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Abstract
This paper proposes the use of Jacobi polynomials to approximate higher-order
theories of beam, plate, and shell structures. The Carrera unified formulation is
used in this context to express displacement kinematics in a hierarchical form.
In this manner, classical to complex higher-order theories can be implemented
with ease. Particular attention is focused on the attenuation and the correction
of the shear locking. Therefore, reduced integration as well as mixed interpo-
lation of tensorial components methods are investigated against the new finite
elements. Several case studies are taken into account to highlight the effective-
ness and robustness of the proposed approach. Also, several benchmarks are
provided for future assessments.

K E Y W O R D S

beam, Carrera unified formulation, finite element method, Jacobi polynomials, plate and shell
models, shear locking

1 INTRODUCTION

Modern advanced engineering, ranging from industrial applications to bio-mechanics, eventually requires complicated
and computationally expensive structural analyses. For some geometries and to reduce the required computer power,
appropriate one-dimensional (1D) and two-dimensional (2D) models can be adopted to analyze the three-dimensional
(3D) continuum. The Finite Element Method (FEM) is undoubtedly the most important computational technique for
structural analysis; see MacNeal,1 who delineated the history of the FEM analysis.

In most Finite Element (FE) formulations, axiomatic-type theories are used. Concerning beam theories,
Euler–Bernoulli Beam Model (EBBM)2 and Timoshenko Beam Model (TBM)3 represent classical formulations and are
widely employed in the engineering practice. For both, the cross-section is considered to be rigid in its plane. Further-
more, the shear deformation is neglected in the case of EBBM, whereas it is considered constant along the cross-section
in the case of TBM. Other beam FEs were developed in the last decades, see Reddy4 and Carrera et al.5 The most used
1D FEs shape functions to approximate either classical or high-order beam theories are those based on Lagrange polyno-
mials. Eventually, two-, three- and four-node 1D FEs have been developed, see Bathe.6 The same elements were used by
Carrera et al.7 to approximate models based on advanced kinematics and employing Carrera Unified Formulation (CUF).

If the 2D plate and shell elements are considered, Thin Plate Theory (TPT) and Thin Shell Theory (TST) rep-
resent the classical models. TPT and TST are based on Kirchhoff8 hypotheses, which neglect transverse shear and
trough-the-thickness deformation. In this manner, line segments perpendicular to the mid-plane so directed along the
thickness direction remain orthogonal to the plate/shell reference surface during deformation. If the transverse shear
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2 PAGANI et al.

deformation is added in TPT or in TST for the shell case, the Reissner–Mindlin9,10 theory can be provided. It is also
commonly denoted as First-Order Shear Deformation Theory (FSDT). Although classical models do not satisfy the homo-
geneous condition at the top and bottom surfaces of plates/shells, they were the predominant structural theories in the
early FEM plate/shell formulations, and some examples are given in Argyris.11

The majority of plate/shell FEs are based on Lagrange polynomials. Pryor and Barker12 developed a four-node element
for studying transverse shear effects. Parisch13 provided a survey of the nine-node degenerated shell element. Further-
more, Bathe and Ho14 reviewed several quadrilateral Lagrange-based elements: 4-, 8-, 9- and 16-node isoparametric shell
elements. In particular, Carrera15 used four-, eight- and nine-node FEs to study composite plates. Batoz et al.16 studied
a triangular three-node Lagrange-based element. Lee and Bathe17 compared triangular plate/shell six- and seven-node
elements with nine-node FEs.

Convergence alone is not enough to guarantee the numerical consistency of FE schemes although. FEs are
affected by numerical problems when thin structures are analyzed, for example. Structures become excessively stiff in
bending-dominant problems. This phenomenon is denoted as shear locking and leads to a severe increase in shear stiff-
ness. The shear locking problem is a well-known issue, highlighted in many works. Several scientists presented methods
to alleviate this behavior; see Reddy4,18 and Crisfield.19 Zienkiewicz, Taylor et al.20 proposed the reduced integration
scheme, for instance. In this method, the stiffness of elements is reduced by decreasing the order of the numerical integra-
tion in each term of the stiffness matrix. For example, Zlàmal21 presented superconvergence and reduced integration in
the plate/shell FEs. On the other hand, Prathat and Bhashyam22 proposed a reduced integration for the beam elements.
Another common technique is the so-called selective reduced integration scheme. This scheme is substantially a reduced
integration for the transverse shear terms, whereas a full quadrature is employed for the remaining terms of the stiffness
matrix, see Hughes et al.23 These two integration schemes are powerful and increase the convergence rate displacement
evaluation, but some spurious modes can appear, see MacNeal and Harder.24 Dvorkin and Bathe25 introduced a very
diffused method based on mixed interpolation of shear strains. This method is commonly known as Mixed Interpola-
tion of Tensorial Components (MITC). In particular, assumed strain distributions are here used for the derivation of the
transverse shear terms. Bucalem and Bathe26 remarked how this is a fully integrated method of the mixed interpolated
element. The MITC technique has been extensively used for plate/shell formulation. Bathe and Dvorkin27 proposed the
so-called MITC4 and MITC8 with four- and eight-node Lagrange elements, respectively. Bucalem and Bathe28 also pre-
sented 9- and 16-node Lagrange elements, that is, MITC9 and MITC16. Cinefra and Carrera29 proposed a MITC9 shell
element in the CUF framework. Bathe6 presented a MITC method for alleviating shear locking in beam elements as well.
In this work, a two-node Timoshenko beam FE is adopted. Lee et al.30 proposed a geometry-dependent MITC method
to avoid locking on two-node beam elements dealing with varying section beams. Carrera and Pagani31 used a two-node
Lagrange-like shape function in the CUF framework. Carrera et al.32 extended the use also for three- and four- node beam
elements.

Other FEs have been implemented to attenuate shear-locking issues. These FEs are based on anisoparametric (or
interdependent) interpolation through Lagrangian polynomials. Tessler and Dong33 implemented beam elements which
include the effects of transverse shear deformation and rotary inertia. Concerning the plate elements, Tessler and
Hughes34 proposed a four-node, 12 degrees-of-freedom quadrilateral element based on Mindlin theory. Tessler and
Hughes35 implemented also a three-node triangular element based on the previous four-node element. Finally, Tessler36

proposed reliable and simple shell elements. The bending part of the element is derived from Reissner–Mindlin plate,
while Marguerre’s shallow shell equations account for the membrane deformations and the membrane-bending coupling
associated with the shell-element curvatures.

In the present paper, Jacobi polynomials are utilized as shape functions for beams, plates and shells. Jacobi polyno-
mials are classical orthogonal polynomials, and they can be derived from a recurrence relation. They have the property
to originate a vast class of polynomials changing the two parameters 𝛾 and 𝜃; for example, Legendre and Chebyshev poly-
nomials, see the book of Abramowitz and Stegun.37 Interestingly FEs can be created using Jacobian shape functions,
see Beuchler and Schöberl.38 The use of this class of shape functions is not new, indeed. Fuentes et al.39 proposed FEs
based on shifted Jacobi polynomials, considering the parameter 𝜃 null. Several shapes were introduced for 1D, 2D, and 3D
elements, as segments, quadrilaterals and tetrahedrons. Szabo, Duester et al.40 suggested a hp-version of FE using hierar-
chical expansions derived from Legendre polynomials for beam, plate and solid. In this method, it is possible to increase
both the number of elements, see Zhu and Zienkiewicz,41 and the polynomial order of the shape function, see Babuška
et al.42

Based on CUF, the present research introduces a new class of unified beam, plate and shell FEs based on Jacobi
shape functions, with particular emphasis on the attenuation of numerical locking issues. Jacobi polynomials were used
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PAGANI et al. 3

to generate high order theories of structures in the framework of CUF in an axiomatic/asymptotic manner, see Carrera
et al.43 Low-order to very refined models were implemented. The latter were demonstrated to approximate the numerical
and exact solutions in a very precise manner, eventually showing some interesting properties if compared to CUF-based
Higher-Order Theories (HOT) employing Lagrange and Maclaurin thickness functions; see References 44-47. In the
present work, instead, Jacobi polynomials are used to approximate the generalized displacements in the mid-plane in the
case of plates and shells; that is, Jacobi polynomials are used here as shape functions in the framework of the FEM to
provide approximate solutions given the theory approximation order. This paper is structured as follows: Section 2 briefly
introduces Jacobi polynomials as shape functions. Formulation of the FEs for beams, plates, and shells is explained in
Section 3. Section 4 presents the four benchmarks used in this paper for analysis. In Section 5, convergence and locking
analyses are performed. Section 6 presents further results by adopting HOT. The capability of studying plate and shell
structures of the beam formulation is illustrated in Section 7. Finally, Section 8 draws the most relevant conclusions of
this work.

