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Abstract

Cardiovascular diseases are the leading cause of mortality worldwide, responsible
for more than 17 million deaths every year. For this reason, the study of the
cardiovascular system and of the mechanisms governing blood flow has attracted
significant and increasing interest from both the medical and engineering
communities. In this context, computational models of the cardiovascular
system have been increasingly adopted for studying the role of blood flow in the
development of cardiovascular diseases, and have proved useful for a number of
tasks, including surgical planning, non-invasive diagnostics, and medical device
evaluation.

In order to be safely and effectively used in real-life clinical scenarios, cardio-
vascular models need to be accurate and reliable. One of the biggest challenges
is represented by the estimation of appropriate boundary conditions (BCs),
which need to be imposed at the boundaries of the domain of interest, to provide
a description of blood flow dynamics outside the model. Boundary conditions
are essential to guarantee a unique solution to the system, and they are a crucial
step in the creation of any computational model. Specifically, the estimation
of boundary conditions needs to be automated, to facilitate the adoption of
cardiovascular models in the clinic, robust, to ensure reproducibility and prevent
inter- and intra-operator variability, and patient-specific, to personalize the
model to the specific patient. Toward these goals, this thesis proposes a set
of novel, automated, and robust techniques for the estimation of boundary
conditions.

The thesis is organized into three main parts. In the first part, a data and
model-driven approach is presented, where resistive boundary conditions are
estimated by solving an optimal control problem. The choice of boundary
conditions, in fact, is guided by an effective combination of patient-specific data
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and by a physical description of the underlying system, by means of the Stokes
equations. The proposed method is tested on fully patient-specific cases, with
anatomies reconstructed from CT images of the aortic arch, flow measurements
coming from 4D-Flow MRI, and non-invasive pressure measurements.

The second part presents a novel framework for the automated estimation
of higher order lumped parameter boundary conditions, by means of the time-
domain vector fitting algorithm. The purely data-driven nature of this approach
leads to a fast and inexpensive estimation process, while enabling the adoption
of more accurate boundary conditions of arbitrary complexity, in the form of
black-box models.

In the last part of the dissertation, a numerical investigation of the min-
imum energy principle in patient-specific anatomies is conducted. In view
of the limited availability of patient-specific measurements, BC estimation
techniques which do not require in-vivo measurements, and are instead physics
and anatomy-based, are particularly attractive. Among these, the minimum
energy principle is often adopted in the form of Murray’s law, for the selection
of resistive outlet boundary conditions. The proposed investigation verifies if a
minimum energy point also exists in realistic anatomies, if it can be identified
numerically, and if it can be used as a possible criterion for inlet flow estimation.

In summary, this dissertation provides a set of novel techniques for the
estimation of boundary conditions. Their validity is documented with relevant
numerical examples, which prove the effectiveness of an increasingly automated,
robust, and patient-specific approach to boundary conditions estimation.
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Chapter 1

Introduction

Cardiovascular diseases are currently the leading cause of mortality worldwide,
causing around 17.9 million deaths every year [1]. In Europe, around 45% of all
deaths can be imputed to cardiovascular diseases, and this number is expected
to increase over the next decades, as a result of population growth and aging,
combined with the rise of risk factors such as obesity, poor diet, high blood
pressure, and diabetes [2]. For this reason, the study of the cardiovascular
system and of the mechanisms governing blood flow, especially in presence of
cardiovascular disease, has attracted significant and increasing interest from
the medical, bioengineering, and mathematical communities.

In this context, computational fluid dynamics (CFD) has been increasingly
adopted for studying the role of blood flow in the development of cardiovascular
diseases [3, 4]. As in other engineering disciplines, where computational models
are commonly used to avoid expensive experiments and virtually test different
design choices, also in medicine and cardiology computational modeling rep-
resents a valuable tool in unfolding the mechanisms behind blood flow, and
providing personalized therapies [5, 6].

Cardiovascular models can be employed for a number of tasks, from general
research on cardiovascular disease, to surgical planning, non-invasive diagnosis,
and possibly medical device evaluation [7, 8]. Computational models have been
already extensively used to obtain a better understanding of haemodynamics in
different parts of the cardiovascular system, such as the carotid arteries [9, 10],
the coronary circulation [11], the heart [12, 13], and the cerebral circulation [14,
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15]. In surgical interventions, surgeons could use computational models to
support their decision making process, by simulating different surgical scenarios,
and predict their outcomes [16]. Moreover, computational models can be used
to obtain non-invasively clinical quantities of interest, which would not be
measurable in-vivo, or which would require expensive and invasive procedures.
An example is the measurement of pressure differences in coronary arteries,
also known as fractional flow reserve (FFR), in place of catheterization [17]. In
this case, an approach based on cardiovascular modeling is currently employed
by clinicians for the computation of FFR, thanks to commercial products such
as HeartFlow [18]. On a larger time-frame, computational investigations could
enable personalized therapies and prospective studies on long-term effects of
surgeries and treatments, and possibly the identification of new predictors
for cardiovascular pathologies [19]. Finally, cardiovascular models can play
an important role in the development of medical devices, by providing new
information on the environment where devices are employed, and evaluating
the effect of the devices on human physiology [20, 21].

In order to be safely and effectively used in real-life clinical scenarios,
cardiovascular models need to be accurate and reliable. To this end, a first step
has been made by combining CFD with advanced imaging techniques [22–24] to
reproduce the functional and morphological conditions of a specific patient, by
means of the so-called patient-specific models. Such models, in fact, are obtained
by reconstructing a three-dimensional model of the anatomy of interest starting
from imaging data, and then solving a set of partial differential equations
(PDE), usually Navier-Stokes equations, describing the blood flow dynamics
inside the model. Patient-specific models represent a promising instrument in
view of an increasingly personalized approach to surgeries, treatments, and
medicine at large. However, there are still a number of challenges to tackle in
order to make cardiovascular models more accurate and reliable. Considering
the extension and complexity of the cardiovascular system, usually only a
limited portion of it is represented in 3D, while the rest is represented by means
of boundary conditions (BCs), a set of conditions that need to be imposed at
the boundaries of the domain of interest, to provide a description of blood flow
dynamics outside the model. Boundary conditions are essential to guarantee a
unique solution to the system, and they are a crucial step in the creation of any
computational model. As a matter of fact, one of the biggest challenges in the
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creation of an accurate cardiovascular model is represented by the estimation
of appropriate boundary conditions. Specifically, the estimation of boundary
conditions needs to be: i) automated, to facilitate the adoption of cardiovascular
models in a clinical setting; ii) robust, to ensure reproducibility and prevent
inter- and intra-operator variability; iii) patient-specific, to personalize the
model to the specific patient. Toward these goals, we present in this thesis a
set of novel, automated, and robust techniques for the estimation of boundary
conditions.

This chapter first discusses the background related to boundary conditions
needed to understand the rest of the dissertation, providing also an overview of
other methods previously proposed in literature (Section 1.1). Then, the main
contributions of this thesis are reviewed (Section 1.2), together with the overall
organization of the dissertation (Section 1.3).

1.1 Background and motivation

The development of patient-specific cardiovascular models highly benefits from
the advancements in both imaging and computational techniques, which have
helped in-silico methods become a flexible and cost-effective alternative to
both in-vivo and in-vitro approaches. A patient-specific cardiovascular model
is generally created from a set of imaging data, which are converted to a
three-dimensional model suitable for CFD simulations by a number of steps,
as depicted in Fig. 1.1, where the standard pipeline for the creation of a
cardiovascular model is displayed.

As indicated in Fig. 1.1, the starting point consists of a set of examinations
performed on the patient through imaging techniques. These may be com-
puted tomography (CT), magnetic resonance imaging (MRI), or ultrasound
imaging [4]. CT is an X-ray angiography technique used for identifying the
vessel lumen, where multiple X-ray sources and detectors are rotated rapidly
around the patient, allowing to acquire images with good spatial resolution.
MRI, instead, uses magnetic fields and radio waves to generate images of the
vessels in the body. Lastly, ultrasound imaging is based on the transmission
of beams of low power, high frequency sound waves. Whenever possible, addi-
tional patient-specific flow measurements can be gathered from imaging, either
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1) Patient in hospital 2) Medical Imaging 3) 3D model creation

6) Post-processing 5) CFD model 4) Mesh generation

BC 
estimation

Aorta
BCA
LCC
LSUB

Fig. 1.1 Representation of the pipeline used for the creation of cardiovascular models.

from Doppler ultrasonography, or through phase-contrast magnetic resonance
imaging (PC-MRI), a specific type of MRI employed to determine flow veloci-
ties. When three-dimensional PC-MRI is time-resolved, it is generally called
4D-Flow MRI, allowing to measure and visualize the temporal evolution of
blood flow within a specific 3D volume [25]. Once the CT images have been
acquired, they can be used to obtain a three-dimensional anatomical model
of the vessels of interest (third step in Fig. 1.1). The segmentation of CT
images detects the points of the image belonging to the vessel lumen, providing
in this way a three-dimensional anatomical model of the vessels [4]. At this
point, a volumetric mesh can be generated on the 3D model, as indicated
in the fourth step of Fig. 1.1, which is instrumental to the following CFD
analysis. The next step consists in solving a set of partial differential equations,
usually Navier-Stokes equations, which describe the blood flow dynamics on
the 3D anatomy of interest. The solution of these equations provides point-wise
values for both pressure and velocity across the entire domain, enabling a
post-processing phase (step 6), where clinically relevant quantities, such as wall
shear stress and oscillatory shear index, are computed from CFD results [26].

When creating a cardiovascular model, the main goal is to produce results
that are sufficiently accurate, reproducing in a virtual environment a good
approximation of the blood flow dynamics occurring in the patient, while
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Fig. 1.2 3D rendering of the anatomy of an aortic arch, with the various parts of the
boundary labeled. Γin denotes the surface of the inlet, Γw the walls of the vessels,
and Γout combines the surfaces of all the outlets.

ensuring that the computational time of the simulations is under reasonable
limits. In this sense, one of the major factors determining the accuracy of the
computed flow fields is the appropriate specification of boundary conditions.
The solution of a system of partial differential equations is uniquely determined
only if proper conditions are imposed at the boundary of the domain, and for
this reason a 3D simulation of blood flow can be performed only after boundary
conditions have been specified, as indicated in Fig. 1.1. The role of boundary
conditions is to provide a realistic representation of blood pressure and flow in
the upstream and downstream regions of the cardiovascular system, outside the
regions of interest. Referring for example to the model represented in Fig. 1.2,
one has to define conditions at the inlet, at the outlets, and on the walls of
the vessels. The latter is the only physical boundary, where generally a no-slip
condition is imposed [4], meaning that the blood velocity is assumed to be zero
in correspondence of the vessel walls. Both the inlets and the outlets, on the
contrary, are artificial boundaries, which do not correspond to real boundaries
in the original system. Nevertheless, they are essential to isolate a specific
region of interest, as the simulation of the entire cardiovascular system would
be computationally unfeasible.



6 Introduction

Despite the advancements in haemodynamics modeling, the definition of
proper boundary conditions is still a critical and challenging task. Specifically,
there are two main challenges related to boundary conditions:

• choosing the type of boundary condition, which must give a good approx-
imation of the blood flow dynamics in the upstream and downstream
vasculature. Different types of boundary conditions, for example, may
impose the pressure at the boundary, the flow rate, or a relationship
between them;

• once the type of boundary condition has been chosen, its parameters must
be estimated. Depending on the type of boundary condition selected, this
process could translate into a large number of parameters to estimate.

The two challenges will be analysed separately in the following sections.

1.1.1 Types of boundary conditions

Generally, at the inlet a time and spatially varying velocity boundary condition
is applied. The imposed velocity profile can be idealized (flat, fully developed or
Womersley flow pattern), or based on clinical measurements, like PC-MRI, 4D-
Flow MRI, or ultrasound [27, 28]. On the other hand, the use of time-dependent
pressure waveforms as inlet boundary conditions is less common, mainly due
to the difficulties in obtaining pressure measurements through catheterization,
and their poor precision [29]. Alternatively, a lumped description of the heart
can be coupled to the inlet boundary [30, 31].

The representation of outlet boundary conditions, instead, is typically more
challenging, due to the limited availability of clinical measurements, but also to
the intrinsic difficulty to model such a large portion of the vasculature. Different
outlet conditions have been proposed, and the most common approaches consist
in:

• applying a constant or time varying pressure value. In particular, the
use of a "zero-pressure" outlet or traction-free boundary condition is
popular due to its simplicity [32]. However, this is equivalent to assuming
that the vessel has been cut and exposed to atmospheric pressure [33],
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a rather unnatural and unrealistic assumption that neglects the rest of
the downstream vessels. Additionally, the obtained blood pressure in the
domain will not be in the physiologic range, hindering the validity of the
obtained results [34]. For this reason, this type of condition should be
avoided;

• prescribing a specific flow rate, which could have been measured in-vivo,
or have been computed as constant fractions of the inflowing blood (flow-
split condition). However, this type of condition is not realistic, and flow
division is expected to change during the cardiac cycle [35];

• using a more advanced representation of the downstream vasculature by
means of ordinary differential equations (ODE), which can be interpreted
as the governing equations of lumped-parameter networks, also known
as zero-dimensional (0D) models [36]. Lumped parameter models are
described by resistance, capacitance and inductance parameters, which
are set to describe the desired blood flow dynamics in the downstream
domain;

• using one-dimensional (1D) models, also called distributed parameter
models, where the length, diameter, and material properties of each
vessel segment are assigned [36]. In this case, the three-dimensional space
dependence is reduced to a single dimension, coinciding with the axial
coordinate.

In many cases 0D boundary conditions are adopted, as they provide sufficient
accuracy, while depending only on a few parameters, thus making their esti-
mation feasible. By means of an analogy to an electrical circuit, in fact, the
resistive, elastic, and inertial properties of blood flow through the vessels are
lumped and represented as equivalent electrical elements. The relationship
between pressure and flow at the outlet, then, is described by the associated set
of ordinary differential equations (ODE) which govern the electrical circuit [4].

In the context of 0D outlet boundary conditions, various circuit models
have been employed, from simple resistors, to more complex R-C-R circuits [37]
and circuits describing circulation in the distal part of coronary arteries [38].
Here, again, the selected model represents a trade-off between accuracy and
circuit complexity, reflected by the number of circuit elements. For this reason,
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b) Three-element Windkessel model.
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c) Four-element Windkessel model.

Ca

Ra Ra−micro
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Rv−micro
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d) Distal coronary circulation model.

Fig. 1.3 A collection of lumped parameter models commonly used as 0D boundary
conditions [4, 43].

a model commonly adopted is the three-element Windkessel model, a circuit
composed by two resistances and a capacitance, as depicted in Fig. 1.3. It was
originally proposed by Westerhof in 1971 [39], who expanded the original two-
element Windkessel introduced by Hales in 1733 and mathematically described
by Otto Frank in 1899 [40, 41]. Despite its reduced complexity, the Windkessel
model is able to represent both the proximal and the distal resistance of the
vessels (by means of the resistances R1 and R2 in Fig. 1.3-b, respectively), and
their compliance (by means of the capacitor C in Fig. 1.3-b). To account for
the inertial effects of blood flow, an inductance L can be added to the three-
element Windkessel model, obtaining the four-element Windkessel represented
in Fig. 1.3-c [42]. The model adopted for the distal coronary circulation reported
in Fig. 1.3-d) is composed by multiple compartments, representing the different
parts of the coronary circulation. In addition, the pressure source Pim takes
into account the time-varying intramyocardial pressure.

In summary, different types of boundary conditions can be used in cardio-
vascular modeling, and the adoption of one type over the others will have a
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significant impact on flow and pressure fields, resulting in differences also in
the haemodynamic indicators used in clinical settings [44, 45].

1.1.2 Estimation techniques for boundary conditions

Once a BC model has been selected, it is necessary to estimate its parameters.
These could be a single pressure value, in the case of a constant pressure
condition, or a set of values for the electrical elements of a lumped parameter
network. Ideally, boundary conditions should be set starting from pressure and
flow rate measurements in the corresponding positions of the circulatory system.
Having patient-specific boundary conditions directly estimated from in-vivo
measurements, in fact, is essential to achieve accurate simulations [46, 47].
However, this process is far from trivial, and several difficulties make parameter
estimation a challenging task.

An initial challenge is related to the limited availability of in-vivo mea-
surements: the latter, in fact, are rarely available at the correct location, and
when they are, they tend to be noisy, and with limited accuracy. Moreover,
many of the measurements require invasive procedures on measurement sites
with restricted access, due to the anatomical configuration of vessels. For this
reason, a large class of solutions for the parameter estimation of boundary
conditions still relies on literature data, animal models and generic population
averages [48, 49]. Obviously, this type of approach limits the possibility of
producing patient-specific models for a personalized approach to medicine.

If some pressure/flow rate measurements are available, a manual tuning
approach is often adopted, where reasonable ranges for each parameter are
identified (for example by estimating outlet resistances by means of Murray’s
law [50]), and the parameter values are iteratively adjusted to make the simu-
lation results match available data [51, 52]. This technique, apart from being
tedious and time-consuming, is prone to inconsistencies, and it is affected
by inter- and intra-operator variability, with the final choice of parameters
somewhat left to the user [53–55]. To overcome this issue, several algorithms
and implementations have been presented in the literature, with the aim of
automating the parameter tuning procedure [56, 57]. In the following, a general
overview of the most common tuning algorithms is provided.
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A first class of solutions is based on automated iterative approaches to
reduce the difference between measurements and simulation results. Xiao et
al. proposed a technique for iteratively calibrating three-element Windkessel
boundary conditions to reach a desired systolic and diastolic pressure in a
specific vessel [58]. Alimohammadi et al., instead, described an iterative
minimization approach for parameter estimation in cardiovascular models
for aortic dissection, where the Windkessel parameters were tuned based on
invasive pressure measurements [59]. A different approach based on a quasi-
Newton method was proposed by Spilker et al. [57], who devised an automated
framework to estimate boundary conditions matching patient-specific flow
rate and pressure waveforms. Troianowski et al. [60], instead, proposed a
procedure to tune three-element Windkessel BCs for the pulmonary circulation,
combining an iterative fixed-point approach to a morphometry-based one. More
recently, Huang and Ying proposed a genetic algorithm combined with an on-
line iterative optimization method to estimate the parameters of a five-element
arterial model, starting from measurements of aortic flow rate, venous and
arterial pressure [61].

Another class of solutions is based on the use of Kalman filters, which
perform the assimilation of measurements on the fly by means of a sequential
approach, and update the unknown parameters accordingly [62, 63]. For
example, Huang et al. adopted an Iterated Unscented Kalman Filter to estimate
the circuit parameters and layout of a four-element Windkessel model [64].
Arthurs et al. [53], instead, presented a reduced-order unscented Kalman filter
for estimating the parameters of lumped boundary conditions. The estimation
of n parameters, however, requires running n+1 forward simulations, which
makes the data assimilation process computationally expensive.

The approaches presented until now provide a point estimate for the model
parameters, without quantifying the uncertainty affecting those estimates. On
the contrary, an approach based on Bayesian estimation can provide an estimate
for the unknown parameters, while also accounting for the uncertainty arising
from errors and assumptions in the collected patient-specific data [54, 55, 65, 66].
An example is the framework proposed by Tran et al. [54], where the Bayesian
estimation approach was coupled to the Monte Carlo method to estimate
the parameters of a multiscale coronary artery model, while quantifying the
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uncertainty on the computed haemodynamic indicators, such as wall shear
stress.

Finally, an advanced solution for boundary condition estimation resorts to
a variational approach, and casts the estimation problem into the framework
of PDE-constrained optimization and optimal control. In this approach, a
model using either the Stokes or the Navier-Stokes equations is created, where
unknown boundary conditions values are set as parameters. The latter are
optimized by minimizing the error between pressure and flow rates estimated
by the model, and those measured in-vivo [67, 68]. The advantage of optimal
control is that the data assimilation process is done in a rigorous way, buy
formulating an optimization problem which determines the optimal boundary
condition parameters in a reproducible way, ensuring that the solution will be
the closest to the provided set of in-vivo measurements. Moreover, differently
from the standard optimization approaches presented at the beginning of this
section, optimal control gives large flexibility in terms of the number and
types of measurements to assimilate, without needing both pressure and flow
waveforms at the exact location where the BC will be enforced. Thanks to
variational approaches, in fact, it is possible to optimize the BC parameters
defined on the boundary to make model results match pressure/flow rate values
measured in other parts of the model, which could be more accessible during the
measurement process. A similar approach, instead, would be more difficult to
implement with manual tuning procedures. In addition, if in-vivo measurements
are not sufficient, or not sufficiently accurate, variational methods allow to
combine the assimilation of in vivo-measurements with other criteria from the
literature. Finally, formulations based on a least-squares approach, such as the
variational one, are particularly robust, and can handle both spatially and time
resolved velocity, flow rate, and pressure measurements [69, 70].

In summary, the definition and estimation of appropriate boundary condi-
tions is a pressing matter in cardiovascular modeling. Together with an accurate
geometrical reconstruction of the patient’s anatomy, boundary conditions are
the key to the creation of models which are truly patient-specific, enabling a
more personalized approach to medicine.
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1.2 Contributions of this thesis

Despite the enormous improvements that the field of cardiovascular modeling
has seen in the past decade, from automated solutions for image segmenta-
tion [71], to highly efficient numerical solvers for CFD problems [72], some
major challenges still need to be overcome in order to make personalized models
truly accessible to doctors and routinely employed in the clinic. One of the
most pressing issues is the definition and estimation of accurate boundary con-
ditions, which is the topic of this thesis. In particular, the proposed estimation
techniques need to have the following features:

• Automation For cardiovascular models to be properly integrated in
clinical procedures, it is essential to rely on a repeatable estimation
process of BCs, eliminating any operator-dependent variability. Thus,
the developed estimation methods need to be automated, robust, and
reliable.

• Ability to assimilate information including in-vivo measurements
and statistics from the literature Whenever possible, the choice of
boundary conditions should be guided by the available clinical mea-
surements to make models truly patient-specific. Thus, the proposed
methods should be flexible enough to assimilate measurements coming
from different sources, including estimates obtained from literature data
or population-based values, and accounting for noisy data.

• Advanced lumped parameter models Lumped parameter networks
are used to model realistic boundary conditions, exploiting the analogies
between fluid dynamics and circuit theory. However, the complexity of
estimating their parameters has prevented the use of circuits with more
than three elements, limiting the capability of representing richer blood
flow dynamics. Thus, the third objective is to investigate the use of more
complex LPN models, and to provide a fast, scalable, and automated
technique to estimate their parameters.

To this end, the main contributions of this thesis are a set of estimation tech-
niques that, by exploiting different and somehow complementary approaches,
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allow an automated, robust and reliable determination of boundary conditions.
This dissertation will give the following three contributions:

• An optimal control framework for the estimation of resistive
boundary conditions. We propose a computational framework for
the automated estimation of resistance-type outlet boundary conditions.
Optimal control determines unknown parameters by defining a constrained
optimization problem based on the solution of a PDE system, which
minimizes the distance between the model solution and a set of available
pressure/flow rate measurements. This type of approach is what we call
a data and model-driven approach: the choice of boundary conditions
is guided by an effective combination of patient-specific data and the
physical description of the underlying system, by means of PDE. Previous
works have applied optimal control to boundary conditions estimation
in idealized geometries [73], or with measurements coming from a glass
replica of the anatomy of interest [74]. Moreover, the estimated BCs were
either constant pressure or traction conditions [75], thus rather unrealistic
with respect to lumped parameter models. The proposed method, instead,
is tested on fully patient-specific cases, with anatomies reconstructed
from CT images of the aortic arch, flow measurements coming from
4D-Flow MRI, and non-invasive pressure measurements obtained with
the brachial-cuff method.

• A time-domain vector fitting approach for the estimation of
higher order LPN boundary conditions. Despite the advantages of
using lumped 0D models as BCs, very simple circuit structures are used,
such that the number of parameters to estimate is kept to a minimum.
Previous works, however, showed how more complex circuits are able to
model blood flow dynamics more accurately [76]. For this reason, we
propose a novel estimation method based on the time-domain vector
fitting (TDVF) algorithm [77, 78] capable of estimating lumped BCs of
arbitrary complexity in the form of black-box models. Differently from
optimal control, this type of approach is purely data-driven, leading to
a fast and inexpensive estimation. The proposed approach includes a
number of novel contributions. We propose for the first time the use of
black-box higher order boundary conditions, which can be used in place
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of the less accurate Windkessel models, and estimated with TDVF with
a negligible additional computational cost. The aforementioned approach
can be directly used on patient-specific pressure and flow waveforms or,
in absence of data, can be paired to a one-dimensional model of the
entire circulatory system for a fast estimation of boundary conditions on
a reduced order model. Moreover, since TDVF has been previously used
mainly for electrical applications [77–79], this work also reinforces the
analogies between fluid dynamics and electrical circuit theory [79].

• A numerical investigation of the minimum energy principle in
patient-specific anatomies. In view of the limited availability of
patient-specific measurements, BC estimation techniques which do not
require them, and are instead physics and anatomy-based, are particu-
larly attractive. Murray’s law, for example, selects outlet resistances in
bifurcating anatomies by exploiting the minimum energy principle. The
proposed investigation verifies if a minimum energy point also exists in
patient-specific anatomies, and if it is possible to identify it numerically,
exploring the adoption of the minimum energy principle as a possible
criterion for inlet flow estimation.

1.3 Outline

The thesis is organized as follows. In Chapter 2, a general background on cardio-
vascular modeling is provided. In particular, the most common mathematical
models to describe blood flow are reviewed, together with a brief introduction
to their numerical solution via the finite element method. Next, we present
the most common reduced order models for the cardiovascular system, namely,
one-dimensional and zero-dimensional models.

In Chapter 3, the optimal control framework for BC estimation is presented.
After a brief overview of optimal control, and some theoretical background,
the proposed method for the estimation of outlet resistances from 4D-Flow
MRI data is presented. Numerical results are provided for four aortic arches,
documenting the validity of the presented method.
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The time-domain vector fitting framework is instead presented in Chapter 4,
together with a brief overview of the existing techniques for the determination
of Windkessel parameters. Experiments conducted on a 1D model comprising
55 arteries compare TDVF with other common techniques taken from the
literature, and provide a systematic analysis of the benefits that higher order
BCs bring in terms of accuracy.

Moving on to Chapter 5, an investigation on the validity of the minimum
energy principle in patient-specific anatomies is presented. A literature review
on the use of the minimum energy principle in cardiovascular modeling is
followed by a description of the methodological aspects of the technique proposed
to verify numerically the presence of a minimum energy point. Finally, the
experimental assessment is conducted on a set of ideal and patient-specific
anatomies.

The conclusions in Chapter 6 summarize the research contributions provided
in this dissertation for boundary conditions estimation. Furthermore, objectives
for future research are given.



Chapter 2

Background on cardiovascular
modeling

In this chapter a general overview of the mathematical models of the cardiovas-
cular system adopted throughout this thesis is provided. For a more detailed
and extensive treatment of this topic, we refer the Reader to [4, 80, 81]. In
Section 2.1, the most common mathematical models describing blood flow
in the cardiovascular system are presented. Finally, Section 2.2 provides a
short review of the finite element method for the numerical solution of the
aforementioned models, together with some formal definitions of the spaces,
operators, and functionals which will be used throughout this thesis.

2.1 Mathematical models for blood flow dy-
namics

Blood flow dynamics can be described by the mathematical equations used in
fluid dynamics. Blood is a special type of fluid, composed by a water-based part,
named plasma, and some particles (red cells, white cells, and platelets) that are
suspended in it. The presence of these particles gives blood a shear-thinning
property, meaning that its viscosity decreases with the increase of rate of
deformation (or, in simpler terms, the more it stirs, the more it fluidifies). This
effect is non-negligible in smaller vessels, where blood viscosity is dependent on
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the vessel radius, and in the smallest capillaries, where the size of the vessel
becomes comparable to that of a red blood cell [4]. In larger vessels, instead,
shear thinning and viscoelastic effects can be neglected, and a Newtonian model
is adopted. Moreover, blood is assumed to be incompressible, meaning that its
volume or density does not change with pressure.

2.1.1 The Navier-Stokes equations

Blood flow in the cardiovascular system can be described by the Navier-Stokes
equations, a system of partial differential equations. In a domain Ω ⊂ R3,
taking t = 0 as the initial time, for t > 0 the Navier-Stokes equations for an
incompressible fluid read


∂v
∂t

− ν∆v + ∇p+ (v · ∇)v = f in Ω

∇ · v = 0 in Ω,
(2.1)

where v is the velocity, p the pressure, and ν the kinematic viscosity, satisfying
ν = µ

ρ
, where µ is the dynamic viscosity, and ρ the blood density. The term f ,

instead, accounts for the external forces that can act of the fluid, like gravity,
and is usually assumed to be zero in haemodynamic models. In (2.1), the first
equation represents the conservation of linear momentum, while the second is
the continuity equation. The term (v · ∇)v describes the process of convective
transport, while −ν∆v describes the effects of internal friction in the fluid.

For the solution of this system, we need to prescribe an initial condition for
fluid velocity, such as

v(t = 0,x) = v0(x), x ∈ Ω. (2.2)

Generally, an initial velocity equal to zero is assumed, since it is difficult to
conceive an initial condition for the velocity field consistent with (2.1). In
cardiovascular simulations, one is usually interested in the solution of the
Navier-Stokes equations at steady state, since the excitation provided by the
heart is periodic. If the initial condition (2.2) is used, then the solution will
feature an initial transient, which will be discarded when looking at simulation
results.
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In addition, boundary conditions need to be imposed on the boundary ∂Ω
of Ω. Referring to a typical computational domain, as the one represented in
Fig. 1.2 of Chapter 1, we usually need to prescribe a condition at the inlet
boundary Γin, a condition on the walls Γw, and one at the outlets Γout.

The most common types of boundary conditions which are mathematically
compatible with the Navier-Stokes equations are:

• the Dirichlet boundary condition, consisting of a prescribed velocity

v = φ, on ΓD, (2.3)

where φ = φ(x, t) : ΓD × R+ → R3 is a given function, and where
ΓD denotes the boundary on which the Dirichlet condition is imposed.
Usually, this condition is applied at the inlet(s), in the form of a specific
velocity profile, and on the walls, where a velocity equal to zero (no-slip)
condition is prescribed.

• the Neumann boundary condition, equivalent to the applied stress

T · n = ψ, on ΓN (2.4)

where T is the Cauchy stress tensor, defined as T = −pI +µ(∇v + ∇vT ),
where I is the identity tensor. The vector n, instead, represents the
outward normal to the surface. Moreover, ψ = ψ(x, t) is a given function
and ΓN represents the part of the boundary where a Neumann condition
is imposed. This type of condition is sometimes imposed at the outlets,
where it simulates the discharge of blood into a reservoir at constant
pressure.

