and 20 labels, depending on the level in the topology, with an average of
18 labels per publish message (54 bytes total). In the worst case, The stack comprises
between 16 and 24 labels, depending on the level in the topology, with an average of
18.75 labels (56.25 bytes). Note that such overhead may not be negligible in the case
of updates corresponding to “small” states, e.g., integer counters.

Transmitted bytes

Figs. 2.15-2.16 show the comparison results for 50-bytes-length published notificatio-
ns, where all the other approaches are implemented using the MAC header and
IP/UDP header, respectively. For the IP/UDP implementation of the other approaches,
it is obvious that STARE is outperforming all of them except for the case of OFM, in
which the amount of traffic is slightly lower than our solution. We did not implement
the source-route P4-pubsub approach with the IP/UDP header based on its authors’
implementation goals. Even in the case of implementing other approaches with only
MAC headers, STARE with IP/UDP and fixed 28 bytes more headers in each packet
is outperforming the unicast and ALM on all nodes for any number of participants. It
is better than broadcast for the subscriber numbers of less than half of the hosts, and
almost equal to ALM with MC-groups in all the cases. The results of the source-route
P4-pubsub and OFM are slightly better than STARE in a small number of subscribers,
and the gap becomes greater as the number of subscribers increases. This is due to
shrinking the header of the notifications alongside the path to subscribers and the
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Fig. 2.15 Comparing the transmitted bytes of the STARE with other approaches using MAC.

Fig. 2.16 Comparing the transmitted bytes of the STARE with other approaches using
IP/UDP.

constant small MAC header in the case of the source-route P4-pubsub approach and
OFM approach, respectively.
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2.7 Discussion

In this work, we propose STARE, a low-latency publish-subscribe architecture for
NFV and SDN-enabled networks. STARE aims at achieving fast state replication
among different VNFs in 5G networks. To do so, it exploits recent advances in the
field of programmable data-planes by offloading the functionalities of a traditional
publish-subscribe broker to the programmable switches. At the same time, STARE
provides easily deployable middleware that permits rapid integration of new and
existing VNFs by exposing simple APIs that can be accessed easily inside the
source code of each VNF. We validate our approach by employing an emulated, yet
realistic, testbed network with both P4-enabled switches and vanilla SDN based on
OpenFlow switches. We also compared our solution with some other approaches for
the distribution of the published notifications using different technologies.

Our experiments show that using STARE, in combination with P4-enabled
switches, leads to completely homogeneous traffic in the network by using fixed-
length headers that use the least possible number of packets for delivering the
published notifications to the subscribers. It also remarks that, as a trade-off, by
sending in a total of a few larger amounts of bytes than one or two approaches, the
approach will not need to interact with a software broker nor map the total path
between publishers and subscribers inside the packet, which leads to a complete
decoupling of the publishers and subscribers. At last, it incurs a smaller overhead
in terms of memory in comparison with the traditional approaches based on vanilla
SDN. Furthermore, thanks to the limited interaction with a centralized controller
and removal software brokers, STARE is expected to lead to significantly lower
state replication latency compared to the traditional publish-subscribe schemes. The
deployment of STARE on a real testbed, along with a detailed evaluation of the gain
in terms of latency, is left for future work.



Chapter 3

Optimal endorsement for
network-wide distributed blockchains

A part of the work presented in this chapter has been published in [62] and is reported
here for the reader’s convenience:

• I. Lotfimahyari and P. Giaccone, "Optimal Endorsement for Network-Wide
Distributed Blockchains," in IEEE Systems Journal, vol. 17, no. 3, pp. 4775-
4785, Sept. 2023.

3.1 Background and Context

By observing the success of the decentralized finance (DeFi) applications alongside
notable advancements in blockchain technology, the increased interest in merging
decentralized trust with distributed applications is sensible, driving innovation and
reshaping traditional business models.

Blockchains and Distributed Ledger Technologies (DLTs) have evolved from
humble beginnings into revolutionary tools for decentralized data management and
secure transactions. Originating from the concept of a decentralized digital currency,
Bitcoin [15], introduced in 2008, blockchain technology provided the foundational
framework for DLTs. Bitcoin’s blockchain served as a public ledger for recording all
transactions in a transparent and immutable manner, demonstrating the potential of
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decentralized systems to enable trustless transactions without the need for intermedia-
ries.

Following Bitcoin’s emergence, subsequent developments in blockchain and
DLTs introduced new features and functionalities. In 2013, Vitalik Buterin proposed
Ethereum [63], a decentralized platform that extended the capabilities of blockchain
technology by introducing smart contracts. Ethereum’s launch in 2015 marked
a significant milestone, enabling developers to create decentralized applications
(DApps) with programmable logic executed on the Ethereum Virtual Machine
(EVM).

The distinctiveness of Blockchain lies in its decentralized structure, which doesn’t
hinge on a sole central authority for transaction validation. Rather than depending on
a single entity, numerous nodes within the network autonomously verify and validate
each transaction through a mechanism known as consensus. In brief, consensus
protocols ensure that all nodes in a distributed network agree on the validity of
transactions before they are added to the blockchain. This decentralized consensus
mechanism plays a critical role in blockchain networks which ensures the integrity
and immutability of the ledger, making it extremely difficult for any single entity to
manipulate or corrupt the data.

Different consensus schemes have been used in blockchains [13], and a few
examples of them are provided here. Proof of Work (PoW) involves miners competing
to solve complex puzzles, requiring significant computational resources and energy
consumption. Proof of Stake (PoS) reduces energy usage by selecting validators
based on their cryptocurrency holdings, aiming for faster transaction confirmations.
Delegated Proof of Stake (DPoS) further enhances scalability and efficiency by
allowing token holders to vote for delegates responsible for transaction validation.

On the other hand, Proof of Authority (PoA) relies on a limited number of
trusted validators in private blockchains, ensuring consensus among known entities.
Proof of Burn (PoB) introduces a mechanism where participants burn coins to
demonstrate commitment to the network, receiving mining or validation rights in
return. Additionally, Proof of Space (PoSpace) and Proof of Capacity (PoC) leverage
storage space allocation instead of computational power for consensus, providing an
alternative approach. Meanwhile, Practical Byzantine Fault Tolerance (PBFT) targets
permissioned blockchains, ensuring consensus despite potential faults or malicious
nodes. Finally, Directed Acyclic Graphs (DAGs) [64] like IOTA’s Tangle [65]
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form consensus by referencing multiple previous transactions, offering a different
paradigm from traditional blockchains.

All consensus mechanisms have their strengths and weaknesses, making them
suitable for different use cases and environments. Consensus protocols play a critical
role in blockchain scalability and speed. However, achieving consensus can be a
time-consuming process, especially in networks with a large number of nodes or
when using complex consensus mechanisms. As blockchain technology continues to
evolve, new consensus mechanisms may emerge to address scalability, security, and
decentralization challenges.

On the other hand, data dissemination mechanisms are crucial for distributing
information among nodes in distributed systems. They can be centralized, relying
on a central server, or decentralized, where nodes directly communicate with each
other. In blockchains, data dissemination protocols play a vital role in propagating
transaction information and maintaining the integrity of the distributed ledger. They
facilitate the propagation of transactions and blocks across the network and are
tightly coupled with consensus. Inefficient data dissemination can lead to delays in
reaching consensus, thereby impacting scalability and speed. The gossip protocol is
a decentralized approach where nodes exchange information with random neighbors,
quickly disseminating data throughout the network. This protocol is highly scalable
and fault-tolerant, making it ideal for large-scale distributed systems including
blockchains. Gossip protocols or similar decentralized mechanisms ensure all nodes
have consistent copies of the blockchain, preserving its decentralized nature and
security.

In the world of real-time Distributed Applications (DApps) integrated with
blockchains, particularly when implemented in a decentralized manner, speed is
crucial. To this end, we considered Hyperledger Fabric (HF) [16], an open-source
and widely used enterprise-level blockchain that is suggested by major cloud service
providers. HF is a permissioned blockchain framework designed for enterprise use,
known for its scalability and modular architecture. One key feature that contributes
to its scalability is its support for various consensus mechanisms, including PBFT,
which is more efficient than the ones such as PoW that are used in public blockchains.

Additionally, HF enhances consensus speed by adopting an "execute-order-
validate" execution model instead of the traditional "order-execute-validate" model.
In this approach, transactions are first executed in parallel across Endorsing Peers (EPs),
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and then the resulting endorsements are ordered and validated by the ordering service,
streamlining the consensus process and improving overall transaction throughput.
This alteration in the execution model significantly reduces latency and enhances
the scalability of HF [66]. To further improve its end-to-end latency for use cases
such as real-time and distributed applications, we studied all of its phases. HF
employs its own gossip protocol for data dissemination in various aspects of its
operation. However, it’s crucial to note that this gossip mechanism isn’t utilized for
the endorsement phase due to inherent structural and logical disparities, as well as
the unique role played by the endorsement process.

The endorsement process involves designated peer nodes executing a transaction
(i.e., simulating the execution without recording results on the blockchain) and then
providing a proposal response to the client application. This response encompasses
the execution response message, results (both read and write sets), events, and a
signature serving as evidence of the peer’s execution [67].

The endorsement delay experienced by a client is affected mainly by two
components: i) the network delay between the client and the Endorser Peers (EPs)
and ii) the processing delay at each EP. The network delay mainly depends on
the network congestion and the propagation delays, whereas the processing delay
depends on both the CPU capability and the computation load of each EP. Because
network and processing delays are time-varying and hence difficult to predict,
optimally selecting EPs is hard. Note that a selection algorithm choosing just the
best EP based on the minimum experienced delays will concentrate the endorsement
requests to the same EPs, increasing the network congestion and the processing load,
thus increasing the overall endorsement delays.

In this research, we propose an optimal EP selection policy minimizing the
endorsement delays. The main idea is to send redundant endorsement requests to
multiple EPs. The adopted spatial diversity increases the chance of having the best
EPs among the selected ones. The benefit of the proposed approach can be captured
by a simple queueing model in which a task is sent in parallel to multiple servers,
each with its queueing system, to minimize task completion time.

In our work, the novel contributions are as follows. (i) We highlight the role of
the network and processing delays in the overall endorsement delay. (ii) We refer
to a simple analytical model, based on the classical theory of queueing systems, to
evaluate the effect of redundancy in selecting the EPs and to compute the optimal
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number of EPs. (iii) We propose an optimization approach denoted as OPtimal
ENdorsement (OPEN) based on the analytical results, leveraging the history of
endorsement delays. (iv) We demonstrate through extensive simulations that OPEN
outperforms the state-of-the-art solution and accurately approximates other optimal
policies while having a much lower implementation overhead compared to them.

The rest of this chapter is structured as follows. In Sec. 3.2 we discuss the related
work. Sec. 3.3 describes the HF architecture and then focuses on the endorsement
phase delay by introducing the network model and the EP selection problem. Sec. 3.4
explains a simple analytical model, derived from classical results on queueing theory,
to find the optimal number of EPs in a simplified scenario. In Sec. 3.5, we propose an
EP selection algorithm based on the optimal replication factor computed analytically
in Sec. 3.4, able to operate in a generic scenario. In Sec. 3.6, we assess by simulation
the performance of our proposed approach and compare it with the alternatives
proposed and with the state-of-the-art solution. Finally, we draw our conclusions in
Sec. 3.8.

3.2 Related works

Different works modeled analytically the endorsement process in HF. [68] modeled
the EPs as M/M/1 queues and considered the propagation delays in the network
model, coherently with our work. It showed that using a pure “AND” endorsement
policy, compared to “OR” or “k-OutOf-Q” policies, significantly increases the
endorsement delay by increasing the number of organizations. Similarly, [69]
showed the same results by modeling HF using stochastic reward networks. They
also observed that for “OR” and “k-OutOf-Q” policies the latency decreases by
increasing the number of EPs within the same organization, similar to the effect of
increasing R in our work.

[70] modeled HF using Generalized Stochastic Petri Nets and showed that for
high request arrival rates, the endorsement phase is a performance bottleneck of
HF. This is coherent with the motivation of our work, focusing on optimizing
the endorsement phase. [71] showed that using “k-OutOf-Q” policy, increasing
k decreases the throughput and increases the latency. This is coherent with our
system model since the endorsement latency will be the maximum among k request
delays. [72] optimized the HF configurations to improve the throughput and reduce
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the delays. Coherently with our results, they showed the equivalence between the
“1-OutOf-Q” policy and the “OR” among all organizations. Our results in Sec. 3.3.1
generalize such property.

Some works tried to improve endorsement phase of HF. [73] proposed a way to
select the best EP for “1-OutOf-Q” endorsement policy in HF v1.4. They introduced
an algorithm running in each EP, called DSLM, to calculate the EP’s load by
considering multiple resource metrics within an EP. For each request, only half
of the EPs are probed to get their actual load, coherently with R = Q/2 adopted in
OPEN. A version of DSLM tailored to our system model has been considered in
Sec. 3.6 as an alternative approach to be compared with OPEN. [74] showed that the
failed transactions due to timeouts are affected by the number of statements within
the “AND” operator defined in the endorsement policy. Such failures increase the
latency and waste of resources due to re-transmissions at the application level.

[75] suggested a way to reduce the possibility of endorsing conflicting transactio-
ns. They proposed a cache mechanism inside the EPs to record some data of the
recently endorsed transactions and drop the conflicting proposal before execution.
Recall that, in the endorsement phase, no execution results will update the world
state, so transactions with similar initial world states can propose different updates
for the world state. This early drop of the proposal before execution will reduce the
computing and network resources by reducing the chance of transaction failure at
the validation phase. [76] removed unnecessary operations for pure read requests, by
modifying the EPs algorithm to differentiate the process of pure read transactions
from mixed read/write ones. This reduced the latency and resource consumption in
the endorsement phase.

The main idea of OPEN is to send multiple replicas of the same request to
multiple Endorser peers. This approach has been deeply investigated in the literature
on queueing theory, motivated by the problem of optimal job assignment to servers.
As the literature is huge, we focus just on a few papers for the sake of space. In
the generic literature about distributed systems, several works [77–79] investigated
the effect of sending replicas of a job to more than one randomly selected server
and waiting for the first response to exploit redundancy, as in OPEN. These works
introduced redundancy to reduce the job completion time and overcome server-side
variability, where a server might be temporarily slow, due to many factors like
garbage collection, background load, or even network interrupts. [80] showed that,
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besides its simplicity, in many cases, redundancy outperforms other techniques for
overall response time. [81], by decoupling the inherent job size from the server-
side slowdown, described a more realistic model of redundancy and showed that
increasing the level of redundancy can degrade the performance, coherently with our
observations in Sec. 3.4. [82] showed that a major improvement results from having
each job replicated to only two servers, coherently with our Fig. 3.3 which shows that
for the 1-OutOf-k policy, the endorsement latency decreases mostly when varying R
from 1 to 2. On the contrary, in our work, we have considered the optimal value of R
that minimizes the endorsement latency, which may be greater than 2. [83] showed
the reverse relation between the incoming load and the optimal number of replicas,
coherently with (3.17), and experimentally obtained the optimal redundancy factor
in different job arrival rates and for different service times. Also, [84] theoretically
demonstrated that, when replicating the job to multiple servers, the best choice in
case of low (or, high) loads is to replicate to all (or, only 1) servers, coherently
with (3.17) and with the operations of OPEN, which adapts the replication factor to
the instantaneous load.

3.3 Hyperledger Fabric architecture and endorsement

The Execute-Order-Validate approach enables the simulation of the transactions
before the agreement of the participants on recording the results in the Hyperledger
Fabric blockchain. We describe the role of the entities that are participating in the
simulation phase of Fig. 3.1.

The client in the endorsement phase, is responsible for preparing the transaction
proposal of the users’ transactions and sending it to the Endorser Peers (defined
below) based on the specified endorsement policy. If the client receives enough
endorsements before a specific time-out, it forwards them to the ordering service;
otherwise, the client can re-transmit the same proposal in the hope of receiving
enough endorsements in time.

The Peer is the element responsible for the following tasks. The Endorser
Peer (EP) simulates/executes the transaction received from the client application,
based on the current values of the world state. The Verifier/Committer (VCP)
receives a block of simulated transactions from the ordering service and verifies their
legitimacy to mark them as validated or invalidated. Then it appends the verified
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Fig. 3.1 Transaction processing phases in HF highlighting all the message interactions
between the involved entities

block to the blockchain, comprising all the transactions (validated or invalidated). To
update its copy of the ledger, an EP is typically a VCP at the same time. The peers
are owned by various organizations that are blockchain members. An organization
can be as small as individuals or as large as a multi-national corporation.

