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Abstract
We prove that a radial Kähler metric g is Kähler-Einstein if and only if one of the following

conditions is satisfied: 1. g is extremal and it is associated to a Kähler-Ricci soliton; 2. two
different generalized scalar curvatures of g are constant; 3. g is extremal (not cscK) and one of
its generalized scalar curvature is constant.
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1. Introduction

1. Introduction
Given a complex manifold M (compact or not) it is an interesting and well-studied prob-

lem to see when M can be endowed with some canonical metric. Undoubtedly the most
studied and important are the Kähler-Einstein (KE) metrics.

Other prominent examples that generalize KE metrics and have attracted the attention of
many mathematicians are the following three types of Kähler metrics.
1. Extremal metrics. Introduced by Calabi [1], are those metrics such that the (1,0)-part of
the Hamiltonian vector field associated to the scalar curvature is holomorphic. The reader
is referred to [10] and references therein for more details. We denote by  xt(M) the set of
extremal metrics on M.
2. The metrics associated to a Kähler-Ricci soliton (KRS). A KRS on a complex manifold
M is a pair (g, X) consisting of a Kähler metric g and a holomorphic vector field X, called
the solitonic vector field, such that

(1) ρ = λω + LXω
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for some λ ∈ R, called the solitonic constant. Here ω and ρ are respectively the Kähler form
and the Ricci form of the metric g and LXω denotes the Lie derivative of ω with respect to
X. KRS are special solutions of the Kähler-Ricci flow and they generalize Kähler–Einstein
(KE) metrics1 . Indeed any KE metric g on a complex manifold M gives rise to a trivial KRS
by choosing X = 0 or X Killing with respect to g. Obviously if the automorphism group of
M is discrete then a Kähler–Ricci soliton (g, X) is nothing but a KE metric g. We denote
by (M) the set of Kähler metrics g on M such that (g, X) is a KRS, for some solitonic
vector field X.
3. The k-generalized constant scalar curvature metrics, 1 ≤ k ≤ n (where n is the complex
dimension of n). Let g be a Kähler metric. By definition, the k-generalized scalar curvature,
1 ≤ k ≤ n, ρk(g) of g are defined as (see [13]):

(2)
det

(
gi j̄ + s Rici j̄

)
det(gi j̄)

= 1 +
n∑

k=1

ρk(g)sk.

Notice that ρ1(g) = scalg, where scalg is the scalar curvature of the metric g. Denote by
k(M) the set of Kähler metrics g on M such that ρk(g) is a constant.

For any complex manifold M one clearly has the following inclusions:

(3) (M) ⊇ (M) ⊆ k(M), (M) ⊆ 1(M) ⊆  xt(M)

where (M) is the set of KE metrics on M.
It is then interesting to study the following:

Problem. Find conditions which ensure that a canonical Kähler metric of the types above
is KE.

In this regard we recall some results when M is compact, summarized in the following
theorem.

Theorem A. Let M be a compact complex manifold M. Then the following facts hold
true.

(a) k(M) ∩(M) ⊆ (M), for all k ≥ 1.
(b) if g ∈  xt(M)∩(M) and assume that one of the two following conditions holds

true:
(b1) (M, g) is toric;
(b2) the holomorphic sectional curvature of g does not change sign.
Then g is KE.

Proof. Let g be the Kähler metric associated to a KRS and ω its Kähler form. Notice that
the solitonic vector field of a KRS on a compact complex manifold is gradient and hence ω
is cohomologically Einstein. Hence (a) follows by the first Corollary in [5] when ρ1(g) is
constant and when ρk(g) is constant and different from zero, for k ≥ 1. If ρk(g) = 0 for k ≥ 1
then [13, Theorem 1] yields that c1(M) = 0, i.e. the KRS is steady and hence g is forced to
be KE by [2].

The proofs of (b1) and (b2) can be found in [4] and [3] respectively. �

1For more information on KRS see references in [7].
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Remark 1. We do not know if the assumptions (b1) and (b2) can be dropped. Notice
that for the proof of (b2) one needs to use only that the KRS is gradient (always true in the
compact case) and the holomorphic sectional curvature does not change sign.