2.1.2 Stokes equations

Stokes equations are the linearized version of the steady Navier-Stokes equations,
and are obtained by assuming that the inertial forces are negligible with respect
to the viscous forces, and by removing the term representing the derivative
of velocity in time. In this way, the nonlinear inertial term in the momentum
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balance equation of system (2.1) can be eliminated, obtaining−ν∆v + ∇p = f in Ω
∇ · v = 0 in Ω.

(2.5)

Stokes equations provide a simplified description of blood flow with respect to
the Navier-Stokes equations. On one side, the Stokes problem is easier to solve
than the Navier-Stokes one, but it provides a less accurate representation of
the cardiovascular system, as flow results to be laminar.

2.2 Numerical solution via the Finite Element
Method (FEM)

The mathematical models just introduced to describe blood flow in the car-
diovascular system, which are characterized either by the Stokes or by the
Navier-Stokes equations, cannot be solved analytically, except for some trivial
cases. It is necessary, then, to resort to numerical techniques for their solution.

One of the most common techniques for the numerical solution of partial
differential equations is the Finite Element Method (FEM), which is based on
the subdivision of the computational domain Ω into small elements, which
constitute the so called computational mesh. Before presenting the finite
element method, some preliminary definitions must be introduced in order to
provide a precise theoretical framework in support of our developments. This
material is standard, and can be found in textbooks such as [4, 80–82]. The
experienced Reader can skip this section without loss of continuity.

2.2.1 Preliminary definitions

Banach spaces Let X be a linear space over the scalar field R. A norm in
X is a real function

|| · || : X → R (2.6)

such that, for each scalar λ and for every x, y ∈ X, the following properties
hold:
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• positivity: ||x|| ≥ 0; ||x|| = 0 if and only if x = 0;

• homogeneity: ||λx|| = |λ| · ||x||;

• triangular inequality: ||x+ y|| ≤ ||x|| + ||y||.

A normed space is a linear space X endowed with a norm || · ||. A norm induces
a distance given by d(x, y) = ||x − y||, which makes X a metric space. A
normed space which is complete with respect to this induced distance is called
a Banach space [82].

Functionals, dual spaces and bilinear forms If X is a normed space, a
linear operator L : X → R is called a (linear) functional [4].

The space L(X,R) of linear and bounded (or continuous) functionals over
X is a Banach space, called dual space of X, and is denoted by X∗. This space
is endowed with the norm

||L||X∗ = sup
||x||X=1

|Lx| ∀L ∈ X∗ (2.7)

To denote the action of an element L ∈ X∗ on v ∈ X we adopt the notation
⟨L, v⟩X∗,X . This is called duality pairing.

An application
a : X ×X → R, (2.8)

that maps two elements of X to a real number is called a form. It is a
bilinear form if it is linear with respect to each argument, taken singularly [4].
Equivalently

a(λx+ µy, z) = λa(x, z) + µa(y, z), ∀λ, µ ∈ R,∀x, y, z ∈ X (2.9)
a(x, λy + µz) = µa(x, z) + λa(x, y), ∀λ, µ ∈ R,∀x, y, z ∈ X. (2.10)

Dual operators Let X, Y be Banach spaces. For an operator T ∈ L(X, Y )
we can define the dual or adjoint operator T ∗ ∈ L(Y∗,X ∗) by the relation

⟨T ∗L, x⟩X∗,X = ⟨L, Tx⟩Y ∗,Y (2.11)

for all L ∈ Y ∗, x ∈ X. It holds that ||T ∗||L(Y ∗,X∗) = ||T ||L(X,Y ) [82].
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Hilbert spaces Let X be a linear space over R. An inner or scalar product
in X is a function

⟨·, ·⟩ : X ×X → R (2.12)

with the following properties. For every x, y, z ∈ X and every scalar λ, µ ∈ R:

• positivity: ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0;

• symmetry: ⟨x, y⟩ = ⟨y, x⟩;

• bilinearity: ⟨λx+ µy, z⟩ = λ⟨x, z⟩ + µ⟨y, z⟩.

A linear space endowed with an inner product is called an inner product space.
An inner product induces a norm, given by

||x|| =
√

⟨x, x⟩. (2.13)

Let H be an inner product space. We say that H is a Hilbert space if it is
complete with respect to the norm (2.13), induced by the inner product [82].

Support of a function The support of a function f is defined as the closure
of the subset of Ω where f ̸= 0. A function has compact support in Ω if its
support is contained in a closed and bounded subset of Ω. So, if f has compact
support in Ω, it means it is zero on the boundary of Ω [4].

Sobolev spaces The space L2(Ω) is the space of square integrable functions,
meaning

L2(Ω) = {v : Ω → R,
∫

Ω
v2dΩ < +∞}. (2.14)

This space is a Hilbert space with scalar product ⟨u, v⟩L2(Ω) =
∫

Ω uvdΩ and
norm ||v||L2(Ω) =

√∫
Ω uvdΩ.

The space Hs(Ω) is defined as the space of functions of L2(Ω) such that all
derivatives of order up to s (partial derivatives if Ω is multidimensional) belong
to L2(Ω) as well [4]. For example, in the case Ω ⊂ R

H1(Ω) = {v ∈ L2(Ω) : dv

dx
∈ L2(Ω)}. (2.15)
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The derivative in this definition is the so called weak derivative (or distributional
derivative) [83]. In this case dv/dx ∈ L2(Ω) means that there exists a g ∈ L2(Ω)
such that, for all functions w ∈ C∞(Ω) with compact support in Ω, the following
equality holds

−
∫

Ω
gwdΩ =

∫
Ω
v
dw

dx
dΩ. (2.16)

This definition of derivative extends the concept of derivative to non-differentiable
functions in the classical sense.

The Sobolev space Hs(Ω), with s a positive integer and Ω ⊂ Rd, is a Hilbert
space when endowed with the scalar product

⟨u, v⟩Hs(Ω) =
∑

|α|≤s

∫
Ω

∂|α|u

∂xα1 ...∂xαd

∂|α|v

∂xα1 ...∂xαd
dΩ (2.17)

and the norm

||u||Hs(Ω) =
 ∑

|α|≤s

∫
Ω

(
∂|α|u

∂xα1 ...∂xαd

)2

dΩ
1/2

, (2.18)

where α = [α1, ..., αd] is a multi-index of non negative integers and |α| =
α1 + ... + αd [4].

Another important definition for the development of the finite element
method is that of trace. If Ω is sufficiently regular (for example having a C1

boundary) there exists a linear and continuous application

γ0 : Hs(Ω) → L2(∂Ω), (2.19)

such that γ0v = v|∂Ω,∀v ∈ Hs(Ω) ∩ C0(Ω̄). The application γ0v is called trace
of v on ∂Ω.

The space H1
0 (Ω) The space H1

0 (Ω) can be defined as the space of functions
in H1(Ω) with null trace on ∂Ω [4]

H1
0 (Ω) = {v ∈ H1(Ω) : γ0v = 0}. (2.20)
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We can also define H1
Γ(Ω) as the space of function with null trace on Γ ⊂ ∂Ω,

H1
Γ(Ω) = {v ∈ H1(Ω) : γΓv = 0}. (2.21)

2.2.2 The weak formulation of Navier-Stokes equations

The first step for the solution of Navier-Stokes (or Stokes) equations via the
finite element method is to derive their weak formulation. This operation
consists in multiplying each term in (2.1) by a test function w belonging to a
suitable space W , and then integrating over the domain Ω. Let us start from
the first equation
∫

Ω

∂v
∂t

· wdΩ −
∫

Ω
ν∆v · wdΩ +

∫
Ω
[(v · ∇)v] · wdΩ +

∫
Ω

∇p · wdΩ =
∫

Ω
f · wdΩ,

(2.22)
which, by applying Green’s formula becomes
∫

Ω

∂v
∂t

· wdΩ −
∫

Ω
ν∇v · ∇wdΩ +

∫
Ω
[(v · ∇)v] · wdΩ −

∫
Ω
p∇ · wdΩ

=
∫

Ω
f · wdΩ +

∫
∂Ω

(
ν
∂v
∂n

− pn
)

· wdγ, ∀w ∈ W.
(2.23)

The same operation can be done on the second equation of (2.1), which is
multiplied by a test function q belonging to a suitable space Q, obtaining∫

Ω
q∇ · vdΩ = 0 ∀q ∈ Q. (2.24)

The space W is chosen so that the test functions vanish on ΓD, the part of the
boundary where a Dirichlet condition has been prescribed on v, obtaining

W = [H1
ΓD

(Ω)]3 = {w ∈ [H1(Ω)]3 : w|ΓD
= 0} (2.25)

If a Dirichlet condition is prescribed on the entire boundary (i.e ΓD = ∂Ω),
then this space will coincide with [H1

0 (Ω)]d, where d is the dimension of the
domain. Regarding the space Q, instead, we will choose Q = L2(Ω) in presence
of Neumann boundary conditions (if ΓN ≠ ∅). If only Dirichlet conditions have
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been imposed (ΓN = ∅), instead, we will choose

Q = L2
0(Ω) = {p ∈ L2(Ω) :

∫
Ω
p dΩ = 0}. (2.26)

This condition, which corresponds to imposing that the pressure has null
average, is necessary when only BCs of Dirichlet type have been imposed. In
this case, in fact, the pressure in (2.1) appears only in terms of its gradient.
This means that a solution for p is determined up to a constant c, so if p is a
solution to (2.1), p+ c will be a solution too. By imposing that pressure has
null average, such indeterminacy is avoided. The weak formulation of (2.1)
then reads:
find v ∈ L2(R+; [H1(Ω)]d), p ∈ L2(R+,Ω) such that


∫
Ω

∂v
∂t

· wdΩ + ν
∫

Ω
∇v · ∇wdΩ +

∫
Ω
[(v · ∇)v] · wdΩ −

∫
Ω
p∇ · wdΩ

=
∫

Ω
f · wdΩ +

∫
ΓN

ψ · wdγ ∀w ∈ W,∫
Ω
q∇ · vdΩ = 0, ∀q ∈ Q.

(2.27)

2.2.3 The Finite Element discretization

As already mentioned earlier, the numerical solution of Navier-Stokes equations
is based on a subdivision of the domain into a grid, the computational mesh.
The solution (v, p) is substituted by an approximation (vh, ph), where the
subscript h represents the mesh resolution.

Let us consider a finite element partition Th of the domain Ω, from which
we construct the finite element spaces Wh ⊂ W and Qh ⊂ Q. Let us now
briefly introduce the finite element spaces used for approximating pressure and
velocity [84]. Considering the tetrahedral triangulation Th of the domain Ω ∈ R3,
different kinds of basis functions can be adopted. A common choice consists in
using the finite element space P1,h(Th), which consists of functions that are linear
polynomials inside each tetrahedral element K. Thus, in a x, y, z space, they
are functions of the form a0 + a1x+ a2y+ a3z for constants ai, i = 0, .., 3. Such
functions are uniquely determined by the value they assume at the four vertices
of a tetrahedral element, corresponding to the orange triangles in the right
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panel of Fig. 2.1. Another common finite element space is the P2,h(Th), which
consists of quadratic polynomials inside each tetrahedron. This translates into
functions of the form b0 +b1x+b2y+b3z+b4x

2 +b5y
2 +b6z

2 +b7xy+b8yz+b9zx,
for constants bi, i = 0, .., 9. In this case, the functions are determined by their
values at the four vertices and the six midpoints of the edges, corresponding to
the green dots in the right panel of Fig. 2.1. When it comes to the Stokes and
the Navier-Stokes equations, a popular approach consists in choosing the linear
space P1,h(Th) for approximating the pressure, and the quadratic space P2,h(Th)
for approximating the velocity. This choice ensures ”balanced” approximation
properties, namely, O(h2) for Vh in the V -norm and for Qh in the Q-norm [85].
This pair of elements (P2-P1) used for discretizing pressure and velocity in
the Stokes and Navier-Stokes equations is better known as the Taylor-Hood
element [86], and it is represented on the right panel of Fig. 2.1.

Velocity

Pressure

Fig. 2.1 Left: example of a tetrahedral mesh on a three-dimensional model. Right:
Taylor-Hood (P2-P1) element pair used for the discretization of Navier-Stokes equa-
tions.

To guarantee the well-posedness of the discrete version of (2.27), both
velocity and pressure spaces Wh and Qh need to obey the inf-sup condition,
given in Brezzi’s theorem [87]:

inf
qh∈Qh

sup
wh∈Wh

⟨qh,∇ · wh⟩
||wh||W ||qh||Q

≥ β > 0. (2.28)
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The semi-discrete formulation of the Navier-Stokes equations then reads:
find vh ∈ Wh, ph ∈ Qh such that:

d

dt
⟨vh,wh⟩ + ν⟨∇vh,∇wh⟩ + ⟨(vh · ∇)vh,wh⟩ − ⟨ph,∇ · wh⟩

= ⟨f ,wh⟩, ∀wh ∈ Wh

⟨qh,∇ · vh⟩ = 0, ∀qh ∈ Qh.

(2.29)

Since both vh,wh and ph, qh belong to the same spaces Wh and Qh, respectively,
this discretization technique is denoted as Galerkin method [88].

2.2.4 The algebraic system

The system of discrete equations (2.29) can be rewritten in a more compact
form by introducing the notation

ah(ϕ, ψ) =
∑

K∈Th

ν⟨∇ϕ,∇ψ⟩K (2.30)

nh(ϕ, ψ, ξ) =
∑

K∈Th

⟨ϕ · ∇ψ, ξ⟩K (2.31)

bh(χ, ϕ) = −
∑

K∈Th

⟨χ,∇ · ϕ⟩K , (2.32)

where the discrete forms ah(·, ·), bh(·, ·), and nh(·, ·, ·) have been defined in the
piecewise sense, and where K indicates an element of the mesh Th. In this way
system (2.29) can be rewritten as

d
dt

⟨vh,wh⟩ + ah(vh,wh) + nh(vh,vh,wh) + bh(ph,wh) = ⟨f ,wh⟩,∀wh ∈ Wh

bh(qh,vh) = 0, ∀qh ∈ Qh.

(2.33)

In order to be solved, this discrete problem needs to be converted into an
algebraic system. For this reason, we need to introduce appropriate local nodal
bases {ϕi

h = i = 1, ..., Nv} of space Wh, and {χi
h, i = 1, ..., Np} of space Qh. We

can now expand the solution (vh, ph), still unknown, in the form

vh =
Nv∑
i=1

xiϕ
i
h, ph =

Np∑
j=1

xiχ
i
h, (2.34)
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where Nv and Np are the numbers of velocity and pressure basis functions,
respectively. The basis functions are defined on each element of the mesh. We
can now introduce the following matrices:

M =
(

⟨ϕi
h, ϕ

i
h⟩
)Nv

i,j=1
(2.35)

A =
(
ah(ϕi

h, ϕ
j
h)
)Nv

i,j=1
, (2.36)

B =
(
bh(χi

h, ϕ
j
h)
)Np,Nv

i,j=1
, (2.37)

N(x) =
(
nh(

Nv∑
k=1

xkϕ
k
h, ϕ

i
h, ϕ

i
h)
)Nv

i,j=1
(2.38)

b =
(

⟨f, ϕj
h⟩
)Nv

j=1
. (2.39)

Matrix M is called the mass matrix, while matrix A is called the stiffness
matrix, B the gradient matrix, while N is the nonlinear transport matrix and
b the load vector. Thanks to this notation, the semi-discrete system (2.33) can
be rewritten as an algebraic system for the vectors k ∈ RNv and y ∈ RNp of
expansion coefficients:

Mk̇ + Ak + N(k)k + By = b, (2.40)
−BT k = 0. (2.41)

2.3 Reduced models of the cardiovascular sys-
tem

Although Navier-Stokes equations provide an accurate description of blood flow
in vessels, it is computationally unfeasible to simulate the entire cardiovascular
systems using such 3D model. For this reason, it is convenient to use simplified
models of the cardiovascular system, which provide an estimate of v and p at
a reduced computational cost. In particular, in this thesis we will adopt two
types of reduced models:
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Fig. 2.2 Model of the compliant vessel used in Section 2.3.

• one-dimensional (1D) models, in which the space dependence is limited
to the axial coordinate;

• lumped parameter (0D) models, where the space dependence is discretized,
and the corresponding mathematical model is based on ordinary differen-
tial equations, which are often represented as lumped parameter electrical
networks.

2.3.1 One-dimensional models

The governing equations describing blood flow in a one-dimensional model of
a compliant vessel can be obtained in different ways. One approach consists
in performing an asymptotic analysis starting from the incompressible Navier-
Stokes equations, by assuming that the radius of the vessel is small compared
to its length [89]. Another approach assumes that the vessel is cylindrical,
and integrates the Navier-Stokes equations on a generic cross section [90]. In
this section, instead, we derive the 1D Navier-Stokes equations starting from
conservation principles, as described in [4, 91]. This approach is generally
preferred because it does not make any assumptions on the geometry of the
vessel section. We start by representing a generic artery by means of a simple
compliant tube, as represented in Fig. 2.2. We denote as Ω the volume of the
tube, and as ∂Ω its boundary, with outer normal n. Moreover, S is a general
cross section, with area A = A(x, t) =

∫
S
dσ. The 1D governing equations,
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which will be derived later in this Section, take the form [92]

∂A

∂t
+ ∂Av

∂x
= 0, (2.42)

∂v

∂t
+ (2α− 1)v ∂v

∂x
+ (α− 1)v2∂A

∂x
+ 1
ρ

∂p

∂x
+KR

v

A
= 0, (2.43)

where α represents the Coriolis coefficient, and KR the viscous resistance of
the flow per unit length.

This system has three unknowns, namely, p,A, v, but only two equations.
This means that an additional equation is needed to close the system. In
particular, we use an explicit algebraic relationship between p and A, called
tube law, to account for the fluid-structure interaction of the problem. In
1D modelling, the arterial wall is usually assumed to be thin, homogeneous,
isotropic and incompressible, and to deform axisymmetrically with each circular
cross section independent of the others [92]. This type of behavior can be
represented by visco-elastic laws, like [92, 93]

p = pe(A, x) + Γ(x)
A0(x)

√
A

∂A

∂t
, (2.44)

with

pe(A, x) = pext + β(x)
A0(x)

(√
A−

√
A0(x)

)
, (2.45)

β(x) = 4
3

√
πE(x)h(x), (2.46)

Γ(x) = 2
3

√
πφ(x)h(x) (2.47)

where pe(A, x) is the elastic component of pressure, h(x) is the wall thickness,
E(x) is the Young’s modulus, φ(x) is the wall viscosity, and A0(x) is the
reference area, computed when p = pext and ∂A

∂t
= 0.

In the following section, we will provide the formal derivation of (2.42) from
conservation principles, as done in [4].
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Derivation of the 1D governing equations

The first step consists in obtaining a one-dimensional form for the Reynolds’
transport theorem [94], which for the volume Ω of Fig. 2.2 reads

d

dt

∫
Ω
fdΩ =

∫
Ω

∂f

∂t
dΩ +

∫
∂Ω
fvb · ndσ, (2.48)

where f = f(x, t) is a continuous function, with x = (x, y, z), and vb is the
velocity at the boundary ∂Ω. A step-by-step derivation of the 1D version
of (2.48) along the x direction can be found in [4]. We report here the final
result, which reads

∂

∂t
(Af̄) + ∂

∂x
[A(fv1)] =

∫
S

[
∂f

∂t
+ ∇ · (fv)

]
dσ +

∫
∂S
fw · ndγ, (2.49)

where the term v1 indicates the x-component of the velocity v. where the
overbar notation in this section indicates an area-averaged quantity. For
example, f̄ indicates the area-averaged value of f

f̄ = 1
A

∫
S
fdσ. (2.50)

Moreover, w indicates the relative velocity between the arterial wall vw and
the fluid inside the lumen v

w = vw − v. (2.51)

From this general formula, it is possible to obtain the 1D Navier-Stokes
equations by deriving the principles of conservation of mass and balance of
momentum from (2.49). The conservation of mass is obtained by imposing
f = 1 in (2.49). Assuming that the fluid is incompressible, i.e. ∇ · v = 0, we
obtain

∂A

∂t
+ ∂

∂x
(Av̄1) =

∫
∂S

w · n dγ. (2.52)

The balance of momentum, instead, is obtained by taking f = v1 in (2.49)
and again assuming that the fluid is incompressible, which gives

∂

∂t
(Av̄1) + ∂

∂x
[A(u2

1)] =
∫

S

[
∂v1

∂t
+ v · ∇v1

]
dσ +

∫
∂S
v1 w · n dγ. (2.53)
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Equation (2.53) can be rewritten as

∂

∂t
(Av̄1) + ∂

∂x
[A(u2

1)] =
∫

S

Dv1

Dt
σ +

∫
∂S
v1 w · n dγ, (2.54)

by denoting with D
Dt

= ∂
∂t

+v ·∇ the material derivative, which is defined as the
time rate of change of some physical quantity for a portion of a material with a
velocity v. The first term on the right-hand side of (2.54) can be rewritten by
using the balance of momentum for a three dimensional volume Ω for a fluid
with constant density ρ, which reads

∫
Ω

Dv
Dt

dΩ =
∫

Ω
f b dΩ + 1

ρ

∫
∂Ω

∇ · T dΩ, (2.55)

where T is the Cauchy stress tensor, and f b is the body force per unit volume.
Knowing that the tensor T can be written as T = −pI + D thanks to the
constitutive equation of the fluid, we can write

∇ · T = −∇p+ ∇ · D = −∇p+ d, (2.56)

where ∇ · D = d. Equation (2.55) then becomes

∫ x2

x1

(∫
S

Dv
Dt

dσ

)
dx =

∫ x2

x1

(∫
S

[
f b + 1

ρ
(−∇p+ d)

]
dσ

)
dx. (2.57)

By equating the arguments of the two integrals for the x-component we obtain

∫
S

Dv1

Dt
dσ =

∫
S

[
f b

1 + 1
ρ

(−∂p

∂x
+ d1)

]
dσ, (2.58)

which we can now substitute in (2.54), obtaining

∂

∂t
(Av̄1) + ∂

∂x
(Au2

1) =
∫

S

[
f b

1 + 1
ρ

(−∂p

∂x
+ d1)

]
dσ +

∫
∂S
v1w · ndσ. (2.59)

The integral in the first term on the right-hand side is eliminated by using
area-averaged values

∂

∂t
(Av̄1) + ∂

∂x
(Au2

1) = A

ρ

(
ρf̄ b

1 − ∂p̄

∂x
+ d̄1

)
+
∫

∂S
v1w · ndσ. (2.60)
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The final form of the balance of momentum equation in 1D takes the form

∂

∂t
(Aū1) + ∂

∂x
(αū2

1) = Sf̄ b
1 − A

ρ

(
∂p̄

∂x

)
−KRū1 +

∫
∂S
v1w · ndσ, (2.61)

where the Coriolis coefficient α and the viscous resistance of the flow per unit
length KR have been introduced.

Equations (2.52) and (2.61) together form the system of equations describing
blood flow dynamics in a one-dimensional domain. However, a number of
assumptions allow to further simplify their form. In particular, we can assume
that the vessel walls are impermeable (w · n = 0), and that body forces are
equal to zero (f̄ b

1 = 0). Moreover, we denote velocity with v instead of v̄1, and
pressure with p instead of p̄, obtaining

∂A

∂t
+ ∂Av

∂x
= 0,

∂v

∂t
+ (2α− 1)v ∂v

∂x
+ (α− 1)v2∂A

∂x
+ 1
ρ

∂p

∂x
+KR

v

A
= 0.

(2.62)

This concludes the derivations for the 1D Navier-Stokes equations in com-
pliant vessels. The system is usually reformulated in terms of the characteristic
variables, which allow to define proper conditions at the proximal and distal
boundaries of the segments, as well as at the junctions and bifurcations [4, 92].
The 1D governing equations thus obtained can be solved numerically with
different methods, the most popular being the Taylor-Galerkin scheme [95] and
the discontinuous Galerkin scheme [96]. For more details on the use of these
methods for 1D Navier-Stokes equations, we refer to [4, 92].

2.3.2 Zero-dimensional models

Zero-dimensional models can be derived from one-dimensional models obtained
in the previous section by means of an averaging procedure. We will consider
again the single artery of Fig. 2.2, with volume Ω and length l = |x2 − x1|. We
can define the mean flow rate over the entire artery as

Q̂ = ρ

l

∫ x2

x1

(∫
S(x)

vxdσ

)
dx = ρ

l

∫ x2

x1
Q(x)dx. (2.63)
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In the same way, we can define the mean pressure over the artery as

p̂ = 1
l

∫ x2

x1
pdx, (2.64)

and the mean area as
Â = 1

l

∫ x2

x1
Adx. (2.65)

We first rewrite equations in (2.62) in terms of A,Q, p, which will be more
convenient for the following derivations:

∂A

∂t
+ ∂Q

∂x
= 0,

∂Q

∂t
+ ∂

∂x

(
α
Q2

A

)
+ A

ρ

∂p

∂x
+KR

Q

A
= 0.

(2.66)

We can now integrate the first equation in (2.66), the continuity equation, along
x, obtaining

l
dÂ

dt
+Q2(t)−Q1(t) = 0, with Q1(t) = Q(x1, t), Q2(t) = Q(x2, t). (2.67)

We then do the same for the second equation (2.66), the momentum equation,
by assuming that the convective term ∂x(αQ2/A) can be neglected, and that
the area A can be assumed constant and equal to A0

ρl

A0

dQ̂

dt
+ρKRl

A2
0
Q̂+P2(t)−P1(t) = 0, with P1(t) = P (x1, t), P2(t) = P (x2, t).

(2.68)

We close the system by integrating the tube law in (2.45) along the x-
direction and neglecting the viscous components, which gives

dÂ

dt
= k1

dp̂

dt
, (2.69)
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where k1 =
√

A0
β

. By substituting (2.69) in (2.67) we obtain the system of
equations representing blood flow in a lumped parameter model of a vessel

k1l
dp̂

dt
+Q2 −Q1 = 0, (2.70)

ρl

A0

dQ̂

dt
+ ρKRl

A2
0
Q̂+ P2 − P1 = 0. (2.71)

These kinds of equations are well known in circuit theory, where they are used
to describe the behavior of a segment of a transmission line in analog electrical
circuits. Indeed, the analogy between electric and hydraulic networks has been
known and exploited for a long time, as the first simulations of blood flow in
the cardiovascular system were based on electrical circuits [37]. In this analogy,
flow rate is assimilated to the current, while pressure to the voltage. Moreover,
the electric resistance R corresponds to blood viscosity, the inductance L to
blood inertia, and the capacitance C to wall compliance.

By defining the resistance R = ρKRl
A2

0
, the inductance L = ρl

A0
, and the

capacitance C = k1l, the system (2.70) can be rewritten as

C
dp̂

dt
+Q2 −Q1 = 0, (2.72)

L
dQ̂

dt
+RQ̂+ P2 − P1 = 0 (2.73)

If we suppose, for example, that Q1 and P2 are given, we can approximate the
unknowns at the other ”boundaries” with the state variables,

p̂ ≈ P1, Q̂ ≈ Q2, (2.74)

obtaining the following system for the blood flow in a short pipe

C
dP1

dt
+Q2 = Q1,

L
dQ2

dt
+RQ2 − P1 = P2.

(2.75)

This system corresponds to the electrical circuit represented in Fig. 2.3 [4].
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Fig. 2.3 Electrical network equivalent to a short arterial segment, represented by
equations (2.75).
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Fig. 2.4 Three-element Windkessel model commonly used as outlet boundary condi-
tion.

The three-element Windkessel model

Lumped parameter models are often adopted as terminal boundary conditions
for both 3D and 1D vascular models. In particular, we introduce the most
used lumped boundary condition, namely, the three element Windkessel model,
represented in Fig. 2.4. The three-element Windkessel model was first intro-
duced by Westerhof et al. [37]. It includes a capacitor C, to model the storage
properties of arteries, the resistor R1, representing the proximal resistance of
the arterial network, and the resistor R2, to model the resistance of the distal
circulation. In particular, considering the lumped model of an arterial segment
represented in Fig. 2.3, the three-element Windkessel model does not take into
account the arterial inertance, modeled with the inductance L. The latter, in
fact, can be neglected on a first approximation.

In the Windkessel model, the pressure P is related to the flow rate Q by
means of the differential equation

Q
(

1 + R1

R2

)
+ CR1

dQ

dt
= P

R2
+ C

dP

dt
, (2.76)
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which can be easily derived from the equivalent circuit of Fig. 2.4. This type of
boundary condition will be adopted both in Chapter 3 and in Chapter 4.



Chapter 3

An optimal control approach for
resistive boundary conditions
estimation

In this chapter, we will present a boundary condition estimation framework
based on optimal control. This technique is what we call a data and model-driven
approach, because the estimation is based on patient-specific measurements, as
well as on a mathematical representation of the system underneath, obtained
by means of PDE. The estimation framework proposed in this chapter allows
to determine the values of resistive-type boundary conditions starting from
pressure and flow rate measurements, and using a steady Stokes model to
represent the blood flow dynamics. This is achieved by solving a so-called
Optimal Control Problem (OCP). The optimal control framework is a powerful
and elegant mathematical tool which has been employed in a wide variety
of fields, from environmental sciences [97], to haemodynamics [98–101] and
industrial applications [102–104]. Due to its generality and mathematical
soundness, optimal control has been successfully used to tackle a number of
different engineering problems, such as shape optimization [105, 101], data
assimilation [106, 107] and parameter estimation [108, 109], where the OCP is
used to identify some unknown parameters by relying on a set of measurements.
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3.1 Introduction and related work

As explained in the introduction of this thesis, when dealing with compu-
tational models of the cardiovascular system, boundary conditions play an
important role in the accuracy of the model, and several studies have shown
how boundary conditions affect clinically relevant parameters, such as wall
shear stress (WSS)[110–112]. The selection of proper boundary conditions
benefits from the availability of patient-specific measurements, as BCs can
be properly tuned to match available clinical data. For what concerns outlet
boundary conditions, we have seen how the most realistic choice consists in
using zero-dimensional models, also known as lumped parameter models. These
conditions prescribe at the outlet specific pressure-flow relationships which,
by exploiting the analogy between the electrical and hydraulic domains, can
be represented as electrical networks [113–117]. Lumped models may consist
of single resistances or more sophisticated models, such as the three-element
Windkessel model [118] introduced in Chapter 2. Using this type of conditions,
however, requires to choose appropriate values for the lumped elements.