The endorsement policy defines the logical conditions to validate a transaction in
terms of the EPs on a channel that must execute a transaction proposal. In Sec. 3.3.1,
we will describe in detail the representation of the endorsement policy. The definition
of an endorsement policy is at the organizational level, which means any EP of that
organization can represent that organization in the endorsement policy. A transaction
should pass three phases to be stored in the blockchain, as shown in Fig. 3.1.

3.3.1 Standard form of an endorsement policy

HF provides a very flexible way to define an endorsement policy. We will show
that any endorsement policy, despite its complexity, can be reduced to a standard
form. In HF, the definition of an endorsement policy is based on a syntax that allows
the operators “AND”, “OR” and “k-OutOf” to be applied to a set of organizations
and nested expressions [85]. In particular, the operator “k-OutOf-E” returns true
whenever at least k expressions within set E are satisfied. Despite the complexity of
the policy expression, we prove that the following proposition holds:
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Proposition 1. Any endorsement policy obtained by combining arbitrarily “AND”,
“OR”, and “OutOf” operators is equivalent to the policy:

OR(St1,St2, ...) (3.1)

where each Sti is either a single organization or the conjunction (“AND”) of different
organizations.

Proof. In the case of expressions based on only “AND” and “OR” operators, thanks
to the distribution principle in logic expressions, we can transform the original
expression into the target form (3.1). In the case of “k-OutOf(e1,e2, . . . ,em) operator,
where ei is a single expression, by definition this holds:

k-OutOf(e1,e2, . . . ,em) = OR({AND(E)}E∈Ω)

being Ω the set of all
(m

k

)
combinations of k expressions from the set of m.

Now, since any expression with the “OutOf” operator is equivalent to one with
only “AND” and “OR”, by following the previous reasoning, such expression can be
reduced to the expression (3.1).

The policy, defined at the organization level, must be mapped into a policy
defined at the EP level since the endorsement requests should be sent to the proper
EPs. So, getting the endorsement from a specific organization requires receiving it
from any of its EPs, which is equivalent to the policy 1-OutOf(p1, p2, . . .), where pi

are the EPs within the organization. Revisiting Proposition 1 applied at the policy
expression at the EP level, we can claim:

Proposition 2. Any endorsement policy defined at the organization level can be
expanded into an endorsement policy defined at the EP level as follows:

OR(St
′
1,St

′
2, ...) (3.2)

where each of St
′
i is either a single EP or the conjunction (“AND”) of different EPs.

The result of Proposition 1 allows investigating only one standard form of
endorsement expression, independently from the original expression complexity.
Now, by using Proposition 2, we will have the endorsement expression extended
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at the EP level. At this level, the final endorsement will be just in the form of the
OR between the conjunction (“AND”) of different EPs of different organizations, as
in (3.2).

For example, consider a scenario with three organizations and two EPs in each
of them. If the endorsement policy is “2-OutOf(o1,o2,o3)”, we can rewrite it as:

2-OutOf(o1,o2,o3) = OR({AND(pi j, pi′ j′ ),∀i,∀i
′ ̸= i,∀ j,∀ j′}) (3.3)

where oi is organization i, and pi j is the EP j of organization i. The expanded version
in (3.3) lists all the possible combinations of the EPs that can satisfy the endorsement
policy according to the standard form.

3.3.2 Endorser peer (EP) selection algorithm

In our work we focus on the EP selection algorithm, starting from the standard form
of the endorsement policy. The endorsement delay is the amount of time the client
waits, from sending the endorsement request until receiving the first endorsement
reply that satisfies the endorsement policy. The response delay from an EP is the
sum of two components: the network delay and the processing delay at the EP. The
network delay depends on the propagation delay and the queueing delay along the
path to the EP, which is affected by the time-variant congestion conditions. The
overall processing delay depends on the queuing at the EP before being served and the
computation time at the EP, which depends on the CPU speed and the instantaneous
CPU load and resource contentions. Because the standard form of any endorsement
policy comprises an overall “OR” operator, as in (3.2), the endorsement latency
corresponds to the minimum delay to get a valid statement. Also, each statement is
based on an “AND” operator between EPs, so the delay of each statement depends
on the maximum response delay of all EPs included in a statement. In summary,
the endorsement latency depends on the “fastest” group of EPs forming a statement,
while the delay of each group depends on the “slowest” EP within the group.
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(a) General network model (b) R requests for 1-OutOf-Q

Fig. 3.2 Network model and the endorsement policy sending each request to R
organizations/peers in parallel.

3.3.3 System model for the endorsement phase

Without loss of generality, we consider a fixed network topology connecting C clients
with Q organizations, each of them with a generic network connecting the internal
EPs, depicted in Fig. 3.2a. We assume that all nodes in the system are always
available, the routing is fixed, and the links have enough bandwidth to prevent
network congestion caused by the endorsement protocol. Thanks to the service
discovery process in HF, we consider only the most updated EPs.

3.4 Background on optimal replication in queueing
systems

Now, we discuss an analytical model to compute the optimal number of EPs for each
transaction, derived from classical results on task replication in a queueing system,
as explained in Sec. 3.2. For the sake of readability, we report the adopted notation
in Table 3.1.

We consider a simplified model as shown in Fig. 3.2b, with one EP in each
organization. We assume 1-OutOf-Q as the endorsement policy, which corresponds
to OR(p1, p2, . . . , pQ) in its standard form. For now, we neglect the network delays
and concentrate just on processing delays. We suppose each client generates
endorsement requests according to a Poisson process with rate λ . Each client
selects at random R EPs to send the endorsement request. R will be denoted in the
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Table 3.1 Notation

C number of clients
Q number of organizations
p endorser peer (EP)
λ arrival rate of new transactions to each client
µ inverse of computation time for the EP server
U utilization factor in each EP server
R redundancy factor
Wi waiting time needed for the ith request to be served
Si inter-arrival time between the ordered version of {Wi}i
γ normalized load factor for the worst case R = Q
R̂k optimal R for policy k-OutOf-Q
Lk endorsement latency for policy k-OutOf-Q
P set of all available EPs
Pe set of selected EPs
Pold

e set of previously selected EPs
T probe sampling period
TXn transaction with local sequence number n
xk

p endorsement latency of TXk for peer p
tresp
p virtual response delay of a peer for the new TX

tbusy
p virtual time at which EP p is not busy anymore

τ
proc
p processing delay for the current endorsement request

τnet
p network delay for EP p

τ
queue
p queueing time experienced by the TX at EP p

dcp the network delay between client c and EP p

following as redundancy factor. To model the processing time variability at the
EP, we assume an exponentially distributed processing time with an average 1/µ ,
coherently with past works [70, 68]. Thus each EP can be modeled as an M/M/11

queue with arrival rate λRC/Q and service rate µ . We define the utilization factor
for each EP as:

U =
λRC
µQ

(3.4)

Thus, for the request traffic to be sustainable, U < 1 and the endorsement request
arrival rate must satisfy:

λ <
µQ
RC

(3.5)

1In classical queueing theory, an M/M/1 queue has a single server, arrivals follow a Poisson
process and service times are exponentially distributed [86].
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We now claim the following:

Proposition 3. Under a sustainable arrival rate of endorsement requests and a
random selection policy with R EPs, according to the endorsement policy 1-OutOf-Q,
it holds for the endorsement latency L1:

E[L1] =
1

µ− λRC
Q

(
1
R

)
R ∈ [1, . . . ,Q] (3.6)

Proof. From Fig. 3.2b, let λ ′ be the average incoming rate of the requests for the
queue of each EP such that:

λ
′
=

λRC
Q

(3.7)

We define Wi as the waiting time of a request to be served at the ith EP, which is the
sum of queuing time and the serving time of the request in the ith EP. From M/M/1
well-known properties [86], Wi are i.i.d. and exponentially distributed with mean:

E[Wi] =
1

µ−λ
′ (3.8)

Observe that:
L1 = min(W1,W2, . . . ,WR) (3.9)

where Wi are i.i.d.. From basic properties of the exponential distribution, L1 is
exponentially distributed with mean:

E[L1] =
E[Wi]

R
(3.10)

and finally get (3.6).

By computing the first derivative of (3.6) with respect to R, we can prove the
following:

Proposition 4. Let R̂1 be the optimal value of R that minimizes E[L1] for the policy
1-OutOf-Q.

R̂1 =
µQ
2λC

(3.11)

In summary, the optimal number of EPs changes with λ . For low arrival rates, R
must be large to exploit the spatial diversity, without incurring additional overhead
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in the processing times. For high arrival rates, conversely, R is small to reduce the
load on the EPs. Notably, for the sake of readability, we omitted from (3.11) the
clipping to the interval [1,Q] and the rounding procedure to find the optimal integer
value of R. We can now extend the result of Proposition 3 to a generic OutOf policy.

Proposition 5. Under a sustainable arrival rate of endorsement requests and a
random selection policy with R EPs, according to the endorsement policy k-OutOf-Q,
it holds for the endorsement latency Lk, for any R ∈ [k, . . . ,Q]:

E[Lk] =
1

µ− λCR
Q

(
k−1

∑
i=0

1
R− i

)
(3.12)

Proof. Using the same definition of Wi as adopted in the proof of Proposition 3, we
can define Lk as the endorsement latency for the policy k-OutOf-Q. Now Lk can be
computed as the kth order statistic as follows:

Lk = (W1,W2, . . . ,WR)(k) (3.13)

recalling the fact that Wi are i.i.d. and exponentially distributed, we can define Si

as the time interval between the ordered version of the Wi (i.e., Si =W(i+1)−W(i)).
Thanks to the theory of order statistics [87], Si is exponentially distributed with
average:

E[Si] =
E[Wi]

R− i
(3.14)

By combining (3.10) and (3.14), for any R ∈ [k, . . . ,Q]:

E[Lk] =
k−1

∑
i=1

E[Si]+E(L1) =
k−1

∑
i=0

E[Wi]

R− i
(3.15)

and we get (3.12).

The optimal value of R̂ can be computed analytically as well. We impose
sustainable request arrivals, i.e., U < 1, for any R to guarantee sustainable arrivals
also in the case R = Q, it must hold λ < µ/C. Thus, we can set:

λ = γ
µ

C
(3.16)
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Fig. 3.3 Endorsement latency where Q ∈ [8,16,32,64] (left to right). The green line
represents R = Q/2.

with γ ∈ (0,1) being the load factor. By substituting (3.16) into (3.11), we can obtain
the optimal number of EPs for 1-Out-Of-Q policy as:

R̂1 =
Q
2γ

(3.17)

We can repeat the same derivation also for R̂k, i.e., for a generic k-OutOf-Q policy.

3.4.1 Numerical evaluation

In Fig. 3.3 we reported the endorsement latency computed in the function of γ and
R, obtained by substituting (3.16) in (3.12). As expected, we observe a minimum
endorsement latency obtained with R = Rk, as computed analytically, which depends
on the load γ . Due to the difficulty of estimating the load in practical scenarios
(which may not be stationary), for k = 1, we propose heuristically choosing R = Q/2
as a sub-optimal redundancy in our proposed approach, discussed in the following.
This choice is robust since it is optimal at high load and at low load the latency
increase is limited. Indeed, for γ = 0.5 the increase is no more than 8% compared
to the optimal value, and for γ = 0.1 no more than 12%. Thus for k = 1, R = Q/2
appears to be a practical solution, which will be exploited when devising online EP
selection algorithms in Sec. 3.5.

The redundancy effect can be limited due to the number of organizations/EPs or
applied endorsement policies, as they affect the number of statements generated by
Proposition 2. With fewer final statements, there would be less space for redundancy.
Indeed, systems with less restrictive and less complex endorsement policies (e.g.,



66 Optimal endorsement for network-wide distributed blockchains

majority policies) benefit more from redundancy, while organizations benefit from
adopting more EPs to increase reliability.

3.5 Practical endorsers selection algorithms

Now, we concentrate on the 1-OutOf-Q policy, since it is coherent with the standard
form of any endorsement policy. Without loss of generality, we assume just one client
in the system (C = 1). We assume that the client is aware of all needed information
including available/most-updated EPs, thanks to the configuration query request, as
shown in Fig. 3.1, which leverages the available service discovery process.

We propose an optimization procedure to select the EPs, denoted as OPEN, whose
main goal is to minimize the endorsement response delay. OPEN considers the past
response delays experienced by the previously selected EPs and selects the EPs
with the lowest delays. This choice is motivated by the high temporal correlation
between the response delays of an EP, due to queueing in the network and in the
EPs. Notably, the history is meaningful only for recently selected EPs, otherwise, it
is obsolete. Therefore, it is possible that a highly loaded EP that was not recently
requested becomes among the least loaded ones and is worth again sending the
request to it. To address this, OPEN probes non-selected EPs by sending gratuitous
endorsement requests, which are still considered in the evaluation of the endorsement
policy. Furthermore, in OPEN pending requests are considered indicators of possibly
congested EPs, which are chosen at a lower priority.

The pseudocode of OPEN is provided in Fig. 3.4. Let TXn be the transaction with
sequence number n, evaluated locally at the client. Let xn

p be the measured response
delays of TXn for any EP p ∈P . Let Pn

e be the set of selected EPs for TXn. For
each transaction, we initialize all EPs as eligible to be selected (ln. 2). Just for the
first transaction, OPEN initializes the history of response delays to a dummy value
and selects all EPs as selected endorsers (ln. 3-6). For a generic transaction, all
response delays are initialized to a dummy value (ln. 7-9). Then the EPs are selected
based on a procedure described in the next paragraph (ln. 10). Now OPEN sends
the endorsement request for TXn to the computed set of EPs (ln. 11) and updates
the measured delays (ln. 12). A new instance of the procedure would start if a new
transaction TXn+1 is generated. Note that the procedure ends when all the responses
are received.
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1: procedure OPEN(n) ▷ Process TXn

2: en
p← true, ∀p ∈P ▷ Init the eligibility vector for TX(n)

3: if n = 1 then ▷ Just for the first transaction
4: for p ∈P do
5: x0

p← x1
p←−1 ▷ Init the response delay history

6: P1
e ←P ▷ Select all the available peers

7: else ▷ Consider a generic transaction
8: for p ∈P do
9: xn

p←−1 ▷ Init the measured delays for TX(n)

10: Pn
e ← Select-Endorsers()

11: Send-Endorsement-Requests(TXn,Pn
e )

12: Xn← Update-Response-Delays()

Fig. 3.4 Pseudocode of the OPEN algorithm for TXn

We now discuss how Select-Endorsers function operates. Inspired by our
previous result in (3.17), it selects |P|/2 EPs chosen among the ones that experienced
the lowest response delays, based on the measures for the last transaction TXn−1.
The choice is challenging when one or more responses are still pending for TXn−1,
and the algorithm key idea is that the corresponding EPs are considered as congested
and thus should not be selected for the current transaction TXn.