Remark 2. Notice that the inclusion (M) ⊆ k(M) ∩ 1(M) (and hence the inclusion
(M) ⊆ k(M)∩ xt(M)) for k ≥ 1 is strict for a compact complex manifold M even if one
assumes (b2) in Theorem A. Indeed the metric g given by the product of the flat metric and
the Fubini-Study metric on T n−k+1 × CPk−1 (where T n−k+1 is the complex torus and CPk−1

the complex projective space) has constant scalar curvature, ρk(g) = 0, it is not KE and its
holomorphic sectional curvature is non-negative (cfr. the final Remark in [5]). In light of
(b1) in Theorem A it could be interesting to see if the equality k(M) ∩  xt(M) = (M)
holds true in the compact toric case.

When the manifold involved is noncompact the previous problem has been studied by the
first and third author of the present paper for Hartogs domains. More precisely in [12] it is
shown that if the Kähler metric g naturally associated to an Hartogs domain D ⊂ Cn belongs
to one of the three types described above then g is forced to be KE (and hence (D, g) is
holomorphically isometric to an open subset of the complex hyperbolic n-space).

In this paper we restrict to radial metrics, namely those Kähler metrics g on (noncompact)
complex manifolds which admit a global Kähler potential which depends only on the sum
|z|2 = |z1|2 + · · · + |zn|2 of the local coordinates’ moduli.

If M is a complex manifold we denote by

ad(M) = {radial Kähler metrics on M}
The main result of the paper is the following theorem which shows in particular that in

the noncompact radial case the same conclusion of Theorem A can be achieved without any
assumption on the curvature of the metric.

Theorem 1.1. Let M be a complex manifold. Then the following facts hold true.

(i)  xt(M) ∩(M) ∩ad(M) = (M) ∩ad(M);
(ii) k(M) ∩ h(M) ∩ad(M) = (M) ∩ad(M), ∀h, k ≥ 1, h � k;

(iii) k(M) ∩  xt(M) ∩ad(M) = (M) ∩ad(M), ∀k > 1;
(iv) k(M) ∩(M) ∩ad(M) = (M) ∩ad(M), ∀k ≥ 1.

In the next section we collect some results on radial metrics and we prove Theorem 1.1. In
the final section we provide some explicit examples and compare Theorem 1.1 with Theorem
A.

2. Radial canonical Kähler metrics

2. Radial canonical Kähler metrics
Let g be a radial Kähler metric on a connected complex manifold M, equipped with

complex coordinates z1, . . . , zn and let ω and ρ be respectively the Kähler form and the Ricci
form associated to g. Then there exists a smooth function

f : (rinf , rsup)→ R, 0 ≤ rinf < rsup ≤ ∞,
where (rinf , rsup) is the maximal domain where f (r) is defined such that
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(4) ω =
i
2
∂∂̄ f (r), r = |z|2 = |z1|2 + · · · + |zn|2,

i.e. f (r) is a radial potential for the metric g.
One can easily see that the matrix of the metric g and of the Ricci form ρ read as

(5) ωi j̄ = f ′(r)δi j + f ′′(r)z̄iz j,

(6) ρi j̄ = L′(r)δi j + L′′(r)z̄iz j,

where L(r) = − log(det g)(r).
Set

(7) y(r) := r f ′(r)

and

(8) ψ(r) := ry′(r).

Then

(9) ψ(r) =
dy
dt
, r = et.

The fact that g is a metric is equivalent to y(r) > 0 and ψ(r) > 0, ∀r ∈ (rinf , rsup). Then

(10) lim
r→r+inf

y(r) = yinf

is a non negative real number. Similarly set

(11) lim
r→r−sup

y(r) = ysup ∈ (0,+∞].

Therefore we can invert the map

(rinf , rsup)→ (yinf , ysup), r �→ y(r) = r f ′(r)

on (rinf , rsup) and think r as a function of y, i.e. r = r(y).
Hence we can set

(12) ψ(y) := ψ(r(y)).

Finally, from (5), we easily get

(13) (det gi j̄)(r) =
(y(r))n−1ψ(y(r))

rn .

The following three propositions (Proposition 2.1, Proposition 2.2 and Proposition 2.3)
are the key tools for the proof of Theorem 1.1 and provide us with the explicit expressions
of radial extremal metrics, radial KRS and radial generalized cscK metrics respectively, in
terms of the functions y and ψ(y) defined by (7) and (8).