In this chapter, we propose a novel framework to automatically estimate
resistive-type outlet boundary conditions by solving an optimal control problem,
which assimilates a set of patient-specific measurements, e.g., 4D-Flow MRI
data. This is obtained by minimizing a cost functional which computes the
distance between the OCP solution and measurements, subject to the constraints
induced by the steady Stokes equations. The control variables are the unknown
resistance values imposed at the outlets through the coupled multidomain
method introduced by Vignon-Clementel et al.[44]. To ensure a better match
between simulation results and in-vivo data, the inlet flow waveform measured
with 4D-Flow MRI is imposed as a patient-specific inlet boundary condition.
The proposed framework is general and can be applied to any part of the
cardiovascular system, provided that some measurements are available. In this
chapter, however, we demonstrate its use on patient-specific models of the
aortic arch like the one represented in Fig. 3.1, where the boundary conditions
have to be imposed at the inlet Γin and at the four outlets comprising the
descending aorta (DAo) and the supra-aortic branches: brachiocephalic artery
(BCA), left common carotid artery (LCC), and left subclavian artery (LSUB).
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Fig. 3.1 General configuration for the proposed optimal control approach on a
patient’s aortic arch. Haemodynamics is simulated by prescribing the measured
inlet flow rate and the optimized resistive-like boundary conditions at the outlets,
being the outlets the brachiocephalic artery, the left common carotid artery, the
left subclavian artery, and the descending aorta. These BCs are calculated using
pressure and flow rate measurements at several locations.

Optimal control has been already successfully applied to several haemo-
dynamics problems, from the shape optimization of aorto-coronaric bypass
anastomoses [101], to vorticity minimization problems [119]. For boundary con-
ditions estimation, an optimal control-based solution was proposed in [73], based
on the assimilation of velocity measurements. The framework was validated on
an idealized 2D geometry and tested on a 3D model of a brain aneurysm, but
with the assimilated velocity data still synthetically generated. In [74], Koltuk-
luouglu et al. proposed a data assimilation method based on optimal boundary
control for 3D steady-state blood flow simulations. The authors validated the
proposed framework with real 4D-flow MRI data measured on a glass replica of
a human aorta. However, optimal control requires the solution of a constrained
optimization problem, which is usually a computationally demanding task.
To reduce the computational cost of optimal control, Romarowski et al. [69]
proposed to estimate the parameters of three-element Windkessel models by
means of a least-squares approach, by identifying a surrogate optimization
problem for prescribing PC-MRI data as outlet boundary conditions. Optimal
control has been also used in [120] to estimate the uncertainty coming from the
segmentation process, which affects the definition of the geometry and, in turn,
wall shear stress and its derived measures. Finally, Zainib et al. [100] brought
optimal control closer to a real clinical setting, by presenting a reduced order
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framework for the application of optimal control to coronary artery bypass
grafts. In this case, the assimilated velocity data were synthetically gener-
ated, and the estimated boundary conditions were Neumann-type boundary
conditions, so less realistic than lumped parameter models.

One of the novel aspects of the approach proposed in this chapter is the use
of more realistic boundary conditions with respect to Neumann and Dirichlet
BCs, up to now the standard in an optimal control setting. Its suitability for
real clinical scenarios is demonstrated by validating the framework on four aortic
arches, reconstructed from medical images of real clinical cases. The presented
method is used in these cases to set the outlet BCs on the descending aorta and
the supra-aortic branches, assimilating real 4D-Flow MRI data. To validate
the obtained results, the estimated boundary conditions are compared to those
provided by two alternative techniques, namely, Murray’s law and Ohm’s law,
demonstrating the ability of optimal control to assimilate known physiological
data consistently better. Moreover, an analysis of time-averaged wall shear
stress and oscillatory shear index values obtained using the three different
calibration methods is used to assess their effect on clinical haemodynamic
indicators.

The rest of the chapter is organized as follows. First, a more general and
theoretical introduction to the topic of optimal control is provided in Section 3.2,
including a brief review of the most common approaches for the treatment,
numerical approximation, and solution of optimal control problems. Then, in
Section 3.3 a description of the adopted methodology for the proposed optimal
control framework is provided, followed by some relevant numerical results
in Section 3.4. Finally, Section 3.5 presents a discussion of the results, and
Section 3.6 provides some conclusions and future perspectives.

3.2 Theoretical background on optimal con-
trol

It is common in engineering and applied sciences to model problems by means of
a set of equations, usually PDE, dependent on some parameters, which could be
material coefficients, geometrical or physical quantities, or boundary conditions.
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Often, the problem described by PDE needs to be optimized or controlled
in some way by changing these parameters. This typical scenario turns out
to be a challenging mathematical task, which can be solved by means of an
optimal control problem. Solving an OCP means finding a control function
and a state function optimizing a quantity, called cost or objective function,
which is dependent both on the control and on the state function. For this
reason, an OCP is defined by the presence of three main ingredients:

• a state problem, in our case consisting of a system of PDE;

• a cost functional, which has to be minimized through the optimization
process, and which sets the goal of the optimization problem;

• some control variables, which must be chosen in order to minimize the
cost functional.

In synthesis, solving an OCP means finding the optimal pair of state and
control variables minimizing the cost functional.

Let us define a generic optimal control problem, where y denotes the state
variables, u the control variable, J(y, u) the cost functional and F (y, u) the
state problem. The optimization problem then reads

Problem 3.2.1 Find states y and controls u such that J(y, u) is minimized
subject to F (y, u)=0.

Such a problem can be approached in two ways. The first approach is
called "à la J.L. Lions", as it is based on the theoretical development of PDE-
constrained optimal control proposed by J.L. Lions, which proved the existence
and uniqueness of the solution of optimal control problems governed by elliptic,
parabolic and hyperbolic PDEs [121, 122]. A second, more intuitive approach
is instead the Lagrangian approach which, as the name suggests, is based on
the use of a Lagrangian functional to make the definition of the optimality
system straightforward. The general optimal control problem introduced in
Problem 3.2.1, in fact, can be seen as a constrained optimization problem.
Thanks to the definition of a Lagrangian functional, this can be recast as an
unconstrained one, easier to treat. In this chapter we will present and adopt
the Lagrangian approach; more information on the first approach can be found
in [80].
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3.2.1 The adjoint-based Lagrangian approach

Before introducing the Lagrangian approach for the treatment of OCPs, it is
necessary to discuss the existence of the solution for a general nonlinear optimal
control problem.

Existence results Let us consider three Banach spaces Y, U, Z and let us
define the general optimal control problem as

min
(y,u)∈Y ×U

J(y, u) subject to F (y, u) = 0, y ∈ Yad, u ∈ Uad. (3.1)

where the functional J : Y × U → R and the state equation F : Y × U → Z

are continuous. The subsets Uad ⊆ U and Yad ⊆ Y are the control space and
state space, respectively, and if Yad = Y and Uad = U the problem is said to
be unconstrained. To prove the existence of a solution for the optimal control
problem (3.1), we need to make the following assumptions, which will be valid
also in our specific case, presented later in Section 3.3:

1. Yad is convex and closed, such that (3.1) has a feasible point;

2. Uad is convex, bounded and closed;

3. F : Y × U → Z is continuous under weak convergence;

4. J is weakly lower semicontinuous1;

5. the state equation F (y, u) = 0 has a bounded solution operator u ∈
Uad → y(u) ∈ Y .

Under these hypotheses, the following theorem holds [123] (see Section 1.5.2
of [123] for proof):

Theorem 3.2.1 Under assumptions (1)-(5), the optimal control problem (3.1)
has an optimal solution (ȳ, ū).

1A functional J : X → R is weakly lower semicontinuous in X if for all x ∈ X and every
sequence xn → x which converges weakly to x ∈ X, we have

lim
x→0

inf J(xn) ≥ J(x). (3.2)
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Now that the existence of a solution is guaranteed, we can proceed with the
solution of the OCP. The first step consists in deriving a formulation of the
OCP equivalent to (3.1), but using a reduced space approach.

The reduced problem We consider three Banach spaces Y, U, Z and a
generic constrained OCP

min
(y,u)∈Y ×U

J(y, u) subject to F (y, u) = 0, u ∈ Uad. (3.3)

We need to make the following assumptions, which again will be satisfied also
in the case presented later in Section 3.3:

• Uad is nonempty, closed, bounded and convex.

• J and F are continuously Frechét differentiable (meaning that they are
differentiable in a Banach space);

• For all u ∈ Uad, there exists a unique y = y(u) ∈ Y ;

• the inverse Fy(y(u), u)−1 is bounded ∀u ∈ Uad.

Thanks to these assumptions, we can rewrite problem (3.3) in an equivalent
form, known as the reduced problem:

min
u∈U

Ĵ(u) = J(y(u), u) subject to u ∈ Uad, (3.4)

where we introduced the reduced cost functional Ĵ(u) := J(y(u), u) and we
substituted y with y(u). Solving the optimization problem means minimizing
Ĵ(u), and this requires finding an expression for its derivative, which will be
denoted from now on as Ĵ ′(u). This can be obtained by means of a sensitivity
analysis approach [124, 123], or with the adjoint approach, which is the one we
will adopt.

The adjoint-based Lagrangian approach We show how an explicit ex-
pression for the derivative of the reduced cost functional Ĵ(u) can be obtained
thanks to the adjoint approach based on the Lagrangian functional. In order to
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do this, let us start by defining the Lagrangian functional L : Y ×U ×Z∗ → R
as

L(y, u, p) = J(y, u) + ⟨p, F (y, u)⟩Z∗,Z , (3.5)

where p ∈ Z∗ is called the adjoint variable, or Lagrange multiplier. Assuming
that the initial assumptions needed for the derivation of the reduced prob-
lem (3.4) are still valid, we can rewrite the reduced cost functional Ĵ(u) in
terms of the Lagrangian functional as

Ĵ(u) = J(y(u), u) = J(y(u), u) + ⟨p, F (y(u), u)⟩Z∗,Z = L(y, u, p). (3.6)

This expression can be differentiated, obtaining

⟨Ĵ ′(u), s⟩U∗U = ⟨Ly(y(u), u, p), y′(u)s⟩Y ∗,Y + ⟨Lu(y(u), u, p), s⟩U∗,U . (3.7)

Our goal is to find an expression for the cost functional derivative Ĵ ′(u), so we
seek a value for p = p(u) such that Ly(y(u), u, p) = 0. This implies

Ĵ ′(u) = Lu(y(u), u, p(u)) = Ju(y(u), u) + Fu(y(u), u)∗p(u) (3.8)

where the superscript ∗ indicates the dual operator, as introduced in Sec-
tion 2.2.1. In this way we have obtained an explicit expression for Ĵ ′(u). Since
p(u) is still unknown, we use the condition Ly(y(u), u, p) = 0 imposed earlier
to obtain

⟨Ly(y, u, p), z⟩Y ∗,Y = ⟨Jy(y, u), z⟩Y ∗,Y + ⟨p, Fy(y, u)z⟩Z∗,Z

= ⟨Jy(y, u) + Fy(y, u)∗p, z⟩Y ∗,Y = 0, ∀z ∈ Y
(3.9)

Therefore, p ∈ Z∗ is the solution of the adjoint equation

Fy(y(u), u)∗p = −Jy(y(u), u). (3.10)

We have then shown a method based on the Lagrangian representation
to derive the adjoint equation. This approach will be instrumental to the
definition of an optimality system for the optimal control problem, as it will be
detailed in the following section.
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3.2.2 The optimality system

At this point, finding a solution to the optimal control problem is equivalent to
finding a stationary point for the Lagrangian L, which means satisfying its first
order optimality conditions. Thanks to the derivations carried out earlier, we
can now exploit an important result, stated in the following theorem (see [123],
Theorem 1.48):

Theorem 3.2.2 (Minimum principle) Let us suppose that the assumptions
required for the derivation of (3.4) hold. If u⋆ is a local solution of the reduced
problem (3.4), then the following inequality holds:

⟨Ĵ ′(u⋆), v − u⋆⟩U∗,U ≥ 0, ∀v ∈ Uad. (3.11)

Exploiting the expression for Ĵ ′(u⋆) derived earlier, we can state the follow-
ing corollary to Theorem 3.2.2 [123], which provides first order optimality
conditions.

Corollary 3.2.1 Let (y⋆, u⋆) ∈ Y × Uad be the solution to optimal control
problem (3.4). Then there exists a Lagrange multiplier (or adjoint state) p ∈ Z∗

such that the following optimality conditions hold


F (y⋆, u⋆) = 0,
Fy(y⋆, u⋆)∗p⋆ = −Jy(y⋆, u⋆),
⟨Ju(y⋆, u⋆) + Fu(y⋆, u⋆)∗p⋆, v − u⋆⟩U∗,U ≥ 0∀v ∈ Uad.

(3.12)

Using the Lagrangian functional, this system is equivalent to


⟨Lp(y⋆, u⋆, p⋆), q⟩Z,Z∗ = 0 ∀q ∈ Z∗

⟨Ly(y⋆, u⋆, p⋆), z⟩Y ∗,Y = 0 ∀z ∈ Y

⟨Lu(y⋆, u⋆, p⋆), v − u⋆⟩U∗,U ≥ 0 ∀v ∈ Uad.

(3.13)
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The variational formulation (3.13) expressed in terms of the functional J and
the state equation F becomes


⟨F (ȳ, ū⋆), q⟩ = 0 ∀q ∈ Z∗

⟨Jy(ȳ, ū⋆) + Fy(ȳ⋆, ū⋆)∗p̄⋆, z⟩Y ∗,Y = 0 ∀z ∈ Y

⟨Ĵu(y⋆, u⋆) + Fu(y⋆, u⋆)∗p⋆, v − u⋆⟩U∗,U ≥ 0 ∀v ∈ Uad.

(3.14)

It can be noticed that the solutions of the system (3.13) are the stationary
points of the Lagrangian functional L(·, ·, ·), that is,

∇L(y⋆, u⋆, p⋆)[z, v, q] = 0,∀(z, v, q) ∈ Y × U × Z∗. (3.15)

System (3.14) is also known as the coupled Karush-Kuhn-Tucker optimality
system [80], which can be obtained from first order optimality conditions and
is equivalent to system (3.13), derived from the Lagrangian functional.

3.2.3 The saddle-point formulation for Linear Quadratic
OCPs

Before seeing how the optimality system obtained in the previous section can be
properly discretized and solved, it is necessary to introduce a property of some
optimal control problems. In particular, when we consider linear quadratic
control problems, it can be demonstrated that their optimality system has a
saddle-point structure. This fact is useful for a number of reasons. First, the
existence and uniqueness of a problem with saddle-point structure has been
proved by a number of theorems, which we will introduce in the following.
Second, the saddle-point structure of the optimality system clarifies the choice
we will make in terms of solution method, as the so-called one-shot approach
becomes intuitively the best choice for this type of problem.

Let us first introduce a generic saddle-point problem, by considering two
Hilbert spaces X and Q, and their dual spaces X∗ and Q∗, respectively. We
introduce two continuous bilinear forms A(·, ·) : X × X → R and B(·, ·) :
X ×Q → R, and also the functionals F : X∗ → R, G : Q∗ → R. We can now
define the following saddle-point problem:
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Problem 3.2.2 Find (x, p) ∈ X ×Q such thatA(x, v) + B(v, p) = ⟨F, v⟩ ∀v ∈ X,

B(x, q) = ⟨G, q⟩ ∀q ∈ Q.
(3.16)

The existence, uniqueness and stability of the solution to the saddle-point
problem (3.16) is well-established by the Brezzi theorem (see [125] for details
and proof). The theorem requires two main assumptions:

• the bilinear form A(·, ·) must be weakly coercive2 on the subspace X0 ⊂ X,
which is defined as

X0 = {w ∈ X : B(w, q) = 0 ∀q ∈ Q}. (3.18)

In other words, there exists a constant α0 > 0 such that

inf
w∈X0

sup
x∈X0

A(x,w)
||x||X ||w||X

≥ α0 and inf
x∈X0

sup
w∈X0

A(x,w)
||x||X ||w||X

> 0. (3.19)

• The bilinear form B(·, ·) must satisfy the inf-sup condition, meaning that
there exists a constant β0 > 0 such that

β = inf
q∈Q

sup
w∈X

B(w, q)
||w||X ||q||Q

≥ β0. (3.20)

Under these assumptions the solution to problem (3.16) exists and is unique.

We now show how a linear quadratic OCP can be recast into a problem
equivalent to (3.16), thanks to the following theorem (see [126], Proposition
1.7):

Theorem 3.2.3 Assume that the hypotheses of the Brezzi theorem hold. More-
over, let A(·, ·) be a symmetric, nonnegative and coercive bilinear form on X0

2A bilinear form A : X × X → R, where X is a Hilbert space, is called coercive if there
exists a constant c > 0 such that

A(x, x) ≥ c||x||2. (3.17)
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with coercivity constant α0, meaning

A(x,w) = A(w, x),A(x, x) ≥ 0 ∀x,w ∈ X (3.21)

and
A(x, x) ≥ α0||x||X ∀x ∈ X0. (3.22)

Then, problem 3.2.2 is equivalent to the constrained optimization problemmin J (x) = 1
2A(x, x) − ⟨F, x⟩, subject to

B(x, q) = ⟨G, q⟩ ∀q ∈ Q.
(3.23)

3.2.4 Example of a linear quadratic optimal control prob-
lem

To better clarify the important connection between saddle-point problems
and OCPs, let us show how a saddle-point problem can be derived from the
optimality system of a linear quadratic optimal control problem through a
running example. In particular, considering that the estimation framework
presented in Section 3.3 will be based on Stokes equations, let us consider
a distributed optimal control problem governed by Stokes equations. The
problem has the following form:

min
v,p,u

J(v, p,u) = 1
2

∫
Ω

|v − vd|2dΩ + α

2

∫
Ω

|u|2dΩ, (3.24)

such that


−ν∆v + ∇p = u in Ω,
∇ · v = 0 in Ω,
v = 0 on ∂Ω.

(3.25)

In problem (3.25) ν represents the kinematic viscosity, v ∈ V := H1
0 (Ω)×H1

0 (Ω)
the velocity, p ∈ P := L2

0(Ω) the pressure, and Ω ⊂ R2 is an open, bounded
and regular domain. This problem is a so-called data assimilation problem,
since the cost functional represents the distance between velocity v and some
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velocity measurements, indicated with vd. The solution to this optimal control
problem, then, is the one which is closest to the available measurement data.
The minimum will be reached by adjusting the control variable u, which in this
case is the forcing term in the first Stokes equation, the momentum balance
equation. For this reason, this type of control is called distributed control,
since it is defined and acts on the entire domain Ω. A slightly more advanced
case is boundary control, when the control variable is only defined on the
boundary. A boundary control problem will be presented in the second part of
this chapter, when optimal control will be used to estimate boundary conditions
(thus defining the control variable only at the boundary). For now, let us start
from this simpler data assimilation problem.

The control variable u belongs to the space U = L2(Ω) × L2(Ω). We define
also Y = V × P as the space of the state variable y = (v, p), such that the
dual space is Y ∗ = V ∗ × P ∗. The next step consists in building the weak
formulation of the state equations, which requires defining the bilinear forms
a(·, ·) : V × V → R, b(·, ·) : V × P → R and c(·, ·) : V × V → R as

a(v,ϕ) = ν
∫

Ω
∇v · ∇ϕ dΩ (3.26)

b(v, p) = −
∫

Ω
∇ · vp dΩ (3.27)

c(u,ϕ) =
∫

Ω
u · ϕ dΩ (3.28)

The weak formulation then reads: find y = (v, p) such that

a(v,ϕ) + b(v, p) = c(u,ϕ) ∀ϕ ∈ V,

b(v, ξ) = 0 ∀ξ ∈ P.
(3.29)

The Stokes problem (3.29) is an example of saddle-point problem satisfying the
assumptions of the Brezzi theorem [125] presented in Section 3.2.3. Then, we
can use the Lagrangian functional to derive the optimality system. First we



50 Optimal control for BC estimation

define the Lagrangian functional

L(v, p,u,w, q) = 1
2⟨v − vd,v − vd⟩L2 + α

2 ⟨u,u⟩L2 + a(v,w)

+ b(w, p) − c(u,w) + b(v, q).
(3.30)

The optimality system is obtained by imposing that the derivatives of L(·, ·, ·)
with respect to (v, p,u,w, q) ∈ V × P × U × V × P must vanish, obtaining



a(v,ϕ) + b(v, p) = c(u,ϕ) ∀ϕ ∈ V,

b(v, ξ) = 0 ∀ξ ∈ P,

a(ψ,w) + b(ψ, q) = ⟨v − vd,ψ⟩L2 ∀ψ ∈ V,

b(w, π) = 0 ∀π ∈ P,

α⟨u, τ ⟩L2 = c(τ ,w) ∀τ ∈ U.

(3.31)

The nested saddle-point structure for this problem reads:


⟨v,ψ⟩L2 + a(ψ,w) + b(ψ, q) = (vd,ψ)L2 ∀ψ ∈ V,

+ b(w, π) = 0 ∀π ∈ P,

+ α⟨u, τ ⟩L2 − c(τ ,w) = 0 ∀τ ∈ U,

a(v,ϕ) + b(ϕ, p) − c(u,ϕ) = 0 ∀ϕ ∈ V,

b(v, ξ) = 0 ∀ξ ∈ P.

(3.32)

The visible compact block structure of system (3.32) simplifies its solution
in a discretized setting, allowing to use a one-shot approach for its numerical
solution. Some additional details on this solution approach are given in the
next section.

3.2.5 Numerical approximations and solution methods

After covering the theoretical background on optimal control problems, it is
necessary to transform the obtained problem into a discrete control problem,
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so that it can be solved numerically. To do so, there are two alternative
approaches:

• discretize-then-optimize: with this method, first the state equations
are discretized, and the control problem is solved afterwards;

• optimize-then-discretize: in this case, first a system of optimality
conditions is formalized at the continuous level, and subsequently the
equations of the optimality system are discretized.

It must be noticed that the two methods do not always lead to the same result.
Generally the first approach is adopted for optimal design problems, while it
may cause numerical errors in other types of OCPs [127, 128]. For optimal
control problems that do not involve the optimization of a design, instead, the
second method is generally adopted. As a matter of fact, an optimize-then-
discretize approach is used for the optimal control formulation proposed later
in this chapter.

Regarding the solution method, there are two main approaches when solving
a generic optimal control problem as defined in (3.1):

• iterative method. This approach consists in eliminating the PDE
constraint by replacing y with y(u), and keeping only the control u as
optimization variable. The problem, then, consists in minimizing the
reduced cost functional Ĵ(u) = J(y(u), u), which can be done by means
of standard algorithms like gradient, conjugate gradient, Newton and
quasi-Newton methods (see, e.g. [129, 130]).

• one-shot method. With this approach we solve the optimality system
obtained with the Lagrangian approach, by means of direct or iterative
system solvers.

Since the one-shot method is the approach adopted in the framework proposed
in this chapter, we will briefly describe it in the following.

We first need to introduce a discretization of the problem (3.16). In partic-
ular, we will adopt a Galerkin finite element approximation, by considering the
discretization Th of the domain Ω with size 0 < h ∈ R+ < ∞. Consequently,
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we define the two finite dimensional spaces Xh and Qh of the spaces X and Q,
respectively. Also, we indicate their respective dimension as NX and NQ. The
Galerkin finite element approximation of problem (3.16) is:

Problem 3.2.3 Find (xh, ph) ∈ Xh ×Qh such thatA(xh, vh) + B(vh, ph) = ⟨F, vh⟩ ∀vh ∈ Xh,

B(xh, qh) = ⟨G, qh⟩ ∀qh ∈ Qh.
(3.33)

We can now define the basis functions of the finite spaces Xh and Qh with

{φj ∈ Xh}NX
j=1 {ψk ∈ Qh}NQ

k=1. (3.34)

The solution (xh, ph) ∈ Xh ×Qh to the problem (3.33) can be rewritten as
xh =

NX∑
j=1

xjφj(x), ph =
NQ∑
k=1

pkψk(x)
. (3.35)

If we choose the basis functions (3.34) as test functions for the problem (3.33),
we can define A ∈ RNX×NX , B ∈ RNQ×NX ,F ∈ RNX and G ∈ RNQ as follows:

Aij = A(φi, φj), Bml = B(φl, ψm), Fk = ⟨F, φk⟩, Gs = ⟨G,ψs⟩. (3.36)

Thanks to these definitions, we can rewrite the saddle-point problem (3.33) as
the following linear system with a block structureA BT

B 0

x
p

 =
F

G

 , (3.37)

where (x)i = xi and (p)k = pk. System (3.37) is the optimality system
associated to an OCP problem with the following algebraic formulation:

minimize 1
2xTAx − FT x subject to Bx = G. (3.38)

The one-shot method exploits exactly the block structure that the optimal-
ity system of a linear quadratic OCP assumes, when recast into a saddle-point
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framework. The one-shot method, in fact, provides a solution to the optimal
control problem by directly solving the linear system (3.37).

In this section, we have provided a general overview on the topic of optimal
control. In particular, we have introduced the generic structure of an OCP,
and reviewed a common approach, i.e. the adjoint-based Lagrangian one, to
derive the corresponding optimality system. We have then briefly introduced
the one-shot method as a possible approach to solve the discretized version
of the optimality system. These concepts will be used in the next section,
where we finally present the proposed estimation method for resistive boundary
conditions based on the solution of an optimal control problem.

3.3 Proposed methodology

In this section the methodological details of the proposed boundary conditions
estimation approach will be presented. When dealing with patient-specific
anatomies, some preliminary steps are required before solving the actual optimal
control problem. In particular, one needs to reconstruct the patient-specific
geometries from clinically acquired images (CT scans), and to acquire patient-
specific data, in this case from 4D-Flow MRI measurements, which will be
assimilated through optimal control. A representation of the experimental
pipeline adopted for the proposed approach is represented in Fig. 3.2. In
the following, we will first provide some details on the data acquisition and
segmentation process in Section 3.3.1, before introducing the optimal control
framework in Section 3.3.2.

3.3.1 Anatomical reconstruction and 4D-Flow MRI data
acquisition

The proposed method has been tested on four clinical cases from a single-center
prospective study conducted at the Sunnybrook Health Sciences Centre in
Toronto, Canada. The study was approved by the local ethics board and
informed consent was obtained. Moreover, all the measurements were acquired
non-invasively. Patients presented at the hospital for coronary bypass graft
surgery. Between three and six weeks after surgery, a cardiac CT was performed
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Fig. 3.2 Scheme of the proposed framework for boundary condition estimation through
optimal control.

and anatomical information about their aorta and its supra-aortic branches
was acquired using a 320-detector row CT scanner (Aquilion One, Canon
Medical Systems). From CT images, the vessels surface was reconstructed
using the open-source package SimVascular [26]. The reconstructed volume
was discretised into tetrahedral elements using TetGen [131]. After the CT
scan, the blood velocity in the aorta and its branches was acquired in-vivo
using a 4D-flow MRI sequence, using a 3T MRI scanner (MAGNETOM Prisma,
Siemens Healthineers). The acquisition was performed using a 4D flow imaging
sequence with retro-gating and adaptive navigator respiratory gating. Imaging
parameters were as follows: encoding velocity=150 cm/s, field of view=200-420
mm x 248-368 mm, spatial resolution=1.9-3.5 x 2.0-3.2 x 1.8-3.5 mm3, temporal
resolution=39.9-47.2 ms, flip angle=8◦. After 4D-Flow MRI, diastolic blood
pressure Pdiast and systolic blood pressure Psys were measured with the brachial
cuff-based method. The mean arterial pressure Pmean was computed as [132]

Pmean = Psys + 2Pdiast

3 . (3.39)

The pressure and flow rate measurements collected on the patients were then
assimilated into the mathematical model describing blood flow in the anatomy,
thanks to the framework presented in the next section.
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3.3.2 Determination of boundary conditions through op-
timal control

As explained in Section 3.2, an optimal control always includes a number of
control variables (the resistive boundary conditions in our case), which are
unknown quantities and must be determined, a cost functional to be minimized,
and a set of equations describing the physics of blood flow. In this case, we
used steady Stokes equations to model blood flow, ensuring a simpler optimal
control problem with respect to nonlinear Navier-Stokes equations. However,
this choice means that blood flow will be modeled in a less realistic way, which
could potentially affect the quality of the estimated parameters. Thus, we will
assess the effect that this choice has by validating the obtained results on a
Navier-Stokes model, as reported in Section 3.4.

The state equations

Since the anatomies considered in this framework are composed of the aorta
and supra-aortic branches, it is safe to assume that the dimension of blood
particles is much smaller that vessel diameter, meaning that blood behaves as
a Newtonian fluid with constant viscosity. An example of an aortic arch used
in this framework is represented in Fig. 3.1, whose 3D volume constitutes the
computational domain Ω, on which the incompressible Stokes equations will be
solved. The boundary of Ω is referred to as ∂Ω = Γin ∪ Γw ∪ Γi, where Γin, Γw,
and Γi denote the inlet of the aorta, the vessel walls, and the outlets of the
aortic arch, with 1 ≤ i ≤ imax (imax = 4 in the case of Fig. 3.1), respectively.
The control variables, corresponding to the outlet resistances, are denoted as
Ri. Thus, state equations can be written in strong form as

−ν∆v + ∇p = 0 in Ω,
∇ · v = 0 in Ω,
v = vin on Γin,

v = 0 on Γw,

p = Ri

∫
Γi

v · n dΓi on Γi, 1 ≤ i ≤ imax,

(3.40)
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where ν = 0.04 dynes/cm2s the dynamic viscosity, and n the outward normal
to the outlets. By means of the condition v = vin, a plug profile is imposed at
the inlet Γin, whose average value is extracted from the 4D-Flow MRI data.
This profile choice is motivated by the fact that a plug profile is more realistic
than a parabolic profile for the ascending aorta. These two types of inlet
profiles are represented in Fig. 3.3. Despite the availability of 4D-Flow MRI

Plug Parabolic

Fig. 3.3 Comparison of a plug profile (left) and a parabolic profile (right) which can
be imposed at the inlet of the model.

data, a standard inlet profile was used instead of the measured one. This
choice is motivated by the fact that imposing an inlet profile extracted from
4D-Flow MRI which is consistent with either the Stokes or the Navier-Stokes
equations is far from trivial. Since the goal of this work is to demonstrate a new
methodology based on optimal control, a plug profile was used for simplicity.
The use of a more realistic profile, however, would not change the way in which
the optimal control problem is solved. The vessel walls Γw are assumed to be
rigid and non-permeable, and a no-slip condition is imposed on them (v = 0).
Finally, a resistive-type boundary condition is imposed at the outlets Γi, by
prescribing that the pressure at the outlets must be equal to R

∫
Γi

v · n dΓi,
where R represents the resistance, while the integral of the velocity normal to
the surface gives the outlet flow rate. For the 3D-0D coupling at the interface,
the coupled multidomain method proposed by Vignon-Clementel et al. [44] was
adopted.