The pseudocode is reported in Fig. 3.5. It calculates the maximum delay
measured for TXn−1 (ln. 2). For each EP in Pn−1

e such that the response is not
received yet, we mark the corresponding EP as non-eligible (ln. 3-5). There are two
cases. The first case is the special one in which no responses have been received
for TXn−1, thus the algorithm speculates the delay equal to the delay of TXn−2

(ln. 6-7). The eligibility assigned to the EPs will lead to selecting the other |P|/2
EPs compared to the previous ones. The second case is the typical one in which
at least some responses have been received for TXn−1 (ln. 8). For the EPs used in
TXn−1 and for which no response has been already received, the speculated delay is
equal to the maximum delay dmax plus some constant ε , chosen enough small to be
negligible compared to the average network and processing delays (e.g., 1 ns) (ln. 9).
This will model the fact that the actual delay is unknown, but for sure it is strictly
larger than dmax. Finally, for all the other EPs, not used for TXn−1, the delays are
speculated to be equal to Xn−2 (ln. 10-11). Now, the EPs are sorted based on the
Xn−2 delay values and the half best will be selected (ln. 12). A random EP from
not selected ones will be chosen as the gratuitous probe EP (ln. 13). The slowest
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1: procedure SELECTENDORSERS( )
2: dmax = maxp∈Pn−1

e
{xn−1

p } ▷ Max measured delay for TXn−1

3: for p ∈Pn−1
e do ▷ For EPs used for TXn−1

4: if xn−1
p =−1 then ▷ Not yet response from EP p

5: en
p← false ▷ Make the EP Not-eligible for TXn

6: if dmax =−1 then ▷ No delay measured for TXn−1

7: xn−1
p ← xn−2

p ▷ Use past delays
8: else
9: xn−1

p ← dmax + ε ▷ Speculate the delay

10: for p ∈P \Pn−1
e do ▷ For EPs not used for TXn−1

11: xn−1
p ← xn−2

p ▷ Use past delays

12: Pn
e ← Eligibile-EPs-with-min-delay(|P|/2,Xn−1)

13: p← Random-EP(P \ (Pn
e ∪Pn−1

e )) ▷ Select probe EP
14: Pn

e ← Replace-slowest-EP(Pn
e , p) ▷ Embed the probe EP

15: return Pn
e ▷ Selected EPs augmented with the probe EP

Fig. 3.5 Pseudocode for SelectEndorsers

EP from Pn
e will be replaced with the gratuitous probe EP (ln. 14), and Pn

e will be
returned to the main OPEN process (ln. 15).

3.6 Performance evaluation

We developed an event-driven simulator using OMNeT++ [88]. We considered a
scenario with C = 8 clients and Q = 8 organizations, each of them with 1 EP, thus
|P|= Q. The endorsement requests are generated according to a Poisson process at

Table 3.2 Experimental Implementation of HF use cases

EPs
Application Paper organizations per clients

organization
Healthcare applications [89] 5 1 any
Construction management [90] 6 4 any
Privacy-Preserving Healthcare [91] 3 3 any
Drug traceability [92] 6 scalable any

each client and we set the normalized load γ ∈ [0.1,0.9]. Then fixing γ = 0.5, we
considered more scenarios by varying Q ∈ {8,16,32,64}, each organization with
the number of EP ∈ {1,2,4,8}, and C ∈ {8,40,125,1000,8000,32000} clients; in
each scenario we fixed all parameters except one. These choices are made based
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Table 3.3 Settings for different distributions of the computation time with different coefficient
of variation (Cv).

Cv (Bimodal) 0.0 0.5 1 2 5
P(µ = µ1) 0.5 0.6 0.75 0.9 0.98
1/µ1 [ms] 10.0 5.9 4.2 3.4 2.85
1/µ2 [ms] 10.0 16.1 27.3 70.0 360.0

on the values for some practical use-cases that are mentioned in Table 3.2, It is also
worth noting that, according to the referenced works, the number of clients can be
any number. To understand the performance under non-stationary requests, we also
considered a Poisson-modulated process with squared-wave cyclo-stationary load,
with a period equal to 1200 ms, duty cycle 50%, and normalized load γ = 0.5.

To consider the effect of different kinds of computation, we assume the computat-
ion time of each EP to be either exponentially distributed or bi-modal distributed
with an average equal to 10 ms, whose value has been achieved from our practical
measurements in HF EPs. In the bi-modal case, we assumed that, with a given
probability, the computation time is constant with the value 1/µ1, otherwise its
value is 1/µ2. Table 3.3 shows the coefficient of variations (Cv) for the adopted
setting. To model the heterogeneity in the computing power and resources of the
EPs, we considered a non-homogenous scenario in which we assigned different
average computation times to different EPs (i.e., (2,4,6,8,12,14,16,18) ms) where
the computation time of each EP is exponentially distributed. We considered three
scenarios for the network model, two of them are synthetic and the last one is real.
Let dcp be the network delay between client c and EP p. In the first scenario, denoted
as S1, the network delays are negligible compared to the processing times at the
EP, i.e., dcp = 0 (Fig. 3.6a). In the second scenario, denoted as S2, we set linearly
increasing delays between any client and the EPs, similarly to a linear topology
where all clients are closer to the first EP, i.e., dcp = (p+ 1/2) ms for p ∈ [1,Q].
This implies similar delays from each EP to any client while on average the total
network delays are comparable to the processing times at the EPs (Fig. 3.6b).

In the third scenario, denoted as S3, we selected the Highwinds network from [93],
shown in Fig. 3.7, as a real world-wide scenario where the link delays are calculated
based on the physical distance between the geographical position of the nodes (using
the Haversine formula) and the propagation speed is 2/3 the speed of light. The
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(a) S1 (bipartite) (b) S2 (linear)

Fig. 3.6 The two synthetic network topologies adopted for test scenarios in our simulations.

Fig. 3.7 Real network topology (S3) showing the EPs and clients placement with
interconnecting network topology

clients here can be divided into two groups: (i) far clients placed in nodes 1,7,8, and
(ii) centered clients placed in nodes 2,3,4,5,6.

We measure the average endorsement latency as the main performance metric.
The endorsement latency is calculated from the moment the endorsement request
is sent out from the client until the first response is received by the client. For
comparison, we considered three EP selection algorithms, namely RND, OOD, and
DSLM, where the first two are proposed by us.

Random EPs (RND)

RND is the policy adopted in the analytical model of Sec. 3.4. Every endorsement
request is sent to R randomly chosen EPs. If R = Q/2, the policy is denoted as
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1: procedure DSLM(n) ▷ Process TXn

2: if n = 1 then ▷ Just for the first TX
3: lp← x̄p← x0

p← 0,∀p ∈P ▷ Init EP load and delay values

4: Ph← Select-|P|/2-random-peers ▷ Random half EPs
5: for p ∈Ph do
6: x̄p← [α x̄p +(1−α)xn−1

p ] ▷ Average delay

7: return argminp∈Ph{(x̄
0.5
p +1)qp} ▷ Choose min product delay queue length.

Fig. 3.8 Pseudocode for DSLM adapted to our model

RND-half. If R adapts to the load according to the rule R = Q/(2γ), as in (3.17), it is
denoted as RND-load.

Dynamic Stochastic Load Minimization (DSLM)

Dynamic Stochastic Load Minimization (DSLM) was proposed in [73] and the
pseudocode of the version adapted to our system model is shown in Fig. 3.8. Just for
the first TX, DSLM initializes the load lp and the measured response delay x0

p of any
EP p (ln. 2-3). Typically, it randomly selects half of the EPs (ln. 4) and evaluates
heuristically the load on each selected EP by the product of the square root of the
response delay and the corresponding queue length (ln. 5-6). The average is obtained
with an exponential moving average with parameter α . Finally, DSML returns the
EP with the lowest estimated load among the selected ones (ln. 7).

Oracle Optimal Delays (OOD)

As a reference for all the endorsement algorithms, we define an online Oracle-based
Optimal Delays (OOD) EP selection policy that minimizes the endorsement latency
given a fixed replication factor R, denoted as OOD-R. The pseudocode of OOD-R
is provided in Fig. 3.9. We assume an oracle that knows in advance the response
delay of any endorsement request if sent to a specific EP. Thus, the oracle knows for
any EP p: (i) the absolute time tbusy

p at which the EP will finish (or has finished) to
serve the last received endorsement request TXn−1, (ii) the processing time τ

proc
p of

the endorsement request TXn, and (iii) the overall network delay τnet
p between each

client and the EP. Thus, if sent to EP p, the response to TXn will be received from
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1: procedure OOD-R(n) ▷ Process TXn

2: for p ∈P do ▷ For each EP
3: tresp

p = max{tnow + τnet
p , tbusy

p }+ τ
proc
p ▷ Compute response delay

4: p = argminp∈P{tresp
p } ▷ Choose the min response delay EP

5: Pe = Find-(R−1)-EPs-with-largest-{tresp
p }

6: return {p}∪Pe ▷ Return endorsement set

Fig. 3.9 Pseudocode of OOD-R

EP p at a predicted time tresp
p (ln. 3) equal to:

tresp
p = max{tnow + τ

net
p , tbusy

p }+ τ
proc
p + τ

net
p (3.18)

since if at the time of arriving the request to an EP its queue is empty, then the
request will be served at tnow + τnet

p , otherwise at tbusy
p . Then, the request will be

processed for τ
proc
p and the response will be sent back, experiencing τnet

p delay. Now
OOD-R chooses the EP with the smallest predicted time to minimize the response
delay (ln. 4). The remaining (R−1) endorsement requests (if any) will be sent to
the EPs in decreasing order of predicted time (ln. 5). This allows to loading of the
“slowest” EPs with requests whose responses will be received late and thus reduces
the load on the “fastest” EPs, for the sake of future endorsement requests.

It should be noted that, in the case of RND-load, the request arrival is assumed to
be stationary, thus, the system load can be estimated with high accuracy. Also, OOD
is implementable with enough control information, but obtaining this information
would need instantaneous communication with the EPs, which is challenging to
accomplish in a practical situation. So, both algorithms are not practical in a real
scenario.

3.6.1 Simulations results

For a fair comparison between OOD and other approaches, in all test scenarios
we selected OOD-half, i.e., with the same R as OPEN, and RND-half, and slightly
smaller R than RND-load, for which R ∈ [Q/2,Q]. Only DSLM has a completely
different redundancy factor (R = 1).



3.6 Performance evaluation 73

Fig. 3.10 Average endorsement delay for i) average computation time of 10 ms for each EP:
S1 (left-up), S2 (left-middle), S3 (left-down), ii) different average computation times from [2
to 18] ms for each EP: S1 (right-up), S2 (right-middle), S3 (right-down).

Homogenous scenario

The left graphs in Fig. 3.10 show the simulation results for a homogenous scenario
with all EPs with computation times that are exponentially distributed with the same
average.

In scenario S1 (left-up), all delays are purely due to processing in the EPs.
Since DSLM does not exploit redundancy and for γ = 0.1 the queuing at the EP is
negligible, its response delay is around 10 ms, equal to the computation time. By
increasing the load and hence the queueing, the average delay increases slightly.
Instead, by exploiting the redundancy all the other approaches can get smaller delays,
by a factor of 2 to 6. As expected, OOD-half achieves the best average endorsement
latency among all solutions. At low loads, due to the maximum redundancy factor
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(i.e., R = 8), RND-load performs closer to OOD-half by always having the fastest EP
among its selection. By increasing the arrival rate, for both RND-half and RND-load,
the endorsement latency increases as the selection of EPs is not as efficient as OOD-
half, which knows in advance the best EP. At high loads, for RND-load, R is almost 4,
hence RND-load shows similar results to RND-half. OPEN has a redundancy factor
R = 4, as RND-half, but selects EPs with smaller estimated delays. At low loads,
OPEN has a small advantage over RND-half, as the queueing is almost negligible.
As the offered load increases, the higher queueing makes OPEN more efficient, also
thanks to the higher frequency by which the response delays are estimated.

In scenario S2 (left-middle), as expected, OOD-half is the best algorithm, and
DSLM is outperformed by all other solutions by a factor of 2 to 3. Due to the linearly
increasing network delays, the effect of redundancy in EPs becomes less dominant,
so the delay’s improvement in scenario S2 is less than in S1. On the other hand, at
low loads, OPEN acts slightly better than RND-half compared to S1, thanks to being
aware of the network delays. At high loads, OPEN behaves close to RND-half since
the queueing delays become dominant to network delays.

In scenario S3 (left-down), again OOD-half is the best approach, DSLM is
outperformed by all other solutions by at least a factor of 2. Due to the different
network delays, on average much larger than the computation times, the redundancy
is less effective, thus a lower delay improvement is experienced in S3 compared to
S2, and S1. OPEN performs quite similarly to RND-load in low loads even with
a half number of selected EPs, and much better in high loads. OPEN completely
outperforms RND-half in all loads since it exploits mainly the EP with lower network
delays.

Non-homogenous scenario

The simulation results for a non-homogenous scenario are reported in the right
graphs of Fig. 3.10. As a reminder, now the average computation times for the EPs
are different, but the overall average is the same as in the homogenous scenario. In
all three scenarios S1, S2, and S3, as DSLM is not able to exploit redundancy, it is
not able to reduce its average latency. On the other hand, by exploiting redundancy,
all other approaches can reduce their average latency, where OOD-half achieves the
lowest latency thanks to its global knowledge of the system.
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Fig. 3.11 Average endorsement delay for clients with average computation time of 10 ms for
each EP in scenario S2, and γ = 0.5: scaling the number of organizations (left), scaling the
number of EPs (middle), and scaling the number of clients (right).

In scenario S1, RND-load reduces the latency more than RND-half, since the
higher redundancy factor increases the chance of selecting EPs with lower average
computation times. With the same redundancy factor as RND-half, OPEN reduces
the most the delays for all loads, as it employs the latency history to select EPs with
lower average computation times. In scenario S2, a similar behavior as in S1 is
observed for all the algorithms. OPEN, by exploiting the delay history comprising
both the average computation times and the network delays, achieves the best
performance by almost approaching OOD-half. In scenario S3, we observe almost
similar results as in scenario S3 of the homogeneous case, as the variation in the
average computation times is still negligible to the average network delays.

Scaling the number of organizations, EPs, and clients.

The simulation results for larger scenarios are shown in Fig. 3.11. We consider
the S2 scenario, to get a heterogeneous system in terms of network delays, and we
fixed γ = 0.5. By increasing the number of organizations, the overall number of EPs
increases, thus the endorsement latency is reduced for all the algorithms exploiting
redundancy, as shown in Fig. 3.11 (left). The same behavior is observed when the
number of EPs in each organization increases (see Fig. 3.11 middle). The similarity
with the previous graph is that we are considering the 1-OutOf-N policy here, which
by recalling (2), for this endorsement policy there is no difference between two EPs
of the same organization or different EPs of different organizations.

According to Fig. 3.11 (right), changing the number of clients does not affect the
approaches. Note that increasing the number of clients will reduce the efficiency of
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the information gained by OPEN and it will converge to the RND-half results for
homogeneous cases with less dominant network delays.

Bi-modal computation times

The simulation results are shown in Fig. 3.12. In scenario S1, for constant computation
time (Cv=0), the redundancy is not beneficial for delay reduction, while at high
loads it can increase the EPs’ queue length and thus the delay. For larger Cv, all the
algorithms, except DSLM, decrease the average endorsement delay. This is because
the average of the minimum between a sequence of i.i.d. random variables is smaller
when the variance is larger. All the solutions, except for DSLM, behave similarly for
low and high loads.

In scenario S2, also for Cv=0, the redundancy reduces the average delay. The
reason is that DSLM considers the computation load at the EPs obliviously of the
network delays, which are dominating the computation times. But, in the other
approaches, redundancy increases the chance of selecting the EP with lower network
delays. By increasing Cv, redundancy can reduce the latency even more, by benefiting
from the variability in the computation times. At low load (γ = 0.2), OPEN performs
quite well as it also selects EPs with lower network delays. RND-load is performing
slightly better as it sends to all EPs. OOD-half is even better than RND-load with a
small margin, thanks to the lower load guaranteed by setting R = 4. At high load
(γ = 0.8), RND-load adopts R = 5.7 (on average) and the corresponding queueing
penalizes the overall response delay. OPEN acts slightly better thanks to the smaller
value of R.

In the S3 scenario, all approaches are not affected by Cv, as the variability in the
computation times is compensated by the network delays which vary between 0 ms
and 7 times the average computation time. At low load (γ = 0.2), OPEN selects
closer EPs in terms of network delays and outperforms RND-half by a factor greater
than 2, while being very close to OOD-half. RND-load achieves the same results as
OPEN by selecting all the EPs (i.e., R = 8), which include the closest EP as well.
At high load (γ = 0.8), as in scenario S2, RND-load is penalized by the queueing.
OPEN reduces the endorsement delay up to 70% compared to DSLM. Notably,
differently from OPEN, RND-load may not select the closest EPs. As expected,
for both loads OOD-half performs the best, since it always selects the minimum
combination of the network delay and the processing delay.
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Fig. 3.12 Average endorsement latency under bimodal computation times: i) normalized
load: γ = 0.2 (left), γ = 0.8 (right), ii) scenarios: S1 (up), S2 (middle), S3 (down)

For all scenarios, when Cv=0, all EPs have one computation time which is
exponentially distributed with an average of 10 ms. So, the experienced latency in
low loads and high loads is similar to what is reported in Fig. 3.12 (left) when γ = 0.2
and γ = 0.8 respectively. For all scenarios, the redundancy reduces the average delay.

