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Abstract 

An accurate prediction of the Remaining Useful Life (RUL) of aircraft engines plays a fundamental 

role in the aerospace field since it is both mission and safety critical. Remaining Useful Life (RUL) 

estimation models consequently allow improving the performance and reducing maintenance costs. 

They can be classified into several approaches: experimental, data-based, physics-based and hybrid. 

This paper proposes a novel data-driven method to increase accuracy on the RUL prediction and to 

get a real-time prognostic system, considering multiple degradation mechanisms and making the 

model easy to implement. The proposed method exploits a modified k-Nearest Neighbors 

Interpolation (kNNI) with an a posteriori Least Square Smoothing (LSS) implementation. A double 

optimization by means of a Genetic Algorithm (GA) and a Root-Mean-Square Error (RMSE) 

minimization has been carried out in order to obtain the best performing model parameters 

according to the related application dataset. In addition, based on the application under analysis, 

the LSS method has been generalized as an online Cumulative and Moving Average (CMA) mixture 

filter, which uses an optimized sliding window. The generation of the prognostic model is based on 

NASA data generated with the dynamic model Commercial Modular Aero-Propulsion System 

Simulation (C-MAPSS) with run-to-failure trajectories relative to a small fleet of aircraft engines 

under realistic flight conditions. Finally, a comparison with a reference kNN-based method already 

known in literature was used to demonstrate the goodness of the results and the performance 

improvements. 
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1. Introduction 

Aircraft engines are highly complex rotating thermal machines [1] and are a critical element of 

airships. Their failures are particularly significant and occur quite frequently, given their functioning 

in extreme environmental conditions for long periods. Since safety and reliability are key concepts 

in the aerospace and aeronautic fields, an accurate prediction of the Remaining Useful Life (RUL) of 

aeroengines is a fundamental element in the Prognostic and Health Management (PHM) context. In 

addition, the State Of Health (SOH) of engines affects also the performance and costs of aircrafts. 

Given that maintenance involves high costs and complex procedures, research in the field of 

diagnostics and prognostics of mechanical systems has been rapidly evolving in recent years. Both 

diagnostic and prognostic techniques allow recognizing or predicting a mechanical system failure 

thanks to degradation data which, for instance, consists of vibration signals [2–7], potentially 

integrated with temperature measurements [8] or signals of various nature [9] and analyzed in the 

time or frequency domain [10,11]. 

The RUL refers to the remaining time in terms of the utility of a component or machinery, where 

the utility usually has an economic rather than a technical conception [12]. The economic life of a 

machine is very often shorter than the technical one. In addition to this, the RUL depends on many 

other factors, such as the operating environment, the current age of the mechanical system, health 

information and monitoring of observed conditions. Therefore, the model developed in this study 

aims to predict the RUL of an aircraft engine in conditions of highly variable flight parameters 

considering possible failure modes. The multivariate NASA’s N-CMAPSS [13] dataset has been used 

for this purpose because it includes data on a fleet of aircraft engines under realistic flight 

conditions. This dataset mainly contains run-to-failure physical measurements as pressures and 

temperatures from the turbofan engines, flight parameters as altitude and Mach number, and other 

auxiliary data. In the aeronautical field, the RUL can be expressed as the number of flights that an 

engine can perform from the present moment before reaching failure conditions [14] and, 

therefore, it is essential to predict it in an accurate and timely manner because this application is 

both mission and safety critical. 

Numerous models and different approaches for RUL prediction exist in the literature [15,16]. The 

choice of the most appropriate approach to the application (physics-based, data-driven, 

experimental or hybrid) mainly depends on the available information and a trade-off between the 

model complexity and the required accuracy. For example, there are prognostic models based on 

particle filters [17] which, as any non-deterministic prediction techniques, can lead to a high error 

as the time horizon increases, as well as they strongly depend on the initial prediction step. Other 

data-driven models of aircraft engine prognostics are already present in some studies. For instance, 

Ordóñez et al. [18] developed a hybrid model which combines an Auto-Regressive Integrated 

Moving Average (ARIMA) with a Support Vector Regression (SVR) model that, however, is able to 

predict few time units in advance. Instead, Zhao et al. [19] based their study on pattern recognition 

thanks to neural networks. Similarly, Liu et al. [20] developed a RUL prediction model combining 

clustering and Long Short Term Memory (LSTM) network. Another not very different approach was 

carried out by Zheng et al. [21] with the development of a model that combines the Time Window 

(TW) and Extreme Learning Machine (ELM). Although they are quite effective methods, the model 

creation and training are considerably complex and time-consuming. Furthermore, neural networks 

can be considered as a "black box" due to the nature of their functioning, consequently reducing 



the confidence in the results. This know-how of the overall system behavior without the specific 

intermediate steps knowledge, which is typical of neural networks, is a concept referred to as 

unpredictability of Artificial Intelligence (AI) [22]. In the context of AI safety [23–26] and AI 

governance [27], tools subject to unpredictability are not safe to use.  

Considering methods of different types present in the literature – although the field of application 

is different – Zhou et al. [28] adopted a method based on k-Nearest Neighbors (kNN) [29,30] to 

estimate the RUL for lithium-ion cells. Their study proposes a RUL prediction by means of a weighted 

kNN, which is intrinsically smoothed. 

The present paper proposes a data-driven method for the RUL prediction of an aeroengine based 

on a modified k-Nearest Neighbors Interpolation (kNNI). Unlike the reference kNN-based method 

[28], this paper proposes a new method that optimizes a kNNI using Genetic Algorithms (GA) [31] 

and integrating it with an a posteriori Least Squares (LS) fitting technique. The Least Square 

Smoothing (LSS) applied to this specific case is afterwards generalized as a Cumulative and Moving 

Average (CMA) mixture filter. In this way, it is possible both to obtain good results in terms of the 

predicted RUL and to develop a real-time model.  