The next step was to derive the weak formulation of the state equations.
In order to do so, we need to introduce Hilbert spaces V (Ω) and P (Ω) for the
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velocity v and the pressure p, respectively. In particular, we choose the function
spaces V (Ω) = H1(Ω;R3) and P (Ω) = L2(Ω) (as velocity v(x) and pressure p(x)
are functions depending on the spatial coordinate x ∈ Ω. Moreover, we denote
by U = Rimax the space associated to the controls R = [R1, . . . , Rimax ]T ∈ U .
Since the control variables Ri are scalar numbers, and not functions, the space
U is simply an Euclidean space.

Starting from the strong form in (3.40), the weak formulation is derived as:
given R ∈ U , find

v ∈ Vin(Ω) = {ṽ ∈ V (Ω) : ṽ|Γin
= vin and ṽ|Γw = 0} and p ∈ P (Ω)

such that
ν
∫

Ω
∇v·∇w dΩ −

∫
Ω
p (∇·w) dΩ +

imax∑
i=1

Ri

∫
Γi

v·ndΓi

∫
Γi

w·ndΓi

+∑imax
i=1

∫
Γi

w·n(n·ν∇v n)dΓi −∑imax
i=1

∫
Γi

w·∇v ndΓi = 0 in Ω,∫
Ω
q (∇·v) dΩ = 0 in Ω,

(3.41)

for every

w ∈ V0(Ω) = {w̃ ∈ V (Ω) : w̃|Γin
= 0 and ṽ|Γw = 0} and q ∈ P (Ω),

where w and q are the test functions associated to velocity and pressure,
respectively. We now reformulate the term

Ri

∫
Γi

v·ndΓi

∫
Γi

w·ndΓi

in (3.41)1 to obtain an equivalent weak formulation which is more suitable for
the forthcoming finite element discretization. In particular, since the FEniCS
library [133, 134] adopted for the solution of this problem does not handle the
product of integrals, we need to introduce a set of Lagrange multipliers λi,
1 ≤ i ≤ imax, defined as

λi = Ri

∫
Γi

v·ndΓi.

We further denote by λ = [λ1, . . . , λimax ]T ∈ Z = Rimax the vector collecting
the Lagrange multipliers, and Z its associated space. Therefore, the equivalent
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weak formulation is:
given R ∈ U , find v ∈ Vin(Ω), p ∈ P (Ω),λ ∈ Z such that



ν
∫

Ω
∇v·∇wdΩ −

∫
Ω
p (∇·w)dΩ +

imax∑
i=1

∫
Γi

λi w·ndΓi

+∑imax
i=1

∫
Γi

w·n (n·ν∇v n)dΓi −∑imax
i=1

∫
Γi

w·∇v ndΓi = 0 in Ω,∫
Ω
q (∇·v)dΩ = 0 in Ω,

1
|Γi|

∫
Γi

λi ηi dΓi −
∫

Γi

Ri v · n ηi dΓi = 0 on Γi, 1 ≤ i ≤ imax,

(3.42)

for every w ∈ V0(Ω), q ∈ P (Ω),η = [η1, . . . , ηimax ]T ∈ Z, where η collects the
test “functions” associated to the Lagrange multipliers λ. System (3.42) is the
final system representing how the control R affects the underlying physics of
the model.

The cost functional

The next step in the construction of the optimal control problem is the definition
of a proper cost functional, which will allow to assimilate patient-specific
pressure and flow rate data. The proposed cost functional J has the following
form

J(v, p) = αp

2 ·

∫
Γp

||p− pd||2dΓp∫
Γp

||pd||2dΓp

+
imax∑
i=1

αi

2 ·

[∫
Γi

v · ndΓi −Qi

]2

Q2
i

. (3.43)

The first term in (3.43) represents the normalized difference between the state
pressure p and the patient’s average pressure pd measured at the cross section
Γp. Since the pressure drop across the aortic arch is small, the position of Γp

will not have a significant impact on the result. As explained in Section 3.3.1,
in this case pd was assumed equal to the mean arterial pressure, computed
from the measured systolic and diastolic pressure. The second term, instead,
represents the normalized difference between the calculated flow rate (obtained
integrating velocity on the outlet section) and the flow rate Qi extracted
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from 4D-Flow MRI data at each outlet Γi. By minimizing the normalized
difference between simulated and measured quantities, each term gives the same
contribution to the optimization process, even when assimilating measurements
with different orders of magnitude. However, the contribution of each term to
the optimization can be tailored individually by changing the weights αp and
αi. For the aortic arches under analysis, αp and all αi were set to 1, meaning
that all measurements contributed equally to the minimization process.

The optimal control problem

Having an expression for both the cost functional and the state equations, we
are now ready to build the OCP. The optimal control problem then reads:

Problem 3.3.1 Find R such that functional (3.43) is minimized, under the
constraint that v, p, λ satisfy (3.42).

To solve the optimal control problem, we adopt the adjoint-based Lagrangian
approach introduced in Section 3.2.1 [81, 123, 124, 135]. As explained previously,
this method allows to convert the optimal control problem into an unconstrained
minimization problem, whose solution corresponds to the minimum of a properly
defined Lagrangian functional. In practice, the optimal solution is the one
where all the derivatives of the Lagrangian functional vanish. In order to adopt
the Lagrangian formulation, a set of adjoint variables must be introduced. In
particular, we define z ∈ V0(Ω) as the adjoint of v, b ∈ P (Ω) as the adjoint of
p, and t = [t1, . . . , timax ]T ∈ Z as the adjoint variables of R. The Lagrangian
functional for this problem then reads

L(v, p,λ,R, z, b, t) = J(v, p) + ν
∫

Ω
∇v·∇zdΩ −

∫
Ω
p (∇·z)dΩ

+
imax∑
i=1

∫
Γi

λi z·n dΓi +
imax∑
i=1

∫
Γi

z·n (n·ν∇v n)dΓi

−
imax∑
i=1

∫
Γi

z·∇v ndΓi +
∫

Ω
b (∇·v)dΩ

+
imax∑
i=1

1
|Γi|

∫
Γi

λitidΓi −
imax∑
i=1

∫
Γi

Riv·n tidΓi.

(3.44)
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As explained in Section 3.2.2 by means of the corollary 3.2.1, given (3.44), the
optimality system can be obtained by imposing ∇L = 0. In other words, this
condition is equivalent to requiring that the derivatives of L with respect to
(v, p,λ,R, z, b, t) must vanish. Taking the derivative of (3.44) with respect to
v (denoted by Lv) in the direction w we obtain

⟨Lv,w⟩ = ν
∫

Ω
∇w·∇zdΩ +

imax∑
i=1

z·n (n·ν∇w n)dΓi (3.45a)

−
imax∑
i=1

∫
Γi

z·∇w ndΓi +
∫

Ω
b (∇·w)dΩ −

imax∑
i=1

∫
Γi

Riw·n tidΓi

+
imax∑
i=1

αi

Q2
i

[∫
Γi

v·ndΓi

∫
Γi

w·ndΓi −Qi

∫
Γi

w·ndΓi

]
= 0,

while taking the derivative of (3.44) with respect to p in the direction q we get

⟨Lp, q⟩ = αp

∫
Γp

(p− pd) q dΩ −
∫

Ω
q (∇ · z)dΩ = 0. (3.45b)

Similarly, the derivatives of (3.44) with respect to λi, Ri, z, b, ti are, respectively,

⟨Lλi
,mi⟩ =

∫
Γi

miz · ndΓi + 1
|Γi|

∫
Γi

mitidΓi = 0, 1 ≤ i ≤ imax, (3.45c)

⟨LRi
, ri⟩ = −

∫
Γi

riv · n tidΓi = 0, (3.45d)

⟨Lz, s⟩ = ν
∫

Ω
∇v·∇sdΩ −

∫
Ω
p (∇·s)dΩ +

imax∑
i=1

∫
Γi

λis·ndΓi (3.45e)

+
imax∑
i=1

∫
Γi

s·n(nν∇v·n)dΓi −
imax∑
i=1

∫
Γi

s·∇v ndΓi = 0,

⟨Lb, d⟩ =
∫

Ω
d (∇ · v)dΩ = 0, (3.45f)

⟨Lti
, ηi⟩ = 1

|Γi|

∫
Γi

λiηidΓi −
∫

Γi

Riv · n ηidΓi = 0, 1 ≤ i ≤ imax. (3.45g)
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Again, the presence in (3.45a) of a term containing the product of two integrals
requires the use of an additional Lagrange multiplier to properly treat it
numerically. We thus introduce the new variables ki =

∫
Γi

v · ndΓi, which we
substitute in (3.45a), and we add the following equations to the system

1
|Γi|

∫
Γi

ki ci dΓi −
∫

Γi

v · n ci dΓi = 0, ∀ci ∈ R, 1 ≤ i ≤ imax. (3.46)

Equations (3.45a) through (3.46) form the so-called coupled optimality system,
which we introduced in Section 3.2.2. As mentioned in Section 3.2.5, this coupled
system can be solved through a one-shot approach [124, 136], where the system
is solved directly for all the unknown variables. The adopted approach is the
optimize-then-discretize one, where we first derive the optimality system (3.45a)-
(3.46), and then we discretize it numerically, seeking a solution through Galerkin
finite element methods.

Since the domain Ω was discretised into a finite mesh of size h ∈ R, we
introduce finite-dimensional solution spaces Vh(Ω), Ph(Ω), Uh, Zh. In particular,
we use Taylor-Hood elements for the velocity-pressure pair, i.e. P2 finite
elements to define Vh(Ω) and P1 finite elements for Ph(Ω). Moreover, we
set Uh = U and Zh = Z, as the spaces associated to control and Lagrange
multipliers are already finite-dimensional. The discretised system is solved
using the open-source libraries FEniCS [133, 134] and multiphenics [137], the
latter being an open-source library developed at SISSA mathLab for easy
prototyping of problems characterized by a block structure and boundary
restricted variables. The numerical solution of the problem is obtained by
means of MUMPS [138], a parallel sparse direct solver.

3.3.3 Alternative methods for the estimation of resistive
BCs

We now look at some alternative methods that can be used to set the outlet
resistances, starting from in-vivo measurements of blood pressure and flow rate.
These methods will be compared in Section 3.4 to the proposed optimal control
method.
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Murray’s law Murray’s law [50], formulated by Cecil D. Murray in 1926,
governs the branching pattern of vessels, such that the flow in each outlet
is proportional to its cross-sectional area. In particular, the general form of
Murray’s law reads

Qi

Qtot

= rn
i∑

i r
n
i

(3.47)

where Qi is the flow rate at the i-th outlet, Qtot is the total flow rate, while
ri is the radius at the i-th outlet. The exponent n changes depending on the
territory considered, and for the aortic arch is conventionally set to 2 [139].
Multiplying ri by π to express the relationship in terms of outlet areas, and
using R ∝ 1

Q
, one can estimate the outlet resistances for the aorta and its main

branches as
Ri =

∑
j |Γj|
|Γi|

Rtot, (3.48)

where ∑j |Γj| is the sum of the area of all the aortic outlets, while |Γi| is the
area of the outlet to which resistance Ri is associated. The total resistance
Rtot was computed as the mean pressure pd measured non-invasively on the
patient, as reported in Section 3.3.1, divided by the mean aortic flow rate Q0

measured at the inlet with 4D-Flow MRI, and then split among the outlet
branches according to (3.48). The application of Murray’s law for estimating
flow splitting at vessel bifurcations has been largely investigated both on human
and animal subjects by a number of studies [140–143], which confirmed its
validity on a large portion of the cardiovascular system, even if with some
limitations on the first branches of the aortic arch [144]. It is worth noticing
that the flow splitting predicted by Murray’s law is based exclusively on the
patient’s anatomy, as it assumes that branches with larger cross-section have
higher flow rates. This method only requires the average pressure and inlet
flow rate, but no patient-specific measurements at the outlets. This property
justifies its use in those studies where in-vivo measurements of flow rates are
not available [145–147].

Ohm’s law It is possible to estimate outlet resistances by exploiting the
analogy between the cardiovascular system and electrical circuits, by means
of Ohm’s law. In particular, knowing the mean pressure pd computed from
diastolic and systolic pressure measured non-invasively and the outlet flow rates



3.3 Proposed methodology 63

Qi measured with 4D-Flow MRI, outlet resistances can be computed as

Ri = pd

Qi

. (3.49)

This method is also common [111] and it is based on the idea of performing
the parameter estimation on 0D models [148] but, differently from Murray’s
law, it requires the availability of outlet flow rates measured in-vivo. This
could lead to inaccurate estimations when the outlet flow rates violate the mass
conservation principle, especially when dealing with 4D-Flow MRI data, where a
15% deviation is expected due to measurement uncertainty [149]. We proposed
an alternative solution, still based on Ohm’s law, to deal with inconsistent
measurements.

Optimization based on Ohm’s law Using Ohm’s law, we developed a
minimization problem which estimates outlet resistances Ri, while trying to
impose the mass conservation principle. In this way, we try to compensate
for the intrinsic inconsistency in the data, which is not accounted for in the
standard version of Ohm’s law of (3.49). This is achieved by approximating the
aorta with its equivalent 0D model, which is displayed on the left of Fig. 3.4,
and minimizing the cost function

Johm = αp
||Rtot ·Q0 − pd||2

||pd||2
+

imax∑
i=1

αi

|| pd

Ri
−Qi||2

||Qi||2
. (3.50)

The cost function was minimized using the Matlab function fminsearch, which
employs a derivative-free simplex search method [150]. The cost functional
reported in (3.50) deliberately replicates the one used inside the optimal control
framework, reported in (3.43), with the first term representing the normalized
difference between the computed pressure and the measured one (pd), and the
second term representing the outlet flow rates Qi. However, optimal control
relies on Stokes equations as a 3D-model of the underlying system, whereas
here a 0D approximation is used. The weights αp and αi can be adjusted to
change the contribution of each measurement to the optimization process, but
in the following experiments were all set to 1.
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Q0

R1 R2 R3 R4

a) Equivalent circuit for optimization of
Ohm’s law.

Ci

Ri,p

Ri,d

b) Three-element Windkessel model.

Fig. 3.4 Adopted equivalent circuits. On the left, equivalent circuit used for Ohm’s
law method. On the right, 3-element Windkessel model used as outlet boundary
condition for unsteady Navier-Stokes simulations.

3.4 Numerical results

3.4.1 Mesh convergence analysis

As a preliminary step, we conducted a mesh convergence analysis on the
patient-specific meshes, which we later used for the experiments. The results
of the convergence analysis for ”case 1” are reported in Fig. 3.5, where the
time-averaged wall shear stress (TAWSS, on the left) and oscillatory shear
index (OSI, on the right) are plotted with respect to the number of mesh
elements. Four different meshes were used, with edge length equal to 0.2,
0.15, 0.1 and 0.08 cm, respectively. It can be noticed how for the finest mesh
considered, which contains around 2.5 × 106 elements, OSI has already reached
convergence, but not TAWSS. Nevertheless, this was the mesh used in the
following experiments, as it was determined to be the best compromise between
computational time/cost of the simulations and accuracy of the results. Similar
results were obtained for the other cases.

3.4.2 Validation with synthetic data

The proposed method was first validated on ”case 1” with synthetically gener-
ated pressure and flow rate measurements.

As an initial step, the ground truth data were generated by simulating case
1 in Simvascular, using the unsteady Navier-Stokes equations. At the inlet, a
velocity waveform with blunt profile and average flow rate Q = 119.1 cm3/s
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a) Convergence analysis of TAWSS.
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b) Convergence analysis of OSI.

Fig. 3.5 Mesh convergence analysis for case 1.

was imposed, while at the outlets three-element Windkessel models were used
as boundary conditions. A physiological value of the total resistance at each
outlet was chosen, which was then split into a proximal one

Rp,i = 0.09Ri, (3.51)

and a distal one
Rd,i = 0.91Ri, (3.52)

as suggested by Kim et al [31]. The total resistance values selected for each
outlet are reported in Table 3.1, in the ”Reference” line. For the capacitance, a
total value of 0.001 cm5/dyn was assumed [151], which was then split among
the four outlets proportionally to their area, according to the formula

Ci = |Γi|∑
j |Γj|

Ctot. (3.53)

The simulation was run for five cardiac cycles in order to reach periodic
convergence. Then, the average pressure across the geometry and the average
flow rates at the four outlets were measured from the last cardiac cycle. These
extracted data were then assimilated with the optimal control method presented
in Section 3.3 to estimate the total outlet resistances. At this point, the
resistances estimated with optimal control were used to set the outlet boundary
conditions of a second simulation, again in Simvascular. Both resistances and
capacitances were split adopting the rules reported in (3.51)-(3.53).

A comparison between original and estimated resistance values is reported
in Table 3.1, together with original and estimated average flow rates at the
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outlets. Flow and pressure waveforms at the outlets are compared in Fig. 3.6,
showing how the resistances chosen with optimal control allow to reconstruct
the original flow waveform with a relative error of 0.09% for BCA, 0.09% for
LCC, 0.1% for LSUB and 0.02% for DAo. The pressure waveform is recovered
with a relative error of 0.005%.

Resistance (dyn·s/cm5) Flow rate (cm3/s)
BCA LCC LSUB DAo BCA LCC LSUB DAo

Reference 7,000 21,000 16,000 1,700 19.02 6.30 8.13 80.02
Estimated 6,937 20,846 15,991 1,685 19.05 6.30 8.09 80.03

Table 3.1 Results of experiment with synthetic data conducted on case 1, described in
Sec. 3.4.2. The first line (”Reference”) reports the resistance values chosen for the four
outlets, and the resulting flow rates obtained. The second line (”Estimates”) reports
the resistance values estimated with the proposed method, and the corresponding
flow rates obtained.

3.4.3 Patient-specific measurements

After the verification and validation of the method, the proposed optimal control
approach was tested on four patient-specific aortic arches, with flow data coming
from 4D-Flow MRI. The obtained outlet resistances were compared to those
obtained with the alternative estimation methods presented in Section 3.3.3.

The experiments described in this section were conducted on four patient
anatomies, obtained as described in Section 3.3.1. Table 3.2 reports for each case
the measured flow rates. Specifically, the column labeled Net flow quantifies
the violation of mass conservation on the flow rate measurements obtained
from 4D-Flow MRI, by indicating the difference between measured inlet flow
and the sum of outlet flows. The inlet flow rate reported in Table 3.2 was
obtained by subtracting 4% to the flow measured in the ascending aorta, which
estimates the total coronary circulation [152], not considered in the models.

The presence of flow rate inconsistencies in 4D-Flow MRI data could be
due to the finite resolution of 4D-flow MRI, motion artifacts, and the presence
of noise, especially in presence of complex helical and vortical flows [153]. The
amount of net flow is below 15% for all the cases under analysis, which is
considered acceptable for 4D-Flow MRI measurements according to Dyverfeldt
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a) Flow rate waveform at Brachio-
cephalic artery (BCA)

0 1 2 3 4

Time [s]

0

10

20

30

F
lo

w
ra

te
[c

m
3
/
s]

Ground truth Optimal control estimation

b) Flow rate waveform at Left Common
Carotid artery (LCC)
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c) Flow rate waveform Left Subclavian
artery (LSUB)
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d) Pressure waveform at Descending
Aorta (DAo)

Fig. 3.6 Comparison of flow rate waveforms at the three supra-aortic branches of case
1, and of pressure waveform at the descending aorta, for case 1 with synthetically
generated data, described in Sec. 3.4.2.

et al. [149]. While in case 1 and case 4 the net flow is significant, for cases 2
and 3 it is practically negligible.

Case
number

Inlet flow
(cm3/s)

Total outlet
flow (cm3/s)

Net flow
(cm3/s)

Mass conservation
violation (%)

1 119.10 103.46 15.64 13%
2 107.00 107.18 -0.18 0.17%
3 125.63 125.60 0.03 0.02%
4 103.00 90.21 12.79 12.4 %

Table 3.2 Table summarizing, for each case, the measured inlet flow rate, the sum of
the measured outlet flow rates, the difference between the two (net flow), and the
percentage of mass conservation violation.
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The resistance values obtained with the four different methods are reported
in Table 3.3, where it can be noticed how Murray’s law is the estimation
technique providing the resistance values which most deviate from the other
methods. The main results are reported in Table 3.4 where, for each case,
the first row reports the patient’s average pressure, measured non-invasively
after MRI, and the flow rates measured in-vivo with 4D-Flow MRI at the
four outlets: BCA, LCC, LSUB and DAo. The values obtained solving the
Stokes equations on the 3D geometry, with the resistance values calculated by
means of Ohm’s law (3.49) are reported in the second row, while the third row
contains the results obtained with the optimization based on Ohm’s law as
in (3.50). The fourth contains the results for Murray’s Law. Finally, the fifth
row shows the results obtained with the proposed method. For cases 2 and
3, where the net flow is negligible, both Ohm’s law and the proposed method
properly assimilate the available data, with a relative error of less than 1%
on all the outlet flow rates. For cases 1 and 4, where the net flow is high,
the proposed method outperforms the other techniques, achieving the smallest
relative errors on pressure and BCA, LCC, LSUB flow rates. In presence of a
large net flow, we cannot expect a perfect assimilation of measurements, as they
are intrinsically non-physical. In that case, optimal control shows a smaller
sensitivity to inconsistencies in the data, leading to a physical solution which is
closer to measurements with respect to the other techniques. As expected, the
optimization based on Ohm’s law is more accurate than Ohm’s law for cases 1
and 4, while the two methods are basically equivalent for cases 2 and 3. As
already pointed out earlier, as Murray’s law is the only technique which does
not take into account the measured flow rates to set outlet boundary conditions
and assumes mass conservation, the corresponding solution is the one that
most deviates from patient measurements. The solution of the optimal control
problem required an average of 6.75 minutes (wall clock CPU time), running
on 18 Lenovo SD530 nodes, each with 40 Intel "Skylake" cores and 202 GB
RAM. The large number of nodes used was due to the large working memory
required to solve the optimality system.
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Case
number Method Resistance (dyn·s/cm5)

BCA LCC LSUB DAo

1

Ohm’s law 8,288 21,979 15,518 1,800
Opt. based on Ohm’s law 8,190 21,981 15,511 1,679

Murray’s law 6,837 21,242 17,591 1,527
Proposed 7,941 21,609 15,153 1,497

2

Ohm’s law 10,690 21,003 18,847 1,764
Opt. based on Ohm’s law 10,737 20,987 18,867 1,767

Murray’s law 8,306 22,451 15,161 1,900
Proposed 10,699 21,006 18,864 1,773

3

Ohm’s law 7,248 12,142 13,094 1,624
Opt. based on Ohm’s law 7,255 12,145 13,090 1,629

Murray’s law 7,646 14,723 19,102 1,513
Proposed 7,249 12,131 13,078 1,621

4

Ohm’s law 13,600 31,060 19,391 1,943
Opt. based on Ohm’s law 13,500 31,069 19,399 1,815

Murray’s law 8,751 32,800 26,358 1,708
Proposed 13,166 30,500 18,903 1,634

Table 3.3 Resistance values chosen by the different methods.
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Case
number Method Pressure

(mmHg)
Flow rate (cm3/s) (% error w.r.t. measurements)

BCA LCC LSUB DAo

1

Measurements 98.7 15.9 5.98 8.48 73.1
Ohm’s law 113 (15%) 18.3 (15.3%) 6.89 (15%) 9.77 (15%) 84.2 (15%)

Opt. based on Ohm’s law 108 (9.5%) 17.6 (11%) 6.55 (9.5%) 9.28 (9.4%) 85.8 (17%)
Murray’s law 98.8 (0.1%) 19.2 (20%) 6.19 (3.5%) 7.48 (-11%) 86.2 (18%)

Proposed 98.7 (0%) 16.6 (4.4%) 6.08 (1.7%) 8.67 (2.2%) 87.8 (20%)

2

Measurements 105 13.2 6.71 7.47 79.8
Ohm’s law 105 (0%) 13.1 (-0.7%) 6.68 (-0.4%) 7.44 (-0.4%) 79.5 (-0.4%)

Opt. based on Ohm’s law 105 (0%) 13.1 (-0.7%) 6.70 (-0.14%) 7.45 (-0.26%) 79.6 (-0.3%)
Murray’s law 106 (0.9%) 17.0 (29%) 6.28 (6%) 9.30 (24%) 74.2 (-7%)

Proposed 106 (0.9%) 13.2 (0%) 6.71 (0%) 7.47 (0%) 79.5 (-0.4%)

3

Measurements 103 19.0 11.3 10.5 84.8
Ohm’s Law 103 (0%) 19.0 (0%) 11.3 (0%) 10.5 (0%) 84.9 (0.1%)

Opt. based on Ohm’s law 104 (0.65%) 19.1 (0.5%) 11.4 (0.62%) 10.5 (0%) 84.9 (0.1%)
Murray’s law 104 (0.65%) 18.1 (-5%) 9.37 (-17%) 7.22 (-31%) 91.2 (7%)

Proposed 103 (0%) 19.0 (0%) 11.3 (0%) 10.5 (0%) 85.0 (0.2%)

4

Measurements 100 9.87 4.32 6.92 69.1
Ohm’s law 115 (15%) 11.3 (14%) 4.94 (14%) 7.91 (14%) 78.9 (14%)

Opt. based on Ohm’s law 109 (9%) 10.8 (9%) 4.68 (8.3%) 7.49 (8.2%) 80.1 (16%)
Murray’s law 101 (1%) 15.3 (55%) 4.09 (-5%) 5.09 (-26%) 78.6 (13.7%)

Proposed 100 (0%) 10.1 (2.6%) 4.37 (1.1%) 7.04 (1.7%) 81.5 (18%)

Table 3.4 Comparison of pressure and flow rates for Stokes simulations with boundary conditions obtained with the different
methods.
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Case
number

αp, αBCA,
αOUT

αLCC ,
αLSUB

Pressure
(mmHg)

Flow rate (cm3/s)
BCA LCC LSUB DAo

3 1 1 103 19.0 11.3 10.5 85.0
1 50 103 19.0 11.3 10.5 85.0

4 1 1 100 10.1 4.37 7.04 81.5
1 50 100 10.1 4.29 6.87 81.8

Table 3.5 Comparison of pressure and flow rates for Stokes simulations obtained with
the proposed method, using different values for the weights.

To verify that the choice of α’s does not influence the result of the optimiza-
tion process, we solved the optimal control problem with different values of the
weights αi associated to LCC and LSUB. Results are reported in Table 3.5.
For case 3, different values of α result in the same resistance values estimated
by optimal control, whereas, for case 4, higher weights associated to LCC and
LSUB led to slightly more accurate flow rates in the corresponding branches
at the expense of increasing the distance from flow rate measurements for the
DAo branch. These results confirms that the optimization problem is stable
and robust with respect to the choice of the weights, which, in the general case,
do not need to be tuned and can be safely imposed equal to 1. However, in
some specific cases, they can be used by the expert user to distribute the error
in different ways over the various inlets and outlets of the geometry.

3.4.4 Considering inlet flow rate as a control parameter:
extended optimal control formulation

In presence of a large violation of mass conservation, the presented approach
compensates for the inaccuracy in the data by adjusting the outlet boundary
conditions. This means that the inconsistencies in the measurements are
resolved entirely at the outlets, while the measurement imposed at the inlet is
considered deterministic. It would be desirable, instead, to gain some flexibility
in the assimilation of the inlet flow, which is equally affected by uncertainty. In
this case, we propose a modification of the approach presented in Section 3.3,
which estimates both the inlet and outlet BCs by means of an additional control
at the inlet Dirichlet boundary condition. In particular, the velocity at the
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inlet in (3.40) is expressed as

v = uin · vin on Γin, (3.54)

where uin is an additional scalar control variable and vin is the inlet velocity
profile, with average value equal to the one measured with 4D-Flow MRI. By
choosing the optimal value for uin, the optimal control problem will be able to
change the inlet flow rate to better assimilate the available data. This obviously
requires a slight modification of the cost functional, with an additional term
for assimilating the flow rate Qin at the inlet Γin:

J(v, p) = αp

2 ·
∫

Γp
||p− pd||2dΓp∫
Γp

||pd||2dΓp

+
imax∑
i=1

αi

2 ·

[∫
Γi

v · ndΓi −Qi

]2
Q2

i

+ αin

2 ·

[∫
Γin

v · ndΓin −Qin

]2
Q2

in

.

(3.55)

Moreover, the Dirichlet control requires weakly imposing the inlet condition by
means of a Lagrange multiplier, thus increasing the final size of the system of
equations (3.45a)-(3.46). In table 3.6 we report the results with this alternative
formulation for cases 1 and 4, which had the largest net flow. As expected,
acting on all boundary conditions allows to better manage the presence of a
net flow, leading to lower differences between measured and simulated flow
rates. As already mentioned, the additional control leads to an increase in the
dimensions of the problem, and consequently larger computational cost (an
average of 10 minutes of wall clock CPU time, running on 24 Lenovo SD530
nodes, each with 40 Intel "Skylake" cores and 202 GB RAM).

Case
number Method Pressure

(mmHg)
Flow rate (cm3/s) (% error w.r.t. measurements)

Inlet BCA LCC LSUB DAo

1 Measurements 98.7 119.1 15.9 5.98 8.48 73.1
Proposed 98.7 (0%) 107.9 (-9%) 16.1 (1.2%) 6.01 (0.5%) 8.53 (0.6%) 77.3 (5.7%)

4 Measurements 100 103.0 9.87 4.32 6.92 69.1
Proposed 100 (0%) 94.3 (-8%) 9.95 (0.8%) 4.33 (0.23%) 6.96 (0.6%) 73.0 (6%)

Table 3.6 Comparison of measurements and pressure and flow rates for Stokes
simulations obtained with the extended optimal control formulation, which controls
both the inlet and the outlets boundary conditions.
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3.4.5 Unsteady Navier-Stokes simulations

Despite the use of steady Stokes equations in the optimal control framework,
an accurate representation of blood flow in the aorta is generally obtained
through unsteady Navier-Stokes simulations, which provide a more realistic
and accurate time evolution of blood flow. As a further analysis, we used the
resistance values Ri reported in Table 3.3 as outlet boundary conditions of high-
fidelity unsteady Navier-Stokes simulations, performed using SimVascular [26].
There are two main motivations behind this analysis. First, it verifies that the
resistance values estimated with a steady linear Stokes model are still valid
in a non-linear, unsteady scenario. Second, it allows to analyze the impact
that boundary conditions obtained with different estimation techniques have
on wall shear stress-related indicators, which are clinically relevant but can
only be computed on time-dependent simulations. For unsteady Navier-Stokes
simulations, the most common type of lumped outlet boundary condition is
the three-element Windkessel model [111] represented in Fig. 3.4, right panel.
Referring to Fig. 3.4, each resistance Ri previously estimated was split into
a proximal one, Rp,i = 0.09Ri, and a distal one, Rd,i = 0.91Ri, as suggested
by Kim et al [31]. For the capacitance, a total value of 0.001 cm5/dyn was
assumed [151], which was then split among the four outlets proportionally to
their area. The dynamic viscosity was set to ν = 0.04 dynes/cm2s, a rigid wall
model was assumed and a plug profile was imposed at the inlet. The inlet
flow rate waveform was the one extracted from 4D-Flow MRI. The time-step
value for the transient simulations was set to 0.5 ms, and 5 cardiac cycles were
simulated to reach periodic convergence. The results reported here refer to the
last cardiac cycle. Each simulation required an average of 8 hours (clock wall
CPU time), running on 4 Lenovo SD530 nodes, each with 40 Intel "Skylake"
cores and 202 GB RAM.