2 SHAPE FUNCTIONS BASED ON JACOBI POLYNOMIALS

Lagrange-like shape functions are very popular in most of the FEM applications. In the present work, also several
1D and 2D Lagrange-like elements are used for assessing the new FEs. These elements are built by using a set of
points which represent the roots of the polynomials themselves. As a matter of fact, Lagrange-based shape func-
tions are not hierarchical. Thus, increasing the order of the model inevitably requires a remeshing. For instance,
Figure 1 illustrates the position of nodes for four-node and sixteen-node 2D elements. For the purpose of completeness,
Figure 2A shows two four-node beam elements, whereas Figure 3A depicts depicts a nine-noded elements mesh of a
plate structure.

As the main objective of this paper, the Jacobi polynomials are adopted to build shape functions. One of the main
attributes of these elements is their hierarchical nature. Enriched shape functions can be automatically built, indeed, by
simply choosing the polynomial order p, while keeping the mesh fixed. Nevertheless, it is also possible to refine the mesh

F I G U R E 1 Four-node (A) and 16-node (B) two-dimensional Lagrange-like elements.

F I G U R E 2 Beam elements for Lagrange (A) and Jacobi (B) shape functions.
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4 PAGANI et al.

F I G U R E 3 Plate/shell elements for Lagrange (A) and Jacobi (B) shape functions.

by increasing the number of FEs (h-refinement). Jacobi polynomials are formulated using recurrence relations, see the
book of Abramowitz and Stegun.37 The formula used to describe the orthogonal Jacobi polynomials is:

P(𝛾,𝜃)p (𝜁) =
(

Ap𝜁 + Bp
)

P(𝛾,𝜃)p−1 (𝜁) − CpP(𝛾,𝜃)p−2 (𝜁), (1)

where 𝛾 and 𝜃 are two scalar parameters and n is the order of the polynomial. The formula is calculated in natural plane
𝜁 = [−1,+1]. The first values are P(𝛾,𝜃)0 (𝜁) = 1 and P(𝛾,𝜃)1 (𝜁) = A0𝜁 + B0. The parameters Ap, Bp, and Cp are:

Ap =
(2p + 𝛾 + 𝜃 + 1)(2p + 𝛾 + 𝜃 + 2)

2(p + 1)(p + 𝛾 + 𝜃 + 1)
,

Bp =
(𝛾2 − 𝜃2)(2p + 𝛾 + 𝜃 + 1)

2(p + 1)(p + 𝛾 + 𝜃 + 1)(2p + 𝛾 + 𝜃)
, (2)

Cp =
(p + 𝛾)(p + 𝜃)(2p + 𝛾 + 𝜃 + 2)

(p + 1)(p + 𝛾 + 𝜃 + 1)(2p + 𝛾 + 𝜃)
.

By choosing 𝛾 and 𝜃, other popular polynomials can be devised. For example, Legendre polynomials are given by 𝛾 = 0
and 𝜃 = 0.

2.1 Application to beams

Figure 2B shows a FEM discretization with two elements along the beam axis. In this case, two kinds of polynomials are
used along the y axis, one associated with nodes (or vertexes) and one associated with edges. In Figure 2B, represent the
nodes for vertex expansions, whereas are the edge expansions. They are adopted as shape functions with the procedure
described in Reference 40. There are two nodes and a number of edge modes which depend on the polynomial order of
the element.

The hierarchic functions are defined as:

N1(𝜁) =
1
2
(1 − 𝜁)

N2(𝜁) =
1
2
(1 + 𝜁)

Ni(𝜁) = 𝜙i−1(𝜁), i = 3, 4, … , p + 1, (3)

with

𝜙j(𝜁) = (1 − 𝜁) (1 + 𝜁)P𝛾,𝜃j−2(𝜁), j = 2, 3, … , p, (4)
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PAGANI et al. 5

where p indicates the polynomial order. The first two functions N1(𝜁), N2(𝜁) are the vertex expansions based on linear
Lagrange polynomials. Given the following property

Ni(−1) = Ni(1) = 0, i ≥ 3, (5)

the functions Ni(𝜁), i = 3, 4, … are denoted to as bubble functions or edge expansions.*

2.2 Application to plates and shells

Figure 3B shows a FEM discretization with four elements for a plate structure. In this case three kinds of polynomials are
used over the x-y plane: vertex (or node), edge and internal. There are four vertex modes and they vanish at all nodes but
one. On the other hand, the number of edge modes depends on the polynomial order and they vanish for all sides of the
domain but one. Finally, the internal modes are included from the fourth-order polynomial, and they vanish at all sides.

represent the nodes for the vertex expansions, whereas are the edge expansions, and indicate the surfaces where
internal expansions are defined. See Reference 48 for a similar procedure.

2.2.1 Vertex expansions

The vertex modes correspond to the first-order, quadrilateral Lagrange polynomials:

Ni(𝜉, 𝜂) =
1
4
(1 − 𝜉i𝜉)(1 − 𝜂i𝜂), i = 1, 2, 3, 4, (6)

where 𝜉 and 𝜂 are calculated in the natural plane between −1 and +1, and 𝜉i and 𝜂i are the vertex.

2.2.2 Edge expansions

From p ≥ 2, the edge modes arise in the natural plane as follows

Ni(𝜉, 𝜂) =
1
2
(1 − 𝜂)𝜙p(𝜉), i = 5, 9, 13, 18, …

Ni(𝜉, 𝜂) =
1
2
(1 + 𝜉)𝜙p(𝜂), i = 6, 10, 14, 19, … (7)

Ni(𝜉, 𝜂) =
1
2
(1 + 𝜂)𝜙p(𝜉), i = 7, 11, 15, 20, …

Ni(𝜉, 𝜂) =
1
2
(1 − 𝜉)𝜙p(𝜂), i = 8, 12, 16, 21, …

where p represents the polynomial degree of the bubble function 𝜙j(𝜁), already presented for the beam elements.

2.2.3 Internal expansions

Introduced for p ≥ 4, they vanish at all the edges of the quadrilateral domain. They sum (p − 2)(p − 3)∕2 internal
polynomials in total. By multiplying 1D edge modes, Ni internal expansions are built. For example, taking into account
the set of fifth-order polynomials, it contains three internal expansions, which are

N17(𝜉, 𝜂) = 𝜙2(𝜉)𝜙2(𝜂), 2 + 2 = 4
N22(𝜉, 𝜂) = 𝜙3(𝜉)𝜙2(𝜂), 3 + 2 = 5 (8)
N23(𝜉, 𝜂) = 𝜙2(𝜉)𝜙3(𝜂), 2 + 3 = 5.

3 FORMULATION OF FES

Consider the isotropic beam, plate and shell structures shown in Figure 4.
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6 PAGANI et al.

F I G U R E 4 Generic beam, plate and shell structures. The one-dimensional beam and two-dimensional (2D) plate models (x, y, z)
employs Cartesian reference system, whereas a curvilinear system (𝛼, 𝛽, z) is used for the 2D shell model.

1D and 2D plate models adopt a Cartesian reference system. In particular, the cross-section A of the 1D model lays
on the x-z plane. Thence, the beam axis is placed along the y direction. On the other hand, the 2D plate model uses the z
coordinate for the thickness direction and the coordinates x and y indicate the in-plane mid-surfaceΩ0. Finally, the shell
uses a curvilinear reference frame (𝛼, 𝛽, z) to account for the curvature, where 𝛼 and 𝛽 are the two in-plane directions.
The 3D displacement fields are the followings:

u(x, y, z) =
{

ux uy uz

}T
, u(𝛼, 𝛽, z) =

{
u𝛼 u𝛽 uz

}T
. (9)

Hereinafter, a brief review of the classical theories of beam, plate and shell is given. Note that no shear correction factors
are used in this paper to overcome the well-known inconsistencies of the first-order shear models.