In scenario S1, by increasing the CV, all the algorithms, except DSLM, decrease
the average endorsement delay. This is because the average of the minimum between
a sequence of i.i.d. random variables is smaller when the variance is larger. At low
load (γ = 0.2), RND-load is performing a bit better than OPEN and RND-half, as it
sends to all EPs. OOD-half is slightly better than RND-load thanks to the lower load
guaranteed by setting R = Q/2. At high load (γ = 0.8), RND-load adopts R > Q/2
and the corresponding queueing penalizes the overall response delay. By increasing
the CV, for DSLM in both low loads and high loads, the average endorsement delay
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increases since even a small possibility of selecting an EP with very high computation
time can increase the average endorsement delay.

In scenario S2, similar to scenario S1, in both low loads and high loads by
increasing the CV, the average endorsement delay for DSLM increases. In the
other approaches, redundancy increases the chance of selecting the EP with lower
network delays. By increasing Cv, redundancy can benefit from more variability in
the computation times, and reduce the latency even more. At low load (γ = 0.2),
OPEN performs slightly better than RND-half as it also selects EPs with overall
lower network delays and processing delays. RND-load is performing even better
as it sends to all EPs. OOD-half is even better with a small margin, thanks to
the lower load guaranteed by setting R = Q/2. At high load (γ = 0.8), RND-load
adopts R > Q/2 and the corresponding queueing penalizes the overall response delay.
OPEN acts slightly better thanks to the smaller value of R.

In the S3 scenario, all algorithms benefiting from the redundancy, are not affected
by Cv, as the variability in the computation times is compensated (i.e., equalized) by
the network delays which vary between 0 ms and 10 times the average computation
time. At low load (γ = 0.2), OPEN being very close to OOD-half, outperforms
RND-half by a factor around 2 due to selecting closer EPs in terms of network
delays. RND-load achieves the same results as OPEN by containing the closest EP
as it selects all the EPs (i.e., R = Q). At high load (γ = 0.8), same as scenario S2,
OPEN reduces the endorsement latency up to 70% compared to DSLM. RND-load
is penalized by both the queueing and lower number of selected EPs (i.e., R < Q), as
differently from OPEN, RND-load may not select the closest EPs. Again, for both
loads OOD-half performs the best since it always selects the minimum combination
of the network delay, the queueing delay, and the processing delay.

Log-normal computation times

The simulation results are shown in Fig. 3.13. All the results are similar to the
results of high loads (γ = 0.8) in Bi-modal computation times, except for scenario
S1, in which for constant computation time (Cv=0), redundancy is not beneficial
for delay reduction. For larger Cv, all the algorithms, except DSLM, decrease the
average endorsement delay as the average of the minimum between a sequence of
i.i.d. random variables is smaller when the variance is larger.
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Fig. 3.13 Average endorsement latency under log-normal computation times for normalized
load γ = 0.8 and different scenarios: S1 (left), S2 (center), S3 (right).

Table 3.4 Average endorsement delays for cyclo-stationary input rates with different
scenarios.

Scenario S1 [ms] S2 [ms] S3 [ms] S3 [ms]
centered clients far clients

OOD-half 1.2 7.1 13.6 16.9
OPEN 2.9 11.7 17.9 24.2

RND-load 3.1 11.2 19.2 23.7
RND-half 3.2 12.2 25.9 43.6

DSLM 10.8 22.8 65.9 110.3

Log-normal computation times

All the results are similar to the results of high loads (γ = 0.8) in Bi-modal computation
times, except for scenario S1, in which for constant computation time (Cv=0),
redundancy is not beneficial for delay reduction. For larger Cv, all the algorithms,
except DSLM, decrease the average endorsement delay as the average of the
minimum between a sequence of i.i.d. random variables is smaller when the variance
is larger.

Cyclo-stationary request process

We compared OPEN with other approaches under Poisson-modulated cycle-stationary
load. We evaluated the average endorsement delays by using an exponential moving
average. The results are provided in Table 3.4. In S1 and S2, OPEN, RND-half,
and RND-load showed almost constant average endorsement latency, while DSLM
and ODD results are the highest and the lowest respectively. Interestingly, all the
results for different approaches in S1 and S2 are very close to the results gained from
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Fig. 3.10 (left) for γ = 0.5, even if the load was changing periodically. This means
that all of them are robust to load change in homogeneous scenarios.

In S3, as a non-homogenous real scenario, OPEN shows a small difference of the
average endorsement latency between centered and far clients (recall their definition
in Sec. 3.6). This difference (6 ms) is negligible compared to the average network
delays in S3 (50 ms). The same behavior is observed for RND-load. On the other
hand, in RND-half the performance depends heavily on the client’s position; even
in the case of centered clients, RND-half experiences more endorsement latency
than OPEN with far clients. As expected, OOD-half achieves the best endorsement
latency with minimum difference regardless of the client’s position. DSLM performs
the worst with latencies about 4 times larger than OPEN.

These results show that OPEN adapts to load changes even in the presence of
unbalanced network delays. Also, OPEN outperforms RND-half and DSLM, while
it shows similar results to RND-load and to OOD-half.

3.7 Proof-of-concept implementation

We have validated OPEN in a practical scenario, by implementing a proof-of-concept
solution in a real HF platform and testing it. Our preliminary results show that
OPEN is easily implementable in HF, just with some coding on the client with no
modification to HF core-engine code. We used Ubuntu 20.04.6 LTS on a single server
with 32GB RAM and a 12X Intel Core-i7-12700H-(2.30-4.70)GHz CPU. Using HF
v2.2, 8 EPs were implemented as Docker containers and connected directly through
a Docker virtual network, following the setup of Fig. 3.14. A background load
of endorsement requests is created across all the EPs such that each EP is loaded
differently from the others, according to Table 3.5. Fig. 3.15 shows the corresponding
processing delays at the different EPs, which are unbalanced as expected. In our
settings, the network delays are practically negligible.

The measured endorsement delay is reported in Table 3.6 shows that OPEN can
reduce the endorsement delay by 22% compared to RND-half. We can deduce that,
in this non-homogeneous case, OPEN can “learn” the best EPs where to send the
request.
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Table 3.5 Background load for the EPs in the testbed

Endorser Peer id Request rate [1/s]
1 1.2
2 2.3
3 3.5
4 4.7
5 5.9
6 7.1
7 8.3
8 9.5

Fig. 3.14 Experimental testbed architecture

Table 3.6 Experimental results in the considered testbed

Algorithm Ave. endorsement delay 95% confidence interval
RND-half 115 ms [110,120] ms

OPEN 94 ms [87,101] ms
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Fig. 3.15 Measured processing delay at each EP.

3.8 Discussion

We addressed the problem of minimizing the endorsement latency in HF. Leveraging
some results obtained in a simplified queueing model, we proposed the OPEN
algorithm to choose multiple EPs for each transaction by taking into account the
measurements from the past requests, in a realistic scenario. Through simulations
with OMNeT++, we showed that independently from the scenario, OPEN is robust
and achieves performance remarkably close to the optimal oracle-based approach
(OOD) and outperforms state-of-the-art solutions.

OPEN has been validated only by extensive simulations. Beyond the scope of
this work, we implemented OPEN in HF to validate the proposed approach in a
realistic setting. The experimental results of the first version of the proof-of-concept
are very promising. We leave the optimization of the design of the client-based
OPEN solution and its extensive experimental validation for future work.



Chapter 4

Optimizing Game Engine Module
Placement in Cloud Gaming

A part of the work presented in this chapter has been submitted to IEEE Access to
be published as:

• I. Lotfimahyari, L. De Giovanni, D. Gadia, P. Giaccone, D. Maggiorini, C. E.
Palazzi, "MAP-MIND: An Offline Algorithm for Optimizing Game Engine
Module Placement in Cloud Gaming".

4.1 Background and Context

In recent years, a significant trend has emerged in the gaming industry as video
games increasingly transition into online services. In these online games, the gaming
experience heavily relies on a central server that serves as a shared exchange point for
multiple players. This server is responsible for managing shared resources efficiently,
irrespective of the game mechanics, providing either single-player or multiplayer
experiences. The evolution of online games has progressed through various stages.
Initially, centralized physical servers managed all gaming sessions, leading to
scalability issues. With the advent of cloud computing, gaming servers transitioned to
distributed systems, running as virtualized software services in the cloud. Although
this approach reduced costs and increased scalability, it often required proprietary
user-side hardware or software. In the latest generation, complete cloud gaming, also
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known as game streaming, has emerged. Here, computation is entirely offloaded
to remote cloud servers, with a video stream sent to the player’s device. This
paradigm shift eliminates the need for high-end hardware, making high-quality
gaming accessible. Services like Google Stadia, Amazon Luna, GeForce Cloud
Gaming, and Microsoft Xbox Cloud exemplify this model. While cloud gaming
offers significant benefits, mass migration to this model could strain even hyper-
scaling cloud architectures, as they are not inherently designed to meet strict Quality
of Service (QoS) requirements while organizing internal modules.

In today’s cloud architectures, gaming services are placed where resources
are available using legacy optimization policies and relying on over-provisioning
to fulfill the QoS required by the user for an optimal gaming experience. We
firmly anticipate that the future of gaming services will demand the distribution of
game server software, operating within game engines, across cloud infrastructure.
Accommodating this shift while prioritizing the gaming experience and resource
optimization presents a substantial challenge, particularly for conventional monolithic
game engines.

The primary research challenge at present revolves around the design and
development of a new generation of game engines capable of harnessing the dynamic
resource allocation provided by cloud architecture. These next-generation game
engines are envisioned as being composed of discrete modules, each handling a
specific aspect of the game’s functioning, named Game Engine Modules (GEMs) [94].
GEMs can be launched on-demand, dispersed throughout the cloud continuum based
on resource availability, and strategically located to reduce gaming latency for the
user [23].

Strategically positioning these modules within the cloud continuum is an intricate
endeavor that directly impacts the system’s performance and user experience. One
distinct feature of GEM placement, which differentiates it from virtual machine
placement, is that GEMs can be utilized by multiple players simultaneously. As a
result, the placement process necessitates a continuous, synchronous backstream for
all participating players. This situation is comparable to synchronously streaming a
video to a multitude of viewers, with the unique twist that these viewers can “interact”
with the video they are watching, but are unable to reverse the stream.

The GEM placement challenge entails determining the most advantageous
positions for these modules within the cloud continuum. The aim is to minimize
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the latency perceived by the gamer, providing a smooth and seamless game-play
experience. However, this is a complex task that presents various challenges. While
the dynamic nature of cloud resources complicates the GEM placement problem,
the focus is on the challenges associated with the varying requirements of different
GEMs, such as compute power, memory, and network bandwidth. An equally
critical consideration is the network latency between the GEMs and the gamers.
Optimal GEM placement should prioritize latency reduction, ensuring a seamless and
highly responsive gaming experience. However, achieving this requires a thorough
understanding of the network structure and the geographical distribution of players. It
is worth mentioning that, even the aforementioned cloud gaming platforms are closed-
source and do not disclose the techniques they employ for the optimal placement of
the monolithic games they offer.

In this study, we define the optimal GEM placement problem, considering the
bandwidth and resource needs of each GEM. Initially focusing on a single-player
per-game session, our approach is then extended to accommodate multiple players
within the same game arena, both scenarios being of significant practical relevance.
Our model aims to maximize the acceptance of GEM placement requests while
minimizing the delay experienced by players. The first optimization goal leads
to both optimized resource utilization and enhanced player satisfaction due to the
acceptance of more play requests.

To solve this optimization problem, we develop a two-phase approximation
algorithm, denoted as MAximized-Placement with MINimized-Delay (MAP-MIND),
which runs on a set of GEM requests. In the first phase, MAP-MIND places the
GEMS to maximize the number of accepted GEMs. In the second phase, MAP-
MIND revises the placement to minimize delay. Subsequently, we introduce MAP-
MIND*, a faster variant of MAP-MIND, which serves as a practical alternative for
real-world applications, albeit with a slight trade-off in terms of delay compared
to the original MAP-MIND. We compare MAP-MIND and MAP-MIND* with
the optimal solver, which suffers from limited scalability. Given that no existing
solutions share our specific optimization objective, we also compare them with
standard placement algorithms that either minimize delay (derived from the scenario
of Virtual Machine placement in cloud computing systems) or maximize placement
through bin-packing standard approaches. Through extensive simulations, we show
that MAP-MIND closely approximates the optimal solution achieved by the solver
in terms of both the delay and the number of accepted GEMs.
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Furthermore, it also outperforms the other algorithms in terms of delay, number
of accepted GEMs, and running time. On the other hand, MAP-MIND* reduces the
execution time at the cost of degraded delays. This demonstrates the effectiveness of
our approach in tackling the GEM placement problem. It’s important to highlight
that our model can handle scenarios involving dynamic resource usage. However,
our resource planning strategy is robust, primarily based on estimating the worst-case
resource requirements for the games.

The remainder of this chapter is organized as follows. In Sec. 4.2, we discuss the
related work in the state-of-the-art literature. Sec. 4.3 describes the architecture of
distributed game engines. In Sec. 4.4, we provide a formal description of the problem
and we formulate a mathematical optimization model, for the scenario of both a
single player per GEM and many players per GEM (i.e., a game arena scenario). In
Sec. 4.5, we propose MAP-MIND and MAP-MIND* as approximation algorithms
to solve the problem presented in Sec. 4.4. In Sec. 4.6, we assess by simulation the
performance of both MAP-MIND and MAP-MIND* by comparing them with some
proposed variants and with the state-of-the-art approaches. Finally, we draw our
conclusions in Sec. 3.8.

4.2 Related work

Various studies have focused on optimizing cloud gaming platforms by enhancing
server infrastructure and communication channels. The research in [95–99] addresses
GPU sharing, resource isolation, and improvements to existing clouds and games
for efficiency. Distributed architectures, including P2P solutions [100, 101], edge
server deployment strategies [102, 103], and distributed cloud gaming architectures-
[104, 105], have also been investigated. Additionally, other works explored greedy
heuristics for MMOG resource provisioning[106] and neural network-based predicti-
ons for VM deployment [107]. Regarding communication channels, some studies
have explored data compression schemes such as cooperative video encoding [108,
109] and RoI-based rate control [110]. Rendering information and graphics compres-
sion techniques were employed to enhance encoding efficiency [98, 111–118].
Adaptive transmission techniques, including video adaptation modules [119, 120]
and dynamic rate selection algorithms [121, 122], were used to adjust gaming video
transmission based on available bandwidth and network conditions. Additionally,
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novel frameworks like APHIS [123] optimized high frame rate video streaming,
while object selection algorithms [124] reduced processing time for scene rendering,
improving overall streaming efficiency. While they optimize the infrastructure to
improve overall efficiency, they do not directly address the game placement problem
within the provided infrastructure.

The Co-Location Placement (CLP) strategy, utilized in various studies, aligns
with our approach where we treat all GEMs of a multi-GEM game as a single large
abstract GEM [125–127]. Authors in [125] justify CLP by addressing seamless
handovers for mobile users moving between providers using a fog-based authenticati-
on mechanism. The work in [126] uses CLP by treating each task as an independent
inseparable request, each served by a single data center. In [127], CLP is justified
assuming each task in the vehicular networks context can only be offloaded to one
resource.

The GEM placement problem is similar to the VNF (Virtual Network Function)
placement in cloud systems. The problem of optimal VNF placement is typically NP-
hard, making optimal solutions computationally challenging. For instance, in [128],
a heuristic based on Integer Linear Programming (ILP) for VNF placement was
introduced, akin to our two-phase approach. While effective for larger instances, its
high execution time, due to the iterative call to the ILP solver, may curtail its practical
application. As a result, machine learning techniques [129–131] or heuristic/meta-
heuristic algorithms [132–136] are frequently employed to efficiently address the
VNF placement challenge.