Figure 3.7 reports the velocity streamlines and pressure distribution for
case 3 at three different time instants along the cardiac cycle. A comparison
of pressure and outlet flow rates obtained with Navier-Stokes simulations
using outlet boundary conditions estimated with the three different techniques
introduced previously is reported in Fig. 3.8. The histograms represent, for
each outlet, the relative difference of the average flow rate between the 4D-Flow
measurements and the corresponding CFD result, with BCs estimated using
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Fig. 3.7 Velocity streamlines (top row) and pressure distributions (bottom row) for
case 3 at three different time instants. The time points T1 (mid-systolic acceleration,
left column), T2 (peak systole, middle column) and T3 (diastole, right column) are
defined along a flow waveform shown on the left.

Murray’s law, the optimized version of Ohm’s law, and the proposed method.
Also, for these simulations, the inlet flow was imposed using a plug profile.
As expected, the errors of the obtained flows with respect to the measured
ones increased when moving from a Stokes model to a Navier-Stokes one,
mostly due to the non-linearity and time-dependency introduced by the latter.
Nevertheless, when moving to Navier-Stokes simulations we can observe similar
trends to those observed for the Stokes experiments and reported in Table 3.4.
In particular, both Ohm’s law and the proposed method provide closer results to
the measured pressure and flow rates, while Murray’s law remains the method
providing the largest deviations from measured data. With the exception of
case 3, optimal control is still the method which best replicates measured flow
rates. These results show that the BCs estimated with a linear, steady Stokes
model prove to be a good choice when moving to high-fidelity Navier-Stokes
simulations, thus supporting the approach of estimating BCs on a linearised
Stokes model.

Figure 3.9 reports a comparison between time-dependent flow rates extracted
from 4D-Flow MRI and those obtained from time-dependent simulations with
boundary conditions estimated with optimal control. Even if with the pro-
posed estimation method only the average flow rates are assimilated, the
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Fig. 3.8 Comparison of pressure and outlet flow rates for time-dependent Navier-
Stokes simulations. The histograms report the relative difference with respect to the
corresponding pressure and 4D-Flow MRI flow rate measurements.

time-dependent waveforms are still recovered with a good degree of accuracy.
For the sake of space, only results for case 4 are reported, but the results
obtained for the other cases are comparable.

As anticipated earlier, the second goal of this analysis was the assessment of
the influence that the adopted BCs estimation technique may have on clinically
relevant parameters. In order to do so, we carried out an additional analysis on
two relevant haemodynamic indicators, namely, TAWSS and OSI, calculated
from Navier-Stokes simulation results using the equations reported by Martin
et al. [154]. For the sake of space, we report the analysis for case 3 and case
4, but similar results were obtained for the other cases. Figures 3.14 and 3.16
show, in the left column, the TAWSS obtained for the two cases with three
different techniques (optimal control, Murray’s law, and optimization based on
Ohm’s law), and in the right column the local relative difference with respect
to optimal control results. The same analysis was repeated for the OSI in
Figures 3.15 and 3.17. For each point of the surface anatomy, the local relative
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Fig. 3.9 Comparison of 4D-Flow MRI flow waveforms and simulated flow waveforms
with boundary conditions estimated with the proposed optimal control approach for
case 4.

difference was computed as:

εr,T AW SS = |TAWSS − TAWSSocp|
max(TAWSSocp) (3.56)

εr,OSI = |OSI − OSIocp|
max(OSIocp) (3.57)

For case 3, the difference in the TAWSS reaches a maximum relative difference
of 24.8%, while the discrepancy in the OSI value reaches 55%. The largest
differences for TAWSS occur in the Murray’s law case, in the LSUB, which is
also where the estimated resistance values differ the most (46%, as reported in
Table 3.3). For OSI, instead, the region characterized by the largest difference is
in the aorta, just after the LSUB. Similar results are obtained for case 4, where
the difference in the TAWSS reaches a maximum of 47.2%, and 74% for OSI.
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It is worth noticing that, outside some specific ‘hot-spots’, the relative error is
generally lower, around 10%. This analysis reveals that the values of resistive
boundary conditions have a non-negligible impact on haemodynamic indicators.
In particular, given the relevance of TAWSS and OSI in a clinical context, the
adoption of different techniques for BCs estimation could possibly affect the
observations done by medical doctors, reaffirming the importance of estimating
boundary conditions in an automated, reliable, and operator-independent way.

Fig. 3.10 Left: Time-averaged wall shear stress results obtained with the three
different BC estimation techniques for case 1. Right: local absolute differences in
TAWSS as compared to results obtained with optimal control. Anterior and posterior
views of the anatomy are provided.
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Fig. 3.11 Left: Oscillatory Shear Index results obtained with the three different
BC estimation techniques for case 1. Right: local absolute differences in OSI as
compared to results obtained with optimal control. Anterior and posterior views of
the anatomy are provided.



3.4 Numerical results 79

Fig. 3.12 Left: Time-averaged wall shear stress results obtained with the three
different BC estimation techniques for case 2. Right: local absolute differences in
TAWSS as compared to results obtained with optimal control. Anterior and posterior
views of the anatomy are provided.
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Fig. 3.13 Left: Oscillatory Shear Index results obtained with the three different
BC estimation techniques for case 2. Right: local absolute differences in OSI as
compared to results obtained with optimal control. Anterior and posterior views of
the anatomy are provided.
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Fig. 3.14 Left: Time-averaged wall shear stress results obtained with the three
different BC estimation techniques for case 3. Right: local absolute differences in
TAWSS as compared to results obtained with optimal control. Anterior and posterior
views of the anatomy are provided.
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Fig. 3.15 Left: Oscillatory Shear Index results obtained with the three different
BC estimation techniques for case 3. Right: local absolute differences in OSI as
compared to results obtained with optimal control. Anterior and posterior views of
the anatomy are provided.
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Fig. 3.16 Left: Time-averaged wall shear stress results obtained with the three
different BC estimation techniques for case 4. Right: local absolute differences in
TAWSS as compared to results obtained with optimal control. Anterior and posterior
views of the anatomy are provided.
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Fig. 3.17 Left: Oscillatory Shear Index results obtained with the three different
BC estimation techniques for case 4. Right: local absolute differences in OSI as
compared to results obtained with optimal control. Anterior and posterior views of
the anatomy are provided.
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3.5 Discussion and Limitations

The optimal control-based approach for boundary condition estimation that we
proposed in this chapter has a number of advantages. The first one resides in
the rigorous and general mathematical framework which characterizes optimal
control problems. The proposed approach, in fact, can be applied to any region
and vessel of the cardiovascular system, as long as patient-specific data are avail-
able. Again, thanks to the mathematical structure of optimal control, the user
is left with a great flexibility in terms of the number and type of measurements
to assimilate. This is particularly appealing in cardiovascular applications,
where in-vivo measurements are often hard to obtain, and potentially noisy,
scarce or defective. In this sense, the proposed method is compatible with any
method providing flow rate information at the inlets and outlets of the region
of interest, be it 4D-Flow MRI, or PC-MRI, or any other equivalent technique.
Moreover, in absence of some measurements, a combination of patient-specific
and literature data could also be used. Another advantage of the proposed for-
mulation is that data are assimilated in a least-square sense [124], reducing the
influence of stochastic measurement uncertainty on the solution. Generally, the
proposed optimal control method presents all the advantages of a model-based
approach, which we discussed at the beginning of this Chapter. The possibility
to estimate boundary conditions not only from a set of data, but also from a
mathematical description of the underlying physics, allows to obtain estimates
that are patient-specific, yet physically consistent.

On the other side, the proposed method has some limitations. The first
limitation comes from the use of steady, linear Stokes equations inside the
optimal control problem. As already stated earlier in the chapter, this choice
ensures a reduced computational cost, which for optimal control problems
is generally really high. At the moment, the solution of a time-dependent
optimal control problem on a 3D anatomy is computationally intractable, and
Navier-Stokes equations may not converge to a steady-state solution for a
complex flow like the one in the aortic arch. If on one side the use of steady
Stokes equations reduces the computational cost and simulation time, on the
other side steady Stokes equations are not the best choice to get a realistic
representation of the flow in the aorta. For this reason, if the optimal control
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framework is used to estimate the outlet resistances, for realistic pressure and
velocity distributions a subsequent time-dependent simulation is still necessary.

The use of a steady-state formulation is responsible also of another lim-
itation of the framework, which allows to estimate only resistive boundary
conditions. More complex lumped models, in fact, usually include inductances
and capacitances which, being dynamic elements with an inherently time-
dependent behavior, would require a time-dependent Navier-Stokes problem for
their estimation. For this reason, if one wanted to use more advanced BCs, such
as a complete Windkessel model, it would be necessary to adopt capacitance
values and rules for resistance splitting taken from literature.

Lastly, the proposed method can only assimilate average flow rates, and not
time-dependent flow waveforms. However, the results presented in Section 3.4,
in particular the simulated waveforms reported in Figure 3.9, prove that, when
the resistance and capacitance values determined with the proposed method
are used in an unsteady simulation, the obtained pressure and flow rates values
seem to be in sufficient agreement with the in-vivo measurements used for BC
estimation.

3.6 Conclusion and future perspectives

In this chapter, we proposed a framework based on optimal control for the
automated estimation of resistance-type boundary conditions, while assimilating
in-vivo pressure and flow rate measurements. We tested the proposed method on
four patient anatomies, revealing the validity of the presented optimal control-
based technique for assimilating 4D-MRI data. Specifically, when compared
to two other common techniques, namely, Murray’s law and Ohm’s law, the
proposed framework performed consistently better. Moreover, an additional
analysis revealed the influence that the different estimation methods have on
clinically relevant parameters, such as wall shear stress and oscillatory shear
index, confirming the need for automated methods for BC estimation, such
as those proposed in this thesis, which eliminate the expensive manual tuning
phase, together with intra- and inter-operator variability. In this case, the
proposed method represents a further step in the incorporation of optimal
control into a framework that can be used by the medical community, providing
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a reliable, automated and robust parameter estimation technique. The field is
promising and opens important perspectives for mathematical modelling and
numerical simulation in cardiovascular flows.

There are a number of extensions of the proposed framework which could
be worth further investigation. First, it could be applied to other clinically
relevant scenarios, such as coronary artery bypass grafts, where the scarcity
and noise of available data limit the applicability of other estimation techniques.
Furthermore, the current framework estimates only resistive-type quantities,
while the capacitance values are still chosen based on generic information avail-
able in the literature, usually combined with a manual tuning process. Future
works could be directed toward the automated tuning of capacitance values
as well. Since the main obstacle in this case is the prohibitive computational
cost of time-dependent optimal control, this could be significantly reduced by
adopting a reduced one-dimensional model of the anatomy of interest.

In conclusion, the estimation solution proposed in this chapter clarifies the
advantages and drawbacks of adopting a data and model-driven approach. If
on one side the presence of a mathematical description of the system, in the
form of PDE, facilitates the determination of physically meaningful boundary
conditions, on the other side it makes the estimation process computationally
expensive. In the next chapter, an alternative approach based on a purely
data-driven method will be instead presented, underlining both benefits and
disadvantages with respect to the approach presented in the current chapter.



Chapter 4

Time-Domain Vector Fitting for
boundary conditions estimation

In this chapter, we will present a novel approach for boundary conditions
estimation based on the Time-Domain Vector Fitting algorithm. Differently
from the optimal control framework presented in Chapter 3, here the approach
is completely data-driven, meaning that the choice for boundary conditions pa-
rameters is based solely on a set of measurements, without using any description
of the physical system underneath. In other words, the cardiovascular system
is treated like a black-box, characterized only through input-output responses,
such as flow rate and pressure at a given location. The estimation approach,
in this case, obviously differs from the one presented in the previous chapter.
Before diving into the details of the proposed Vector Fitting framework, it
may be useful to stress why a data-driven approach is interesting in the first
place, and what are its advantages with respect to other possible approaches.
First of all, a data-driven approach is generally faster than a model driven
one, which instead requires the (expensive) solution of a mathematical model.
At the same time, data driven methods tend to be easier to implement and
integrate in pre-existing solvers. These advantages are particularly appealing
when considering the end goal of developing computational tools for the clinical
community.

In the work presented in this chapter, the technique adopted is Vector
Fitting [155, 79], an algorithm originally developed and used by the electrical
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engineering community, where it is commonly used to model the high-speed
signal propagation in chips, packages and printed circuit boards [156]. In this
field, Vector Fitting has quickly become one of the most popular techniques for
reduced order modeling, mainly due to its efficiency (it converges in a small
number of iterations), robustness, and ease of implementation.

In this chapter, we will show how the time-domain formulation of Vector
Fitting can be successfully applied to cardiovascular modeling for estimating
complex boundary conditions. In particular, the adoption of a data-driven
approach allows to estimate lumped boundary conditions more complex than a
single resistance, which was one of the main limitations of the optimal control
approach presented in Chapter 3. At the same time, the estimation process itself
is fast and inexpensive, requiring only a few seconds on a personal computer.

In the rest of the chapter, we will first provide some background in Sec. 4.1,
then we will present the methodological aspects of the proposed approach in
Sec. 4.2. In Sec. 4.3, the numerical results of experiments conducted on a
one-dimensional model of the entire cardiovascular system will be provided,
together with a discussion in Sec. 4.4. Finally, Sec. 4.5 will draw the conclusions
on the proposed estimation framework.

4.1 Background and related work

As already mentioned throughout this thesis, different types of outlet boundary
conditions have been proposed in the literature. The simplest choice consists
in prescribing specific values for pressure or flow rates, by means of Dirichlet
or Neumann boundary conditions. This choice, despite being the simplest to
implement, is not realistic. It is better, instead, to define BCs that describe
the relationship between pressure and flow rate, instead of defining one of the
two quantities. This can be done either by prescribing a constant or varying
resistance, which specifies a linear algebraic relation between pressure and
flow rate, or by imposing a differential relation between pressure and flow
rate by means of lumped parameter networks. The latter turns out to be the
best approach, providing a relatively accurate and realistic representation of
haemodynamics.
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Lumped parameter networks are usually classified according to their order,
which is the lowest possible order of the differential equation relating pressure
and flow rate. Equivalently, this is the number of independent storage (L or
C) elements of the equivalent circuit. In particular, the most common lumped
boundary condition is the three-element Windkessel model (3WK) [157], a
circuit represented in Fig. 4.1. Since the Windkessel model contains only one
capacitor, it is a circuit of order one. Higher order Windkessel models have
also been proposed [38], especially for those regions where the 3WK fails to
accurately represent the flow dynamics, like in the coronary arteries. However,
their application has been limited by the additional number of parameters to
estimate, which increases with the number of elements in the circuit.

Even if the number of parameters in the Windkessel is limited, obtaining
an accurate estimate is not straightforward. The simplest, yet most expensive
approach, consists in choosing each parameter by means of an iterative tuning
process, after having identified reasonable ranges for each parameter [118]. More
advanced and automated approaches can be used if both pressure and flow data
are available, and they generally consist in fitting the Windkessel models to
available data. Some significative examples are the simplex search method [157],
and the least-square minimization [69]. A similar approach is proposed in [158],
where the Windkessel resistances are estimated from mean pressure and outflow
measurements at each terminal vessel, while terminal compliances are obtained
by distributing the total peripheral compliance according to the outflow cross-
sectional areas. In [159], instead, the Windkessel parameters are estimated such
that the net resistance and total compliance of the entire system are preserved.
In synthesis, the solutions currently available for the estimation of Windkessel
parameters tend to be empirical, time consuming, and only adequate to estimate
a limited number of parameters. A major consequence is the limited use of
higher order lumped boundary conditions, which, despite being more accurate
and realistic than the three-element Windkessel model [157, 42], require to
estimate a larger number of parameters. Moreover, probably due to their
limited diffusion, the literature lacks a clear and systematic analysis of the
effect that higher order boundary conditions have, the potential improvement
in accuracy they provide, and indications on how to choose the best order.

In this chapter, a novel method for the automated estimation of boundary
conditions of arbitrary order is presented. The proposed approach is based
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on the Time-Domain Vector Fitting algorithm (TDVF), which, starting from
pressure and flow rate samples at the truncation location, where we want to
impose the boundary condition, provides a behavioral model of the downstream
vasculature. The blood flow dynamics, in fact, is approximated by TDVF by
means of differential equations relating pressure and flow rate [77, 78]. When
estimating models of order one, TDVF automatically provides an estimate of
the Windkessel parameters. For higher order models, instead, a black-box model
representation is adopted, meaning that the BC is represented as a differential
relation between pressure and flow rate, without synthesizing the model into
an equivalent circuit. The provided model can be directly used as a boundary
condition to Navier-Stokes equations, and can be easily implemented in CFD
solvers.

The experiments to assess the capability of the proposed approach are
conducted on a 1D model of the entire cardiovascular system, comprising the 55
largest systemic arteries [92]. More in detail, some portions of the system are
truncated and replaced with boundary conditions of increasing order estimated
with Vector Fitting. Experimental results show that the proposed method
is able to estimate boundary conditions that provide accurate pressure and
flow waveforms at the truncation locations. For the estimation of Windkessel
parameters, Vector Fitting is compared to two other methods presented in
the literature, one preserving the net resistance and total compliance of the
original 55-artery system [159], and the other based on the Nelder-Mead simplex
algorithm [150], against which Vector Fitting produces comparable, or better,
results. Moreover, the proposed method is used to estimate boundary conditions
of increasing order, revealing that models of increasing complexity provide
results more accurate than the three-element Windkessel model. We also verify
that TDVF can accurately fit pressure and flow waveforms affected by noise
down to 20 dB of signal-to-noise ratio, and that the estimated terminations are
valid in presence of physiological changes of the input waveforms (e.g., in case
of mental stress [160, 161]).
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Fig. 4.1 Three-element Windkessel model used as outlet boundary condition. The
circuit includes the proximal resistance R1, the distal resistance R2, the capacitance
C and the distal pressure Pd.

4.2 Methodology

In this section, the proposed boundary conditions estimation framework based
on Time-Domain Vector Fitting will be presented. A reference application
for this type of framework is displayed in Fig. 4.2, where the BCs estimation
process allows to move from the model on the left, representing the entire
systemic arterial system, to its reduced version on the right, where parts of
the vasculature have been substituted by lumped boundary conditions. In
particular, the latter correspond to Windkessel models in Fig. 4.2, but we will
see how the proposed method can estimate also higher order lumped boundary
conditions.

This section is divided into four main parts. In Sec. 4.2.1, we will start
by introducing the Windkessel model, and how it can be described by means
of the well-known Laplace domain formulation. This is used in Sec. 4.2.2 to
obtain a general representation for boundary conditions of arbitrary order. This
generalization is necessary for the following step, presented in Sec. 4.2.3, which
is the actual estimation of the BC parameters based on Time-Domain Vector
Fitting. Lastly, in Sec. 4.2.4 we show how higher order boundary conditions
can be implemented in CFD solvers.

4.2.1 The three-element Windkessel model

The standard three-element Windkessel model is displayed in Fig. 4.1. It
includes a capacitor C, to model the storage properties of arteries, the resistor
R1, representing the proximal resistance of the arterial network, and the resistor
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Fig. 4.2 Left: schematic representation of the complete 55-artery network. Right:
representation of the reduced model after boundary conditions estimation with Vector
Fitting. The arterial segments are reduced from 55 to 21, and the truncated parts of
the system (in grey) are substituted with the estimated boundary conditions. These
could be Windkessel models, as depicted here, or black-box models.
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Fig. 4.3 Equivalent Windkessel model, obtained by relocating the distal pressure
contribution.
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Fig. 4.4 Approximate Windkessel model.
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Fig. 4.5 Proposed high-order boundary condition model.

R2, to model the resistance of the distal circulation. Moreover, a distal pressure
contribution Pd is also generally defined, in order to represent the pressure at
which flow to the microcirculation ceases [92].

In the Windkessel model, the pressure p(t) is related to the flow rate q(t)
by means of the differential equation

q(t)
(

1 + R1

R2

)
+ CR1

dq(t)
dt

= p(t) − Pd

R2
+ C

dp(t)
dt

, (4.1)

whose derivation from the equivalent circuit of Fig. 4.1 can be easily obtained
by exploiting the equivalence between fluid dynamics (pressure, flow rate) and
electrical quantities (voltage, current). Estimating the Windkessel boundary
condition parameters consists in determining the optimal values for R1, R2,
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C and Pd in (4.1) that best approximate the time domain evolution of the
pressure and flow rate at the outlet.

Laplace-domain formulation

For the upcoming derivations, it is useful to move from the time domain to
the Laplace domain, by means of the well-known Laplace transform [162].
The latter is a widely used mathematical tool that converts linear differential
equations into symbolic algebraic equations, thus simplifying both the solution
and the interpretation of differential models. Let us denote with s the Laplace
variable (representing the time derivative operator d/dt), and define the (one-
sided) Laplace transforms1 of p(t) and q(t) as P (s) and Q(s), respectively.
Assuming vanishing initial conditions at t = 0, the Laplace transform of (4.1)
is

Q(s)
(

1 + R1

R2

)
+ sCR1Q(s) = P (s)

R2
− Pd

sR2
+ sCP (s), (4.3)

which is an algebraic relation between pressure and flow rate, parameterized
by the constants R1, R2, C, and Pd. The distal pressure Pd can also be seen as
an extra (constant) input, considering that it is interpreted as a voltage source
in electrical terms (see Fig. 4.1). Equation (4.3) can be rewritten as

P (s) = H(s)Q(s) +Hd(s)Pd

s
, (4.4)

where H(s) and Hd(s) are the two transfer functions2

H(s) = R1 + R2

sR2C + 1 (4.5)

Hd(s) = 1
sR2C + 1 . (4.6)

1The one-sided Laplace transform of x(t) is defined as

L(s) :=
∫ +∞

0−
x(t)e−stdt, (4.2)

where s is a complex variable.
2In a linear system with input q(t) and output p(t), the transfer function is the function

H(s) which relates the Laplace transforms of the input Q(s) and of the output P (s) as
H(s) = P (s)

Q(s) , assuming zero initial conditions.
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Transfer functions are, in fact, mathematical functions modeling the system’s
output (in this case P (s)) for a specific input (here Q(s) and Pd(s)). The
two transfer functions H(s) and Hd(s) are first-order rational functions of the
Laplace variable s, whose order is defined as the degree of the denominator
polynomials. This is coherent with the differential equation (4.1) including
only first-order derivatives.

These transfer functions can be rewritten in a more general form, called the
pole-residue (partial fraction) form, which will be instrumental for the proposed
generalization:

H(s) = c0 + c1

s− a
Hd(s) = b1

s− a
, (4.7)

where the pole a, the residues c1, b1, and the direct coupling constant c0 can
be uniquely related to the Windkessel parameters through

R1 = c0, R2 = −c1

a
, C = 1

c1
, with b1 = −a. (4.8)

4.2.2 Generalization to high order boundary conditions

At this point the goal is to find a proper general form for boundary conditions
of arbitrary order, starting from the 3WK model. In order to do so, some
intermediate steps are necessary, which will be detailed in the following. In
short, first the structure reported in (4.4) is simplified to include a single transfer
function H(s), and then it is extended to its higher order form exploiting again
the pole-residue form.

Relocation of distal pressure contribution

As a first step, we apply Thevenin theorem [163] to the standard Windkessel
circuit of Fig. 4.1, allowing us to move from a circuit with internal sources, to
an equivalent one with a single equivalent source directly connect to the output.
As a result, the circuit of Fig. 4.3 is obtained where, as expected, the original
internal source Pd has been replaced with an equivalent source at the output,
indicated as p̃d(t).
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The equivalence between circuits in Fig. 4.1 and Fig. 4.3 can be established
in the Laplace domain by imposing

P̃d(s) = Hd(s)Pd

s
(4.9)

so that (4.10) can be rewritten as

P (s) = H(s)Q(s) + P̃d(s). (4.10)

At this point, the two circuits in Fig. 4.1 and Fig. 4.3 are equivalent, meaning
that they impose the same relationship between P (s) and Q(s).

Going back to time domain, we can apply the inverse Laplace transform to
the source P̃d(s), obtaining

p̃d(t) = Pd

(
1 − eat

)
θ(t), (4.11)

where θ(t) is the unit step (Heaviside) function and where we made use of
relationships in (4.7) and (4.8). Equation (4.11) shows that the new source
converges exponentially to the asymptotic value Pd after an initial transient,
whose duration is described by the equivalent time constant τ = −1/a = R2C.

Approximation of early-time transient behavior

To obtain a generalized form for lumped BCs, an approximation is required.
Generally, time-domain simulations of cardiovascular models are initialized
to a vanishing initial state for pressure and flow rate. However, the solution
becomes of practical and clinical interest only when a periodic state has been
reached, due to the pulsatile nature of blood flow in the arterial system. In
numerical solvers such a periodic state is reached only after an initial transient,
which is however discarded when interpreting the results of the simulation. Due
to this reason, and reminding that the equivalent source p̃d(t) converges to the
value Pd after an initial time transient, we can safely replace p̃d(t) with Pd in
the circuit of Fig. 4.3, obtaining the new circuit of Fig. 4.4, which gives an
approximation of the original Windkessel model. This is equivalent to imposing
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Fig. 4.6 Pressure signals obtained by exciting the three boundary condition models
in Fig. 4.1 (black line), Fig. 4.3 (red dashed line) and Fig. 4.4 (blue line) with the
same inlet flow excitation signal.

Hd(s) = 1 in (4.10), which takes then the form

P (s) ≈ H(s)Q(s) + Pd

s
. (4.12)

Obviously, introducing an approximation means that the two circuits are no
longer equivalent, but in this case the difference occurs only at early times, when
the solution would be discarded anyway due to the presence of an early-time
transient behavior. After that, the solutions are identical, as it is shown in
Fig. 4.6, where the three models in Fig. 4.1, Fig. 4.3 and Fig. 4.4 have been
excited with the same input flow waveform. As expected, the output pressure
waveforms of models in Fig. 4.1 and Fig. 4.3 are identical, confirming the full
equivalence of the two models, while the pressure waveform of model in Fig. 4.4
differs only during the initial transient, reaching full equivalence at the periodic
state. In conclusion, as long as only the periodic state is required, the models
considered up to now can be considered equivalent from a numerical standpoint.
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Generalization to high order

With the approximation introduced just now, the generalization of the Wind-
kessel model to higher order boundary conditions becomes straightforward. It
is sufficient, in fact, to rewrite the transfer function H(s) in its pole-residue
form as a higher order rational function, obtaining

H(s) = c0 +
n∑

i=1

ci

s− ai

. (4.13)

Thanks to this definition, the proposed higher order BC model can be seen as
a black-box representation of the differential relation between outlet pressure
and flow variables, characterized by richer dynamics and generally allowing for
more accurate numerical results, as it will be demonstrated by the numerical
results in Sec. 4.3. It is worth noticing that, adopting this generalized model,
the interpretation of (4.12) in terms of an equivalent circuit is partially lost,
but it is always possible to perform the synthesis of an equivalent circuit thanks
to well known circuit synthesis techniques, which are detailed in [79]. On the
other side, the use of a general formula such as (4.13) makes it straightforward
to implement it in CFD solvers, as will be explained in Sec. 4.2.4.

Lastly, it is interesting to give an interpretation of the proposed approxima-
tion. Noticing the presence of s at the denominator associated to Pd in (4.12),
and knowing that the inverse Laplace transform of 1/s is L−1{1/s} = θ(t),
we can conclude that the distal pressure term in (4.12) can be interpreted as
a time-domain source p̃d(t) = Pd θ(t). Therefore, the proposed higher order
model assumes that the distal pressure Pd is applied instantaneously at t = 0,
rather than through an exponential transient (4.11), hence the difference during
the early time transient.

4.2.3 Time-Domain Vector Fitting for boundary condi-
tions estimation

We now present how, starting from pressure p(t) and flow rate q(t) waveforms
at some vessel cross section, the parameters of the corresponding boundary
condition formulated as in (4.12)-(4.13) can be automatically estimated. As
previously said, the estimation assumes that both pressure and flow rate
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waveforms are available at a given vessel output

p(tk), q(tk), k = 0, . . . , K, t0 = 0, (4.14)

where the sampling rate, defined as ∆t = tk+1 − tk, is assumed to be constant,
and both waveforms are null at initial time p(t0) = q(t0) = 0. In Sec. 4.2.3 the
method will be generalized to non-vanishing initial conditions, which is often
the case when dealing with in-vivo measurements.