3.1 Classical beam theories

The displacement field of the EBBM reads:

ux(x, y, z) = ux1(x, z)
uy(x, y, z) = uy1(x, y) −

𝜕ux1 (y)
𝜕y

x + 𝜕uz1 (y)
𝜕y

z

uz(x, y, z) = uz1(x, z).

(10)

The displacement field of the TBM reads:

ux(x, y, z) = ux1(x, z)
uy(x, y, z) = uy1(x, z) + 𝜙z(y)x − 𝜙x(y)z
uz(x, y, z) = uz1(x, z),

(11)

where ux1 , uy1 , and uz1 represent the displacement of the beam axis, and 𝜙z and 𝜙x are the rotations around the z and
x axes, respectively. Furthermore, − 𝜕ux1 (y)

𝜕y
and 𝜕uz1 (y)

𝜕y
are the rotations around the z and x axes when the cross-section

remains plane and orthogonal to the line axis.
These theories work in a proper manner when slender, homogeneous beams with a compact section are taken into

account.

3.2 Classical plate theories

The displacement field of the TPT reads:

ux(x, y, z) = ux1(x, y) −
𝜕uz1 (x,y)

𝜕x
z

uy(x, y, z) = uy1(x, y) −
𝜕uz1 (x,y)

𝜕y
z

uz(x, y, z) = uz1(x, y).

(12)
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PAGANI et al. 7

The displacement field of the FSDT reads:

ux(x, y, z) = ux1(x, y) + 𝜙y(x, y)z
uy(x, y, z) = uy1(x, y) + 𝜙x(x, y)z
uz(x, y, z) = uz1(x, y),

(13)

where ux1 , uy1 , and uz1 represent the displacement of the reference mid-surface of the plate, and𝜙y and𝜙x are the rotations
around the y and x axes, respectively. On the other hand, − 𝜕uz1 (x,y)

𝜕x
and − 𝜕uz1 (x,y)

𝜕y
are the rotations around the y and x axes

when the shear deformation is neglected.
When thin and homogeneous plates are studied, these theories work very well.

3.3 Classical shell theories

The displacement field of the TPT reads:

u𝛼(𝛼, 𝛽, z) = u𝛼1(𝛼, 𝛽) −
𝜕uz1 (𝛼,𝛽)

𝜕𝛼
z

u𝛽(𝛼, 𝛽, z) = u𝛽1(𝛼, 𝛽) −
𝜕uz1 (𝛼,𝛽)

𝜕𝛽
z

uz(𝛼, 𝛽, z) = uz1(𝛼, 𝛽).

(14)

The displacement field of the FSDT reads:

u𝛼(𝛼, 𝛽, z) = u𝛼1(𝛼, 𝛽) + 𝜙𝛽(𝛼, 𝛽)z
u𝛽(𝛼, 𝛽, z) = u𝛽1(𝛼, 𝛽) + 𝜙𝛼(𝛼, 𝛽)z
uz(𝛼, 𝛽, z) = uz1(𝛼, 𝛽),

(15)

where u𝛼1 , u𝛽1 and uz1 represent the displacement of the reference mid-surface of the shell, and𝜙𝛽 and𝜙𝛼 are the rotations
around the 𝛽 and 𝛼 axes, respectively. Finally, − 𝜕uz1 (𝛼,𝛽)

𝜕𝛼
and − 𝜕uz1 (𝛼,𝛽)

𝜕𝛽
are the rotations around the y and x axes when the

shear deformation is neglected.
These theories work in a proper manner when thin and homogeneous shell are analyzed.

3.4 Unified formulation for beam, plate, and shell and generalization to the HOT

The previous and more refined models can be described in a compact manner by using the CUF. The 3D displacement
field is described as a generic expansion of the primary mechanical variables through the use of arbitrary functions of the
domain:

u(x, y, z) = F𝜏u𝜏 u(𝛼, 𝛽, z) = F𝜏u𝜏 𝜏 = 1, 2, . … ,M, (16)

where F𝜏 are the expansion functions of the generalized displacements u𝜏 , where 𝜏 denotes summation and M is the order
of expansion. The independent variables are explicitly shown for each formulation in Table 1. Thanks to this formalism,
it is possible to choose a generic structural theory freely. In particular, HOTs were built from Taylor-like polynomials.
When the beam formulation is considered, Taylor expansion uses 2D polynomials xizj as base, where i and j are positive
integers. Carrera and Giunta44 first studied beams from the first (T1) to the fourth (T4) order to account for nonclassical
effects. On the other hand, for plates and shells, Taylor expansion adopts 1D polynomials zi as base. Carrera49 used several
refined theories as a third-order theory (T3). Then, from the first-order Taylor expansion (T1), classical theories can be
derived as degenerated cases. Carrera et al.50 proposed a detailed explanation of the employed methods employed. For
this reason, in the result section, the indicated DOFs are equal to those given for Taylor expansion of order 1, that is, nine
for each node.

The CUF and the FEM can be used together to provide numerical results. In particular, FEM is adopted to discretize
the generalized displacements u𝜏 . Thus, recalling equations described in Table 1, they are approximated as displayed in
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8 PAGANI et al.

T A B L E 1 Carrera unified formulation (CUF) formulation.

Formulation 3D fields CUF expansion

1DBEAM ∶ u(x, y, z) F𝜏 (x, z) u𝜏 (y)

2DPLATE ∶ u(x, y, z) F𝜏 (z) u𝜏 (x, y)

2DSHELL ∶ u(𝛼, 𝛽, z) F𝜏 (z) u𝜏 (𝛼, 𝛽)

Note: 𝜏 denotes summation with 𝜏 = 1, 2, . … ,M, while M is the order of expansion.

T A B L E 2 Finite element method.

Formulation 3D field FEM+CUF expansions

1DBEAM ∶ u(x, y, z) Ni(y) F𝜏 (x, z) q
𝜏i

2DPLATE ∶ u(x, y, z) Ni(x, y) F𝜏 (z) q
𝜏i

2DSHELL ∶ u(𝛼, 𝛽, z) Ni(𝛼, 𝛽) F𝜏 (z) q
𝜏i

Note: i is repeated index with i = 1, 2, … .,N, where N is the number of shape functions per element.

Table 2, where Ni stand for the shape functions, the repeated subscript i indicates summation, N is the number of the
shape functions per element and q

𝜏i are the following vectors of the FE nodal parameters:

q
𝜏i =

{
qx

𝜏i qy
𝜏i qz

𝜏i

}T q
𝜏i =

{
q𝛼

𝜏i q𝛽𝜏i qz
𝜏i

}T
. (17)

In this work, classical Lagrange-like and novel Jacobi FEs are used. When beam formulation is adopted, classical
one-dimensional FEs with two-node (L2), three-node (L3) and four-node (L4) are used, that is, linear, parabolic, and
cubic approximations along the y axis are assumed, respectively. Furthermore, the newly presented shape functions JP
are adopted, where P is the polynomial order. In particular, J1, J2, J3, and J4 are used. For the 2D plate and shell formu-
lations, classical two-dimensional FEs four-node (L4), nine-node (L9) and 16-node (L16), that is, linear, parabolic and
cubic approximations over the x, y and 𝛼, 𝛽 planes are assumed. Furthermore, the Jacobi shape functions J1, J2, J3, J4,
and J5 are used.

The same shape functions are used for deflections, rotations, and higher-order terms. This aspect can be clearly seen
in the equations.

Note that in this scenario, the geometric boundary conditions are applied directly to the 3D displacement components,
independently of the theory approximation order. Those conditions are then projected to the available DOFs, with no loss
of generality. The geometric boundary conditions are enforced with the same procedure for the three formulations. When
the clamped condition is imposed, the translations along the three directions and the higher-order terms are fixed. On the
contrary, the translations along the z and y (𝛽) directions and the higher-order terms are fixed for the simply supported
condition in plate and shell.