In [129], the authors presented an online VNF placement strategy for Edge
Computing networks using Reinforcement Learning. This strategy diminished user
delay by positioning VNFs closer to users but exhibited a high rejection rate. Another
study in [130] integrated Deep Reinforcement Learning with Graph Neural Networks
to enhance VNF placement, thereby reducing service request rejections and adapting
to broader network types. Meanwhile, [131] utilized deep reinforcement learning for
VNF placement to reduce the average end-to-end delay by allocating more VNFs
in MEC. However, this approach did not account for maximizing VNF acceptance.
The authors of [132] introduced a heuristic solution, MaxSR, which dynamically
orchestrates services in 5G networks using a backtracking approach. In [133],
a genetic algorithm-based heuristic was developed to minimize resource costs.
Another study [134] proposed the MINI heuristic algorithm to optimize resource
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utilization, showing marginal improvements over another heuristic based on the
Genetic Algorithm (GA) for VNF acceptance. Some works focused on offline batch
request placements. For example, [135] proposed an offline simulated annealing-
based heuristic for placing VNFs for delay-sensitive requests. The heuristic introduced
in [136], termed Previous Window Deployment (PWD), is based on Learn and
Deploy (LAD) and aims to maximize user service. Notably, none of these studies
contemplated shared services among users, which corresponds to the multi-player
case in our gaming scenario.

Several studies have explored VNF sharing, also better described as reusability,
within the context of the VNF placement problem [137–145], mimicking the multi-
player gaming scenario. For instance, [137] explored the VNF placement within
a single physical node, allowing VNF sharing across multiple Network Services
(NSs). They proposed a heuristic algorithm that prioritizes NSs on shared VNF
instances, ensuring processing delays meet the required thresholds. [140] tackled the
dynamic VNF placement challenge, deciding whether to migrate existing VNFs or
deploy new ones to optimize VNF reuse. The objective was to enhance the network
operator’s profitability, and a column generation-based algorithm was suggested for
this purpose. In [142], a dynamic heuristic algorithm was introduced to minimize
overall network OPEX and physical resource fragmentation for the VNF placement
issue, where multiple NSs can share VNF instances. Although these studies focus
on VNF placement for NSs that incorporate VNF re-usability, none align with the
multiplayer shared GEM challenge.

Several works have proposed heuristic-based algorithms emphasizing maximizing
the number of accepted VNFs [136–138, 146–152, 145, 153]. For example, [146]
introduced a potential game approach for VNF placement in satellite edge networks.
Like our approach, they support VNF co-location, but they applied a distributed
placement decision and did not consider shared VNFs. In [149], two heuristics,
one greedy-based and the other Tabu search-based, were proposed to maximize
profit through placement. They successfully increased the admission rate for offline
placement but did not consider shared VNFs. Authors of [151] tackled the delay-
aware VNF dynamic placement and routing problem by constructing a heuristic
optimization data structure called VNF-splitted multi-stage edge-weight graph. Their
algorithm demonstrated superior performance in average traffic acceptance rate
compared to others. Like our approach, they considered a maximum tolerable delay
but did not focus on minimizing the delay or considering shared VNFs. The study
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in [153] presented an online heuristic framework named Holu, which aimed to solve
the VNF placement problem by considering the centrality of the compute nodes and
the power consumption of a VNF. They showed improvement in VNF acceptance
but did not consider minimizing delay. Also, the shared VNF considered in their
model is distinct in nature as users share resources but do not interact.

Some works have proposed heuristic algorithms for the VNF placement problem
with a focus on delay minimization [150, 154–157]. For instance, in [150], an
evolutionary algorithm was proposed to enhance various metrics for IoT devices’
service placement. Their approach maximizes the use of the fog nodes for the
placement, which in turn improves service delay and response times. However, they
did not consider the shared VNF scenario. The work in [155] addressed the VNF
placement problem in non-terrestrial networks by formulating it as a weighted graph-
matching problem using a Linear Programming algorithm and the Hungarian-based
algorithm. Their goal was to minimize delay and maximize resource utilization.
Lastly, [157] introduced a genetic-based heuristic algorithm for service placement
aimed at minimizing application delay. However, neither shared VNFs nor the
maximization of VNF placement was targeted in these last two papers.

In summary, while the aforementioned related works have attempted to address
various facets of our problem, to our knowledge, no existing research has holistically
addressed all the requirements of our problem, especially concerning multiplayer
GEMs. This distinction is significant, as the definitions of shared VNFs in current
literature differ markedly from our approach.

4.3 CODEG: a Cloud-Oriented Distributed Game
Engine Approach

The Cloud-Oriented Distributed Engine for Gaming (CODEG) model, as presented
in [23], introduces a groundbreaking approach to cloud gaming by fully utilizing the
capabilities of modern cloud infrastructure. This model redefines game engines as
network-wide operating systems, which are partitioned into functional units known
as GEMs. A GEM represents a fundamental element of a Game Engine (GE) (as
demonstrated in Fig. 4.1) and is activated whenever its specific functionality is needed.
Each GEM serves as a basic component of the game engine and is eventually linked
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Fig. 4.1 Summary of a standard game engine (GE) architecture [94].

to other GEMs to implement the whole game service. Similar to conventional Game
Engines, where various components work together to create complex functionalities,
individual GEMs must be interconnected or ’chained together’ to implement more
sophisticated features and behaviors in the game. As a very simple example, in a
multiplayer shooting game, various GEMs collaborate to deliver a seamless gaming
experience. The Audio GEM manages voice chat functionality, while the Network
GEM handles network connectivity. Player GEMs represent individual players
and control their interactions within the game world, while the Weapon GEM
manages weapon mechanics. This modular approach allows for greater flexibility
and scalability, as GEMs can be deployed based on real-time game demand.

Fig. 4.2 shows an example of a game session in which GEMs are grouped into
different functionalities necessary to implement the game service. The request for
new game sessions triggers the request to start new GEMs. All the requests that arrive
during a predefined observation time window are allocated based on the placement
algorithm.

The CODEG model operates under the assumption that modern cloud infrastruct-
ures are composed of multiple Compute Nodes (CNs). These CNs could be physical
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Fig. 4.2 Example of game session workflow in CODEG [23].

servers in a data center or virtual servers in a cloud environment, as shown in
Fig. 4.3. The model utilizes this distributed architecture to host the GEMs, efficiently
spreading the workload of the game engine across multiple CNs.

The model also assumes that all players are connected to the same network
provider and that the data center hosting the game engine is optimally located to
minimize delay. This is vital for ensuring a smooth gaming experience, as significant
delays can result in interruptions and disruptions during gameplay. Furthermore,
the CODEG model takes advantage of advanced network virtualization techniques.
These techniques allow for the creation of logical networks with specific QoS levels.
This ensures that game-related traffic has guarantees of minimum bandwidth and
maximum delay. In the CODEG model, the servers hosting the GEMs are connected
through the network. The nodes and edges of this network represent the CNs and the
logical or physical links between them, respectively.

Each game session in the CODEG model has a unique maximum tolerable delay.
This is defined based on the nature of the game and is set to maximize fairness
among players of the same multiplayer game session and to satisfy the Quality of
Experience (QoE) perceived by each player.
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Fig. 4.3 Example of compute nodes (CN) and GEM co-location.

4.4 Optimal GEM placement

In this section, we describe our system model, and then we formulate the placement
problem, whose objective is to maximize the number of accepted game sessions while
minimizing the overall delay experienced by their players. This combined objective
function is designed to maximize the profits of the game providers while maximizing
the QoE perceived by the players as well. Each game can be implemented by
composing multiple GEMs. However, for the sake of simplicity, this work considers
games that contain a single GEM or multiple GEMs that are co-located, as shown in
Fig. 4.3. This simplification is necessary due to the absence of practical examples
of games designed through GEMs, which provide clear Directed Acyclic Graphs
(DAGs) for our model. By focusing on scenarios involving either one single GEM or
multiple co-located GEMs, we aim to establish foundational principles and insights
despite the lack of real-world examples. Starting with simpler scenarios allows us to
systematically explore design choices and analytical techniques before addressing the
complexities of real-world applications. As the field evolves and practical examples
emerge, refining the model to encompass a wider range of GEM configurations will
be essential for its applicability to practical game design. We now introduce the
adopted notation, reported also in Table 4.1. Let T = (N,E) represent the graph
describing the network topology, where E is the set of network links and N is the
set of network nodes, which can be either CNs or access nodes, where the players
connect to the network. We define K as the set of resource types available in the
nodes, including CPU, memory, and storage. We use rk

n to denote the amount of
resources of type k ∈ K available at node n ∈ N.
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Table 4.1 Notation.

Notation Description
N Set of network nodes (i.e., compute nodes or access nodes)
E Set of network links
T Network topology
K Types of resources available at the nodes
rk

n Amount of resource of type k available at node n
ρk

s Amount of resource of type k needed by game session s
S Set of game sessions to place
GEMs Group of co-located GEM running game session s
P Set of all the players
Ps Set of players in the game session s
h(p) Access node of player p
d(p,n) Delay experienced by player p if GEMs is placed in node n
dmax(s,n) Maximum delay experienced by players in Ps if GEMs is placed in

node n
dtot(s,n) Summation of the delays experienced by the players in Ps if GEMs

is placed in node n
dmax

s Maximum delay allowed for each player of the game session s
N(s) Set of nodes for which the maximum delay is satisfied for all the

players in the game session s
λs Reserved bandwidth for game session s
buv Available bandwidth on link (u,v)
P(s,n) Set of links used by the traffic for game session s if GEMs is placed

in node n
φ uv

sn = 1 if the link (u,v) belongs to P(s,n), 0 otherwise
xsn = 1 if GEM for game session s is placed at node n, 0 otherwise

Let S be the set of game sessions to place. We assume multiple players for
each game session; as a special case, a game session could be played by a single
player. We also assume a single GEM or a group of co-located GEMs per game
session s, and we denote it by GEMs. Let P be the set of all the players, whereas
Ps ⊆ P be the subset of players associated with the game session s ∈ S. Let ρk

s , for
any k ∈ K, be the amount of resource of type k that is required by GEMs. Note
that such value may depend on the actual number of players (e.g., according to
a proportional law), serving as an upper bound for the worst-case scenario of the
required resource amount. Let h(p) ∈ N be the access node of player p ∈ P. Assume
now that GEMs is placed on node n ∈ N. Let d(p,n) be the delay experienced
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by player p, computed as the sum of the communication delay from h(p) to n,
the GEMs processing delay, and the communication delay from n to h(p). Let
dmax(s,n), for any s ∈ S, be the maximum delay experienced by any of the players
in Ps: dmax(s,n) = maxp∈Ps d(p,n). Similarly, let dtot(s,n) be the summation of
all the delays experienced by each of the players in Ps: dtot(s,n) = ∑p∈Ps d(p,n).
Note that it is possible to pre-compute the set of all dmax(s,n) and dtot(s,n) with
O(N2|P|) operations. Let dmax

s be the maximum allowed delay for game session s,
which has been devised to satisfy the expected performance at the endpoint. This
parameter expresses the main threshold related to the QoS constraint. Given dmax

s ,
it is possible to pre-compute the set N(s)⊆ N of nodes where GEMs can be placed
such that all the players experience a delay compatible with the maximum allowed
one: N(s) = {n ∈ N | dmax(s,n)≤ dmax

s }.

We assume single-path routing according to the shortest path. Let P(s,n) be the
overall routing paths, i.e., the set of links used to route traffic from all the access
nodes of the players in the games session s to node n and back from n to all the access
nodes. We define an indicator function φ uv

sn equal to 1 iff the link (u,v) belongs to
P(s,n). We assume that the bandwidth is reserved for each game session through
a dedicated network slice. The bandwidth reserved for the game session s along
the links belonging to the routing paths (i.e., for any e ∈P(s,n)) is denoted as
λs, and buv represents the available bandwidth on link (u,v) ∈ E. Notably, λs is
equal to the maximum bandwidth, among all the links in P(s,n), required by the
aggregate traffic for game session s, and it typically grows with |Ps|. Note that all the
parameters defined so far are pre-computed based on the network topology and the
maximum allowed delay.

The decision variables are denoted by binary variables xsn, defined as equal to
1 iff GEMs is placed at node n. Whenever there are not enough resources in a CN
for a game session or the corresponding constraint on the maximum delay cannot be
met, the game session request is dropped, and all the corresponding players abort the
game.

We formulate the problem as an Integer Linear Programming (ILP) model. The
problem can be viewed as a generalized assignment problem, as the sole decision
revolves around identifying the CN where each game session GEM should be placed.
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The optimal GEM placement for multi-player GEMs can be formulated as follows:

max
{xsn}

(α ∑
s∈S

∑
n∈N(s)

xsn−∑
s∈S

∑
n∈N(s)

xsndtot(s,n)) (4.1)

subject to

∑
n∈N(s)

xsn ≤ 1, ∀ s ∈ S (4.2)

∑
s∈S:n∈N(s)

ρ
k
s xsn ≤ rk

n, ∀ k ∈ K,n ∈ N (4.3)

∑
s∈S,n∈N(s)

λsφ
uv
sn xsn ≤ buv, ∀ (u,v) ∈ E (4.4)

xsn ∈ {0,1}, ∀s ∈ S,n ∈ N(s) (4.5)

The objective function (4.1) combines two components and aims to maximize
the total number of accepted game sessions (first term), and secondly, to minimize
the overall delay experienced by the players (second term). Indeed, α is a large
enough constant such that the objective function will always prefer solutions with
a larger number of accepted game sessions, independently from the overall delay.
To achieve this, we choose α = |P|(2dnet +dproc), where dnet is the diameter of the
network in terms of delay and dproc is the maximum processing delay per game
session. Constraint (4.2) assigns the GEM for each game session to at most one
CN; indeed, a game session may be dropped due to a lack of resources in the CNs
compatible with the related maximum delay requirement. Constraint (4.3) ensures
that the CN resources are not exceeded. Constraint (4.4) ensures that the reserved
bandwidth for each game session does not exceed the network link capacity. Finally,
(4.5) defines the domain of the decision variables. We now claim the following:

Property 1. The optimal GEM placement problem is NP-hard.

Proof. We show the problem complexity by reduction from the multiple knapsack
problem, which is known to be NP-hard, in a weak sense. By assuming no constraints
on bandwidth (i.e., buv = ∞,∀(u,v) ∈ E), (4.4) can be omitted. By assuming no
constraints on the maximum delay, all CNs become delay-eligible for all GEMs (i.e.,
N(s) = N). Now, the placement of GEMs is decided solely by the resources on each
CN. We can simplify these resources to just one type, such as CPU. The problem
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of optimizing GEM placement then becomes identical to the multiple knapsack
problem, where N represents the set of knapsacks, S the set of items, the CN’s
CPU capacity represents the capacity of each knapsack, and the CPU demand of the
GEMs represents the sizes of the items to be selected, and the profit for item s in
knapsack n is represented by α−dtot(s,n).

4.5 Approximated algorithms

Property 1 implies that an optimal solver for the GEM placement problem is likely
not scaling well with problem instance size, and this motivates the design of
an approximated approach able to solve large instances of the problem within a
constrained timeframe. In response, we have introduced two approximate search
algorithms inspired by local search methods, MAP-MIND and MAP-MIND*, each
striking a distinct balance between efficiency and computational complexity.

We note that our devised approach is general and implementation-independent.
It can be integrated with any resource orchestrator, e.g., Kubernetes for the case of
virtualization obtained with containers.

4.5.1 The MAP-MIND algorithm

We are interested in scalable algorithms able to cope with large input instances.
We propose an approximate search algorithm called MAximize-Placement and
MINimize-Delay (MAP-MIND). MAP-MIND aims to simplify and solve the problem
of optimized placement by addressing the multi-criteria objective function (4.1)
through two distinct phases. The first phase, denoted as MAP, is devoted to
maximizing the acceptance of the game sessions’ requests, and the second one,
denoted as MIND, aims at minimizing the average delay experienced by the players.
Coherently with (4.1), MAP-MIND prioritizes maximizing acceptance over minimiz-
ing the average delay.

In the first phase, the algorithm strives to accommodate as many game session
requests as possible, regardless of the incurred delay. To do so, the GEMs are sorted
based on the maximum delay allowed by their players (i.e., dmax

s for GEMs). This
choice is motivated by the fact that it gives more chances to the GEMs with small
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delay requirements to be placed in nodes closer to the access nodes compared to
other GEMs with large delay requirements. The algorithm starts to place the sorted
GEMs using a Best-Fit approach [158], where the GEMs’ resource requirements
are considered with respect to the available resources on the computing nodes.
The algorithm divides the sum of each resource requirement by the total available
resources of the same type within the network. The resource with the highest ratio
is deemed the decision-maker resource by the Best-Fit algorithm. This algorithm
prioritizes nodes with smaller available quantities of the decision-maker resource.
As a result, this approach optimizes the utilization of available resources throughout
the network.