Model parameterization

The following model structure is assumed

H(s) = N(s)
D(s) , (4.15)

meaning that the transfer function is expressed as the ratio of two rational
functions, N(s) and D(s), having the form

N(s) = c0 +
n∑

i=1

ci

s− ai

, (4.16)

D(s) = d0 +
n∑

i=1

di

s− ai

. (4.17)

Thus, the two functions (4.16) and (4.17) share the same set of common
poles {ai}, while the residues are denoted as {ci} and {di}, respectively. By
substituting (4.16) and (4.17) in (4.15) and doing some basic algebraic manip-
ulations, it is possible to show that the common denominators containing the
poles {ai} eventually cancel out: thus, they are only instrumental variables
which will be used in the identification algorithm. The general expression

H(s) =
c0 +

n∑
i=1

ci

s− ai

d0 +
n∑

i=1

di

s− ai

(4.18)

provides a parameterization of all proper rational functions with order n.
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The VF iteration

For simplicity, let us start by assuming that the poles {ai} in (4.18) are known,
such that the only unknowns in H(s) are the numerator residues {ci} and
the denominator ones {di}. These unknowns can be determined by enforcing
(4.12) as a fitting condition, starting from the available pressure and flow rate
waveforms. Thus, we can rewrite (4.12) using (4.15)

P (s) ≈ N(s)
D(s)Q(s) + Pd

s
D(s), (4.19)

and then, multiplying both sides by D(s) we obtain

D(s)P (s) ≈ N(s)Q(s) + Pd

s
D(s), (4.20)

At this point we can substitute (4.16) and (4.17) into the fitting condition (4.20),
obtaining

(
d0 +

n∑
i=1

di

s− ai

)
P (s) ≈

(
c0 +

n∑
i=1

ci

s− ai

)
Q(s)+

+ Pd

(
d0

s
+

n∑
i=1

di

s · (s− ai)

)
. (4.21)

Since the estimation procedure is based on the use of time-domain mea-
surements, the expression (4.21) is converted into time domain by applying the
inverse Laplace transform, which leads to

d0 · p(t) +
n∑

i=1
di · pi(t) ≈ c0 · q(t) +

n∑
i=1

ci · qi(t)+ (4.22)

+ Pd d0 · θ(t) +
n∑

i=1
Pd di · θi(t).

The notation qi(t), pi(t) and θi(t) stands for, respectively, the time convolutions

qi(t) =
∫ t

0
eai(t−τ)q(τ)dτ (4.23)

pi(t) =
∫ t

0
eai(t−τ)p(τ)dτ (4.24)
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θi(t) =
∫ t

0
eai(t−τ)θ(τ)dτ. (4.25)

We recall, in fact, that the inverse Laplace transform of a product is the
convolution of the individual inverse transforms, which for a generic signal z(t)
leads to

zi(t) = L−1{Zi(s)} = L−1
{

1
s− ai

}
∗ z(t) =

∫ t

0
eai(t−τ)z(τ)dτ (4.26)

We then introduce a new set of auxiliary variables bi = Pd di, in order to make
the approximation problem linear in the decision variable. Next, we write
the fitting condition (4.22) for all discrete time samples t = tk, leading to a
homogeneous linear least squares problem in the unknowns {ci}, {di}, {bi},
which can be written as

Ax ≈ 0, A =
[
−Φ Γ Θ

]
, x =


d

c

b

 (4.27)

where the vectors and matrices take the form

Φ =


p(t0) p1(t0) . . . pn(t0)

... ... . . . ...
p(tK) p1(tK) . . . pn(tK)

 , d =


d0

d1
...
dn

 (4.28)

Γ =


q(t0) q1(t0) . . . qn(t0)

... ... . . . ...
q(tK) q1(tK) . . . qn(tK)

 , c =


c0

c1
...
cn

 (4.29)

Θ =


θ(t0) θ1(t0) . . . θn(t0)

... ... . . . ...
θ(tK) θ1(tK) . . . θn(tK)

 , b =


b0

b1
...
bn

 . (4.30)

The least squares problem in (4.27) is solved enforcing x ̸= 0, so that the
trivial null solution is discarded. In practice, this can be obtained by setting x
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as the right singular vector of A, which corresponds to the least singular value,
or by adding a linear equality constraint as in [155].

Pole relocation

In the process detailed above, the estimated unknowns were the residues {ci}
and {di}, while the poles {ai} were considered as given, known quantities. In the
following, we lift this assumption, and we add the poles to the set of unknowns
to be determined. In particular, we introduce a so-called pole relocation process,
through which the estimates for poles of H(s), so the coefficients {ai}, are
iteratively refined [164, 79].

Since the pole relocation is an iterative process, we define ν as the iteration
index. At the first iteration ν = 0, the poles {a0

i } are randomly initialized to a
set of values in the expected frequency band of the model [164]. Then, at each
iteration ν, the set of current poles {aν

i } is used to build and solve the least
squares problem defined in (4.27).

Let us write the model denominator as

Dν(s) = dν
0 +

n∑
i=1

dν
i

s− aν
i

, (4.31)

where the coefficients {dν
i } result from the solution of the least squares problem.

Since, due to simple algebraic manipulations, in the final expression of the
transfer function H(s) the denominators of both N(s) and D(s) cancel out,
the zeros of D(s) become the poles of H(s). Then, we can define the poles of
the iteration ν as the zeros of Dν(s)

{aν+1} = {ai : Dν(ai) = 0}. (4.32)

This is equivalent to solving a small eigenvalue problem [79, 164]. As a first
step, we derive the state-space form associated to the transfer function (4.31)ẋ = A+ 1u

y = d⊺x+ d0u
(4.33)
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where, omitting iteration index ν

A = diag{a1, ..., an}, 1 = (1, .., 1)⊺, d⊺ = (d1, ..., dn). (4.34)

Since we are interested in finding the zeros of (4.31), this is equivalent to finding
the poles of 1/D(s), whose state-space system reads [79]ẋ = (A− 1d−1

0 d⊺)x+ 1d−1
0 y

u = −d−1
0 d⊺x+ d−1

0 y
(4.35)

The poles correspond to the eigenvalues of the state-space matrix

eig
(
A− 1d−1

0 d⊺
)
. (4.36)

At the iteration ν, poles are computed as

{aν+1
i } = eig

(
Aν − 1(dν

0)−1(dν)⊺
)
. (4.37)

In summary, the proposed algorithm involves solving (4.27) and redefining
poles through (4.37) for ν = 0, 1, . . . , until the set {aν

i } converges. Under this
convergence condition, poles and zeros of Dν(s) coincide so that Dν(s) = d0,
and the model (4.15) reduces to the numerator N ν(s), characterized by poles
{aν

i } and residues {dν
i }. This algorithm constitutes an extension of the well-

known TDVF scheme, suitably modified to account for the presence of the
(unknown) distal pressure term, which produces the matrix block Ψ and the
additional unknowns {bi} in (4.27).

Estimation of the distal pressure

Once the final transfer function H(s) has been determined through the pole
relocation process detailed above, the distal pressure Pd can be estimated. This
estimation can be done in two alternative ways, which are presented in the
following.
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From least squares variables Considering the auxiliary variables defined
as bi = Pd di, and noting that both unknowns {bi} and {di} are determined
through the solution of the least squares problem (4.27) as vectors b and d, the
value of Pd can be determined as a least squares solution itself, defining the
problem

dPd ≈ b → Pd = 1
∥d∥2 d

T · b. (4.38)

As periodic state bias In this case, let us remind that, from (4.12), we can
say that

Pd

s
≈ P (s) −H(s)Q(s). (4.39)

As already explained in Sec. 4.2.2, this approximation is exact at periodic state,
after the transient of Pd has extinguished. Let as suppose that the periodic
state holds for t ≥ tc; then, we can estimate Pd as the constant value that best
fits the approximation

Pd ≈ p(t) − pm(t), t ≥ tc (4.40)

where
pm(t) = L−1{H(s)Q(s)} (4.41)

represents the output in absence of the distal pressure term. The optimal value
for Pd is then simply computed as the average

Pd = 1
K − c+ 1

K∑
k=c

[p(tk) − pm(tk)] . (4.42)

For order equal to 1, the first approach provides the correct estimate of Pd. For
orders higher than 1, instead, the second approach is preferred.

Estimation from in vivo measurements

The presented estimation process is based on the assumption that both pressure
and flow waveforms have vanishing initial conditions. However, this assumption
is not realistic when the estimation is based on in vivo or generally real-time
measurements, where data recording starts at some time instant t0, at which
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q(t0) ̸= 0 and p(t0) ̸= 0. In this more realistic case, the dynamic evolution
of the pressure waveform for t ≥ t0 includes not only the zero-state response
analyzed in the previous sections, but also some contribution from the zero-input
(natural) response. The latter arises from the nonvanishing initial conditions
on the internal system states of the underlying dynamical system, which are
unknown. An extension of the proposed algorithm is now presented to handle
this more realistic case.

Let us first generalize the relation between pressure P (s) and flow rate Q(s)
at the outlet as

P (s) ≈ H(s)Q(s) +G(s) + Pd

s
, (4.43)

where G(s) represents the zero-input natural response contribution. The latter
can be parameterized as

G(s) = B(s)
s ·D(s) , B(s) = r0 +

n∑
i=1

ri

s− ai

(4.44)

based on the same starting poles {ai} and using the same denominator as
in (4.15). This choice is motivated by the well-known fact that both input-
output and natural response contributions of any linear time-invariant system
share the same set of poles [79].

Substituting these definition in (4.43), we obtain

(
d0 +

n∑
i=1

di

s− ai

)
P (s) ≈

(
c0 +

n∑
i=1

ci

s− ai

)
Q(s)+

+ Pd

(
d0

s
+

n∑
i=1

di

s · (s− ai)

)
+ r0

s
+

n∑
i=1

ri

s · (s− ai)
, (4.45)

which replaces the original fitting condition (4.21). The inverse Laplace trans-
form is then applied to find the time domain equivalent

d0 · p(t)+
n∑

i=1
di · pi(t) ≈ c0 · q(t) +

n∑
i=1

ci · qi(t)+

+ (Pdd0 + r0)︸ ︷︷ ︸
b0

·θ(t) +
n∑

i=1
(Pddi + ri)︸ ︷︷ ︸

bi

·θi(t), (4.46)
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where the common terms have also been collected. When compared to (4.22),
this expression differs only in the way the auxiliary variables bi are defined.
However, these are nonetheless disregarded after solving the least squares
problem (4.27). For what concerns the estimation of the coefficients {ci} and
{di}, the two problems (4.22) and (4.46) are identical. Therefore, the proposed
estimation algorithm can be applied without any modification to the case of
non vanishing initial conditions.

4.2.4 Implementation of high-order boundary conditions

Once the estimation process is completed, the obtained model can be used
as a boundary condition in cardiovascular simulations. We already showed
in Sec. 4.2.1 how boundary conditions of order 1 can be represented as a
three-element Windkessel model, and how it is possible to obtain Windkessel
parameters from the general pole-residue form by means of (4.8).

For higher order BCs, different approaches can be adopted for their imple-
mentation into CFD solvers. One approach is to transform the final model
expression (4.22) into its equivalent circuit by means of a synthesis process.
The most common techniques for equivalent circuit synthesis can be found
in [79, 165].

An alternative approach consists in using directly the discretized differential
equations obtained with VF as boundary conditions, without resorting to their
equivalent circuit realization. Since the poles identified by VF could be either
real or complex, the general transfer function (4.13) can be rewritten as

H(s) = c0 +
nr∑
i=1

cri

s− ari

+
nc∑

i=1

(
cci

s− aci

+
c∗

ci

s− a∗
ci

)
, (4.47)

where the first sum includes the nr real poles, with ari
, cri

∈ R, while the second
sum includes nc couples of complex conjugate poles, with aci

, cci
∈ C, and

where the superscript ∗ denotes the complex conjugate. Transforming (4.47)
into a set of differential equations in state space form, we obtainẋi(t) = ari

xi(t) + q(t)
pr(t) = ∑nr

i=1 cri
xi(t)

(4.48)
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for the real poles, and

ẋ′

i(t) = σci
x′

i(t) + ωci
x′′

i (t) + 2q(t)
ẋ′′

i (t) = −ωci
x′

i(t) + σci
x′′

i (t)
pc(t) = ∑nc

i=1(c′
ci
x′

i(t) + c′′
ci
x′′

i (t))

(4.49)

for the complex poles, where cci
= c′

ci
+ jc′′

ci
and aci

= σci
+ jωci

. The states
xi(t) at the k-th time step tk can be computed by means of standard time
discretization techniques, which are usually employed to discretized Navier-
Stokes equations in solvers. In Nektar1D [92], for example, the Forward Euler
method was used, so the real pole states were computed as

xi(tk) = xi(tk−1) + ∆t · [ari
xi(tk−1) + q(tk−1)]. (4.50)

An equivalent relationship can be derived also for the states associated with
complex poles, obtainingx

′
i(tk) = x′

i(tk−1) + ∆t · [σci
x′

i(tk−1) + ωci
x′′

i (tk−1) + 2q(tk−1)]
x′′

i (tk) = x′′
i (tk−1) + ∆t · [−ωci

x′
i(tk−1) + σci

x′′
i (tk−1)].

(4.51)

Finally, the total pressure p(t) can be computed as

p(tk) = pr(tk) + pc(tk) + c0q(tk). (4.52)

Alternatively, since the proposed estimation method represents the model
by means of a transfer function, this can be used directly into some solvers
for the simulation of dynamical systems, like Simulink [166], which are also
adopted in cardiovascular settings.

4.3 Numerical results

In this section, numerical results on the estimation of higher order boundary
conditions with TDVF will be presented. In particular, after a general de-
scription of the experimental setup and of the Navier-Stokes solver adopted
in Sec. 4.3.1, in Sec. 4.3.2 we evaluate the ability of the proposed method
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to estimate the parameters of 3WK models, compared to two other methods
presented in the literature. We also quantify the level of accuracy obtained
when these models are used as boundary conditions in place of a more detailed
vascular model. Then, in Sec. 4.3.3, we quantify the sensitivity to noise of the
obtained estimates, and their validity under changes of the physiological state
of the patient (Sec. 4.3.4). Lastly, in Sec. 4.3.5 we evaluate the accuracy and
robustness of the proposed algorithm for the estimation of higher order models.

4.3.1 Experimental setup

The experiments presented in this section were conducted on a 1D arterial
network representing the 55 largest arteries, as depicted on the left of Fig. 4.2.
It is well known that one-dimensional models are able to provide a reasonable
approximation of real blood flow in larger compliant arteries, as documented
in [167, 58], with a significant reduction in the computational cost with respect
to 3D fluid-structure interaction (FSI) simulations. The parameters charac-
terizing each segment are reported in [92], and refer to a normotensive case.
The inlet boundary condition used in the experiments represents a realistic
inlet flow at the aortic root [92], while the outlet boundary conditions at each
terminal vessel consist of 3WK models, whose parameters are detailed in [92].

The 55-artery model was simulated using the Nektar1D solver [92], which
solves the nonlinear, one-dimensional blood flow equations in a given network
of compliant vessels. Specifically, Nektar1D uses the method of characteristics
and the discontinuous Galerkin numerical scheme [92] to solve numerically
the system of equations. The solution provided by Nektar1D on the 55-artery
network represents the reference solution for the model.

The 55-artery model was then reduced to a 21-artery model, containing only
segments from the aorta up to the first generation of bifurcations, by substituting
the remaining segments with lumped parameter boundary conditions. A
representation of the reduced model is shown on the right of Fig. 4.2, where the
boundary conditions are represented as 3WK models. The original network on
the left was truncated at the end of segment 3 (brachiocephalic artery), 15 (left
common carotid artery), 19 (left subclavian artery), 29 (celiac artery), 42 (left
common iliac artery), and 43 (right common iliac artery). The parameters of
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these lumped parameter terminations were estimated with the TDVF algorithm
presented in Sec. 4.2. In particular, the estimation procedure can be summerized
with the following steps:

• The 55-artery model was simulated using Nektar1D, providing the refer-
ence solution of the model.

• Pressure and flow waveforms at the truncation sites were extracted from
the reference solution of the 55-artery model.

• For each truncation location, pressure and flow rate data were fed into
the TDVF algorithm, which estimated simultaneously the parameters of
the lumped boundary conditions, as explained in Section 4.2.

• The segments below the truncation site were removed and substituted
with the estimated boundary conditions.

• The reduced 21-artery model obtained in this way was simulated using
Nektar1D.

4.3.2 Estimation of Windkessel Boundary Conditions

The results obtained with TDVF for the estimation of 3WK parameters have
been compared to those obtained with two other different methods proposed in
the literature. The first method is the one presented in [159], and estimates
3WK parameters such that the net resistance and total compliance of the
entire system are preserved. The second method is based on the solution
of a non-convex minimization problem through the fminsearch algorithm in
MATLAB, which employs the Nelder-Mead simplex algorithm [150] to find
the minimum of a given function. In particular, the minimization problem is
defined as

min
R1,R2,C,Pd

∥∥∥∥∥p(t) −R1q(t) + 1
C

∫ t

0
e

− 1
R2C

(t−τ)
q(τ)dτ+

+ Pd

R2C

∫ t

0
e

− 1
R2C

(t−τ)
θ(τ)dτ

∥∥∥∥∥
2

(4.53)
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Equation (4.53) can be derived by transforming back into time domain Equa-
tion (4.3), and expressing the input q(t) and the Heaviside function θ(t) by
means of recursive convolutions. A normalization of the four unknown parame-
ters R1, R2, C and Pd, which were determined by means of fminsearch, was
used to obtain a faster convergence of the algorithm.

Fig. 4.7 displays the obtained pressure waveforms at the truncation locations
of the model, comparing the reference solution from the 55-artery model (black
curve) to those from the reduced 21-artery model with 3WK parameters
obtained with the technique presented in [159] (dashed blue curve), with
fminsearch (dashed green curve), and with TDVF (red dots). The curves
obtained with fminsearch and TDVF represent the best approximation of the
original responses. The average and maximum errors for the pressure curves
displayed in Fig. 4.7 are reported in Table 4.1: the results obtained with
fminsearch and TDVF are comparable in terms of accuracy, and with average
errors always lower than 1.1%, up to one order of magnitude smaller than the
alternative method. The latter, in fact, does not provide an estimation of Pd,
so the original value of 10 mmHg used in the 55-artery model was maintained
for all outlets. This choice causes a visible offset of the obtained pressure
curves with respect to the original curves, noticeable in Fig. 4.7, confirming the
necessity to estimate Pd from measurements at each truncation point, instead
of treating it as global parameter.

A comparison of the 3WK parameters obtained with the different methods
at each truncated segment is reported in Table 4.2. Even if the fminsearch
method is a valid solution for estimating Windkessel parameters, its extension
to higher order models is problematic, as it would require an increasing number
of parameters to estimate. More importantly, the user would need to choose
a representation of the model to define a suitable cost function that will be
minimized, as in (4.53). The use of the pole-residue representation, for example,
would require to know the exact number of real and complex poles beforehand.
It would be even more difficult to set a specific topology for the lumped circuit
beforehand, just inspecting the model response.
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Fig. 4.7 Comparison of pressure and flow rate waveforms between original samples
(solid black), reduction method from [159] (dashed blue), fminsearch method (dashed
green), and proposed method (dashed red) for the three-element Windkessel boundary
condition.
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Table 4.1 Approximation errors for pressure curves at truncation locations, Windkessel
case (Sec. 4.3.2).

Segment Method Max error (%) Avg error (%)

3
[159] 5.1 3.08

fminsearch 0.67 0.30
Proposed 0.67 0.30

15 [159] 6.51 3.24
fminsearch 4.40 0.89
Proposed 4.30 0.88

19 [159] 4.85 3.15
fminsearch 0.63 0.30
Proposed 0.62 0.30

29 [159] 4.31 3.12
fminsearch 0.77 0.25
Proposed 0.76 0.26

42-43 [159] 9.16 4.2
fminsearch 2.71 1.1
Proposed 2.81 1.1

Table 4.2 Comparison of estimated Windkessel parameters at the outlets of the
21-artery model (Sec. 4.3.2).

Seg. Method R1
(Pa s m−3)

R2
(Pa s m−3)

C
(m3 Pa−1)

Pd

(kPa)

3
[159] 0.18·108 9.26·108 9.70·10−10 1.33

fminsearch 0.27·108 8.46·108 10.5·10−10 1.54
Proposed 0.26·108 8.43·108 10.5·10−10 1.58

15
[159] 3.60·108 19.2·108 1.14·10−10 1.33

fminsearch 6.72·108 14.2·108 1.31·10−10 1.58
Proposed 6.55·108 14.2·108 1.23·10−10 1.64

19
[159] 1.00·108 17.0·108 5.39·10−10 1.33

fminsearch 0.67·108 15.5·108 6.17·10−10 1.59
Proposed 0.67·108 15.4·108 6.13·10−10 1.68

29
[159] 1.62·108 7.58·108 3.06·10−10 1.33

fminsearch 1.99·108 6.90·108 4.36·10−10 1.41
Proposed 1.99·108 6.91·108 4.36·10−10 1.41

42-43
[159] 1.57·108 14.8·108 5.04·10−10 1.33

fminsearch 0.98·108 13.6·108 6.11·10−10 1.61
Proposed 0.97·108 13.5·108 6.06·10−10 1.71
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4.3.3 Sensitivity to noise

To investigate the robustness of the TDVF algorithm, both pressure and flow
rate data were corrupted with zero-mean white Gaussian noise at different
signal-to-noise ratio (SNR), defined as the ratio of signal power to the noise
power. In particular, SNR ranged from 20 dB up to 100 dB, corresponding to
a noise standard deviation ranging between 3.95 mmHg and 3.90·10−4 mmHg
for pressure and 1.18 cm3/s and 1.15·10−4 cm3/s for flow rate, respectively.
For each SNR level, we generated 50 different noise realizations to corrupt
the data. Then, for each corrupted dataset the 3WK boundary conditions
were estimated, both with TDVF and fminsearch. The results for this analysis
are reported in Fig. 4.8, where the average of the absolute error between the
pressure samples from the 55-artery network and the output of the Windkessel
models are estimated at different SNR values. Moreover, at each SNR value,
the bar indicates the standard deviation. Both techniques are able to estimate
the correct boundary conditions starting from data samples with SNR ranging
from 100 dB down to 40 dB, without any loss of accuracy. In both segment 3
and segment 19, at 30 dB and 20 dB, the estimated pressure is affected by an
error less than 2.25% for TDVF, and less than 4% for fminsearch, with TDVF
performing slightly better than fminsearch. These results verify the robustness
of the TDVF estimation also in presence of noisy data, a condition more likely
to occur when using patient-specific measurements instead of simulation results
to drive the boundary conditions estimation.

4.3.4 Validity of Vector Fitting BCs in case of mental
stress

In the previous section, boundary conditions were estimated from data coming
from a simulation of the cardiovascular system in a normotensive case. However,
under certain circumstances like physical exercise, or stressful situations, the
cardiovascular system does not operate under normal conditions anymore,
experiencing physiological changes in heart rate, maximum blood velocity and
cardiac output. This can be modeled by properly changing the flow rate at
the aortic root, which is the input imposed on the 55-artery model used in
this chapter. It is interesting to verify if the boundary conditions estimated
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Fig. 4.8 Relative error between pressure samples obtained from the original 55-artery
network and Windkessel models estimated from noisy data, with different SNR values.
The Windkessel parameters were estimated with TDVF (blue curve) and fminsearch
(green curve). Vertical bars in correspondence of the different SNR values indicate
the standard deviation of the absolute error.

with a standard, normotensive input flow rate are still valid in presence of
physiological changes of the system. In order to do so, we emulated a realistic
variation of the input aortic flow rate under mental stress conditions by using
the dataset presented in [160], which provides different aortic root flow rates
corresponding to different levels of mental stress in a human subject. This
translates into increased peak velocity and acceleration due to the increase in
ejection fraction during stress [161]. An input flow with varying levels of mental
stress was then generated and used as input for both the 55-artery model,
chosen as a reference, and the 21-artery one. In the latter, the 3WK parameters
previously estimated with TDVF in the normotensive case, and reported in
Table 4.2, were used. Pressure waveforms at different points of the model are
reported in Fig. 4.9, where the results in the reference 55-artery model (black
line) are compared to those in the 21-artery model. The background colors
in the left panel of Fig. 4.9 indicate the corresponding level of mental stress
induced by the input aortic flow rate, varying from a relaxed state (light blue),
to the baseline (purple), to medium (orange) and high (pink) levels of mental
stress. The corresponding heart rate and cardiac output associated to each
stress level can be found in [160]. From Fig. 4.9 it is possible to see that the
reduced model is able to closely follow the changes caused by the varying input
flow, with average relative errors smaller than 0.7% for both segments. The
results confirm that the estimated boundary conditions are valid also in the
case of a physiological change of the input flow rate.
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Fig. 4.9 Pressure waveforms at segment 3 (top) and 19 (bottom) for the case of
mental stress. Background color indicates the level of stress: relaxation (light blue),
baseline (purple), medium stress (orange), high stress (pink). The plots on the right
zoom on the black rectangle displayed on the plots on the left.
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4.3.5 Higher-order boundary conditions

In this section, we tested the use of TDVF for the estimation of higher order
boundary conditions and we investigated their accuracy compared to stan-
dard 3WK models. The same experimental setup presented in Section 4.3.1,
consisting of the reference 55-artery model and the reduced 21-artery model,
was adopted. In Fig. 4.10, we first compared the reference pressure from the
55-artery model used for the estimation (blue line), to the pressure estimated
by the TDVF model (dashed red line), for the same flow rate coming from
the 55-artery model. The results reported in Fig. 4.10 refer to the pressure
in segment 19 fitted with models of order up to 8 (comparable results were
obtained for the other segments). It is clear from Fig. 4.10 that accuracy greatly
improves by increasing the model order. The right panel on the third line
of Fig. 4.10 shows the average relative error on pressure versus model order,
suggesting a decrease of around one order of magnitude going from order 1 to
order 8.

We then used the estimated models as boundary conditions for the reduced
21-artery model, simulated with Nektar1D. This step required a modification of
the solver to accept boundary conditions defined as in Section 4.2.2. Pressure
and flow rate curves up to order 4 at the truncated segments are displayed in
Fig. 4.10, while the relative errors on pressure and flow rate waveforms up to
order 8 are reported in Table 4.3 and Table 4.5 (average error), and in Table 4.4
and Table 4.6 (maximum error).

Both plots and numerical results reveal that higher order boundary condi-
tions can model pressure and flow rate more accurately than a simple Windkessel
(corresponding to order 1). In particular, a significant improvement can be seen
between order 1 and order 2, where average errors can decrease up to one order
of magnitude with respect to BCs of order 1. A slight improvement in accuracy
can also be noticed between order 2 and order 4, while orders above 4 do not
seem to provide an improvement in terms of accuracy. Segment 15 is the only
case which does not seem to benefit from higher order boundary conditions,
with the error remaining nearly constant for both pressure and flow rate, even
for higher orders. Looking at the corresponding plots in Fig. 4.10, it can be
noticed that the curves obtained after the truncation are qualitatively different
from the original pressure and flow in 55-artery model (black curve). A possible
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Table 4.3 Average relative errors (%) on pressure at truncation locations, higher
order models case (Sec. 4.3.5)

Segment Average relative error (%)
Order 1 Order 2 Order 4 Order 6 Order 8

3 0.30 0.12 0.078 0.084 0.079
15 0.88 0.75 0.65 0.67 0.67
19 0.30 0.1 0.069 0.079 0.068
29 0.26 0.15 0.11 0.093 0.079

42-43 1.1 0.36 0.31 0.23 0.21

Table 4.4 Maximum relative errors (%) on pressure at truncation locations, higher
order models case (Sec. 4.3.5)

Segment Maximum relative error (%)
Order 1 Order 2 Order 4 Order 6 Order 8

3 0.67 0.59 0.46 0.53 0.51
15 4.30 4.79 5.16 5.01 4.80
19 0.62 0.44 0.33 0.34 0.35
29 0.76 0.61 0.44 0.41 0.42

42-43 2.81 1.33 1.17 1.07 0.94

cause could be the higher wall viscosity of segment 15 with respect to the other
terminal segments, which could increase the presence of nonlinear effects, hard
to model with a linear boundary condition. However, no conclusive explanation
was reached.

Table 4.5 Average relative errors (%) on flow rate at truncation locations, higher
order models case (Sec. 4.3.5)

Segment Average relative error (%)
Order 1 Order 2 Order 4 Order 6 Order 8

3 3.14 3.63 1.80 1.70 1.60
15 1.90 2.1 2.0 1.94 1.90
19 3.41 1.67 1.0 0.95 0.84
29 0.8 0.37 0.21 0.19 0.17

42-43 2.5 1.07 0.97 0.61 0.58
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Table 4.6 Maximum relative errors (%) on flow rate at truncation locations, higher
order models case (Sec. 4.3.5)

Segment Maximum relative error (%)
Order 1 Order 2 Order 4 Order 6 Order 8

3 12.05 14.67 10.96 11.83 10.80
15 13.71 15.61 16.47 16.12 15.61
19 15.03 6.53 4.29 3.46 3.58
29 4.45 1.22 0.92 0.98 0.88

42-43 6.06 2.22 1.89 1.54 1.40
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Fig. 4.10 Comparison of pressure waveform in segment 19 (blue curve) against models
with different order obtained with Vector Fitting. In the last plot (third row, right
panel) relative error on pressure vs model order.
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Fig. 4.10 Comparison of pressure and flow waveforms in the 55-artery model (solid
black curve) and in the 21-artery one with boundary conditions of different orders,
estimated with Vector Fitting.
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4.4 Discussion

The results presented in Section 4.3 show the capabilities of Time-Domain
Vector Fitting in estimating accurate lumped boundary conditions of arbitrary
order. When used to estimate BCs of order one, which were synthesized as three-
element Windkessel circuits, TDVF was able to accurately determine optimal
values for the Windkessel parameters. Moreover, the results were further
validated in presence of noise in the measurements, where TDVF provided
accurate results with noise up to 20dB, and under physiological changes of
pressure and flow rates induced by changing levels of mental stress. For BCs
of order 1, the results obtained with Vector Fitting were comparable to, and
sometimes better than those attained from two other estimation methods
presented in the literature. The comparison was not possible for higher order
BCs, since Vector Fitting was the only method capable of estimating them.

Apart from the accuracy, the main advantage of the proposed approach
is the ability to estimate an increasing number of parameters simultaneously
and automatically. The proposed model parametrization based on the use of
transfer functions, in fact, can be used to describe any linear dynamical system,
allowing a generalization of the BC model to differential relations of arbitrary
order. The alternative solutions for higher order BCs proposed in the literature,
instead, resort to specific circuit topologies, from which a generalization is
difficult to obtain. Thanks to the aforementioned properties of the TDVF
method, it was possible to formulate and estimate systematically boundary
conditions of increasing order. For the case under analysis, consisting of a
55-artery model reduced to a 21-artery one, boundary conditions with order
up to 8 were estimated and compared, in order to assess the effect that the
BC model order has on its ability to accurately approximate the downstream
vasculature. Results showed that an order of 2 provides a significant increase
in accuracy with respect to BCs of order 1, the most common choice up to now
in the form of Windkessel models. Orders above 4, instead, provided negligible
improvements in terms of accuracy in the model of the systemic arterial system
considered.
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4.4.1 Limitations

The main limitation of the proposed approach is the fact that it requires
time samples of both pressure and flow rate at the truncation location for the
estimation of boundary conditions. This could be a limitation when pressure
and flow rate measurements are not available simultaneously at the same
location. However, pressure and flow rate data are available when moving from
a large model to one including a smaller portion of the cardiovascular system,
like in the application considered in this paper. When moving to patient-
specific models, both pressure and flow rate measurements can be obtained by
means of in vivo procedures and imaging techniques. In case pressure data are
not available, pressure waveform generators can be used, which, given some
patient-specific parameters (like brachial diastolic and systolic pressure) can
generate realistic pressure waveforms [168, 169].