3.4.1 Example for a beam element

Figure 5A shows the discretization for a beam model. J2 elements are adopted along the y axis and EBBM model is used
as the structural theory. The displacement field for an element can be written as follows

ux(x, y, z) = +
1
2
(1 − y) qx11 +

1
2
(1 + y) qx12 + (1 − y) (1 + y) qx13

+ 1
2
(1 − y) (1 + y) [𝛾 − 𝜃 + (2 + 𝛾 + 𝜃) y] qx14 .

uy(x, y, z) = +
1
2
(1 − y) (qy11 − xqy21 + zqy31) +

1
2
(1 + y) (qy12 − xqy22 + zqy32)

+ (1 − y) (1 + y) (qy13 − xqy23 + zqy33)

+ 1
2
(1 − y) (1 + y) [𝛾 − 𝜃 + (2 + 𝛾 + 𝜃) y] (qy14 − xqy24 + zqy34). (18)

uz(x, y, z) = +
1
2
(1 − y) qz11 +

1
2
(1 + y) qz12 + (1 − y) (1 + y) qz13

+ 1
2
(1 − y) (1 + y) [𝛾 − 𝜃 + (2 + 𝛾 + 𝜃) y] qz14 .
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PAGANI et al. 9

F I G U R E 5 Finite element method discretization for beam (A) and plate (B) J2 elements.

For instance, when 𝛾 and 𝜃 are equal to zero, Legendre-like shape functions can be recovered.

3.4.2 Example for a plate element

Figure 5B shows the discretization for a plate model. J2 elements are adopted in the x-y plane and TPT model is used as
the structural theory. The displacement field for an element can be written as follows

ux(x, y, z) = +
1
4
(1 − x)(1 − y)(qx11 − zqx21) +

1
4
(1 + x)(1 − y)(qx12 − zqx22)

+ 1
4
(1 + x)(1 + y)(qx13 − zqx23) +

1
4
(1 − x)(1 + y)(qx14 − zqx24)

+ 1
2
(1 − y)(1 − x2)(qx15 − zqx25) +

1
2
(1 − y2)(1 + x)(qx16 − zqx26)

+ 1
2
(1 + y)(1 − x2)(qx17 − zqx27) +

1
2
(1 − y2)(1 − x)(qx18 − zqx28).

uy(x, y, z) = +
1
4
(1 − x)(1 − y)(qy11 − zqy21) +

1
4
(1 + x)(1 − y)(qy12 − zqy22)

+ 1
4
(1 + x)(1 + y)(qy13 − zqy23) +

1
4
(1 − x)(1 + y)(qy14 − zqy24)

+ 1
2
(1 − y)(1 − x2)(qy15 − zqy25) +

1
2
(1 − y2)(1 + x)(qy16 − zqy26)

+ 1
2
(1 + y)(1 − x2)(qy17 − zqy27) +

1
2
(1 − y2)(1 − x)(qy18 − zqy28). (19)

uz(x, y, z) = +
1
4
(1 − x)(1 − y)(qz11) +

1
4
(1 + x)(1 − y)(qz12)

+ 1
4
(1 + x)(1 + y)(qz13) +

1
4
(1 − x)(1 + y)(qz14)

+ 1
2
(1 − y)(1 − x2)(qz15) +

1
2
(1 − y2)(1 + x)(qz16)

+ 1
2
(1 + y)(1 − x2)(qz17) +

1
2
(1 − y2)(1 − x)(qz18).

3.5 Governing equations and FE matrices

According to the classical elasticity, stress, 𝝈, and strain, 𝝐, tensors are expressed in vectorial form as follows:

𝝈 =
{
𝜎xx 𝜎yy 𝜎zz 𝜎xz 𝜎yz 𝜎xy

}T
, 𝝐 =

{
𝜖xx 𝜖yy 𝜖zz 𝜖xz 𝜖yz 𝜖xy

}T

𝝈 =
{
𝜎𝛼𝛼 𝜎𝛽𝛽 𝜎zz 𝜎𝛼z 𝜎𝛽z 𝜎𝛼𝛽

}T
, 𝝐 =

{
𝜖𝛼𝛼 𝜖𝛽𝛽 𝜖zz 𝜖𝛼z 𝜖𝛽z 𝜖𝛼𝛽

}T
. (20)
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10 PAGANI et al.

The geometrical relations between strains and displacements can be defined as:

𝝐 = bu, (21)

where b is the matrix of differential operators, in the case of small displacements and angles of rotations, more information
can be found in Carrera et al.50,51

Linear elastic isotropic materials are considered in this work and the constitutive relation becomes:

𝝈 = C𝝐, (22)

where C is the material elastic matrix, see Reference 6 and Hughes52 for the explicit form.
The governing equations are derived from the Principle of Virtual Displacements and it reads:

∫V
(𝛿𝝐T

𝝈)dV = 𝛿Le, (23)

where V is the volume integration domain. The variation of the internal work is represented by the left-hand side of the
equation, while the virtual variation of the external work is represented by the right-hand side.

Substituting the geometrical relations Equation (21), the constitutive Equation (22), and applying the CUF Table 1
and the FEM Table 2, the following governing equations are obtained:

𝛿qT
sj ∶ Kij𝜏sq

𝜏i = Psj, (24)

where Kij𝜏s is a 3 × 3 matrix, called fundamental nucleus of the mechanical stiffness matrix. Psj is a 3 × 1 vector, called
fundamental nucleus of the external load, see References 7 and 50.

In this paper, other than the full integration method, reduced, selective reduced and MITC are used in the governing
equations. Both Lagrange-like and Jacobi-like shape functions are used for these numerical strategies. For reduced and
selective reduced methods, the order of the numerical integration in certain terms of the stiffness matrix is decreased,
see References 20 and 23. On the other hand, Appendix A presents an overview of the MITC methods for the 1D and 2D
shape functions. This strategy uses assumed strain distributions for the derivation of the transverse shear terms. In this
manner, the elements of the stiffness matrix are modified, see Reference 50.

4 DESCRIPTION OF TEST CASES

The capabilities of the proposed FEs are assessed through four benchmarks, beam (B1), plate (B2), cylindrical shell (B3),
and thin-walled cylinder (B4), and they are introduced in Sections 4.1–4.4. The numerical examples are compared to
analytic and numerical solutions from the literature. In Section 5, a preliminary convergence analysis as a function of the
Degrees of Freedom (DOF) is performed for metallic beam, plate, and shell cases, considering the shear locking effects. To
overcome this issue, reduced, selective reduced and MITC integration techniques are addressed. Section 6 presents results
by using HOT for studying even thicker beams, plates and shells accurately. In Section 7, the plate and the thin-walled
cylinder are studied to demonstrate the advanced capabilities of the beam formulation. The proposed FEs are compared
to classical linear, quadratic and cubic Lagrange-based ones. Several models can be created through the combination of
FEM, integration schemes and structural theories.

In the figures and tables showing the results, several acronyms are used to recall specific FEs. In particular, concerning
the shape functions, LN indicate Lagrange elements with N number of points, and JP are Jacobi shape functions where P
is the polynomial order. When integration schemes are considered, F indicates full scheme, S indicates selective reduced
scheme, R is for reduction scheme and MITC. As far as the structural theory is concerned, EBBM and TBM models
are used. In the last result, higher-order Taylor expansions are employed as structural theories, and they are recalled as
TP, where P indicates the order of the polynomial. Finally, the acronyms presented in the previous section are used if a
classical model is adopted. Some examples are given:

• L4-F,T2: Four points Lagrange, full integration scheme, second-order Taylor.
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PAGANI et al. 11

T A B L E 3 Geometrical and material properties of Benchmark 1.

Note: Metallic cantilever beam under transverse load.

T A B L E 4 Metallic beam.

Beam theory w × 105 m

EBBM 5.333

TBM 5.369

Note: Results of classical beam theories.

• J2-MITC, EBBM: Second-order Jacobi, MITC integration scheme, Eulero-Bernoulli.

When comparing different formulations, the subscripts 1D, 2D and shell are written in the label for beams, plates, and
shells, respectively.

4.1 B1: Metallic beam

The first analysis case presented is a clamped beam subjected to a transverse force, as shown in Table 3, along with its
geometric and material characteristics. The study case is taken from Reference 32. The cantilever beam is loaded toward
the z-negative direction by a transverse force of module 200 N. The transverse displacement w is checked at the tip [0,L, 0].
Results are compared with those from Reference 32 and with classical solutions. Classical beam theories are adopted
to obtain the analytical solution, see Table 4. No shear factor is used for both Analytical and FEM TBM solutions. This
structure is analyzed with the 1D formulation.