For the second phase, the placement solution of the first phase is used as the
initial solution to minimize the delays. This phase is iterative and adopts two possible
steps to modify the current solution: (i) move, (ii) swap. A node n is said to be
eligible for GEMs if it belongs to N(s), it has enough resources to run GEMs, and
there is enough bandwidth along the routing path, during the current iteration of
the algorithm. The move step tries to move each placed GEM to another eligible
node, if available, which gives the players of that GEM the minimum experienced
delay. This procedure will be repeated until no GEM movement is available to
reduce the players’ experienced delay. In the subsequent swap step, the algorithm
tries to swap the position of each GEM with another GEM to reduce the average
delay experienced across all players. The reason behind prioritizing the move step
over the swap step is due to the Best-Fit approach used in the first phase, which may
lead to having some empty nodes (especially at low loads) that could be efficiently
used by the move steps rather than the swap steps.

The pseudocode of MAP-MIND is provided in Fig. 4.4. It takes as input S with
the game session requests, the graph describing the network topology, the available
bandwidth on the links, and the available resources on the nodes.

In the first phase, after the initialization of the placement variables and a temporary
placement set, the decision-maker resource will be determined (ln. 3-5). Now, GEMs
are sorted in increasing order based on their maximum tolerable end-to-end delay
(ln. 6). Then, for each GEM in sorted order, the best destination node and its score
will be initialized (ln. 7-8). Then, all the nodes are checked to find the eligible node
with the minimum available decision-maker resource, coherently with a Best-Fit
approach (ln. 9-11). The GEM and the selected node are then added to the set of
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Input: S: Set of game session requests
Input: T = (N,E): Network topology
Input: Available bandwidths and resources in the network
1: procedure MAP-MIND
2: PHASE 1: Maximize acceptance (MAP)
3: Y ← /0 ▷ Initialize temporary placement
4: xsn← 0 ∀s ∈ S,n ∈ N ▷ Initialize GEMs placement
5: k1 = argmax

k∈K

(
∑s∈S ρk

s
∑n∈N rk

n

)
▷ Identify the relative bottleneck resource

6: sort s ∈ S w.r.t. dmax
s in incr. order ▷ Sort by maximum tolerable delay

7: for s ∈ sorted S do ▷ For each game session request s
8: n′←−1,score← ∞ ▷ Initialize best node and its score
9: for n ∈ N do ▷ Find the best eligible node

10: if (n is eligible for s)∧ (rk1
n < score) then

11: score← rk1
n ,n′← n ▷ Update selected node and score

12: if n′ ̸=−1 then ▷ If the best node is found
13: Y ← Y ∪{(s,n′)} ▷ Update the temp placement
14: xsn′ ← 1 ▷ Update placement variables
15: Update the available bandwidth along P(s,n′) and rk

n′ ∀k ∈ K

16: PHASE 2-1: Minimize average delays (Move step)
17: sort Y w.r.t. dtot(s,n) in desc. order ▷ Sort by total delay
18: Improved = True
19: while Improved = True do ▷ Iterate until no improvement is experienced
20: Improved = False
21: for (s,n) ∈ sorted Y do ▷ For each GEM
22: n′′←−1,∆← 0 ▷ Initialize best destination node and its score
23: for n′(̸= n) ∈ N do
24: if (n′ is eligible for s)∧ (dtot(s,n)−dtot(s,n′)> ∆) then
25: n′′← n′,∆← dtot(s,n)−dtot(s,n′) ▷ Update node, score
26: if ∆ ̸= 0 then
27: Y ← Y \{(s,n)}∪{(s,n′′)} ▷ Move from n to n′′

28: xsn′′ ← 1,xsn← 0 ▷ Update placement variables
29: Update the available bandwidth along P(s,n) and P(s,n′′)
30: Update rk

n,r
k
n′′ ∀k ∈ K

31: Improved = True
32: PHASE 2-2: Minimize average delays (Swap step)
33: Improved = True
34: while Improved = True do ▷ Iterate until no improvement is experienced
35: Improved = False
36: for (s,n) ∈ sorted Y do ▷ For each GEM
37: (s′′,n′′)← (−1,−1),∆← 0 ▷ Initialize best swap and its score
38: for (s′,n′)(̸= (s,n)) ∈ sorted Y do ▷ For each GEM
39: if (n′ is eligible for s)∧ (n is eligible for s′) then
40: ∆′← dtot(s,n)+dtot(s′,n′)−dtot(s,n′)−dtot(s′,n)
41: if ∆′ > ∆ then
42: (s′′,n′′)← (s′,n′) ▷ Update candidate
43: ∆← ∆′ ▷ Update score
44: if ∆ ̸= 0 then
45: Y ′← Y ′ \{(s,n),(s′′,n′′)}∪{(s,n′′),(s′′,n)} ▷ Swap
46: xsn← 0,xs′′n′′ ← 0 ▷ Update old placement variables
47: xsn′′ ← 1,xs′′n← 1 ▷ Update new placement variables
48: Update the available bandwidth along P(s,n) and P(s′′,n′′)
49: Update the available bandwidth along P(s′′,n) and P(s,n′′)
50: Update rk

n,r
k
n′′ ∀k ∈ K

51: Improved = True
52: return {xsn}s∈S,n∈N

Fig. 4.4 Pseudocode of MAP-MIND.
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accepted GEMs, while the related placement variable and the available bandwidth
and resources of the network are updated accordingly (ln. 12-15). If no eligible node
is found, the GEM’s related placement variables will remain unassigned.

Then, the second phase starts. During the first step (move), the accepted GEMs
are sorted based on their average players’ delay (ln. 17). For each accepted GEM,
the algorithm tries to find another eligible node that minimizes the end-to-end
delay compared to the current GEM placement. If such a node is found, the GEM
placement is updated accordingly, and the resources of the source and destination
nodes along with the corresponding bandwidths are updated (ln. 19-31). This process
is repeated until no improvement move is found.

During the second step (swap), the algorithm finds pairs of accepted GEMs
whose swap will be feasible in terms of maximum delay, bandwidth, and resources,
and the overall delay will be decreased (ln. 33-43). If such a pair is found, it updates
the placement allocation and the corresponding resource availability (i.e., bandwidth,
memory, CPU, and storage) (ln. 45-50). This process is iterated until no improving
swaps can be executed.

4.5.2 The MAP-MIND* algorithm

We introduce a simpler version of MAP-MIND, termed MAP-MIND*. You can
find its pseudocode in Fig.4.5. It follows the structure of MAP-MIND but merges
the move (ln.19-27) and swap (ln. 29-41) steps within each iteration. MAP-MIND*
differs from MAP-MIND in how it handles these operations; rather than executing
them one after the other, MAP-MIND* performs them simultaneously, intertwining
them within each iteration.

This change in the execution of swap and move operations brings about a
significant alteration in the algorithm’s behavior. By mixing and executing swap
and move operations concurrently, MAP-MIND* aims to enhance the optimization
process’s efficiency. This strategy streamlines the execution, potentially reducing the
required number of iterations for convergence. Moreover, the concurrent execution
of swap and move operations in MAP-MIND* leads to a reduction in computational
complexity, as indicated in our writing. This complexity reduction is advantageous,
potentially resulting in faster convergence and reduced resource needs, making
MAP-MIND* a more efficient choice for specific optimization tasks.
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Input: S: Set of game session requests
Input: T = (N,E): Network topology
Input: Available bandwidths and resources in the network
1: procedure MAP-MIND*
2: PHASE 1: Maximize acceptance (MAP)
3: Y ← /0 ▷ Initialize temp placement
4: xsn← 0 ∀s ∈ S,n ∈ N ▷ Initialize GEMs placement
5: k1 = argmax

k∈K

(
∑s∈S ρk

s
∑n∈N rk

n

)
▷ The relative bottleneck resource

6: sort s ∈ S w.r.t. dmax
s in incr. order ▷ Sort by maximum tolerable delay

7: for s ∈ sorted S do ▷ For each game session request s
8: n′←−1,score← ∞ ▷ Initialize best node and its score
9: for n ∈ N do

10: if (n is eligible for s)∧ (rk1
n < score) then

11: n′← n,score← rk1
n ▷ Update selected node and score

12: if n′ ̸=−1 then
13: Y ← Y ∪{(s,n′)} ▷ Update the temp placement
14: xsn′ ← 1 ▷ Update placement variables
15: Update the available bandwidth along P(s,n′) and rk

n′ ∀k ∈ K

16: PHASE 2: Minimize average delays (MOVE or SWAP)
17: sort Y w.r.t. dtot(s,n) in desc. order ▷ Sort by total delay
18: for (s,n) ∈ sorted Y do
19: n′′←−1,∆← 0 ▷ Initialize best destination node and its score
20: for n′(̸= n) ∈ N do ▷ Check for possible MOVE
21: if (n′ is eligible for s)∧ (dtot(s,n)−dtot(s,n′)> ∆) then
22: n′′← n′,∆← dtot(s,n)−dtot(s,n′) ▷ Update node, score
23: if ∆ ̸= 0 then ▷ MOVE
24: Y ← Y \{(s,n)}∪{(s,n′′)} ▷ Move from n to n′′

25: xsn′′ ← 1,xsn← 0 ▷ Update placement variables
26: Update the available bandwidth along P(s,n) and P(s,n′′)
27: Update rk

n,r
k
n′′ ∀k ∈ K

28: else ▷ Check for possible SWAP
29: (s′′,n′′)← (−1,−1),∆← 0 ▷ Initialize best swap and its score
30: for (s′,n′)(̸= (s,n)) ∈ sorted Y do ▷ For each GEM
31: if (n′ is eligible for s)∧ (n is eligible for s′) then
32: ∆′← dtot(s,n)+dtot(s′,n′)−dtot(s,n′)−dtot(s′,n)
33: if ∆′ > ∆ then
34: (s′′,n′′)← (s′,n′),∆← ∆′ ▷ Update GEM, score
35: if ∆ ̸= 0 then ▷ SWAP
36: Y ′← Y ′ \{(s,n),(s′′,n′′)}∪{(s,n′′),(s′′,n)}
37: xsn← 0,xs′′n′′ ← 0 ▷ Update old placement variables
38: xsn′′ ← 1,xs′′n← 1 ▷ Update new placement variables
39: Update the available bandwidth along P(s,n) and P(s′′,n′′)
40: Update the available bandwidth along P(s′′,n) and P(s,n′′)
41: Update rk

n,r
k
n′′ ∀k ∈ K

42: return {xsn}s∈S,n∈N

Fig. 4.5 Pseudocode of MAP-MIND∗.
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However, it’s important to acknowledge that this optimization involves a trade-
off; while MAP-MIND* may decrease running time compared to MAP-MIND, it
may introduce a slightly longer delay. This trade-off should be carefully evaluated in
practical scenarios, considering the benefits of reduced computational complexity
against the potential delay increase. Further discussions on the distinctions between
MAP-MIND* and MAP-MIND in executing swap and move operations, along
with the implications for computational complexity and performance, will follow in
subsequent sections.

4.6 Numerical evaluation

4.6.1 Simulation methodology

To evaluate the performance of our proposed algorithms, we developed an event-
driven simulator using Python 3.8 on an Ubuntu 20.04.6 LTS system with 16GB
RAM and an 8X Intel Core-i5-10210U-1.60GHz CPU. We also run an optimal solver
(OPT) obtained by implementing the ILP formulation presented in Sec. 4.4 using
AMPL as modeling language and Cplex 12.8.0 as a solver. The solver runs on an
Ubuntu 18.04.6 LTS system with 32GB of RAM and a 12X Intel Core-i7-8700-
3.20GHz CPU.

The network topology is a random geometric graph with a specified number of
nodes (N) and average degree (g). We only considered connected instances of the
graph. The edges of the graph represent the communication links between pairs
of nodes, and the propagation delays are set proportional to the link lengths. For
generality, we normalized the delay of each link to the average of all shortest paths in
the same graph. We assumed a negligible processing delay for all GEMs at each node
and null network access delay, since for simplicity (but without loss of generality)
we defined dmax

s for game session s at the net of the processing delays and access
delays. We also assumed unlimited bandwidth and routing based on the shortest path.
We considered two main settings for the maximum tolerable delay of the GEMs: (i)
No Delay Constraint (NDC) in which dmax

s = ∞ to model all the games for which
the perceived delay is not a relevant constraint (e.g., chess); (ii) Uniform Delay
Constraint (UDC) in which dmax

s is uniformly distributed between 0 and maximum
Round Trip Time (RTT) in the network graph, to model a large variety of game
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scenarios with different sensitivity to delays. Players’ access nodes for each game
session are selected uniformly from the available nodes, where the same node can be
selected more than once.

Each node is equipped with CPU, memory, and storage capacities set to 5 GHz,
32 GB, and 512 GB, respectively. For every GEM, the requirements for CPU,
memory, and storage are uniformly distributed between 0 and 1 GHz, 0 and 1 GB,
and 0 and 1 GB, respectively. We determine the Utilization Factor (UF) based on the
system’s bottleneck resource. According to the above scenario settings, we expect
the CPU to be such a bottleneck. Our choice is influenced by the observation that,
in real-world scenarios, one resource will invariably become the limiting factor in
placement decisions. While our primary focus is on the bottleneck resource, we also
factor in other potential non-bottleneck resources in our requirements. This approach
ensures that we consider the influence of all resources on the algorithms. To achieve
the desired UF, we generate GEMs sequentially. This generation continues until
the cumulative bottleneck resource requirements of the produced GEMs in S either
match or surpass the product of the target UF and the total CPU capacity across the
entire network.

4.6.2 Test Scenarios

We explore the following test scenarios:

• Scenario 1: Varying Number of Players per GEM - We examine the influence
of changing the number of players per GEM, i.e., for each game session,
varying it in the set {1,2,10,50}, with N = 32, g = 4, and UF = 0.8. The
choice of UF = 0.8 aims to balance network resource utilization, avoiding both
under-utilization and over-utilization, thereby optimizing resource allocation
and performance. This setting ensures significant network utilization without
pushing it to its limits, maximizing efficiency while maintaining reliability.
Similarly, the selection of an average degree (g) of 4 is motivated by the goal of
efficiently balancing local and global connectivity in future networks, ensuring
robustness, respecting resource constraints, and enabling scalability. This
configuration fosters reliability, stability, and effective information disseminati-
on. We chose these values based on modern game genres. Single-player games
like Red Dead Redemption II [159] and Horizon Forbidden West [160] often
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require substantial resources due to large maps or complex AI. Two-player
games can be competitive, like Street Fighter 6 [161] and FIFA 23 [162],
or collaborative like Portal 2 [163]. In eSports, games typically involve 10
players with two teams of 5 competing, as seen in Dota 2 [164], League
of Legends [165], Valorant [166], and Counter-Strike [167]. Battle royales
like Fortnite [168], Player Unknown Battle Grounds (PUBG) [169], and Fall
Guys [170] fall in the 50-player category, although Fortnite and PUBG can
start with up to 100 players, and Fall Guys with 40 to 60, depending on the map.
However, matchmaking timeout issues often reduce the starting player count,
making an average of 50 players a reasonable assumption for our simulations.

• Scenario 2: Varying Number of CNs - We explore the system’s behavior with
different network sizes by varying N ∈ {16,32,48}, with g = 4, and UF = 0.8.

• Scenario 3: Scaling CN resources - We consider here a scenario where the
CN resources are varied according to a scaling factor ∈ [1,4,16] with respect
to a base resource amount for the CNs equal to {1 GHz,8 GB,128 GB} (i.e.,
CPU, memory, and storage, respectively); this allows to investigate the effect
of scaling the CN resources in the infrastructure. We choose N = 32, g = 4,
and UF = 0.8.

• Scenario 4: Varying Average Graph Degree - We investigate the effect of
different connectivity levels within the network by varying g ∈ {3,4,5}, with
N = 32, and UF = 0.8.

• Scenario 5: Varying UF - To study how different levels of resource utilization
affect the system’s performance, we vary the UF∈{0.1,0.5,0.8,0.85,0.9,0.95
,0.97,0.99}, with N = 32, and g = 4. It is worth noting that, by considering
the variation in UF, in general, we include the effect of changing the number
of game session placement requests as well.