Proposition 2.1. A radial Kähler metric g is extremal if and only if

(14) ψ(y) = y − A
yn−1 −

B
yn−2 −Cy2 − Dy3.

for some A, B,C,D ∈ R. Moreover,
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(a) if n = 1, g is KE (i.e. a complex space form) iff D = 0. Moreover, its (constant)
scalar curvature is given by 2C;

(b) if n ≥ 2, g is KE iff B = D = 0 with Einstein constant 2C(n + 1). Moreover, the
metric is flat iff A = B = C = D = 0.

Proof. See [10, Lemma 2.1] for a proof. �

Remark 3. From (14) we easily deduce that if a Kähler-Einstein metric is defined at the
origin r = 0 then it is a complex space form. Indeed, the metric is Einstein if and only if

ψ(y) = y − A
yn−1 −Cy2,

which immediately implies that A = 0 if the metric is defined at the origin since in that case
y(r) = r f ′(r) = 0 and ψ(r) = r(r f ′(r))′ = 0 for r = 0.

Proposition 2.2. Let g be a radial KRS with solitonic constant λ. Then the following
facts hold true.

If n = 1 then there exist μ, k ∈ R such that

(15) ψ̇(y) = μψ(y) + k + 1 − λy
and if μ = 0 then the soliton is trivial (i.e. a complex space form). If μ � 0 then

(16) ψ(y) = νeμy +
λ

μ
y +

(
λ

μ2 −
k + 1
μ

)

and the soliton is trivial iff it is flat iff ν = 0.
If n ≥ 2 then there exists μ ∈ R such that

(17) ψ̇(y) =
(
μ − n − 1

y

)
ψ(y) + n − λy

and if μ = 0 the soliton is trivial (i.e. KE). If μ � 0 then

(18) ψ(y) =
νeμy

yn−1 +
λ

μ
y +

λ − μ
μ1+n

n−1∑
j=0

n!
j!
μ jy j+1−n

and the soliton is trivial iff it is flat iff ν = 0 and μ = λ.

Proof. See either [11, Proposition 2.2] or [6] for a proof. �

Proposition 2.3. Let g be a radial Kähler metric and set

(19) σ(y) :=
1
yn−1

d
dy

[
yn−1ψ(y)

]
= ψ̇(y) +

(n − 1)ψ(y)
y

.

Then its k-th generalized scalar curvature ρk(g), 1 ≤ k ≤ n, is constant, i.e. ρk(g) = ρk, if
and only if

(20) σ(y) = n − y
(
Ak +

Bk

yn

)1/k

,

where Ak = ρk
k!(n−k)!

n! and Bk is constant (depending on k).



550 A. Loi, F. Salis and F. Zuddas

Moreover, g is KE with Einstein constant λ if and only if σ(y) = n − λ
2y.

Proof. Let g be radial with Kähler potential f (r), where r = |z1|2 + . . . + |zn|2. By (7) and
(8) we immediately get f ′(r) = y(r)

r and f ′′(r) = ψ(y(r))−y(r)
r2 , which combined with (5) yields

gi j̄(r) =
ψ(y(r)) − y(r)

r2 z̄iz j +
y(r)

r
δi j.

Also by (13) we have

L(r) = − log(det g)(r) = −(n − 1) log y(r) − logψ(y(r)) + n log r

and then, by using y′(r) = ψ(y(r))
r and (19),

L′(r) = −n − 1
y

ψ

r
− ψ̇(y)

r
+

n
r
=

n − σ(y(r))
r

.

By (6), then finally one gets (cfr. also [8])

Rici j̄(r) =
−σ̇(y(r))ψ(y(r)) + σ(y(r)) − n

r2 z̄iz j +
n − σ(y(r))

r
δi j.

Then (2) reads as

(21)

1 +
n∑

k=1

ρk sk =
(ψ(y) − sσ̇(y)ψ(y))(y + sn − sσ(y))n−1

ψ(y)yn−1 = (1 − sσ̇(y))
(
1 + s

n − σ(y)
y

)n−1

= 1 +
n−1∑
k=1

(
n − σ(y)

y

)k−1 [(
n − 1

k

)
n − σ(y)

y
−

(
n − 1
k − 1

)
σ̇(y)

]
sk − σ̇(y)

(
n − σ(y)

y

)n−1

sn.