4.2 B2: Metallic plate

A metallic plate is analyzed as the second example. The geometric and loading conditions are described in Table 5. The
plate is simply supported on the edges along the x-direction and it is loaded with a transverse sinusoidal pressure p = pz
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12 PAGANI et al.

T A B L E 5 Geometrical and material properties of Benchmark 2.

Note: Simply supported metallic plate under distributed sinusoidal load.

sin
(
𝜋y
b

)
. The mechanical load amplitude at the top position is pz = 1 Pa. Transverse nondimensional displacements w

are evaluated in [a∕2, b∕2, 0]. Results are compared with a Navier-type, closed form solution, denoted as Exact. Given the
strong-form governing equations, written in terms of the generalized displacements, that is, CUF DOF’s in this paper, the
Navier solution is analytical and employs two sinusoidal functions that satisfy the boundary condition in exact form. This
is always possible in the case of simply supported structures with no mechanical couplings. A Taylor fourth-order theory
is used along the thickness. See Reference 47 for more information. This structure is analyzed with the 2D formulation.
Furthermore, a comparison between 1D and 2D formulations is made.

4.3 B3: Metallic cylindrical shell

A cylindrical shell is considered as a further example. The geometric properties and loading conditions are reported in
Table 6. The shell is simply supported on the longitudinal edges, and it is loaded with a transverse sinusoidal pressure
p = pz sin

(
𝜋𝛽

b

)
at the top. The mechanical load amplitude is pz = 1 Pa. Transverse non-dimensional displacements w

are calculated in [a∕2, b∕2, 0]. The reference solutions are given by a Navier-type, closed form solution derived from the
strong form of the CUF for the shell formulation, as in the previous plate case. Along the thickness, a Taylor fourth-order
theory is adopted. These solutions are labeled as Exact. See Reference 47 for more information. The shell is analyzed with
the shell formulation.

4.4 B4: Thin-walled cylinder

Finally, a thin-walled cylinder is considered, see Table 7 for the geometric and material characteristics. The structure is
clamped on its edges. A transverse point load, F, is applied at [0,L∕2,R]. F is equal to −5 MN. The analysis was originally
proposed by Carrera et al.53 The reference solution is given by Nastran shell model. In the reference paper, no information
about the number of elements is given. However, because 6-DOF CQUAD elements are employed, there are reasonably
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PAGANI et al. 13

T A B L E 6 Geometrical and material properties of Benchmark 3.

Note: Simply supported metallic shell under distributed sinusoidal load.

T A B L E 7 Geometrical and material properties of Benchmark 4.

Note: Thin-walled shell under a point load.
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14 PAGANI et al.

around 2700 FEs. Transverse displacements w [m] are calculated at the mid-span y = L∕2. Shell and 1D CUF results are
compared with the reference solution.

5 NUMERICAL ASSESSMENTS, CONVERGENCE, AND SHEAR LOCKING
PROBLEMS

In this section, several convergence analyses for beams, plates, and shells have been performed to establish the numerical
properties of the new presented shape functions.

5.1 Metallic beam

As the first assessment for the beam FEs, a convergence of transverse displacements w is performed for a metallic
cantilever beam, see Table 3. The results are compared with the classical exact solutions wExact,EBBM = −5.333 × 10−5 m
and wExact,TBM = −5.369 × 10−5 m. Furthermore, transverse displacements are normalized as w∗ = w∕wExact,EBBM or w∗ =
w∕wExact,TBM. Three classical Lagrange shape functions, namely L2, L3, and L4 are compared with the proposed Jacobi
shape functions, namely J1, J2, J3, and J4. Furthermore, four different integration schemes are used for every shape func-
tion. Finally, EBBM and TBM models are used as theories of structure. Figure 6 shows the convergence by using the
EBBM kinematics and full integration schemes, while Figure 7 illustrates the convergence for the TBM model. Figures 8
and 9 show results for EBBM and TBM models, respectively. Only MITC integration scheme is illustrated since the same
results can be obtained for selective reduced and reduced integration schemes.

Some remarks can be outlined from these results:

• FEs EBBM results converge to Exact, EBBM solution only if a great number of DOF is used due to the locking issues.
Same consideration can be done for TBM theory.

• Shape functions with the same polynomial order show the same results, for example, second-order elements L3 and J2.
• L2-F,EBBM and J1-F,EBBM are very stiff elements. Both lead to a much slower rate of convergence. L2-F,TBM and

J1-F,TBM show a faster convergence. Starting from the second-order elements, the convergence rate is very high for
both EBBM and TBM.

• When adopting S, R, or MITC integration schemes, the results present the same trend convergence. This is valid for
Lagrange as well as Jacobi shape functions. In addition, locking correction methods improve the behavior of L2 and J1
elements.

F I G U R E 6 Metallic beam. Convergence of transverse displacements w∗ = w∕wExact,EBBM in [0,L, 0] with one-dimensional formulation
using Euler–Bernoulli beam model (EBBM) and full integration scheme.
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PAGANI et al. 15

F I G U R E 7 Metallic beam. Convergence of transverse displacements w∗ = w∕wExact,TBM in [0,L, 0] with 1D formulation by using
Timoshenko beam model (TBM) and full integration scheme.

F I G U R E 8 Metallic beam. Convergence of transverse displacements w∗ = w∕wExact,EBBM in [0,L, 0] with one-dimensional formulation
using Euler–Bernoulli beam model (EBBM) and mixed interpolation of tensorial components integration scheme.

F I G U R E 9 Metallic beam. Convergence of transverse displacements w∗ = w∕wExact,TBM in [0,L, 0] with one-dimensional formulation
by using Timoshenko beam model (TBM) and mixed interpolation of tensorial components integration scheme.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7316 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [14/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 PAGANI et al.

F I G U R E 10 Metallic plate, case b∕h = 1000. Convergence of transverse displacements w∗ = w∕wExact in [a∕2, b∕2, 0] with
two-dimensional formulation by using full integration scheme for L4 and J1.

F I G U R E 11 Metallic plate, case b∕h = 1000. Convergence of transverse displacements w∗ = w∕wExact in [a∕2, b∕2, 0] with
two-dimensional formulation by using full integration scheme.

5.2 Metallic plate

The performances of the plate FEs are studied through the convergence analysis of transverse displacements for a thin
simply-supported metallic plate, with a length-to-thickness ratio b∕h = 1000, see Table 5. The results are compared with
a closed form solution wExact = 10.895. Furthermore, transverse displacements are normalized through the following
expression: w∗ = w∕wExact. Three classical Lagrange shape functions, namely L4, L9 and L16 are compared with the pro-
posed Jacobi shape functions, namely J1, J2, J3, J4, and J5. Full, reduced, and selective reduced integration schemes are
used for all the shape functions, while MITC is not implemented for J4 and J5. Finally, classical structural theories TPT and
FSDT are used. Figure 10 shows the convergence using the TPT kinematics and full integration scheme, while Figure 11
illustrates the convergence for the FSDT model. Figure 12 shows the results for TPT and selective reduced integration
scheme. Only selective reduced integration scheme is illustrated since the same results can be obtained for reduced inte-
gration schemes. Figure 13 shows the results for TPT and MITC integration scheme. Since TPT and FSDT yield the same
results, only the first theory is shown.
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PAGANI et al. 17

F I G U R E 12 Metallic plate, case b∕h = 1000. Convergence of transverse displacements w∗ = w∕wExact in [a∕2, b∕2, 0] with
two-dimensional formulation by using thin plate theory and selective integration scheme.

The following considerations can be made at the end of the analysis:

• Shape functions with the same polynomial order present a similar convergence trend, for example, second-order
elements L9 and J2. In particular, Jacobi FEs show the same results with less DOF. However, L4 and J1 present the
same results.

• L4-F,TPT and J1-F,TPT are very stiff elements. Both reach the convergence when many DOFs are used. On the other
hand, L4-F,FSDT and J1-F,FSDT are slightly faster. Starting from the third-order elements, the convergence rate is very
high. J4 and J5 shape functions are near to the exact solution with only one element.

• When adopting selective reduced, reduced or MITC integration schemes, the results present the same trend conver-
gence. This is valid for Lagrange as well as Jacobi shape functions. Locking correction methods improve the behavior
of L4, L9, L16, J1, J2 and J3 elements. In these cases, TPT and FSDT present the same results.