• Scenario 6: Varying UF with Heterogeneous Resources - We consider a
scenario where the nodes’ resources are randomly selected to be either in
{1 GHz,8 GB,128 GB} or in {5 GHz,32 GB,512 GB} (i.e., CPU, memory,
and storage respectively), simulating a more heterogeneous environment and
reflecting variations in different resources across nodes. Similar to Scenario 5,
we vary the UF ∈ {0.1,0.5,0.8,0.85,0.9,0.95,0.97,0.99}, with N = 32, and
g = 4.
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• Scenario 7: Multiple-resource Bottleneck - We consider a scenario to assess
how the algorithms behave in uncommon situations where more than one
resource acts as a bottleneck. To create this scenario, we replicated Scenario 5
but introduced two resource bottlenecks by maintaining the same ratio between
the two resource requirements of the GEMs (e.g., CPU and memory) and the
corresponding available resources in the network. For each GEM, the CPU,
memory, and storage requirements are uniformly distributed between 0 and
1 GHz, 0 and 6.4 GB, and 0 and 1 GB, respectively.

• Scenario 8: Batch-placement in an online scenario - We explore an online
scenario considering a real system with game sessions arriving and leaving.
We consider in total 105 requests for GEM to arrive following a Poisson
process. Following the realistic cases, the game session associated with each
GEM has a random duration in the interval [60,3600] s (e.g., the average
game session length in PUBG [169]), after which the GEM releases the
occupied resources. We assume that N = 32 and g = 4. The CPU is considered
the sole bottleneck, creating a single-bottleneck resource scenario even with
multiple resources, reflecting a realistic situation. We set the offered load
to the network to be 0.5, resulting in average inter-arrival times for the
GEMs of 11.25 s. We run the placement algorithm every ∆t time, denoted as
“batch-window”, on all the GEMs that arrived during the last batch-window,
considering the available resources. All the unplaced GEMs are dropped. We
set ∆t ∈ {0,11.25,25,50,100,200,400} s, where the value 0 means that the
placement algorithm runs GEM by GEM. The corresponding average batch
sizes are shown in {0,1,2,4.5,9,18,36} GEMs respectively. The different
values for ∆t reflect different tradeoffs between computation complexity and
reactivity to changes in the workload. The number of players for each incoming
GEM is uniformly selected from {1,2,4,10,50} to showcase a real system
in which different kinds of games exist. When each game session finishes,
the corresponding resources are released. This scenario aims to show the
adaptability of our approach to an online case.

We considered both 1-player GEMs and 2-player GEMs as 2 sub-scenarios for each
of scenarios 1 to 6. These scenarios collectively provide a comprehensive system
examination, considering various parameters and configurations. By exploring these
different aspects, including the specific cases of 1-player and 2-player GEMs, we
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can derive a robust understanding of the system’s characteristics and performance
under diverse conditions. For each test, we generated different random network
topologies and for each topology, we generated multiple random sets S according to
the mentioned parameters.

We measured two main metrics: the acceptance probability for the GEMs (as
our main objective) and the average normalized delay (as the second objective),
averaged across all the players and normalized based on the average RTT of each
network topology1. Finally, we compared the complexity and execution time of
all the algorithms. It is important to note that the described scenarios represent a
selected subset of multiple test scenarios we considered to examine the algorithms’
behavior in various situations. We excluded test cases that showed behavioral results
similar to those already reported.

4.6.3 Alternative algorithms

For comparison, we considered the optimal algorithm, denoted as OPT, solving the
problem (4.1)-(4.5). In addition, we considered the following alternative algorithms.

• RaNDom (RND): It selects the GEMs in random order. For each selected
GEM, it finds an eligible node in random order.

• Quality-driven heuristic* (QDH*)2: It selects the GEMs in random order.
For each selected GEM, it finds an eligible node by searching the nodes with
dtot(s,n) in increasing order. The algorithm is an extension for multiplayer to
QDH proposed in [171], which was designed to place single-tenant containers.

• First-Fit-Decreasing (FFD): It sorts the GEMs based on the CPU requirement
in decreasing order. For each GEM, it finds an eligible node by searching

1This normalization not only offers us a dimensionless relative metric for each tested graph,
simplifying the averaging among final measurements across different graphs and facilitating
comparisons, but it also offers a straightforward explanation for the efficiency of the tested algorithms.
It quantifies the relative reduction in average latency concerning the network topology utilized (e.g.,
algorithm A provides you 10ms in network X and 30ms in network Y as the average experienced
latency for the players, versus algorithm A provides 50% of the average shortest path for each of
networks A and B)

2Since in the multiplayer case we care about the average experienced latency by the players
of each GEM, the extension to QDH is done by averaging (or even summing up) the total latency
experienced by all of the players connecting to the same GEM
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the nodes in random order. The algorithm belongs to the First-Fit-Decreasing
(FFD) heuristics that have been shown to have given often good results for
one-dimensional bin-packing problems [172].

• MAP-RaNDom_First (MAP-RNDF): It is a two-phase algorithm, with the first
phase identical to MAP in MAP-MIND. For the second phase, it selects the
GEMs in random order, and for each selected GEM, it checks the nodes in
random order to find an eligible node that reduces the overall delay if the GEM
is moved there. Then it checks the other GEMs in random order to find the
first one that is eligible to swap with and reduces the overall delay.

• MAP-RaNDom_Greedy (MAP-RNDG): It is a two-phase algorithm similar
to MAP-RNDF. But in the second phase, for each randomly selected GEM,
it checks all the nodes for the move or swap steps (as in MAP-MIND) and
chooses the one that minimizes the overall delay.

• MAP-STeepest_Descent (MAP-STD): It is a two-phase algorithm extending
the search options compared to MAP-RNDG. At each iteration, for each GEM,
it considers all possible eligible nodes for the move and all possible GEMs
to swap with and selects the option that minimizes the overall delay. It keeps
iterating until no improvement on the overall delay is possible.

4.6.4 Simulation results

It is important to note that in all experiments, the dropping probability and delay
graphs should be analyzed in conjunction, with a particular emphasis on the dropping
probability as the key objective. Additionally, for all two-phase algorithms where
MAP serves as the first phase (i.e., MAP-MIND, MAP-MIND*, MAP-RNDF, MAP-
RNDG, and MAP-STD), the acceptance probability is the same. To maintain clarity
in the probability graphs across all experimental scenarios and avoid redundancy, we
represent all these algorithms solely with MAP.

Scenario 1: Varying the number of players per GEM

In Fig. 4.6 we report the acceptance ratio for the UDC setting, whereas Fig. 4.7
shows the average normalized delay for NDC and UDC settings, under scenario 1.
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Fig. 4.6 Probability of dropping game session requests under scenario 1 for UDC.

Fig. 4.7 Average normalized delay under scenario 1 for UDC (left) and NDC (right).

We have omitted the dropping probability for NDC since it consistently remains at
zero.

In both UDC and NDC settings, each algorithm individually exhibits similar
behavior. Generally, in the case of multi-player GEM with a high number of players,
all algorithms tend to exhibit similar delays. This phenomenon occurs because, in
high-player GEM scenarios, player distribution across different nodes forces GEM
placement onto nodes with greater network centrality. This can result in higher
dropping in less efficient algorithms, particularly in the case of UDC. However,
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Table 4.2 Average execution time [s] under scenario 1 for UDC.

Algorithm 1-player 2-player 10-player 50-player
RND 0.010 0.012 0.035 0.143
FFD 0.016 0.019 0.048 0.179

QDH* 0.020 0.028 0.112 0.442
MAP 0.027 0.032 0.09 0.332

MAP-RNDF 0.813 0.830 1.05 2.05
MAP-RNDG 0.908 1.03 1.49 3.17
MAP-MIND* 0.873 0.969 1.54 3.71
MAP-MIND 1.37 1.96 6.30 15.6
MAP-STD 39.8 48.6 166 613

OPT 0.209 0.264 3.44 840 (i)

(i) Calculated only for the instances that were finished before 900 s wall-clock
time (i.e., 88% of them).

certain algorithms opted to drop some GEMs, which subsequently led to lower
delays in UDC, as we will elaborate on shortly. Lastly, as the number of players per
GEM is reduced, higher efficiency algorithms demonstrate a greater reduction in the
delay while maintaining a low dropping probability.

From the figures, as expected, all two-phase algorithms that use MAP as their first
placement phase show the closest results for dropping probability to OPT. They have
no dropping for 1-player GEMs, while they show a very small dropping probability
for 2-player GEMs and a moderate increase in dropping probability up to 50-player
GEMs. Among them, in terms of delay, MAP-MIND and MAP-STD show the
closest delay to OPT while starting with MAP-MIND*, MAP-RNDG, and MAP-
RNDF the experienced delay becomes worse. On the other hand, all the one-phase
algorithms such as RND, QDH*, and FFD start dropping GEMs even for 1-player
GEMs. For GEMs with a higher number of players, their dropping probability
increases noticeably. RND shows the best probability of dropping among the three
mentioned ones as it performs load balancing, which results in the highest delay as
shown in the figures as well. QDH* achieves lower delay as it prioritizes reducing
delay over dropping, so it drops more than RND while achieving near-optimal delay.
As anticipated, FFD displays the worst delays since its primary goal is to enhance
the acceptance probability. Interestingly, it presents the highest drop probability for
1-player and 2-player GEM scenarios. This is because it overlooks another crucial
GEM placement constraint: the GEMs’ maximum tolerable delay. However, for a
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large number of players per GEM, specifically more than 10 players, the suitable
nodes based on delay for different GEMs primarily narrow down to the network
central nodes. Now, its dropping probability becomes less than QDH* algorithm
and converges to the RND algorithm as it does a simple load balancing. Notably, all
algorithms, except RND and FFD, converge to a similar value for the delay as the
number of players per GEM increases.

The execution times for different algorithms under scenario 1 are reported in
Table 4.2. When comparing the values for MAP with all the 2-phase algorithms,
it is clear that the majority of the time is spent on improving the delay. Notably,
MAP-STD, the heuristic closest to MAP-MIND, does not satisfy the typical time
frames for setting up game sessions in real game environments. For most multiplayer
games today, a wait time of around 10 s (i.e., up to 60 s before starting the game)
to establish co-players or rivals in an arena is considered normal. Conversely, the
time for MAP-MIND is calculated based on a worst-case scenario of around 256
games, each with 50 players, totaling more than 12,000 players simultaneously.
These players have diverse maximum tolerable delays, and the algorithm achieves
near-optimal delay and less than 8% dropping. In practice, while MAP-MIND*
already provides valuable execution time at the cost of a small increase in the offered
delay, efficient algorithm implementation can significantly reduce execution time. By
comparing the execution time of MAP and the execution time of the other two-phase
algorithms based on MAP, it is clear that the MAP phase alone takes negligible
time compared to the second phase of the other algorithms, which is devoted to the
improvement of the placement solution in terms of delays through moves and swaps.

The time to compute the OPT results for both 1-player and 2-player GEM
scenarios is typically less than 1 s. For the case of the 10-player GEM scenario, the
average execution time is a few tens of seconds, with some instances solved around
40 s, which shows a high variability in the execution time. Interestingly, in the case
of 50-player GEMs, the computation time varies significantly across instances, with
some being solved in less than 10 s and some others taking over 900 s.

Scenario 2: Varying the number of CNs

In this experiment, we report results under scenario 2 and only for the UDC scheme.
This is because, in the case of NDC, all algorithms’ dropping probability is zero,
and the delay results are similar to the UDC case. We report for the 1-player and
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Fig. 4.8 Probability of dropping under scenario 2 for UDC with: i) 1-player GEMs (left), ii)
2-player GEMs (right).

Fig. 4.9 Average normalized delay under scenario 2 for UDC with: i) 1-player GEMs (left),
ii) 2-player GEMs (right).

2-player GEM cases. The dropping probability and the delay experienced by the
GEMs for UDC are shown in Fig. 4.8 and Fig. 4.9 respectively.

The results regarding the experienced delay under scenario 2 are entirely consistent
with the results of the 1-player and 2-player GEMs in the previous experiments under
scenario 1. An interesting observation is that by increasing the number of CNs,
the dropping probability of one-phase algorithms (i.e., FFD, QDH*, and RND),
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Table 4.3 Average execution time [s] under scenario 2 for UDC.

Algorithm
N = 16 N = 48

1-player 2-player 1-player 2-player
RND 0.005 0.007 0.019 0.023
FFD 0.006 0.008 0.034 0.041

QDH* 0.009 0.013 0.040 0.059
MAP 0.010 0.013 0.055 0.073

MAP-RNDF 0.238 0.225 2.04 2.09
MAP-RNDG 0.246 0.274 2.46 2.78
MAP-MIND* 0.226 0.253 2.33 2.63
MAP-MIND 0.387 0.425 4.39 5.70
MAP-STD 4.41 4.94 158 206

OPT 0.084 0.098 0.489 0.653

decreases for both 1-player and 2-player GEMs. This is due to the increase in
possible CNs for GEM placement. For 1-player GEMs, the delay for smarter
algorithms reduces by increasing the CNs, but in 2-player GEMs, only the central
CNs are eligible due to the possible positions of the 2 players of each GEM.

In summary, MAP-based algorithms experience the closest dropping probability
to OPT, while one of our proposed algorithms, MAP-MIND, is also close to OPT in
terms of experienced delay. We compared the execution times of the algorithms for
this scenario as well. Note that, for this scenario, the average number of GEMs is
128, 256, and 384 respectively. We reported the results in Table 4.3.

Interestingly, MAP-STD, the heuristic closest to MAP-MIND, takes 10 to 30
times longer to achieve similar delay results. OPT needs, on average less than
1 s to obtain the results, regardless of the number of CNs. MAP-MIND* has a
lower computation time than MAP-MIND. QDH* and MAP-STD have much larger
computation times, but better delay results are achieved with higher GEM dropping.
It is worth noting that, in a similar resource scaling test scenario, where we fixed the
number of CNs and instead varied the resources of the CNs, similar results to the
current scenario were obtained. These results have been omitted since redundant.

Scenario 3: Scaling CN resources

In this experiment, we report results under Scenario 3 and only for the UDC scheme.
This is because, similar to scenario 2, in the case of NDC, all algorithms’ dropping



112 Optimizing Game Engine Module Placement in Cloud Gaming

Fig. 4.10 Probability of dropping under Scenario 3 for UDC with1-player GEMs.

Fig. 4.11 Probability of dropping under Scenario 3 for UDC with 2-player GEMs.

probability is zero, and the delay results are similar to the UDC case. The results for
1-player GEMs are shown in Fig. 4.10 and Fig. 4.12 and the results for multiplayer
GEMs are shown in Fig. 4.11 and Fig. 4.13 respectively.

As expected, for 1-player GEMs, our proposed algorithms keep the minimum
dropping probability equal to zero (similar to optimal) among all competitors,
regardless of the scale of the network. By increasing the resources, QDH* and
RND rapidly approach our algorithms due to the increased difference between
GEM sizes and resource sizes, reducing competition for the available resources. On
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Fig. 4.12 Average normalized delay under Scenario 3 for UDC with 1-player GEMs.

Fig. 4.13 Average normalized delay under Scenario 3 for UDC with 2-player GEMs.

the other hand, in terms of delay, MAP-MIND follows the same behavior, close to
optimal and almost equal to QDH* while, as expected, MAP-MIND* trades off some
delay with speed and yet outperforms other competitors except QDH*. Regarding
multi-player GEMs, again, all MAP-based algorithms outperform RND, QDH*,
and FFD in terms of dropping probability while achieving the closest results to the
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Fig. 4.14 Probability of dropping under Scenario 4 for UDC with 2-player GEMs.

optimal. In the case of the experienced delay, all algorithms demonstrate similar
behavior, while RND and FDD achieve slightly worse delays.

Scenario 4: Varying average graph degree

In our experiments, we found that changing the average degree of the graph does not
alter the average normalized delay results, and all previous observations regarding the
behavior quality of the algorithms remain consistent. An interesting, yet expected,
observation is that by increasing the average degree of the graph, the dropping
probability of the less sophisticated algorithms slightly decreases for UDC with
2-player GEMs. This is because as the graph becomes more connected, the length of
the shortest paths decreases, which is equivalent to reducing network delays. This
leads to more delay-eligible CNs for less sophisticated algorithms at each GEM
placement, thereby reducing their dropping probability. For NDC, no dropping
occurs for all the algorithms. The dropping probability for UDC with 2-player GEMs
is presented in Fig. 4.14.