Then n-th generalized scalar curvature ρn is constant if and only if

−σ̇(y) (n − σ(y))n−1 = ρn y
n−1

which integrates to

σ(y) = n − y
(
ρn +

Bn

yn

)1/n

,

i.e. (20) for k = n.
On the other hand the k-th generalized scalar curvature ρk, 1 ≤ k ≤ n − 1, is constant if

and only if

(22) Rky
k − (n − k)(n − σ(y))k + kyσ̇(y)(n − σ(y))k−1 = 0,

where Rk = ρk
k!(n−k)!
(n−1)! .

If Rky
k − n(n − σ(y))k = 0 then

σ(y) = n −
(Rk

n

)1/k

y,

i.e. (20) with Bk = 0.
If Rky

k − n(n − σ(y))k � 0 then (22) gives

n − k
y
+

Rkkyk−1 + kn(n − σ(y))k−1σ̇(y)
Rkyk − n(n − σ(y))k = 0
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which integrates to

σ(y) = n −
(Rk

n
yk + Bky

k−n
)1/k

.

For the last assertion of the proposition we assume n ≥ 2 (the case n = 1 is obtained
similarly). We know by Proposition 2.1 that the metric is KE with Einstein constant λ if
and only if ψ(y) = y − λ

2(n+1)y
2 − A

yn−1 . It is immediate to see that this is equivalent to
1
yn−1

d
dy

[
yn−1ψ(y)

]
= n − λ

2y, which by (19) proves the assertion. �

Remark 4. Equation (20) combined with (19), together with a choice of initial values
y0 > 0 and ψ(y0) > 0, yield a Cauchy problem for ψ(y) whose solution is a k-generalized
cscK which is not cscK. For an explicit example, take k = n and An = 0 in (20): then
σ(y) = c := n − (Bn)1/n which by (19) yields ψ(y) = c

ny +
d
yn−1 . Notice that if either n � 1

or c � n, i.e. Bn � 0, this is not an extremal metric. In particular, for d = 0, by ψ(y) = dy
dt

and by recalling that r = et and y(r) = r f ′(r), one gets the potential f (r) = βrc/n, for some
β ∈ R.

We are now in the position to prove Theorem 1.1.
Proof of Theorem 1.1. To show (i) let us assume that a radial metric is both extremal and

KRS. Let us distinguish the cases n = 1 and n ≥ 2.
If n = 1 the extremal condition (14) and its derivative read as

(23) ψ(y) = (1 − B)y − A −Cy2 − Dy3,

(24) ψ̇(y) = (1 − B) − 2Cy − 3Dy2.

By inserting (23) into the soliton equation (15) (for n = 1) we get

ψ̇(y) =
[
μ(1 − B) − λ] y − μCy2 − μDy3 − μA + k + 1,

which compared with (24) forces the coefficient of y3 to vanish, i.e. μD = 0. If D = 0
or μ = 0 the metric is KE respectively by Proposition 2.1 and Proposition 2.2. Let us now
assume n ≥ 2. By inserting equation for extremal metrics (14) into the soliton equation (17)
we obtain

ψ̇(y) = 1 +
[
C(n − 1) + μ − λ] y + [

D(n − 1) −Cμ
]
y2 − Dμy3

+
A(n − 1)
yn +

B(n − 1) − μA
yn−1 − Bμ

yn−2 .

On the other hand, derivating (14) we get

ψ̇(y) = 1 − A(1 − n)
yn − B(2 − n)

yn−1 − 2Cy − 3Dy2.

Comparing these two last expressions and observing that in the first one there are the
terms in y3 and 1

yn−2 which are not in the second one, one finds either μ = 0 and then the
soliton is trivial by Proposition 2.2, or B = D = 0, which by Proposition 2.1, again implies
that the metric is KE. Hence (i) is proved.

In order to prove (ii), assume that the generalized curvatures ρk(g) and ρh(g) are constant
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for some h, k ≥ 1, h � k. By (20) in Proposition 2.3, we must have
(
Ak +

Bk

yn

)1/k

=

(
Ah +

Bh

yn

)1/h

which clearly implies that Bk = Bh = 0 and (Ak)1/k = (Ah)1/h = A.
Then, σ(y) = n − Ay and the metric is KE by the last assertion of Proposition 2.3.
We now prove (iii). If a radial Kähler metric g is extremal then by combining (14) and

(19) one gets:

(25) σ(y) = n − B
yn−1 −C(n + 1)y − D(n + 2)y2.