5.3 Metallic shell

As the first assessment for the shell elements, a convergence analysis of transverse displacements w is performed for
a thin simply supported metallic shell, see Table 6. The radius-to-thickness ratio R𝛽∕h is set to 1000. The results are
compared with a closed form solution wExact = 1.6591. The expression w∗ = w∕wExact is used to normalize the transverse
displacements. Three classical Lagrange shape functions, namely L4, L9, and L16 were compared with the newly
presented Jacobi shape functions, namely J1, J2, J3, J4, and J5. Full, reduced, and selective reduced integration schemes
are adopted for all the shape functions, while MITC is not implemented for J4 and J5. Concerning the structural
theories, classical structural theories TST and FSDT are used. Figure 14 shows the convergence by using the TST kine-
matics and full integration scheme, while Figure 15 illustrates the convergence for the FSDT model. Figure 16 shows the
results for reduced integration scheme. Finally, Figures 17 and 18 illustrate the convergence for selective reduced and
MITC integration schemes. TST results are shown because both classical theories yield the same results.

The following considerations can be drawn:

• As seen in the plate analysis, shape functions with the same polynomial order present a similar convergence trend.
In particular, Jacobi FEs have a faster convergence rate. In fact, they yield better results with less DOFs. On the other
hand, L4 and J1 show the same behavior.

• L4-F,TST and J1-F,TST reach the convergence for elevated number of DOFs because these shape functions are bilinear
elements. On the other hand, L4-F,FSDT and J1-F,FSDT are slightly faster. When L9 and J2 elements are used, a better
convergence rate is shown. The convergence rate is very high if third-, fourth- and fifth-order elements are adopted.
In, particular, J4 and J5 shape functions are near to the exact solution with only one element.
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18 PAGANI et al.

F I G U R E 13 Metallic plate, case b∕h = 1000. Convergence of transverse displacements w∗ = w∕wExact in [a∕2, b∕2, 0] with 2D
formulation by using thin plate theory and mixed interpolation of tensorial components integration scheme.

F I G U R E 14 Metallic shell, case R𝛽∕h = 1000. Convergence of transverse displacements w∗ = w∕wExact in [a∕2, b∕2, 0] with shell
formulation by using full integration scheme for L4 and J1.

F I G U R E 15 Metallic shell, case R𝛽∕h = 1000. Convergence of transverse displacements w∗ = w∕wExact in [a∕2, b∕2, 0] with shell
formulation by using full integration scheme.
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PAGANI et al. 19

F I G U R E 16 Metallic shell, case R𝛽∕h = 1000. Convergence of transverse displacements w∗ = w∕wExact in [a∕2, b∕2, 0] with shell
formulation by using reduced integration scheme.

F I G U R E 17 Metallic shell, case R𝛽∕h = 1000. Convergence of transverse displacements w∗ = w∕wExact in [a∕2, b∕2, 0] with shell
formulation by using selective integration scheme.

F I G U R E 18 Metallic shell, case R𝛽∕h = 1000. Convergence of transverse displacements w∗ = w∕wExact in [a∕2, b∕2, 0] with shell
formulation by using mixed interpolation of tensorial components integration scheme.
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20 PAGANI et al.

• Reduced integration schemes show improvements for all the theories adopted. When adopting the same shape
functions, results for selective reduced, reduced, or MITC integration schemes present the same trend convergence.
Locking correction methods improve the behavior of L4, L9, L16, J1, J2, and J3 elements. In these cases, TPT and FSDT
present the same results.

6 THE CASES OF HIGHER- ORDER BEAM, PLATE, AND SHELL

In this section, the new Jacobi-like shape functions have been used with higher-order structural theories.

6.1 Metallic beam

After studying the behavior of classical theories, HOT are employed to analyze the beams. Again, a metallic cantilever
beam is taken into account, see Table 3 for the properties. Transverse displacements at the tip section are evaluated. The
results are compared with two solutions from Carrera et al.32 In the reference, L9 expansion was used as the cross-section
model. See50 for more information on the use of Lagrange-based structural theories. The reference solutions from Ref-
erence 32 are compared with the classical Lagrangian shape functions and the Jacobi FEs. Full and MITC integration
schemes are adopted. In the present paper, a second-order Taylor (T2) expansion is used as the structural theory. Each
node has 6 × 3 DOFs, where 6 is the number of terms of the Taylor polynomial of order 2, and 3 stands for ux, uy, and
uz. The DOFs of the first node (at clamped end) vanish for all the directions. Table 8 shows the results for several FEM
models. Furthermore, DOFs and Number of FEs (No

FEM) are given for comparison purposes. DOF used for each model
are near to those adopted for J4.

The analysis of the beam highlights the following statements:

• For the HOTs, it is confirmed that the shape functions with the same polynomial order present similar results, for
example, second-order elements L3 and J2.

• MITC integration scheme is confirmed to be a powerful method to contrast the shear locking phenomenon also for
Jacobi elements.

• J4-F and J4-MITC present the same results, demonstrating that very refined FEs can resolve locking problems.
Furthermore, their results are near the MITC reference solution, even though lesser DOFs are used.

T A B L E 8 Metallic beam.

Element type −w × 105 m DOF No
FEM

L2-F32 5.311 5427 200

L2-MITC32 5.316 5427 200

T2

L2-F 5.177 738 40

L2-MITC 5.185 738 40

J1-F 5.177 738 40

J1-MITC 5.185 738 40

L3-F 5.305 738 20

L3-MITC 5.306 738 20

J2-F 5.305 738 20

J2-MITC 5.306 738 20

J4-F 5.312 738 10

J4-MITC 5.312 738 10

Notes: Transverse displacements in [0,L, 0] with one-dimensional formulation using T2 kinematic model. No
FEM is the number of finite elements.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7316 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [14/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PAGANI et al. 21

6.2 Metallic plate

Also, HOT can be adopted for the plate elements to study structures in some cases. Again, a metallic simply supported
plate is taken into account, see Table 5 for the properties. Transverse displacements at the center of the plate are evaluated.
A number of length-to-thickness ratios are considered, namely b∕h = 4, 10,100, 1000. The reference solutions are given by
closed-form 2D models (Exact). The reference solutions are compared with the classical Lagrangian shape functions and
the Jacobi FEs. Full integration scheme is adopted. As far as the structural theory is concerned, a fifth-order Taylor (T5)
expansion is used to accurately study plates with different thicknesses. Each node has 6 × 3 DOFs, where 6 is the number
of terms of the Taylor polynomial of order 5, and 3 stands for ux, uy, and uz. The DOFs of the nodes along the simply
supported edges vanish along the directions. Table 9 shows the results for several FEM models. Furthermore, DOFs and
Number of FEs (No

FEM) are given for comparison purposes. DOF used for each model are near to those adopted for J5.
The analysis of the plate leads to the following conclusions:

• It is confirmed that the shape functions with the same polynomial order and equal DOF are invariant with respect to
the solution accuracy.

• L4 and J1 are progressively far from the reference solution when the length-to-thickness ratio increases. Locking
problems also affect L9 and J2, but with less intensity. Furthermore, J2 shows slightly better behavior than L9.

• L16, J3, J4 and J5 can approach the reference solution for each length-to-thickness ratio, showing that they are
locking-free.

6.3 Metallic shell

HOT are adopted to study shells with different radius-to-thickness ratios, namely R𝛽∕h = 4, 10, 50,100, 1000. Again, a
metallic simply-supported shell is considered, see Table 6 for the properties. Transverse displacements at the center of
the shell are evaluated. The reference solutions are given by closed-form two-dimensional models (Exact). The reference
solutions are compared with the classical Lagrangian shape functions and the Jacobi FEM elements. Full integration
scheme is adopted. A fifth-order Taylor (T5) expansion is used as the structural theory to capture the behavior in the case
of thick structure. The number of DOFs and the boundary conditions are the same as in the plate case. Table 10 shows
the results for several FEM models. DOFs and Number of FEs (No

FEM) are indicated to make comparisons. DOF used for
each model are near to those adopted for J5.