In this chapter, the Vector Fitting method has been tested only on 1D
models of the cardiovascular system, but in the future it could be extended to
three-dimensional models. In such a scenario, a 1D model of the cardiovascular
system could still be employed to estimate the outlet boundary conditions, or,
if available, patient-specific pressure and flow-rate measurements could be used.

4.5 Conclusion

In this chapter, we proposed a new automated method based on the Time-
Domain Vector Fitting algorithm for the parameter estimation of lumped
boundary conditions. Starting from pressure and flow rate samples, this
method can estimate boundary conditions corresponding to differential equa-
tions of increasing order. First, the TDVF algorithm was used to automatically
estimate 3WK boundary conditions, starting from a 1D model comprising
the 55 main arteries of the human arterial system. The robustness of the
estimation procedure was verified in presence of noisy data, with up to 20 dB
of signal-to-noise ratio, and in presence of physiological changes of pressure
and flow rate induced by high levels of mental stress. Second, we proposed a
generalization of the 3WK model to obtain boundary conditions of arbitrary
order. We estimated higher order boundary conditions with TDVF, and we
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investigated the improvement in accuracy they provide with respect to the 3WK
model. On the 55-artery model, experimental results showed that boundary
conditions up to order 4 are able to model the downstream pressure and flow
rate more accurately than the Windkessel model, while orders above 4 provided
negligible improvements in term of accuracy.



Chapter 5

A numerical investigation of
Murray’s minimum energy
principle

5.1 Introduction

In previous chapters we saw how the availability of in-vivo information about
pressure and flow rate greatly facilitates the estimation of boundary conditions.
However, in many cases this information is only partially available, or insuffi-
cient, or in some cases not available at all. In this chapter, we investigate a
different criterion to estimate boundary conditions, which tries to rely only on
physics and anatomy. Ideally, we would like to find a criterion that, in absence
of in-vivo measurements, can derive boundary conditions based solely on physics
and the anatomy, or, in case of incomplete measurements, that can be combined
with in-vivo measurements to provide additional information, and improve the
estimation of boundary conditions. The integration of this criterion and in-vivo
information could be, for example, performed in an optimization framework like
the one introduced in Chapter 3. In this chapter, in particular, we investigate
the minimum energy principle as a possible criterion for inlet flow estimation.
The minimum energy principle is at the basis of a number of laws and principles
in hemodynamics, among which Murray’s law is probably the most famous.
From Murray’s principle, one can derive flow splitting relations that are used
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to estimate boundary conditions when in-vivo information is not available.
However, Murray’s law makes a number of assumptions, such as that vessels
are straight, circular, and with Poiseuille’s flow. For this reason, in this chapter
we investigate if this minimum energy principle can be exploited numerically
also for general, three-dimensional anatomies, paving the way for a possible
future reuse of this generalized principle in boundary condition estimation.
In particular, we propose a framework for the numerical investigation of the
minimum energy principle behind Murray’s law in patient-specific anatomies.
An overview of Murray’s law is given in Section 5.2, while a further discussion
on the minimum energy principle is provided in Section 5.3. Section 5.4 presents
the proposed numerical framework, together with an analysis of the challenges
and open questions encountered during its development. Numerical results
are presented in Section 5.5, while Section 5.6 contains the final remarks and
conclusions for this chapter.

5.2 Murray’s principle: linking form and func-
tion

As many other physiological and natural systems, the cardiovascular system
is the result of a balance between form and function. When it comes to the
cardiovascular system, its form refers to the anatomy of the vessels, while its
function refers to the dynamics of blood flowing through such vessels. It is
reasonable to say that the correct functioning of the cardiovascular system
depends on both form and function, as well as on the effect that one has on the
other. As a matter of fact, the anatomy of the heart, arteries and veins is clearly
dictated by their primary function, which is the transport of nutrients and
oxygen-rich blood to all parts of the body. On the other side, any anatomical
modification to any part of the system will inevitably impact its functionality,
as it happens in presence of many cardiovascular diseases, from the coarctation
of the aorta [170] to the tetralogy of Fallot [171]. Since the cardiovascular
system is governed by the interplay between its form and function, it has been
theorized that evolution has brought to an optimization of the cardiovascular
system in terms of these two factors. In particular, an interpretation of the
cardiovascular system in these terms was provided in 1926 by the physiologist
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Cecil Murray, who described the relationship between the flow rate in a vessel
and its radius by means of the well known Murray’s law. Murray hypothesized
that, being subjected to natural selection through evolution, the cardiovascular
system has achieved an optimal arrangement such that, in every vessel, blood
flows with the least possible biological work [50]. He then supposed that the
power required to sustain circulation is made up of two terms:

• the power Pf required to drive the flow, overcoming viscous drag,

• the power Pm required to metabolically maintain blood, called by Murray
the cost of blood, which includes a number of different factors, such as the
metabolism of blood itself, the cost of maintenance of all its constituents,
like hemoglobin, and the cost placed on the body by the weight of blood
itself [50].

The power required to drive the flow (Pf ) decreases with the vessel radius, while
the metabolic power (Pm) increases with the vessel radius. For this reason, if
the total power

Pt = Pf + Pm (5.1)

must be minimized, the radius can be neither too large nor too small.

Considering a straight cylindrical vessel, in which the flow is assumed to be
laminar and described by Poiseuille’s law, and assuming blood to be Newtonian,
the power Pf for blood transport can be expressed as [50]

Pf = Q · ∆p = Q2l8µ
πr4 , (5.2)

where Q is the flow rate, ∆p is the pressure drop across the vessel, l the
vessel length, µ the dynamic viscosity of the fluid and r the vessel radius. On
the other side, the metabolic power (called by Murray the cost of blood [50]),
accounting for all those processes related to the maintenance of blood, is directly
proportional to its volume as

Pm = bV = blπr2, (5.3)

where V is the volume of a cylindrical vessel and b is the so called metabolic
constant, defined by Murray as a dimensional parameter representing the cost
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of blood per unit volume [50]. The total power Pt can then be expressed as

Pt = Pf + Pm = Q2l8µ
πr4 + blπr2 (5.4)

From (5.4), we see that the total power consists of a first term inversely
proportional to r4, and a second term directly proportional to r2. In order to
find the minimum power required for blood flow, (5.4) can be differentiated
with respect to r and equated to 0, obtaining

dPt

dr
= −4Q2l8µ

πr5 + 2blπr = 0 (5.5)

Rearranging (5.5), the following relationship is derived

Q =
√
bπ2

16µr
3. (5.6)

Equation (5.6) describes the optimal relation between flow rate and radius
in a vessel, such that power is minimal. This means that, assuming that the
cardiovascular system is operating at maximum efficiency, an estimate of blood
flow rate in a vessel can be obtained, provided that we know the vessel radius,
the blood viscosity and the metabolic constant. Applying the conservation of
mass at a branching point, the following law can be derived [172]

r3
0 =

N∑
i=1

r3
i , (5.7)

where r0 is the radius of the parent vessel, and ri is the radius of the i-th
daughter vessel (of N total daughter vessels). This principle is commonly
referred to as Murray’s law, and it is often used as a rule of thumb to predict
the radii of branches in transport networks. From (5.7), it is possible to derive
a general principle describing how flow rate splits among the branches of a
vessel. At the outlet i, the flow rate Qi can be computed as

Qi = r3
i

N∑
i=1

r3
i

·
N∑

i=1
Qi. (5.8)



130 A numerical investigation of Murray’s minimum energy principle

In this form, often referred to as the outflow splitting method, Murray’s law
is used to set the outflow boundary conditions in a branching anatomy [173].
Murray’s law has been observed and validated in many biological systems, such
as the vascular and respiratory systems of animals [174–176], and the leaf veins
of plants [177–179].

In summary, we refer to Murray’s principle as the assumption that the
cardiovascular system is overall optimized from an energetic point of view,
meaning that the power required for blood flow, which Murray computed as
in (5.4), is minimum. With Murray’s law, instead, we refer to the relationship
between blood flow and radius in a vessel, which is a consequence of Murray’s
principle, and takes the form of (5.6). Similarly, (5.7) and (5.8) are analytical
laws derived from Murray’s principle, which are used, respectively, to compute
the radii of branching vessels, and to set their outflow boundary conditions.

Over the last few decades the validity, consequences, and limitations of Mur-
ray’s law have been extensively studied. In 1977, Zamir verified experimentally
Murray’s cube law in the human body, suggesting that shear force could be
the mechanism regulating vessels’ radii [180]. In 1981, Sherman noticed that
only the largest arteries and veins in the human body, where blood flow can
be turbulent, do not follow Murray’s law [172]. In 2004, Guo et al. suggested
that radii in vessels could be regulated by growth and remodeling processes,
which bring stress and strain to specific values, in order to restore an existing
homeostatic state [181].

In its original formulation, Murray’s law is based on some strong assump-
tions, such as that the flow is laminar, and that the vessels are straight and
circular. Some works have tried to remove these limitations, by formulating
more general analytical laws that would take additional features into account.
In [182], for example, a contribution for the energy required to support smooth
muscle tone was added to the viscous and metabolic contributions already con-
sidered by Murray. In [183], Murray’s law was extended to pulsatile flow, while
in [184] the effect of nonlinear elastic materials was included. A generalized law
for asymmetric branching was proposed in [185], which was validated also in
presence of turbulent flow. Another extension was presented in [186], with the
goal of also obtaining an optimal wall shear stress distribution. Finally, Guer-
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ciotti et al. proposed an extension of Murray’s law to provide the flow split at
bifurcations in case of stenotic vessels and non-Newtonian blood rheology [187].

In summary, Murray’s law is still largely used and studied today, and
several generalizations have been proposed. However, these extensions and
generalizations refer to analytical cases, leaving two questions unanswered:

• in real, three-dimensional anatomies, and assuming blood flow is described
by the Navier-Stokes equations, is there still a single minimum energy
point?

• If the minimum energy point exists, can it be found numerically? Given
the numerical challenges of solving the Navier-Stokes equations in a
real anatomy, and assuming that the minimum point exists, the energy
curves may be noisy and non-smooth, preventing a reliable identification.
Furthermore, since the minimum point depends on the anatomy, it is
necessary to smoothly deform the latter by changing the radius of the
vessels. This is a non-trivial operation, so a related question is whether a
reliable method exists to continuously deform complex, three-dimensional
anatomies.

• If the minimum point can be identified numerically, can it be used to
estimate the flow rate in a vessel which is not straight or circular, assuming
that the given anatomy was energetically optimal, and using Murray’s
principle to determine the flow rate?

The next sections will analyze more in detail these open research questions,
later describing the numerical framework proposed for their investigation.

5.3 A numerical investigation of Murray’s min-
imum energy principle

As explained in the previous section, according to Murray’s minimum energy
principle the radius of a vessel is the result of an optimization process, whose
aim is to balance two energetic contributions - the one coming from viscous
forces, and the one due to metabolic processes. The goal, then, is to investigate
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Fig. 5.1 Cylindrical vessel with radius defined as α · r0. The cylinder in the middle
has α = 1, the one on the left has α < 1 (deflation), while the one of the right has
α > 1 (inflation).

if such minimum energy point exists, even in patient specific anatomies and, if
that is the case, if it is possible to identify it numerically.

To study how the total power required to sustain blood flow in a vessel
changes with respect to its radius, we start by analyzing a straight vessel. For
convenience, we indicate its radius as r = α · r0, with α ∈ IR. The coefficient α
can be seen as an inflation/deflation factor: for α = 1 we will get the original
anatomy, while for α ̸= 1 we will get a re-scaled version in the radial direction.
A graphical representation of the parameter α on a cylindrical vessel is displayed
in Fig. 5.1.

Defining the total power as the sum of a viscous contribution and a metabolic
one, it is intuitive to assume that, since r = α · r0, the dependency of the total
power Pt from α, Pt(α), will be the same as its dependency from the radius,
Pt(r). If α increases, in fact, the metabolic contribution will increase, while a
decrease in α will cause an increase of the viscous effects. In analytical form
this translates into

Pt = 8Q2lµ

πα4r4 + blπα2r2, (5.9)
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Fig. 5.2 Plot of total power Pt vs α for a straight vessel with a radius equal to 2 cm,
and b= 10.14 ergs/cm3s. The flow rate Q ranges from 85 to 130 cm3/s. The white
dots indicate the minimum point of each curve.

meaning that the total power Pt will depend both on Q and α. A plot of
the variation of Pt with respect to α and Q according to (5.9) is reported in
Fig. 5.2.

While on an ideal anatomy, such as the cylindrical vessel considered until
now, it is possible to analytically validate Murray’s principle and identify the
minimum energy point from Pt(α,Q), this may not be necessarily the case for
realistic anatomies, which may have a non-circular cross section, bendings, and
non-laminar flows.

This investigation is motivated by the possible applications that, if properly
validated, the minimum energy principle could lead to. In particular, looking
at the curves plotted in Fig. 5.2, it is interesting to notice that for each flow
rate Q there is only one minimum energy point, and that for each value of α
there is only one curve at its minimum. This fact can in principle lead to an
interesting approach for the estimation of boundary conditions. Imagine, in
fact, that we are given a patient-specific anatomy and we want to find its inlet
flow rate Q, which we don’t know. We can assume that the given anatomy is
optimal (which will correspond to α = 1), according to Murray’s principle, thus

∂Pt

∂α

∣∣∣∣
α=1

= 0. (5.10)
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Equation (5.10) could be in principle used to get an estimate of the unknown
flow rate Q, which will be the only one for which the minimum of Pt occurs
exactly at α = 1. Looking at Fig. 5.2 it can be noticed how there is only
one value of Q satisfying this condition, meaning that there is only one flow
rate optimizing the anatomy from an energetic point of view. For this type
of application, however, it is necessary to verify that the minimum exists,
and that it is identifiable numerically. To the best of our knowledge, this
type of numerical investigation has never been conducted, thus representing a
further step in unveiling the energetic behavior of the human cardiovascular
system. Such a framework would allow us to analyze the energetic behavior
of some particular patient-specific anatomies where the many assumptions
behind Murray’s law do not hold. These include anatomies with curved vessels,
non-circular cross sections, bifurcations and pulsatile, non-laminar blood flow.

5.3.1 Related works

Some previous works have tried to leverage the minimum energy principle for
various applications, such as estimating boundary conditions, determining the
degree of stenosis in occluded arteries, and optimizing geometrical parameters.
In [188], for example, a method to estimate outflow pressure based on minimum
energy loss at a bifurcation was proposed. By formulating an analytical
expression for mechanical energy loss in a bifurcating artery, the optimal ratio
between outlet flow rates in the daughter branches was obtained, and verified
on a real carotid bifurcation. Similarly, in [189], minimum energy loss was used
to set outlet boundary conditions on a carotid bifurcation with a stenosis. Even
if for stenotic vessels Murray’s law may not necessarily be valid anymore, the
work in [189] started from the assumption that in a bifurcation there is only
one flow split requiring minimum energy. The method was validated against
patient specific flow and stenosis measurements in carotid arteries. A further
development was presented in [190], where the principle of minimum energy loss
was used to estimate stenosis severity in carotid arteries. Arguing that larger
plaques cause higher energy loss, the authors used the deviation from minimum
energy principle to estimate the grade of arterial stenosis. On a different note,
in [191] Marsden et al. proposed a computational framework for derivative free
optimization, which they tested on an ideal bifurcation, estimating the optimal
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Fig. 5.3 Scheme of the proposed numerical framework.

radius and bifurcating angle while minimizing the total energy, as postulated
by Murray in [50].

5.4 The proposed numerical framework

To investigate Murray’s principle on real anatomies, a numerical framework
must be devised to construct the curves reported in Fig. 5.2 starting from (5.1)
for a general 3D anatomy, obtained from the reconstruction from medical
images. Such curves are constructed in an iterative way: for a fixed flow rate Q,
the value of α is changed and the total power Pt computed for each anatomy.
This step is repeated for different values of Q. For a given anatomy, this process
requires the following steps, which are represented schematically in Fig. 5.3:

• A certain flow rate Q is selected;

• The anatomy is morphologically manipulated to change the value of α;

• Using a CFD solver, Navier-Stokes equations are solved on the deformed
geometry;

• From the solver solution, the total power Pt is computed.

These steps are repeated for different values of α and Q.

The approach proposed here to verify the existence of a minimum energy
point relies on two main operations, which individually present their own set
of challenges:
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• modifying the real anatomy by changing the factor α, through a ma-
nipulation of the original geometry. The deformation of the anatomy
must be smooth, robust, and produce accurate results on anatomies
reconstructed by clinical images, which are generally less smooth than
synthetic geometries;

• computing the total power Pt from the solution of the Navier-Stokes
equations. The computation of Pt must be accurate enough to allow
the reconstruction of the power curves for different inlet flow rates, and
the curves must be smooth enough to allow the identification of their
minimum point.

In the following, we will address these two main points and analyze the
open questions and problems that each of them raised.

Morphological manipulation of the anatomy: morphMan

The morphological manipulation step is necessary to obtain anatomies with
α ̸= 1. Starting from a patient-specific anatomy of the region of interest, the
objective is to deform it according to the specific value of the parameter α.
To this end, the open source framework morphMan [192], which allows to
alter morphological features parametrically on patient-specific geometries, was
employed and modified to meet our needs.

The morphMan framework performs the manipulation of anatomies by using
the Voronoi diagram and its associated centerlines, as first suggested in [193]
in relation to the Vascular Modeling Toolkit vmtk. A representation of the
centerline and Voronoi diagram of an anatomy is reported in Fig. 5.4.

In short, the Voronoi diagram is a point cloud with associated radii corre-
sponding to the radius of the minimal inscribed sphere of each point, and it
can be used as an alternative representation of a surface by a union of spheres.
By enveloping the union of spheres, the diagram can be converted back to the
original surface. Exploiting this, the morphMan framework converts the surface
into its Voronoi diagram, performs the alterations to the diagram, and then
envelops it back to a surface [194]. In particular, morphMan can be used for
altering the cross-sectional area of a vessel, by first measuring the area along
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Fig. 5.4 On the left, a patient-specific aortic arch with the corresponding centerline.
On the right, the same anatomy with the corresponding Voronoi diagram, where the
colour represents the value of the inscribed sphere radius.

the region of interest and defining a variable F to control the cross-sectional
area. By looping over each point in the Voronoi diagram, the distance to the
centerline and the radius are changed by a factor Fj. The obtained Voronoi
diagram is then transformed back to a regular surface [194].

A minor modification of the pre-existing framework allowed us to modify
the entire vasculature by a constant factor α. In this case, then, the factor Fj

is fixed and equal to α across the entire centerline. The Voronoi diagram was
modified maintaining the approach presented in [194], where each point pi in
the Voronoi diagram is associated to its closest centerline point cj. The vector
vij = pi − cj is defined, and the point pi is moved by vij(Fj − 1). The new
radius of the associated minimal inscribed sphere radius will be rnew

i = rold
i Fj.

A visualization of this operation is represented in Fig. 5.5.

An example of the geometries obtained by modifying α is reported in Fig. 5.6,
where a patient-specific aortic arch has been deformed with morphMan.

The power loss computation: control volume vs viscous dissipation

The idea of a numerical investigation of the minimum energy principle relies on
the possibility of computing numerically the power loss of a fluid flowing into a
vessel. The most common approach used in the literature to compute power
loss is the so called control volume approach, which computes the net power
absorbed by the structure from all the inlets/outlets. In this sense, power loss



138 A numerical investigation of Murray’s minimum energy principle

𝑐"
𝑝$

𝑟$
𝑣$"

Fig. 5.5 Representation of the operation performed by morphMan for altering the
cross-sectional area. The image refers to a point pi, with the corresponding inscribed
radius ri. The vector vij represents the distance to the closest centerline point cj .

Fig. 5.6 Representation of a set of manipulated anatomies obtained with the mor-
phMan package, where the inflation factor α was changed from 0.75 to 1.2.
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can be expressed as

Pdiss = −
Nin∑
i=1

∫
Γi

(p+ 1
2ρv

2)v · dΓ −
Nout∑
i=1

∫
Γi

(p+ 1
2ρv

2)v · dΓ, (5.11)

where p is the pressure, v the velocity, ρ the density, Nin is the number of
inlets, Nout the number of outlets, and Γi are the inlet and outlet surfaces.
An alternative approach, instead, consists in evaluating the power loss due to
viscous dissipation, using the expression

Pvd = µ
∫

Ω
|∇v|2dΩ, (5.12)

where Ω is the domain of interest. Under the assumption that in a laminar
blood flow all the dissipated energy is the result of frictional (viscous) forces,
the two approaches can be considered equivalent [195]. We demonstrate this
equivalence by deriving the kinetic energy equation from first principles, i.e.
from Navier-Stokes equations.

Consider a domain Ω with boundary Γ, containing a fluid with velocity v
and pressure p. Navier-Stokes equations take the formρ

∂v
∂t

+ ρv · ∇v = −∇p+ µ∇2v in Ω,
∇ · v = 0 in Ω.

(5.13)

The total kinetic energy in Ω can be expressed as

E = 1
2

∫
Ω
ρv · vdΩ, (5.14)

and, assuming the fluid is incompressible, its derivative in time takes the form

∂E
∂t

= 1
2

∫
Ω
ρ
∂

∂t
[v2]dΩ = 1

2ρ
∫

Ω
2v · ∂

∂t
[v]dΩ = ρ

∫
Ω

v · ∂v
∂t
dΩ (5.15)

Since the goal is to make this term appear in Navier-Stokes equations, each
term of the momentum balance equation in (5.13) is left multiplied by v·, and
integrated over Ω, obtaining

ρ
∫

Ω
v · ∂v

∂t
dΩ + ρ

∫
Ω

v · [v · ∇v]dΩ = −
∫

Ω
v · ∇pdΩ + µ

∫
Ω

v · ∇2vdΩ, (5.16)
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where the first term is the rate of change of kinetic energy in Ω, as reported
in (5.15). The second term in (5.16) can be rewritten using Eq.(2.5) in [196] as

ρ
∫

Ω
v·[v·∇v]dΩ = −ρ

∫
Ω

v·[(v·∇)v]dΩ−ρ
∫

Ω
(∇·v)v·vdΩ+ρ

∫
Γ

|v|2(v·n)dΩ,
(5.17)

where n is the outer normal to the boundary Γ. The second term on the right
hand side of (5.17) is equal to zero, thanks to the continuity equation in the
Navier-Stokes system (5.13). Rearranging, one obtains

ρ
∫

Ω
v · (v · ∇)vdΩ = 1

2ρ
∫

Γ
|v|2(v · n)dΓ, (5.18)

which represents an equivalent expression for the second term in (5.16). The
third term in (5.16) can be transformed using the property [197]

∇ · ϕA = A · ∇ϕ+ ϕ∇ · A, (5.19)

obtaining

−
∫

Ω
v·∇pdΩ = −

∫
Ω

∇·(pv)dΩ+
∫

Ω
p∇·vdΩ = −

∫
Ω

∇·(pv)dΩ = −
∫

Γ
pv·ndΓ

(5.20)
Finally, the last term in (5.16) is rearranged using the Laplacian property for a
product of fields [198]

∇2(ab) = (∇2a)b+ a∇2b+ 2(∇a) · (∇b), (5.21)

which for the term in question gives

µ
∫

Ω
v · ∇2vdΩ = µ

∫
Γ
(v · ∇v) · ndΓ − µ

∫
Ω

|∇v|2dΩ (5.22)

Summing up, (5.16) can be rewritten as

∂E
∂t

= −
∫

Γ

[
1
2ρ|v|2 + p

]
(v · n)dΓ + µ

∫
Γ
(v · ∇v) · ndΓ − µ

∫
Ω

|∇v|2dΩ, (5.23)

which is known as the kinetic energy equation [199]. The term on the left hand
side, in fact, corresponds to the rate of change of kinetic energy contained
in Ω, while the first and the second terms on the right represent the power
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absorbed through the boundary Γ. The last term, instead, accounts for the
power dissipated by viscous forces in the volume Ω.

Considering the cases under analysis, where the inlet flow rate is steady, the
rate of increase of kinetic energy is equal to 0. At the same time, the second
term on the right-hand side accounts for the power flow across Γ due to viscous
forces. For example, a fluid in motion outside Ω would put in motion also
the fluid inside Ω, because of viscous forces, and this would generate a flow of
energy through Γ from the outside to the inside of Ω. It is safe to assume that
this term can be neglected, since its contribution will be minimal, as it will be
verified later in Fig. 5.7. In light of this, we can rearrange (5.23) as

−
∫

Γ

[
1
2ρ|v|2 + p

]
(v · n)dΓ = µ

∫
Ω

|∇v|2dΩ, (5.24)

proving the equivalence of the two approaches presented at the beginning,
the control volume approach and the viscous dissipation one. The standard
approach used in literature is the control volume one, adopted for example
in [191], [190] and [189]. The viscous dissipation approach, however, has
recently gained some attention [195, 200, 201], mainly due to the fact that it
depends only on velocity, and not on pressure, which usually requires invasive
measurements. In particular, this approach could potentially be used to measure
dissipated energy directly from 4D-Flow MRI data, removing the need to run
CFD simulations to retrieve pressure results, in order to estimate dissipated
power. Several works have investigated the feasibility of this idea, together
with the validity of the viscous dissipation formula for quantifying energy loss.
Some relevant insights on this matter can be found in [195] and [202], where the
viscous dissipation and the control volume approach were compared on ideal
models of the total cavopulmonary connection, revealing a good agreement
between the two. In [201], instead, the effect of the mesh size and generation
method on power loss computation was estimated, concluding that the viscous
dissipation approach required smaller mesh size than the control volume one,
while tending to underestimate power loss with respect to in vitro values.
Similar conclusions were drawn in [203] and in [204], where viscous dissipation
results were compared to data from magnetic resonance velocity mapping
images. Viscous dissipation required too high a spatial resolution to be able to
estimate energy loss directly from MR data, without CFD simulations. The
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need for a finer mesh is motivated by the presence of the gradient of velocity
in (5.12), which is by nature more sensitive to mesh size. Lately, the advantage
of using viscous dissipation was investigated in [200], where it was proposed as
a Fontan haemodynamic metric.

Given the central role that energy loss has on the numerical investigation of
the minimum energy principle, we verified numerically the equivalence of the
control volume and viscous dissipation approaches, testing their suitability for
our application. In particular, for the aortic arch presented in subsection 5.5.4,
we computed the dissipated power with both approaches, imposing a steady
inlet flow rate and resistance BCs at the outlets. We also verified that the
second term on the right-hand side in (5.23) was in fact negligible.

The results of this analysis are reported in Fig. 5.7. After an initial transient,
where the inlet flow goes from zero to its steady value, both the viscous
dissipation and the control volume power converge to the same constant value.
However, while viscous dissipation converges to a stable result, the control
volume power is characterized by more oscillations, even after the transient
of the inlet flow has extinguished. These oscillations can be explained by the
presence of vortices and turbulent flows in the descending aorta, which may
cause some backflow, and thus change the sign of this outlet contribution
to (5.11). It was also noticed that the oscillations diminished as the mesh size
was reduced. As predicted, the neglected term accounting for viscous forces is
close to zero. In light of these results, we decided to use the viscous dissipation
approach for our framework.

In particular, the power loss due to viscous dissipation was computed as

Pf = Pvd = µ
∫

Ω
|∇v|2dΩ. (5.25)

The contribution due to the metabolic processes, instead, was computed as

Pm = b · V, (5.26)

where the volume can be easily computed as the sum of the volumes of the
tetrahedral elements inside the mesh. The choice of an appropriate value for
the metabolic constant b, instead, is a delicate question, and the approach
adopted for its estimation will be detailed in Section 5.4.2. The total power
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Fig. 5.7 Comparison of power loss due to viscous dissipation (5.12), power loss
computed with control volume approach (5.11), and power loss due to viscous forces
on the boundary, for the aortic arch in Fig. 3.1.

loss then takes the form

Pt = Pvd + Pm = µ
∫

Ω
|∇v|2dΩ + b · V. (5.27)

In all test cases, a steady flow was imposed at the inlet, with the inlet flow
rate initially set to zero and reaching its steady constant value after a transient.
This transient was introduced to avoid the convergence issues that may arise
when an input flow rate rate with a large, abrupt change is imposed. The total
power loss was then computed after the simulation had reached a steady state
condition, with the inlet flow having extinguished its transient, and the final
value for Pt was obtained by averaging its value over the final time steps. At
the outlets, instead, resistive boundary conditions were imposed.

5.4.1 High-fidelity Navier-Stokes solver: Oasis

In order to compute the total dissipated power, it is necessary to have a solution
for velocity and pressure at each point of the domain of interest, which can be
obtained by solving the Navier-Stokes equations. In the proposed framework,
the Oasis solver was employed for this step [72]. Oasis is a high-level/high-
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performance open source Navier-Stokes solver written in Python. Standard CFD
solvers usually employ finite-elements algorithms with stabilization schemes,
like the streamline upwind Petrov-Galerkin (SUPG) algorithm [205]. Their
popularity is motivated by their numerical robustness ensured by stabilization,
which however introduces additional numerical dissipation. On the other side,
the Galerkin finite element method used by Oasis contains very little numerical
diffusion. The advantages of using this specific solver are multiple. First,
Oasis is a high order and minimally dissipative finite-elements solver, which
has been shown to achieve highly accurate results with coarser spatial and
temporal meshes with respect to classic numerical schemes [72, 206]. This is
particularly desirable in an application, such as the one proposed, where a large
number of simulations must be performed. Second, the high-fidelity nature
of Oasis allows to detect high-frequency flow instabilities, which are generally
suppressed in regular CFD solvers, despite being potentially relevant from a
clinical perspective, and may affect energy dissipation. Third, the user-friendly
Python interface of Oasis, inherited by FEniCS [133, 134] and PETSc [207],
makes it the best choice for our framework, where the CFD solver must be
interfaced to the other building blocks for automation.

5.4.2 Identifying the minimum energy point: challenges
and open problems

The framework presented in this section was devised to investigate the presence
of a minimum energy point in realistic anatomies. This investigation, however,
still presents a number of challenges and open problems which need to be
properly addressed. We list here the main open questions, and we provide more
details for each of them in the following.

• How can we choose an appropriate value for the metabolic constant b,
appearing in the computation of the total power loss (5.27)?