Assume that the k-th generalized scalar curvature ρk(g) (with k > 1) is constant: by Propo-
sition 2.3 and by comparing (20) with (25) we see that

(
Ak +

Bk
yn

)1/k
must be a rational func-

tion. This is possible only if either Bk = 0 (and hence the metric is KE by Proposition 2.3)
or Ak = 0 and n

k ∈ Z. In the latter σ(y) = n − (Bk)1/k

y
n
k −1 which compared with (25) and recalling

that k > 1 yields again Bk = 0.
Finally we prove (iv). By the equations (16) and (18) of a radial non trivial KRS one

easily gets that (19) reads as

(26) σ(y) =
μνeμy

yn−1 + n
λ

μ
+
λ − μ
μ1+n

n−1∑
j=1

n!
( j − 1)!

μ jyn− j.

By comparing the previous equation with (20), we easily get that if a radial non trivial KRS
has constant k-th generalized scalar curvature (with 1 ≤ k ≤ n), then ν = 0 and λ = μ, which
by the last assertion of Proposition 2.2 means that g is KE (actually Ricci flat), yielding the
desired contradiction and proving (iv). �

3. Some final remarks

3. Some final remarks
The assertion (i) in Theorem 1.1 should be compared with (b2) of Theorem A in the

introduction. Hence it is worth to exhibit radial extremal metrics and non trivial radial KRS
with sign-changing holomorphic sectional curvature. This is done in the following two
examples. We first recall that in [9] we have shown that, given a radial metric, in the point
p = (z1, 0, . . . , 0) the only non vanishing components of the Riemann tensor Ri j̄kl̄ are

R11̄11̄ =
ψ̈(y)ψ2(y)

r2 ,

R11̄iī =
ψ̇(y)y − ψ(y)

yr2 ,

Riīiī = 2Riī j j̄ = 2
ψ(y) − y

r2 .

Then, in p, the holomorphic sectional curvature along Z =
∑

k ξk
∂
∂zk

is

R(Z, Z̄, Z, Z̄) =
ψ̈(y)ψ2(y)

r2 |ξ1|4 + ψ̇(y)y − ψ(y)
yr2 |ξ1|2

∑
|ξi|2
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+
ψ(y) − y

r2

∑
|ξi|2|ξ j|2 + 2

ψ(y) − y
r2

∑
|ξi|4.

If we assume that ξ2 = · · · = ξn = 0 this formula (always in p) reduces to

(27) R(Z, Z̄, Z, Z̄) =
ψ̈(y)ψ2(y)

r2 |ξ1|4.
Thus to find radial extremal metrics or radial KRS with sign-changing holomorphic sec-
tional curvature, it will be enough to find metrics for which ψ̈ changes sign in its domain of
definition.

Example 1. Take the radial extremal metric in dimension n ≥ 2 with A = B = 0, C = 1,
D = −1 in (14), i.e.

ψ(y) = y − y2 + y3.

Since ψ̈(y) = −2 + 6y we have that ψ̈(y) changes sign in a neighbourhood of y = 1
3 ;

moreover, being ψ( 1
3 ) > 0 the local solution y(t) of the Cauchy problem dy

dt = ψ(y(t)), y(t0) =
1
3 , for any t0 ∈ R, satisfies the conditions y > 0 and ψ(y) > 0 to represent a metric and
then ψ defines an extremal metric which, by (27), has sign-changing holomorphic sectional
curvature.

Example 2. In order to find a nontrivial radial KRS with sign-changing holomorphic sec-
tional curvature, take for example

n = 3, ν = 0, μ < 0, λ < −5
4
μ, λ � μ

in (18), i.e.

(28) ψ(y) =
λ

μ
y +

λ − μ
μ4

(
6
y2 +

6μ
y
+ 3μ2

)
.

One gets

(29) ψ̈(y) =
12(λ − μ)
μ4y4 (3 + μy)

and then ψ̈(y) changes sign in a neighbourhood of y = − 3
μ
, which is positive by the assump-

tions. Moreover, one finds

ψ

(
−3
μ

)
=
−4λ − 5μ

3μ2 .

which is positive by the assumptions. Then, we conclude as in the previous example that ψ
yields a non-trivial Ricci soliton which, by (27), has sign-changing holomorphic sectional
curvature (the non-triviality is guaranteed by λ � μ).
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