T A B L E 9 Metallic plate.

b∕h 4 10 100 1000 DOF No
FEM

Element type

Exact
— 12.656 11.179 10.897 10.895 — —

T5

L4 12.564 10.891 3.0708 0.0426 1332 36

J1 12.564 10.891 3.0708 0.0426 1332 36

L9 12.655 11.176 10.836 10.811 1350 12

J2 12.656 11.178 10.856 10.834 1314 14

L16 12.656 11.179 10.898 10.895 1368 6

J3 12.656 11.179 10.898 10.895 1368 9

J4 12.656 11.179 10.898 10.895 1386 6

J5 12.657 11.179 10.898 10.895 1332 4

Notes: Relation between transverse displacements w = 100Ew
(

b
h

)4
hpz

in [a∕2, b∕2, 0] and length-to-thickness ratios with 2D formulation using T5 kinematic

model and full integration scheme. No
FEM is the number of finite elements.
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22 PAGANI et al.

T A B L E 10 Metallic shell.

R
𝜷
∕h 4 10 50 100 1000 DOF No

FEM

Element type

Exact
— 2.1132 1.7798 1.6763 1.6669 1.6591 — —

T5

L4 2.1008 1.6903 0.7319 0.2707 0.0032 1332 36

J1 2.1008 1.6903 0.7319 0.2707 0.0032 1332 36

L9 2.1212 1.7794 1.6639 1.6345 0.7377 1350 12

J2 2.1213 1.7798 1.6691 1.6476 0.9912 1314 14

L16 2.1214 1.7802 1.6761 1.6661 1.6277 1368 6

J3 2.1214 1.7802 1.6763 1.6668 1.6538 1368 9

J4 2.1214 1.7802 1.6764 1.6669 1.6591 1386 6

J5 2.1214 1.7803 1.6764 1.6669 1.6591 1332 4

Notes: Relation between transverse displacements w = 10Ew
( R𝛽

h

)4
hpz

in [a∕2, b∕2, 0] and radius-to-thickness ratios with shell formulation using T5 kinematic model

and full integration scheme. No
FEM is the number of finite elements.

The following considerations can be drawn:

• Shape functions with the same polynomial order present similar results, for example, second-order elements L9 and
J2. Furthermore, L4 and J1 present the same results.

• L4 and J1 are progressively far from the reference solution when the length-to-thickness ratio increases. Locking
problems also affect L9 and J2, especially for very thin cases. J2 shows slightly better behavior than L9.

• Shear locking is present also for L16 and J3, especially for R𝛽∕h = 1000. Again, Jacobi shape function performs better.
• J4 and J5 can approach the reference solution for each length-to-thickness ratio, showing that they are locking-free.

7 ANALYSIS OF PLATES AND SHELLS USING HIGHER- ORDER BEAM
THEORIES

In this section, the advanced capabilities of beam formulation for the analysis of plates and shells have been studied.

7.1 Metallic plate

A convergence of transverse displacement for a very thin plate b∕h = 1000 is performed, see Table 5 for the properties.
Concerning the 1D formulation, J2 and J4 are used as shape functions and T2 is adopted for the cross-section. When 2D
formulation is studied, J2 and J4 are used as shape functions and T1 is adopted for the cross-section. Full integration
scheme is used. For the sake of clearness, the different ways to build 1D and 2D models are shown in Figure 19. The
convergence trend is shown in Figure 19.

Then, transverse displacements at the center of the plate are evaluated for three ratios, namely b∕h = 4, 10, 1000.
Table 11 shows the results by using a fourth-order Taylor (T4) kinematics. Furthermore, DOFs and Number of FEs (No

FEM)
are given for comparison purposes.

The following considerations can be drawn:

• Concerning the convergence analysis, the models with the same order show similar trends. This aspect is more evident
in the J4 elements.

• Regarding the relation between transverse displacement and length-to-thickness ratios, J21D and J22D present locking
problems for thinner plates. On the other hand, J41D and J42D match the reference solution in every case.
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PAGANI et al. 23

2D Plate

1D Beam

F I G U R E 19 Metallic plate, case b∕h = 1000. Comparison with one- and two-dimensional formulations. Convergence of transverse
displacement w∗ = w∕wExact in [a∕2, b∕2, 0] by using full integration scheme.

T A B L E 11 Metallic plate.

b∕h 4 10 1000 DOF No
FEM

Element type

Exact
— 12.656 11.179 10.895 — —
T4

J21D 12.654 11.166 10.708 765 8

J41D 12.656 11.179 10.895 765 4

J22D 12.655 11.174 10.775 795 10

J42D 12.656 11.179 10.895 795 4

Notes: Comparison for 1D and 2D formulations. Relation between transverse displacement w = 100Ew
(

b
h

)4
hpz

in [a∕2, b∕2, 0] and length-to-thickness ratios by using

T4 kinematic model and full integration scheme. No
FEM is the number of finite elements.

• J4 models are not affected by the shear locking, even for a very thin case.

7.2 Thin-walled cylinder

Finally, a thin-walled cylinder is considered, see Table 5. Concerning the 1D formulation, J2 and J4 are used as shape
functions, and T11 is adopted for the cross-section. When 2D shell formulation is studied, J2 and J3 are used as shape
functions, and T2 is adopted for the cross-section. Full integration scheme is used. Figure 20 shows the beam and shell
FE discretization. Point A is also illustrated. The results are compared with the reference solution.53 Figure 20 shows the
deformed configuration for different models at the midsection. Table 12 shows the transverse displacements evaluated at
the Point A. The third and fourth columns report DOFs and Number of FEs (No

FEM), respectively.
The following considerations can be made:

• Refined models can detect results that are obtainable just by means of shell or solid models in commercial codes and
classical formulations, that is, shell-like results can be obtained by means of beam elements.

• Every adopted model is very near to the Nastran shell solution. Some discrepancies from the reference solution are
found near loading Point A for both formulations.
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24 PAGANI et al.

2D Shell

SHELL53

1D Beam

F I G U R E 20 Thin-walled cylinder. Comparison for one-dimensional and shell formulations. Deformed cross-section at the midspan of
the hollow cylinder.

T A B L E 12 Thin-walled cylinder.

Element type w (m) DOF No
FEM

NASTRAN53

SHELL −0.670 49,500 —

J2-F,T111D −0.575 18,954 40

J4-F,T111D −0.592 18,954 20

J2-F,T2shell −0.537 22,320 40 × 20

J3-F,T2shell −0.578 18,540 20 × 20

Notes: Comparison for one-dimensional and shell formulations. Transverse displacement w in Point A for different finite element method theories. No
FEM is

the number of FEs.

8 CONCLUSIONS

The present work presented the static analysis of beams, plates and shells by means of Jacobi-like FEs based on the CUF.
Various geometries and boundary conditions are considered and 1D beam, 2D plate and shell model are employed.

Four case studies were taken into account. Results are compared with reference analytical and numerical solutions.
As far as the convergence rate for the beam case is concerned, it is shown that Jacobi-based on polynomials behave like
standard Lagrange-based ones, when they have the same polynomial order. Instead, for the convergence rate of the plates
and shells, Lagrange FEs are slightly slower. However, the overall behavior with respect to the shear locking issue is
the same and reduced, selective reduced and MITC techniques are adequate to mitigate the problem. For the transverse
displacements, the proposed FEs are demonstrated to be reliable with respect to the reference solutions. In particular,
the properties of the Lagrange and Jacobi polynomials to build higher order structural theories have been detailed in
Carrera et al.43 Some of the remarks arising from that paper apply to the problem considered in this work, where the
same polynomials are used to build several FEs. In fact, given a polynomial order, the results do not depend on the type
of the employed polynomial. Finally, the capability of Jacobi-based FEs to build beam models for the analysis of plates
and shells is demonstrated.
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PAGANI et al. 25

In this paper, Lagrange and Jacobi polynomials have analogous behavior in the static linear analysis with isotropic
materials. The Jacobi polynomials are hierarchical. This means that the domain approximation order can be increased
without the need to refine the mesh size. The use of Jacobi shape functions is therefore particularly suggested when-
ever a consistent convergence analysis is needed, or whenever the analyst needs to conduct a localized detailed analysis.
The use of Jacobi shape functions in conjunction with high-order FEs will have further advantages in the study of
more complex problems, including the analysis of anisotropic materials or whenever large displacements or strains are
considered.