• What happens in the portions of the cardiovascular system, such as the
aortic arch, which deviate from the straight vessel considered by Murray
in many ways, including curvature, pulsatile condition, bifurcations, and
turbulence? How do these factors influence the presence of the minimum
postulated by Murray?
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• One of the assumptions behind Murray’s law is the presence of laminar
flow. What happens when this hypothesis is not valid anymore, and the
flow becomes transitional, or turbulent?

The metabolic constant

The metabolic constant plays an important role in the power loss computa-
tion (5.27) at the centre of this investigation. The existence of a metabolic
constant was first theorized by Murray in [50], but its real physiological mean-
ing is to this day still unclear. In the analytical form of Murray’s law (5.8),
in fact, the metabolic constant drops out, so it does not play a role in the
optimization process. Murray himself, in [50], tried to estimate it using four
different methods, obtaining values ranging from 9,180 ergs/cm3s to 22,950
ergs/cm3s. The main method he proposed started by obtaining a formula for b
from (5.5)

b = 2Q28µ
π2r6 , (5.28)

and, combining it with (5.2), gave the generic formula

b = 2∆p ·Q
V

. (5.29)

By assuming a pressure drop across the entire system of 174 · 103 dyn/cm2, an
average flow rate of 83.3 cm3/s, and a total volume of blood in the arterial
system equal to 1,500 cm3, he obtained a final value for b of 19, 300 ergs/cm3s.
This estimate, then, is supposed to represent the average metabolic cost of the
whole cardiovascular system. In the same work [50], Murray came up with
three other values for b. A value equal to 9,180 ergs/cm3s was obtained by
evaluating (5.28) on the capillaries, with the appropriate values for Q, µ, and
r. An estimate of 22,950 ergs/cm3s, instead, was obtained by considering the
surface area of the capillaries, instead of the length, in (5.4). It is worth noticing
how this last estimate is more than double the previous one, despite both being
computed for the capillaries. The final estimate, instead, was obtained by
averaging velocity and radius values obtained over five carotid arteries in dogs,
and it amounted to 11,520 ergs/cm3s. Even if Murray considered the agreement
in terms of order of magnitude among the different estimates of b as a convincing
evidence of the existence of a ”cost of blood” [50], it is clear that there is a
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Table 5.1 Estimates for the metabolic constant b found in the literature.

Original source b (ergs/cm3s)
Murray [50], generic 19,300

Murray [50], capillaries 9,180
Murray [50], capillaries 22,950

Murray [50], carotid artery 11,520
Zamir [180] 7,110
Taber [182] 778

Marsden [191] 3,166

large variability in its estimation, making the choice for a reasonable value
for b particularly hard. In later works, others tried to estimate the metabolic
constant more accurately. In [180], different values of average pressure and
flow were used in (5.29), leading to a value of b of 7,110 ergs/cm3s. In [182],
instead, a value of 778 ergs/cm3s was proposed for b, based on measured oxygen
consumption rates for red and white blood cells in rats. Finally, in [191], a
value of 3,166 ergs/cm3s was used, which was obtained as the average between
the values employed in [180] and [182]. For clarity, we report in Table 5.1 a
summary of all the estimations of b found in the literature.

Even if the goal of our investigation was not to obtain an estimate of b, the
role played by the metabolic constant in the proposed framework is significant,
as it dictates the importance of the metabolic term relative to the energy
dissipation term in (5.27). A slight variation of b, then, would have a large
influence on the position of the minimum energy point estimated through our
framework. For this reason, we decided to estimate a specific value for the
metabolic constant for each anatomy considered. While for the straight vessel
the value of b could be computed analytically, and for the ideal bifurcation we
adopted the value estimated in [191], where the same geometry was employed,
the real anatomies were treated differently. For both the aortic arch and the
coronary bifurcation, we employed (5.29), with values of Q and V measured
across different patient-specific anatomies, and successively averaged. In this
way, a generic value of b was obtained, but still relative to the type of anatomy
considered. That being said, the estimation of the metabolic constant is still
largely an open problem.
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The case of the aortic arch: does the minimum energy principle still
hold?

When dealing with Murray’s law, the aortic arch is often analyzed separately
from the rest of the system, and treated as a special case. The aorta, in fact, is
the largest blood vessel in the human body, and it begins at the left ventricle
of the heart, from where it transports oxygenated blood to the rest of the body.
Due to its peculiar position and function, it has often been questioned if the
minimum energy principle, and consequently Murray’s law, are still valid in
the first part of the aorta. For this reason, our numerical investigation can be
considered of particular interest when applied to a patient-specific aortic arch.
Going back to the original paper from Murray [50], the author stated that its
principle for computing radii at bifurcations could not be applied to the aorta.
Murray’s principle, in fact, takes into consideration only a portion of the work
done by the aorta (to overcome friction), but it does not consider the work
required to reduce the intermittent acceleration of the blood produced by the
heart at each heart beat. This fact explains why the aorta, compared to the rest
of the vascular system, seems to be larger than expected - it has to minimize the
high acceleration associated to intermittent flow, and convert it to a continuous
flow. The same conclusion was reached by Zamir in [180], where he said that a
principle to predict vessels’ radii is not expected to hold throughout the entire
cardiovascular system. The aorta and its main branches, in particular, need to
absorb and modulate the major impact of cardiac pulse, so we expect that their
radii and volume are also suited for these functions. In [172], it was verified
that Murray’s law is not followed in the most immediate branching of the aorta,
the pulmonary trunk, the venae cavae and the pulmonary veins. Moreover,
Murray’s law is not valid when flow is turbulent instead of laminar, and it is
not expected to hold when blood flow is not a Poiseuille’s flow. An alternative
law was proposed in [144], where Murray’s cube law (5.7) was shown to be
inaccurate in the first branches of the aorta, where vessel capacitance and gross
anatomy play a major role. Instead, it was suggested that a square law could
be more appropriate. A further analysis can be found in [183], where the effect
of pulsatile blood flow on Murray’s law is investigated, concluding that arterial
radii follow Murray’s law for all but the largest arteries, as already suggested
in [174].
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In light of this, we hypothesized that, even if the cube law proposed by
Murray is not valid in the aorta, still Murray’s minimization principle could
hold. In other words, the aorta could be still energetically optimal, even without
following Murray’s law. For this reason, one of the test cases presented in
Section 5.5 was conducted on a patient-specific aortic arch.

The role of turbulence

As a last point, the role of turbulence and non-laminar flow in the energy
principle was investigated. As pointed out earlier, one of the assumptions of
Murray’s law is the presence of laminar flow (Poiseuille). This is, however, not
always the case when dealing with real-life scenarios. In particular, in the aortic
arch the high Reynolds number puts the flow into transitional or turbulent
regime, with the appearance of vortices and turbulences in the descending aorta.
In order to see the effect that non-laminar flow has on the energy curves, we ran
the simulations on the aortic arch using both the Stokes and the Navier-Stokes
equations. Being the former the linearized version of the latter, they do not
resolve turbulences and non-linearities. The results of this investigation are
reported in Section 5.5.4.

5.5 Results

The proposed framework was first validated on two synthetic geometries, namely,
an ideal straight vessel and a bifurcation, and then tested on two patient-specific
anatomies, consisting of a portion of the coronary tree and an aortic arch. The
numerical results for each case will be analyzed in the rest of the section.

5.5.1 Ideal straight vessel

The first example was an ideal straight vessel, for which the analytical version
of Murray’s principle can be used (5.4). The geometry was replicated from
the cylinder test case provided as a SimVascular example project [208]. An
ideal straight vessel (i.e., a cylinder) 30 cm long and with a radius of 2 cm was
generated using the mshr package in FEniCS [133, 134]. An average inlet flow
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rate of 100 cm3/s was selected, to ensure that the flow would remain laminar.
This was verified by computing the Reynolds number

Re = ρDv

µ
, (5.30)

where ρ = 1.06 g/cm3 is the blood density, µ = 0.04 poise is the dynamic
viscosity, D is the diameter of the vessel, and v is a representative velocity
of the flow, equal to the average inlet velocity, approximately 8 cm/s for a
flow rate of 100 cm3/s. In this case the Reynolds number was about 884, well
below the critical value of 2300, above which flow becomes transitional. The
parameter α was changed from 0.8 to 1.2, while the inlet flow rate, imposed
with a constant parabolic profile at one end of the cylinder, was changed from
85 cm3/s to 130 cm3/s. At the outlet, a resistive-type boundary condition was
imposed, with a resistance value computed for each flow rate as

Rout = pout

Q
, (5.31)

where pout indicates pressure at the outlet, and, as in [208], was imposed to
be equal to 100 mmHg. For each combination of α and Q, the Navier-Stokes
equations were solved with the finite element method in FEniCS - in fact, given
the simplicity of this geometry, there was no need for an advanced solver like
Oasis. The metabolic constant, considering an average flow rate of 100 cm3/s,
could be computed using the analytical formula (5.28), obtaining

b = 16µQ2

π2r6 = 10.14 ergs/cm3s. (5.32)

The value obtained for b is at least two orders of magnitude smaller than the
values proposed in the literature. This is motivated by the fact that we used
values for Q and r specific to this geometry, while the values of b presented in
Section 5.4.2 were estimated for the entire cardiovascular system. However,
since the scope of this investigation was not to verify the validity of previous
estimates for b, we adopted the value computed with (5.32).

The curves obtained for viscous dissipation, metabolic cost, and total power
loss are reported in Fig. 5.8. The behavior of the viscous dissipation curves was
the one predicted by Murray’s minimum energy principle, with decreasing values
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for increasing α. Moreover, as expected, viscous dissipation values increased
for increasing values of inlet flow rate Q, with curves shifting vertically. The
metabolic cost, instead, increased with α, but did not change with Q, as it
depends only on volume, which is not influenced by flow rate. The plot of the
total power was obtained by summing up viscous dissipation and metabolic
cost. After that, the obtained curves were fitted with a least squares polynomial
fit of degree 4, in order to better identify the minimum of the energy curves.
As predicted, each curve has a minimum point, which shifts to the right for
increasing values of Q.

Since the cylinder case is ideal, it was possible to compute analytically the
optimal flow rate Q for each α, using (5.6). A comparison between analytical
and numerical results, obtained with our framework, is reported on the fourth
panel of Fig. 5.8, where the flow rates at which energy is minimum are plotted
against α (blue crosses). The orange line, instead, represents the analytical
solution of (5.6). The plot reveals a very good agreement between the results
obtained with the two separate techniques, validating our numerical framework
with an analytical solution.

5.5.2 Ideal bifurcation

The second geometry taken into consideration was an ideal carotid artery
bifurcation, as depicted in Fig. 5.9. This anatomy reproduced the one used
in [191], where a computational framework for derivative-free optimization was
used to reproduce computationally Murray’s law. In particular, the method
proposed in [191] was used to predict the optimal radii and branch angle in an
ideal bifurcation. For α = 1, the parent radius was 0.3 cm, the daughter radius
0.238 cm, which are optimal radii according to Murray’s law (5.7). In [191],
an average flow rate of 6.46 cm3/s was imposed at the inlet, obtained as the
mean value of a typical carotid artery flow waveform. For this reason, we chose
an interval for the inlet flow rate Q around this value. Specifically, a constant
flow rate varying between 4 and 8 cm3/s was imposed at the parent vessel,
with a parabolic profile, while α was again changed between 0.8 and 1.2. The
metabolic constant was set to 3,166 erg s/cm3, as suggested in [191], where it
was found that this value of b was the one providing the best agreement with the
analytical Murray’s law (5.7) for the anatomy under analysis. Resistive-type
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Fig. 5.8 Numerical results for the straight vessel (Section 5.5.1). The first plot
represents the power loss Pvd due to viscous dissipation, the second one the power
loss Pm due to metabolism, and the third one the total power loss Pt. The fourth
plot compares the minimum energy points found analytically (5.6) (orange line) to
those obtained numerically (blue crosses).
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Fig. 5.9 Representation of ideal bifurcation used in Section 5.5.2 for the numerical
investigation of minimum energy principle.

boundary conditions were imposed at the outlet. In order to get the same
outlet pressure of 100 mmHg as in [191], total resistance was computed as
in (5.31), setting pout equal to 100 mmHg. The anatomy was modified using
the morphMan package, and the simulations were run in FEniCS.

As for the ideal cylinder, the curves again followed the expected energetic
behavior, with the viscous dissipation decreasing as α increased, and the
metabolic cost increasing, as reported in Fig. 5.10. As shown in the total power
plot, the minimum point moves to the right for increasing Q, as expected. The
energy curves appear to be smooth, and there is a unique minimum energy
point for each flow rate Q, occurring at different values of α. The energetic
behavior, then, is in line with the one predicted earlier in Section 5.3. The
minimum energy point for α = 1 seems to occur for an inlet flow rate between
5 and 6 cm3/s. Since in [191] a flow rate equal to 6.46 cm3/s was considered
a physiological value for this anatomy, we notice that this value is close to
the optimal range of inlet flow rate identified by our framework, but it is not
included in it. This may be due to the non ideal nature of blood flow in the
bifurcation, or to the value used for the metabolic constant, which influences
the position of the minimum energy point.
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Fig. 5.10 Results for the ideal bifurcation (Section 5.5.2). The first plot represents
the power loss curves due to viscous dissipation, the second one the metabolic cost,
and the third one the total power loss, resulting from the sum of the two previous
contributions.
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5.5.3 Coronary bifurcation

The third case analyzed is a patient-specific coronary bifurcation, obtained from
one of the patients enrolled in a single-center prospective study conducted at
the Sunnybrook Health Sciences Centre in Toronto, Canada. Patients presented
at the hospital for coronary bypass graft surgery. Between three and six weeks
after surgery, a cardiac CT was performed and anatomical information about
their aorta and coronary arteries was acquired using a 320-detector row CT
scanner (Aquilion One, Canon Medical Systems). From CT images, the vessels
surface was reconstructed using the open-source package SimVascular [26].
The reconstructed volume was discretised into tetrahedral elements using
TetGen [131].

The anatomy considered is the one reported in Fig. 5.11, which is placed at
the bifurcation of the left main coronary artery (LM) into the left circumflex
artery (LCx) and the left anterior descending artery (LAD). The average flow
rate in the coronary arteries is usually computed as 4% of the flow rate in
the ascending aorta, further split between the left and the right coronary
arteries with a 70%-30% ratio [209]. For this case, the aortic flow rate was
measured non-invasively with 4D-Flow MRI, and it amounted to an average
value of 107 cm3/s. Considering the high-degree stenosis present in the vessels
of interest, the average inlet flow rate was expected to be smaller than the one
computed with the 4% rule [210], which in this case would have been equal
to 2.9 cm3/s. The range for the inlet flow rate was then selected between
0.5 and 1 cm3/s, which was in line with the average flow rates measured in
coronary arteries with severe stenoses [211]. The metabolic constant was set to
16,143 ergs/cm3s, computed from (5.29) by assuming an average flow rate of
0.75 cm3/s, a volume of 1 cm3, and a pressure drop of about 8 mmHg, which
was the pressure drop obtained on the anatomy by imposing a flow rate of
0.75 cm3/s. At the outlet, resistive boundary conditions were imposed. The
total resistance was computed for each flow rate as in (5.31), where an outlet
pressure of 90 mmHg was imposed [43]. The total resistance was then split
between the two branches according to Murray’s law for flow split (5.8), with
the exponent 2.6, as suggested in [212] for the coronary tree. The energetic
behavior of this anatomy is coherent with the expected results, as depicted
in Fig. 5.12, with the minimum progressively moving toward the right. The
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Fig. 5.11 Coronary bifurcation used for the experiments of Section 5.5.3. The anatomy
was reconstructed from CT imaging by means of SimVascular, and represents the
Left Main coronary artery (LM) splitting between the Left Anterior Descending
artery (LAD) and the Left Circumflex artery (LCx).

curves of the power loss due to viscous dissipation, reported in the first panel
of Fig. 5.12, are not perfectly smooth, especially for higher Q. This fact may
be due to the difficulties in computing the power loss in a non-ideal anatomy,
with high-degree stenoses. In the fourth panel of Fig. 5.12, the total power loss
curves after applying a regression operation are displayed. Comparing to the
same curves before regression, displayed in the third panel of Fig. 5.12, it is
noticeable how the minimum points are more easily identifiable thanks to the
regression. However, the regression step causes the position of the minimum
points to move significantly, especially for Q=0.6 cm3/s and 0.8 cm3/s. In this
case, the minimum at α = 1 occurs for a flow rate between 0.5 and 0.6 cm3/s.
The total power curve associated to Q=1.0 cm3/s seems to show a different
trend with respect to the other curves. However, by visually inspecting the
simulation results for Q=1.0 cm3/s, no anomalies in the pressure and velocity
fields were detected. In conclusion, a range of flow rates for which the total
power is minimum appears to exist, confirming the presence of a minimum
energy region for the anatomy under analysis. However, identifying precisely
the position of the minimum does not seem to be a trivial task. For this reason,
the proposed approach could be potentially used to obtain a rough estimate of
the inlet flow rate.
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Fig. 5.12 Results for the coronary bifurcation (Section 5.5.3). The first plot represents
the power loss curves due to viscous dissipation, the second one the metabolic cost,
and the third one the total power loss. The fourth plot represents the total power
loss curves after regression.
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5.5.4 Aortic arch

The last case consists of an aortic arch, again obtained from one of the patient-
specific anatomies provided by the Sunnybrook Health Sciences Centre in
Toronto, Canada. As for the coronary bifurcation, the anatomy was recon-
structed starting from CT images by means of SimVascular. A representation
of the anatomy under analysis can be found in Fig. 5.13. The mean flow rate
measured in the ascending aorta with 4D-Flow MRI was 107 cm3/s. Then, the
flow imposed for this analysis ranged from 100 cm3/s to 120 cm3/s, and it was
imposed at the ascending aorta with a blunt profile, which is more realistic than
the parabolic profile, given that the inlet is right after the aortic valve. In order
to obtain a general value for the metabolic constant, the following procedure
was adopted. The inlet flow rate was measured on four aortic arches for which
4D-Flow measurements were also available, together with their total volume.
Then, for both quantities, an average across four patients was computed, and
these average values were used to estimate a generic metabolic constant for
the aortic arch. The obtained value for b was equal to 260 ergs·s/cm3. A
resistive boundary condition was imposed at the outlets, with total resistance
computed from (5.31), where ∆p was chosen to be equal to 100 mmHg. The
total resistance was then split among the four outlets according to Murray’s
law (5.8) with exponent 2, as suggested in [139] . The simulation results are
reported in Fig. 5.14. Differently from previous cases, it is noticeable how the
viscous dissipation curves are not perfectly smooth. This may be due to various
factors, above all the complexity of the fluid flow in the aorta, where the high
blood velocities can generate turbulence and a non-laminar flow, especially
in the descending tract after the bend. It is possible that this is due also to
the complexity of the anatomy. The weak ”noise” in the viscous dissipation
curves turns out to be relevant in the total energy plots, where, even if small, it
causes the presence of some local minima, which make it difficult to identify the
global minimum point. For this reason, we performed a polynomial regression
operation of the total power curves. After regression, a global minimum of each
curve was identifiable, and followed the predicted behavior. In this case, the
optimal flow is between 100 and 105 cm3/s. Considering that the inlet flow rate
measured in the patient was equal to 107 cm3/s, this value is not too far from
the identified optimal range. Also in this case, as for the coronary bifurcation
analysed previously, a precise identification of the minimum energy point, and
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Fig. 5.13 Anatomy of the aortic arch used in the experiments of Section 5.5.4. The
anatomy was reconstructed from CT images by means of SimVascular.

consequently of the optimal inlet flow rate, seems very difficult. However, the
results confirm that there clearly exists a region in which the total power loss is
minimum. This finding could be potentially leveraged to estimate the inlet flow
rate just based on the anatomy, when in-vivo measurements are not available.
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Fig. 5.14 Results for the aortic arch (Section 5.5.4). The first plot represents the
power loss curves due to viscous dissipation, the second one the metabolic cost, and
the third one the total power loss. The fourth plot represents the total power loss
curves after regression.
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To investigate the role that non-laminar flow may have on the presence of a
minimum energy point, we repeated the experiments for the aortic arch using
the Stokes equations in place of the Navier-Stokes ones. By neglecting the
nonlinear inertial term in the momentum equation, in fact, which is responsible
for the turbulent behavior of the flow, Stokes equations represent a linearized
version of the Navier-Stokes equations. Results for the Stokes case are reported
in Fig. 5.15. It can be noticed that, in this case, the viscous dissipation
curves did not need to go through a regression step to smooth their curvature,
suggesting that the noise in the Navier Stokes curves in Fig. 5.14 was due to
the presence of non-laminar flow. This fact also confirms that the deformation
produced by morphMan is sufficiently smooth, otherwise its effect would have
caused some non-smoothness also in the Stokes curves. It was possible to
identify the minimum energy points in the total power loss curves of Fig. 5.14,
but none of the investigated flow rates had a minimum in α = 1. This is
probably due to the fact that, for laminar flow, the power loss due to viscous
dissipation was about one order of magnitude smaller than the one computed
in presence of non-laminar flow. The presence of transitional and turbulent
flow, in fact, causes an increase in the power dissipation due to friction.

5.6 Final discussion and conclusions

In this chapter, we have proposed a framework for the numerical investigation
of the Murray’s minimum energy principle in patient-specific anatomies. With
the goal of verifying if, for a given anatomy, a minimum energy point exists, a
framework was developed to deform the anatomies, predict their haemodynamics
by solving the Navier-Stokes equations, and then compute the total power
loss. The proposed numerical framework was presented, validated on two
synthetic geometries, and tested on two patient-specific anatomies. Numerical
results confirmed the expected energetic behavior of the analyzed cardiovascular
models, with a different minimum energy point for each inlet flow rate. The
identifiability of such point, however, is hindered by a number of challenges,
which have been reported and investigated in this chapter. In particular, the
computation of the dissipated power, the role of the metabolic constant, and
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the presence of transitional and turbulent flow have been found to play a major
role in the possibility of identifying an optimal flow rate for a given anatomy.

The validity of Murray’s minimum energy principle in patient-specific
anatomies could have important applications, especially for the estimation of
boundary conditions in absence of patient-specific data. The results obtained,
in fact, suggest that, for each patient-specific anatomy, there is a single inlet flow
rate placing the anatomy in a minimum energy condition. The investigation
carried out in this chapter can be seen as a first step in the development of a
method for inlet flow estimation based solely on physics and on the anatomy
of the patient.
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Fig. 5.15 Results for the aortic arch (Section 5.5.4) using Stokes equations. The first
plot represents the power loss curves due to viscous dissipation, the second one the
metabolic cost, and the third one the total power loss. The fourth plot represents
the total power loss curves after regression.



Chapter 6

Conclusions and future
perspectives

This dissertation investigated the use of novel techniques for boundary con-
ditions estimation in cardiovascular modeling. Computational models are
progressively emerging as powerful instruments for clinical treatment, but for
their adoption in a real clinical setting a number of issues need to be overcome.
Despite the evidence showing that patient-specific models provide information
in a cheaper and more efficient way than standard approaches [213], to be
effectively exploited in the clinic they need to be fast, reliable, and easy to
use. Among the numerous challenges that arise from these requirements, the
estimation of appropriate boundary conditions is one of the most crucial. The
main contribution of this thesis is to provide a set of improvements for boundary
conditions estimation, to make this process accurate, automated, and data
driven.

In Chapter 3, we proposed a novel framework based on optimal control for
the estimation of resistive boundary conditions. This chapter first reviewed the
theoretical background behind optimal control for partial differential equations,
presenting the main techniques for its treatment and solution. The second part
of the chapter, instead, introduced the proposed framework for estimating outlet
resistances from pressure and flow rate measurements, which are assimilated into
the mathematical model describing blood flow by means of optimal control. The
proposed method was tested on real clinical scenarios, through its application
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on four patient-specific aortic arches and the assimilation of 4D-Flow MRI
data, together with brachial pressure measurements. Moreover, the proposed
framework was used to quantify the influence that different estimation methods
have on wall shear stress and oscillatory shear index, confirming the need for
automated methods for boundary conditions estimation.

Chapter 4 focused on a novel method for BC estimation based on the Time-
Domain Vector Fitting algorithm. The method proposed in this chapter is
purely data-driven, requiring time-dependent pressure and flow measurements
for the estimation process, and it can determine boundary conditions of arbitrary
complexity. The presented method was first used to estimate BCs of Windkessel
type starting from a 1D model of the entire cardiovascular system, and then
extended to more complex lumped boundary conditions, corresponding to
differential equations of increasing order. Then, it was used to investigate
the benefits in terms of accuracy that higher order boundary conditions can
provide, revealing that, for larger arteries, models corresponding to differential
equations up to order 4 are more accurate than the standard Windkessel model.
In short, this chapter provided an advanced definition of lumped parameter-type
boundary conditions, and an automated method to estimate its parameters
from data.

In Chapter 5, we presented a numerical investigation of the minimum
energy principle in patient-specific cardiovascular anatomies. The proposed
numerical framework was used to verify the existence of a minimum energy
point in patient-specific anatomies in order to potentially use the minimum
energy principle as a criterion for inlet flow estimation. The presented results
confirmed the predicted energetic behavior, but they also revealed the practical
issues arising during the identification of the minimum energy point.

6.1 Future perspectives

This thesis provided a number of advancements in the field of parameter estima-
tion for boundary conditions in cardiovascular models. The techniques proposed
in this dissertation open up a number of possible investigations and future
improvements, which will contribute to make patient-specific cardiovascular
models fast, reliable, and easy to use.
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In general, future works should aim at extending the proposed techniques
to other regions of the cardiovascular system, especially coronary arteries. On
one side, coronary arteries are characterized by a rich and complex blood flow
dynamics, which requires boundary conditions more complex than a three-
element Windkessel. On the other side, the physical dimensions of the vessels
and their anatomical position make it really hard to obtain either pressure and
flow data. This challenging scenario would benefit from the application of the
techniques proposed in this thesis. In particular, the optimal control framework
would estimate both inlet and outlet BCs in presence of a limited amount of
data, while the vector fitting approach would allow to explore the advantages
of higher order boundary conditions.

6.1.1 Optimal control for BC estimation

Despite the clear advantages in using automated estimation techniques for BC
estimation, the proposed methods have some limitations, which lead to different
future research directions. For what concerns the optimal control framework,
its application is limited by the computational cost, and by the possibility
to estimate only resistive conditions. Therefore, future research directions
should aim at tackling these challenges. Boundary conditions more complex
than a single resistance would include capacitors and inductors, which, due
to their time-dependent behavior, require the use of unsteady Navier-Stokes
equations instead of the steady Stokes ones. However, the solution of an optimal
control problem using the unsteady Navier-Stokes equations has prohibitive
computational costs, making this approach unfeasible.

A possible solution is represented by the use of reduced order modeling,
which in this case can take different forms and meanings. A first approach
consists in reducing the computational cost by adopting techniques such as
reduced basis methods [214] and with Proper Orthogonal Decomposition [215],
which have already been successfully applied to optimal control problems,
delivering reduced computational times with minimal accuracy loss [97, 75,
216, 217]. The main drawback of this approach is the expensive offline phase,
whose computational burden is proportional to the degrees of freedom of the
Finite Element problem.
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The second, probably more promising, approach consists instead in adopting
simplified physics models. In this case, the 3D anatomical models used in
Chapter 3 can be substituted with 1D models, or even with distributed lumped
parameter models [218, 219]. As these models are described by ODEs instead of
the more complex PDEs (Stokes and Navier-Stokes models), they are inherently
simpler to treat and faster to solve. An exciting future direction would then
be to extend the numerical framework presented in Chapter 3 to solve a state
problem described by ODEs, and to reformulate the optimal control problem
based on 1D or distributed lumped parameter models. We believe that the
use of reduced order models is not expected to significantly affect the accuracy,
especially considering that, with the optimal control framework proposed in
this thesis, only time- and space-averaged measurements are assimilated.

Lastly, a possible research direction could explore the use of frequency-
based numerical modeling tools, such as the harmonic balance method, in
place of the classical mathematical formulation in time domain. This method
takes advantage of the periodic, pulsatile nature of blood flow to transform
the original problem into a family of equations in frequency domain. Some
preliminary works have shown promising results, namely, reduced computational
time and comparable accuracy with respect to traditional time-domain CFD
solutions [220]. When adopted into a variational adjoint-based data assimilation
framework, this method delivered accurate solutions in practicable wall clock
times [221]. It would be interesting to adopt this approach for the estimation of
lumped parameter boundary conditions, even if this would entail re-formulating
the optimal control method from scratch, representing a new exciting research
direction.

6.1.2 Time-Domain Vector Fitting for BC estimation

For what concerns the vector fitting method, instead, the main limitation is
the requirement of both pressure and flow rate measurements, which are hardly
available concurrently. This limitation clearly complicates the extension of the
proposed method to realistic 3D anatomies, which represents the most natural
next step for this work. For this reason, future research directions should
explore the generation of data from defective measurements, which could then
be used for parameter estimation inside the vector fitting framework.
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To this end, a possible solution could be to adopt pressure waveform
generators, to generate realistic pressure waveforms given brachial diastolic and
systolic pressure values [168, 169]. If instead some pressure measurements are
available but not at the correct location, some transfer function-based solutions
have already been proposed to obtain pressure at the desired location [222, 223],
or the Delayed Vector Fitting scheme could be explored to account for the
expected delays in the pressure waveform measured at a different location [79].

An alternative solution consists in using a 1D model of the entire cardio-
vascular system, like the 55-segments one adopted in Chapter 4, to generate
pressure and flow rate measurements at the required locations. This would allow
a straightforward adoption of the proposed framework for the investigation
of the Vector Fitting scheme on 3D models. The main drawback, however,
is that a general 1D model of the entire circulatory system is not inherently
patient-specific, a desirable feature for BC estimation methods. This limitation
could be partially overcome by "personalizing" the 1D model. For example,
using patient-specific information such as age, gender, height, some model
parameters, such as stiffness, segment lengths, could be adjusted. Some efforts
have already been done in this direction [224], which could be expanded to
obtain automatically a personalized 1D model.

6.1.3 Numerical investigation of Murray’s principle

The investigation of Murray’s minimum energy principle has risen many ques-
tions, which can be the subjects of further investigation. In particular, the
analysis conducted in Chapter 5 has highlighted the need for a robust estima-
tion of the metabolic constant, a missing piece in unveiling the mechanisms
governing the cardiovascular system. A future project could expand the pre-
liminary work presented in this thesis by estimating the metabolic constant
on a population of cases and on new different territories (e.g., the coronary
arteries, the carotid bifurcation). The proposed investigation would benefit
from a more efficient parameterization of the anatomies, modifying directly the
mesh, instead of only the outer surface.
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