Scenario 5: Varying the utilization factor

The dropping probability for UDC with both 1-player and 2-player GEMs is illustrated
in Fig. 4.15. From the results of NDC, we report the dropping probability of both
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Fig. 4.15 Probability of dropping under Scenario 5 for UDC with: i) 1-player GEMs (left),
ii) 2-player GEMs (right).

Fig. 4.16 Ave. normalized delay under Scenario 5 for UDC with 1-player GEMs.

1-player and 2-player GEMs as shown in Fig. 4.17. This is because it presents the
only interesting behavior that differs from the aforementioned scenario. The delay
results for UDC with 1-player GEMs are illustrated in Fig. 4.16. We do not report
the delay results for UDC with 2-player GEMs, as it does not provide any interesting
observations, being similar to the 2-player case in Fig. 4.9.
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Fig. 4.17 Probability of dropping under Scenario 5 for NDC with: i) 1-player GEMs (left),
ii) 2-player GEMs (right).

For 1-player GEMs, considering Fig. 4.16 and Fig. 4.15 together, as expected,
RND and FFD exhibit the worst delay since they are indifferent to the achieved delay.
RND shows some minor dropping, especially at high loads. However, interestingly
and contrary to what is expected, FFD displays a considerable dropping probability
(i.e., the worst among all algorithms for UF ≥ 0.5). This is due to the algorithm
ignoring the important role of maximum tolerable delay for GEMs while trying to
maximize placement.

On the other hand, QDH* achieves a very good delay, almost approximating the
OPT, which is gained by dropping some of the GEMs. All the MAP-based algorithms
show almost zero dropping, even at the highest loads, while MAP-STD and MAP-
MIND display the best delays, completely approximating the OPT. Notably, as
discussed in Sec. 4.6.5, the computational complexity of MAP-MIND, translated
into execution time, is much less than that of MAP-STD, making MAP-MIND the
winner. Also, MAP-MIND* demonstrates a completely acceptable delay compared
to other algorithms by considering its brilliant mix of execution time and dropping
probability.

In the case of 2-player GEMs, other than RND and FFD, which achieve the worst
delay, the remaining algorithms show almost identical delay results. The difference
lies in the dropping probability, where we observe an increase for all algorithms,
except for the OPT, compared to 1-player GEMs. This behavior for 2-player GEMs
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Fig. 4.18 Probability of dropping under Scenario 6 for UDC with: i) 1-player GEMs (left),
ii) 2-player GEMs (right).

is expected, as in most cases, only the central CNs are eligible due to the potential
positions of the two players of each GEM.

For NDC with 1-player GEMs, when the offered load exceeds 0.95 of the network
resources, RND and QDH* start to drop the GEMs, even for NDC. This highlights
the weakness of the algorithms that do not consider placement maximization in their
logic. Now, compared to UDC cases, FFD can demonstrate its placement power by
having no dropping, even at the highest load, as it does not consider the maximum
tolerable delay as a constraint for GEM placement. MAP-based algorithms only
show negligible dropping at the highest load.

Scenario 6: Varying UF with heterogeneous resources

The dropping probability for both 1-player and 2-player GEMs and the average
normalized delay for 1-player GEMs are illustrated in Fig. 4.18 and Fig. 4.19,
respectively.

When contrasted with a network featuring homogeneous resources, all algorithms
with heterogeneous resources manifest qualitatively similar behavior regarding
average normalized delay and dropping probability. As expected, in the presence of
heterogeneous resources, we observe a small increase in both delays at low loads
and dropping probabilities. The former observation can be attributed to the restricted
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Fig. 4.19 Ave. normalized delay under Scenario 6 for UDC with 1-player GEMs.

resources on certain CNs, resulting in the placement of some GEMs on more distant
CNs. The latter observation is a direct consequence of the former since distant nodes
are more likely to exceed the maximum tolerable delay for the mentioned GEM,
leading to its dropping.

Scenario 7: Multiple-resource bottleneck

The dropping probability for both 1-player and 2-player GEMs and the average
normalized delay for 1-player GEMs are illustrated in Fig. 4.20 and Fig. 4.21,
respectively. When comparing the results with Scenario 5 (i.e., single-resource
bottleneck), no significant differences are observed except at very high loads (i.e., UF
≥ 0.95). At these high loads, all algorithms begin to drop the GEMs more rapidly.
By concentrating solely on one bottleneck during placement, another bottleneck can
emerge, leading to drops. In such cases, even the OPT struggles to accommodate all
the GEMs within the network.

Scanrio 8: Batch-placement in an online scenario

The dropping probability and the average normalized delay for an online scenario
are illustrated in Fig. 4.23 and Fig. 4.22.



4.6 Numerical evaluation 119

Fig. 4.20 Probability of dropping under Scenario 7 for UDC with: i) 1-player GEMs (left),
ii) 2-player GEMs (right).

Fig. 4.21 Ave. normalized delay under Scenario 7 for UDC with 1-player GEMs.

In general, the decision to place the newly arrived GEMs at the end of each
batch-window is based on a snapshot of GEMs, lacking foresight into upcoming
GEMs in future windows. This myopic view can lead to sub-optimal global decisions
over the entire simulation period. The effect should be explained by simultaneously
considering two factors: (i) batch-window size ∆t, and (ii) the efficiency of the
algorithm. Here ∆t has a paramount effect, as a larger size of collected GEMs
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Fig. 4.22 Probability of dropping in UDC and under Scenario 8.

Fig. 4.23 Ave. normalized delay in UDC and under Scenario 8.

provides more information, enabling the proposed algorithms to make more informed
decisions about GEM placement and lowering the probability of dropping.

From Fig.4.22, it is evident that increasing the value of ∆t reduces the dropping
probability for all algorithms. On the other hand, when algorithms make locally
optimized decisions based on the current window’s GEMs, they may allocate
resources in a way that efficiently satisfies immediate GEMs but could potentially
block critical resources needed for special or delay-critical GEMs in subsequent
windows. Thus, more locally optimized algorithms are likely to achieve worse
results globally for the smallest windows and better results for the largest windows.
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This is coherent with the OPT results in Fig.4.22. Also, MAP-MIND demonstrates
the same behavior, having worse results than MAP-MIND* for small windows.
Considering the small structural difference between the two algorithms, investigating
larger windows than shown in Fig. 4.22 is needed to show that the two algorithms
eventually converge together and possibly change their positions as forecasted above.

In short, this behavior occurs because, with each decision, a locally optimized
algorithm may exhaust the available resources on compute nodes, leaving insufficient
capacity on possible eligible compute nodes for future requests. This myopic
approach prioritizes immediate resource allocation, potentially neglecting the needs
of upcoming requests. Consequently, this behavior can lead to sub-optimal global
decisions over time, especially for algorithms making decisions solely based on
current resources without considering future demands. So, simpler algorithms like
MAP-MIND*, tend to do more load balancing leading to fewer request drops with
the cost of increased experienced latency.

Regarding the delay, for all window sizes, OPT outperforms the algorithms as it
aims to minimize placement delay, while MAP-MIND performs slightly better than
MAP-MIND* due to slightly more dropped GEMs. It is worth reminding that, due
to the nature of MAP as the first phase in our algorithms, to maximize placement, it
trades delay for acceptance, leading to high acceptance at the cost of large but even
acceptable delay (see Fig. 4.23).

On the other hand, introducing a collection window alters the incoming pattern,
creating a burst of GEMs to place, which leads to raising the dropping probability.
For instance, consider two distinct GEMs arriving at different times where only
one specific server can serve them. If the computation of the first GEM concludes
before the arrival of the second, one of them would need to be dropped if they
coexist within the same window under batch placement. This scenario highlights
the limitations of both window-based processing of collected GEMs and locally
optimized decision-making. In the NDC case, where servers are interchangeable
for GEMs, the effect of the window is limited to merely extending the average
waiting time for GEMs to be served, which may result in dropping excess GEMs
if ∆t exceeds the maximum computation time. Conversely, in the UDC scenario,
where servers are not interchangeable for GEMs (i.e., some servers are not suitable
in terms of delay for some GEMs), a combination of the two aforementioned effects
is observed.
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Table 4.4 Computational complexity and average calculated iterations for different algorithms
under the scenario 1.

Algorithm
Worst-case Ave. iterations for k-player

computational GEM with k equal to
complexity O() 1 2 10 50

RND |S||N| 908 928 1.58k 2.37k
QDH* |S||N|2 log |N| 350 780 2.63k 3.57k
FFD |S|(log |S|+ |N|) 4.32k 4.27k 4.37k 4.72k

MAP-RNDF |S|2 23.3k 14.5k 11.1k 10.5k
MAP-RNDG |S|2 74.2k 72.1k 68.5k 64.1k
MAP-MIND* |S|2 23.2k 29.8k 43.8k 48.2k
MAP-MIND |S|3 201k 247k 368k 388k
MAP-STD |S|3 15M 15M 16M 17M

Interestingly, in the current landscape of online gaming, a wait time averaging
more than 60 s to start a game is likely to be considered inconvenient by players.
This suggests a window size not greater than 60 s, which, according to Fig. 4.22,
showcases MAP-MIND* as a viable choice for online scenarios given its simplicity
and efficiency.

4.6.5 Computational complexity of different algorithms

As a theoretical performance bound, we investigate and compare the computational
complexity of our algorithms. The computational complexity of the process is
primarily influenced by the number of GEMs (|S|) and CNs (|N|). As the worst-case
scenario, we consider the NDC scenario to maximize the search space. In such a
scenario, all nodes are eligible, resulting in the highest number of potential moves
and swaps.

The first phase of all MAP-based algorithms, in the worst case, results in |S||N|
iterations. The moving phase of MAP-MIND iterates over all GEMs and CNs,
resulting in O(|S||N|) iterations. In the worst case, this process is repeated |S| times,
leading to O(|S|2|N|) total steps. The swapping phase iterates over all pairs of GEMs,
resulting in O|S|2 iterations that, in the worst case, can be repeated |S| times. This
leads to O(|S||N|+ |S|2|N|+ |S|3) as the complexity of MAP-MIND. In contrast,
in the delay-enhancing part, MAP-MIND* iterates over all GEMs while merging
the move and swap in one phase, resulting in O|S|(|N|+ |S|) steps in the worst
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case. This leads to O(|S||N|+ |S|2) as the complexity of MAP-MIND*. It can be
simply shown that the complexity of MAP-RNDF and MAP-RNDG is equal to that
of MAP-MIND*. On the other hand, the MAP-STD moving phase iterates over all
GEMs and CNs, resulting in O(|S||N|) iterations, and the swapping phase iterates
over all pairs of GEMs, resulting in O(|S|2) iterations. In the main iteration, the
whole process can be repeated |S| times in the worst case, as it can loop over all
pairs of GEMs, which leads to a complexity of O(|S||N|+ |S|2|N|+ |S|3). Given that
|S| ≫ |N|, the worst-case computational complexity for all algorithms is reported in
Table 4.4.

We reported the observed average number of iterations, moves, and swaps for all
two-phased algorithms in Table 4.4. Upon comparing the two columns of Table 4.4,
it is interesting to note that MAP-MIND*, despite having the same worst-case
complexity as MAP-RNDF and MAP-RNDG, exhibits the minimum number of
iterations and the best delay results among the three. However, while it slightly
underperforms MAP-MIND in terms of delay, it is significantly more efficient and
faster. Conversely, while MAP-MIND and MAP-STD have similar worst-case
complexities and yield comparable delay performance, MAP-MIND proves to be
substantially faster in practice compared to MAP-STD.

4.7 Discussion

The research presented in this work addresses the optimal placement of game engine
modules (GEM) in cloud gaming scenarios. The proposed algorithms, MAP-MIND
and MAP-MIND*, have been developed to effectively balance the maximization
of the number of placed GEMs and the minimization of delay experienced by the
players. We rigorously evaluated the performance of these algorithms through
extensive simulations. MAP-MIND was shown to closely approximate the optimal
solution, with a very small dropping probability in worst-case scenarios. Conversely,
while the MAP-MIND* algorithm slightly under-perform in terms of delay compared
to MAP-MIND, it offers significant advantages in terms of computation time, making
it a practical alternative for real-world applications where large instances of the
placement problem must be considered.



Chapter 5

Conclusion

During my research activity, we covered three different topics in the fields of
programmable networks, blockchains, and cloud gaming with a unified focus on
enhancing performance. At the core of these investigations is a unified focus on
optimizing network-wide distributed applications through one or more of minimizing
overall latency, reducing resource consumption, and alleviating network overhead.

In the first research activity, we introduced STARE, a design made for NFV
and SDN-powered networks. STARE focuses on fast and efficient replicating states
among multiple VNFs in 5G networks. To make this happen, it uses new data plane
advances by shifting typical publish-subscribe broker functions to the programmable
switches. At the same time, STARE offers a practically designed middleware that
makes it easier for developers to interact with the VNFs. This is done by providing
simple APIs that VNF source codes can easily access. we tested this approach
on a realistic network testbed using P4-enabled switches and standard OpenFlow
switches for vanilla SDN. we also compared our solution with other methods for
sending published notifications using different technologies. Our tests show that
using STARE with P4-enabled switches evenly spreads traffic across the network.
This happens by using fixed-length headers that need fewer packets to deliver
notifications to subscribers. Our approach has a slightly higher communication
overhead compared to some alternatives, but it does not need interaction with a
software broker or mapping the complete path between publishers and subscribers
inside the packet. This completely separates publishers and subscribers. Also,
our approach uses less memory than traditional methods relying on vanilla SDN.
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Moreover, since STARE interacts less with a centralized controller and removes
software brokers, it is expected to drastically reduce the state replication latency
compared to traditional publish-subscribe systems.

In the second research activity, we aimed to reduce the overall latency on a widely
used blockchain platform called Hyperledger Fabric (HF). Specifically, given an
input endorsement policy, we studied the optimal choice to distribute the endorsement
requests to the proper endorser peers (EPs). We proposed the “OPEN” algorithm,
devised to minimize the latency due to both network delays and the processing times
at the EPs. We provided a theoretical model, based on queuing theory, to compute
the optimal number of EPs and to tune the parameters of “OPEN”. By extensive
simulations, we showed that “OPEN” can reduce the endorsement latency up to
70% compared to the state-of-the-art solution and approximated well the introduced
optimal policies while offering a negligible implementation overhead compared to
them. Additionally, we implemented the “OPEN” algorithm in Hyperledger Fabric
to test its performance in a practical setting where the initial results from the test
version of “OPEN” were promising. Yet, there is more work needed to perfect the
design of the client-based “OPEN” solution and to test it extensively. Considering
the rapid evolution of the HF, especially introducing the so-called “Gateway module”,
deciding on the proper place to implement OPEN is a future research opportunity.

In the latest research activity, we tackled optimizing game engine module (GEM)
placement in cloud gaming setups. we introduced two new algorithms called MAP-
MIND and MAP-MIND* to maximize the acceptance of the GEMs while reducing
the average latency observed by the players. we ran extensive simulations to check
these algorithms’ performance. MAP-MIND almost perfectly approximates the
optimal solution, even in the worst heterogeneous scenarios. On the other side, MAP-
MIND* has slightly more latency but is highly efficient computationally, making it
practical for real-world use, especially in scenarios with lots of placement instances.
Our research aimed to improve these algorithms further by exploring optimizations
and considering the ever-changing cloud gaming technology landscape.

In summary, drawing from extensive research across programmable networks,
network-wide distributed blockchain technologies, and cloud gaming, this dissertation
has successfully tackled the shared challenge of enhancing performance in distributed
applications. By focusing on minimizing latency, reducing resource consumption,
and alleviating network overhead, significant improvements have been achieved.
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Through the introduction of novel fast and efficient mechanisms for state replication
in 5G networks, optimization of blockchain processes for latency-sensitive applications,
and the development of simultaneously fast and efficient algorithms for game engine
module placement in distributed gaming environments, tangible progress has been
made. These advancements not only address specific obstacles within each domain
but also contribute to broader strategies for enhancing performance in network-wide
distributed applications. As a result, this research lays a strong foundation for future
endeavors aimed at optimizing distributed systems for improved efficiency and
effectiveness.
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