The unified element will be used to test different structural theories and different mesh discretiza-
tions/approximations for the problem at hand. Indeed, there are not general rules. The choice of the most consistent
structural theory and the most consistent shape function is really problem dependent.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ENDNOTE
∗In the literature, see Reference 40, the following bubble expression, or multiplied by a prefactor, is used for Legendre

𝜙
∗
j (𝜁) = ∫

𝜁

−1
P𝛾,𝜃j−1d𝜁, j = 2, 3, … , p,

but this procedure does not guarantee the condition in Equation (5) for every choices of 𝛾 , 𝜃 and p.
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PAGANI et al. 27

APPENDIX A. MITC ELEMENTS

This section presents the MITC integration scheme for 1D and 2D formulations. In particular, it is shown that the MITC
method is adopted for both Lagrange and Jacobi shape functions. In this work, the same set of tying points is chosen
when Lagrange and Jacobi FEs have the same polynomial order. Only beam and shell cases are presented since the plate
can be easily derived.

A.1 MITC for beam formulation
For the purposes of the MITC for beam formulation, it is useful to split the strain tensor 𝝐 in bending components (with
the subscript B) and transverse shear components (with the subscript S) as follows:

𝝐B =
{
𝜖xx 𝜖yy 𝜖zz 𝜖xz

}T
=
(
DBy +DBΩ

)
u, 𝝐S =

{
𝜖yz 𝜖xy

}T
=
(
DSy +DSΩ

)
u. (A1)

The definition of differential operators DBy , DBΩ , DSy , and DSΩ can be found in Reference 32.
If the CUF and FEM approximations for the displacement field u described in Table 2 are considered, strains can be

written as follows:

𝝐B = F𝜏
(
DBy NiI

)
q
𝜏i +

(
DBΩF𝜏I

)
Niq𝜏i, 𝝐S = F𝜏

(
DSy NiI

)
q
𝜏i +

(
DSΩF𝜏I

)
Niq𝜏i, (A2)

where I is the identity matrix.
In the MITC method, the bending strains are calculated directly by using the displacements, whereas the transverse

shear strains along the beam element are assumed as:

𝝐S = Nm𝝐Sm m = 1, … ,Nn − 1, (A3)

where m indicates summation over a set of points, known as tying points, Tm. These points are used to tie the
interpolations of the displacements with the assumed strains. The location of these points is given in References 32 and
54. 𝝐Sm is the transverse shear strains vector computed at the tying points by means of Equation (A2). The assumed shear
strains vector, 𝝐S, is calculated using one tying point for L2 and J1 elements, two for L3 and J2 elements, three for L4
and J3 elements, and so on. In particular, Figures A1A,B shows the tying points for second-order and third-order beam
elements, respectively. Finally, the stresses can be expressed by means of the Hooke’s Law

𝝈B = CBB𝝐B + CBS𝝐S, 𝝈S = CSB𝝐B + CSS𝝐S, (A4)

where the material matrices CBB, CBS, CSB, and CSS can be found in Reference 32.

F I G U R E A1 Tying points, Tm, for second-order (A) and third (B) beam elements. Definition of nodes , edges and tying points .

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7316 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [14/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



28 PAGANI et al.

A.2 MITC for shell formulation
For the MITC shell elements, the strain are subdivided into in-plane strains, 𝝐p, and out-of-plane strains, 𝝐n. The following
relations hold:

𝝐p =
{
𝜖𝛼𝛼 𝜖𝛽𝛽 𝜖𝛼𝛽

}T
=
(
Dp +Ap

)
u, 𝝐n =

{
𝜖𝛼z 𝜖𝛽z 𝜖zz

}T
= (DnΩ +Dnz −An)u. (A5)

The definition of differential operators Dp, Ap, DnΩ , Dnz , and An can be found in Reference 29.
If the CUF and FEM approximations for the displacement field u described in Table 2 are considered, strains can be

written as follows:

𝝐p = F𝜏
(
Dp +Ap

)
(NiI)q

𝜏i, 𝝐n = F𝜏 (DnΩ −An) (NiI)q
𝜏i +

(
Dnz F𝜏I

)
q
𝜏i, (A6)

where I is the identity matrix.

MITC for L4 and J1
For these two elements, the in-plane strains are calculated according to Equation (A6), whereas shear strains are
interpolated in the tying points (M,N,P,Q) of the 𝜉 − 𝜂 plane, as indicated in Figure A2, see Reference 27. Assumed
out-of-plane strain can be written as follows:

𝝐n =
⎡
⎢
⎢
⎢
⎣

1
2
(1 + 𝜉) 1

2
(1 − 𝜉) 0 0 0

0 0 1
2
(1 + 𝜂) 1

2
(1 − 𝜂) 0

0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝜖
N
𝛼z

𝜖
Q
𝛼z

𝜖
P
𝛽z

𝜖
M
𝛽z

𝜖zz

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

. (A7)

Finally, the stresses can be expressed by using the Hooke’s Law

𝝈p = Cpp𝝐p + Cpn𝝐n, 𝝈n = Cnp𝝐p + Cnn𝝐n, (A8)

where the material matrices Cpp, Cpn, Cnp, and Cnn can be found in Reference 29.

MITC for L9, L16, J2, and J3
For these four elements, both in-plane and out-of-plane stresses are calculated by using a specific interpolation strategy
for each component. The position of tying points is dependent from the element adopted. For the MITC L9 and J2 shell
elements, Figure A3 shows the positions of the tying points and their coordinates in the 𝜉-𝜂 plate, see Reference 28.

F I G U R E A2 Tying points for the mixed interpolation of tensorial components L4 and J1 shell elements.
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PAGANI et al. 29

F I G U R E A3 Tying points for the mixed interpolation of tensorial components L9 and J2 shell elements.

F I G U R E A4 Tying points for the mixed interpolation of tensorial components L16 and J3 shell elements.

Lagrangian functions are chosen as the interpolating functions and are arranged in the following arrays:

Nm1 =
[

NA1 NB1 NC1 ND1 NE1 NF1

]

Nm2 =
[

NA2 NB2 NC2 ND2 NE2 NF2

]

Nm3 =
[

NP NQ NR NS

]
. (A9)

From this point on, the subscripts m1, m2, and m3 indicate quantities calculated in the points (A1,B1,C1,D1,E1,F1),
(A2,B2,C2,D2,E2,F2) and (P,Q,R, S), respectively.

For the MITC L16 and J3 shell elements, Figure A4 shows the tying points and their coordinates in the 𝜉-𝜂 plate, see
Reference 28. The Lagrangian interpolating functions are organized as follows:

Nm1 =
[

NA1 NB1 NC1 ND1 NE1 NF1 NG1 NH1 NI1 NJ1 NK1 NL1

]

Nm2 =
[

NA2 NB2 NC2 ND2 NE2 NF2 NG2 NH2 NI2 NJ2 NK2 NL2

]
(A10)

Nm3 =
[

NP NQ NR NS NT NU NV NW NX

]
.

As seen previously for the L9 and J2 elements, the subscripts m1, m2, and m3 indicate quantities calculated in the three
sets of points in Figure A4.
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30 PAGANI et al.

Therefore, the strain components are interpolated as follows:

𝝐p =
⎡
⎢
⎢
⎢
⎣

Nm1 0 0
0 Nm2 0
0 0 Nm3

⎤
⎥
⎥
⎥
⎦

⎧
⎪
⎨
⎪
⎩

𝜖𝛼𝛼m1

𝜖𝛽𝛽m2

𝜖𝛼𝛽m3

⎫
⎪
⎬
⎪
⎭

𝝐n =
⎡
⎢
⎢
⎢
⎣

Nm1 0 0
0 Nm2 0
0 0 1

⎤
⎥
⎥
⎥
⎦

⎧
⎪
⎨
⎪
⎩

𝜖𝛼zm1

𝜖𝛽zm2

𝜖zzm3

⎫
⎪
⎬
⎪
⎭

,

(A11)

where the strains 𝜖𝛼𝛼m1 , 𝜖𝛽𝛽m2 , 𝜖𝛼𝛽m3 , 𝜖𝛼zm1 , and 𝜖𝛽zm2 are calculated in the tying points by using (Equation A6).
Finally, the stresses can be expressed by means of the Hooke’s Law

𝝈p = Cpp𝝐p + Cpn𝝐n, 𝝈n = Cnp𝝐p + Cnn𝝐n. (A12)
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