The proposed method mainly permits the following four performance improvements of the RUL 

prediction over the reference method: 

1) First of all, the obtained results show that the a posteriori LSS allows obtaining greater 

accuracy for the RUL prediction without increasing the model complexity. This improvement 

is considerable in terms of Root-Mean-Square Error (RMSE) reduction, which is the 

considered cost function. 

2) Furthermore, it can be observed that the reference method, as generally do the methods 

based on moving regression [32] (e.g., LOESS and LOWESS), applies an intrinsic smoothing 

to the kNN-based method through a weighted average. Therefore, this smoothing is 

performed in the multidimensional space of the features and can be considered similar to a 

Gaussian kernel filter [33]. On the other hand, the proposed method provides a dedicated 

smoothing application in the time domain thanks to its a posteriori LSS. This would be 

equivalent to a Gaussian kernel in the space domain which varies over time and depends on 

different RUL values. In addition, the present method is independent from the 𝑘 parameter 

(which represents the number of considered nearest neighbors), which constrains the 

smoothing degree in the weighted kNN model. 

3) Given the independence of the proposed method with respect to the 𝑘 parameter, a further 

advantage consists in being less subject to the curse of dimensionality. This implies a lower 

computational effort, especially considering Big Data applications. 

4) Finally, studies in literature that consider multiple degradation mechanisms are limited since 

the hypothesis of the presence of a single category of failures is assumed in most cases [34]. 

However, the proposed model can consider multiple types of degradation tendencies thanks 

to the recognition of different failure paths in the multivariate space. This can also be 

observed from the obtained results since the dataset includes various failure modes. 

This paper is structured as follows. Section 2 provides a brief description of the analyzed dataset 

and the related turbofan. Section 3 describes all the techniques of the developed method: pre-

processing and features extraction, kNNI and filtering, LSS with its improvements and the 



generalization as CMA. Section 4 regards the method parameters optimization, both thanks to the 

RMSE minimization and by means of GA. Finally, Sections 5 and 6 respectively report the results and 

conclusions. 

 

2. System description and dataset 

The system under analysis corresponds to a high-bypass, twin-spool commercial turbofan engine. 

The engine consists of six main components: fan, Low-Pressure Compressor (LPC), High-Pressure 

Compressor (HPC), combustor or burner, High-Pressure Turbine (HPT), and Low-Pressure Turbine 

(LPT). The core shaft (also known as high-speed shaft) connects the HPC and HPT; while the fan shaft 

(also known as low-speed shaft) connects the fan, LPC, and LPT [35]. In addition to these 

components, the engine has a combustor which needs a fuel flow 𝑊𝑓, an inlet at the front, a nozzle 

at the rear, a bypass duct, an inter-stage bleed valve, and a variable-angle stator. A simplified 

representation of the engine [36] with the related sensors positions is shown in Figure 1.  

 

 

Figure 1 - Schematic representation of the turbofan engine model. 

 

The data are multivariate time-series of sensors readings, and they contain the corresponding 

remaining useful life label (RUL) from a fleet of 𝑈𝑑 = 54 units. Each observation is a vector of 𝑝 =

14 sensor readings taken at certain operating conditions. Sensors mainly record fuel flow, speed, 

pressures, and temperatures at the different turbofan stages. Pressures and temperatures are 

mainly reported as total, i.e., they refer to the condition in which the fluid is theoretically slowed 

down to zero speed with an adiabatic, non-ergodic and isentropic transformation. The length of the 

sensory signal can, in general, differ from unit to unit. Given this set-up, the task is to optimize a 

predictive model that provides a reliable RUL estimate on a further dataset of 𝑈𝑡 = 36 units, the 

test dataset. 



The N-CMAPSS dataset provides synthetic run-to-failure degradation trajectories of a fleet of 

turbofan engines with unknown initial health states subject to real flight conditions. Since this 

dataset contains run-to-failure degradation trajectories, it was not necessary to apply any data 

augmentation techniques, e.g., the dynamic time warping which allows to increase the availability 

of data precisely in conditions of run-to-failure data scarcity [37]. The initial health conditions of 

each unit are unknown, and their degradation starts at some time during the flight history, slowly 

developing with different evolutions. Concretely, all the rotating sub-components of the engine can 

be affected by flow and efficiency deterioration. The flight conditions contained in the dataset 

follow real trends typical of operating aircrafts. The dataset contains three flight classes depending 

on the flight length performed by each (i.e., short, medium, and long length). Each flight cycle covers 

climb, cruise, and descent conditions which correspond to different flight routes with different 

records lengths. 

The N-CMAPSS dataset contains eight files describing run-to-failure degradation trajectories from 

90 units and seven different failure modes of the rotating sub-components. The failure modes of 

each set of data are summarized in Table 1. Two datasets, development and test, are present and 

each of them contains the operative conditions variables 𝑤, the measured signals 𝑋𝑠, the RUL label, 

and some auxiliary data (i.e., the unit number, the flight cycle number, the flight class which 

indicates the flight length, and the health state which is a binary index representing the hypothetical 

deterioration starting point). Tables 2 – 4 provide a description of each variable present in the 

dataset [14]. In particular, matrices partition was slightly changed based on the use of each feature 

(e.g., P2 was moved to the scenario descriptors despite being originally included in the 

measurements matrix). 

 

Table 1 - Overview of the datasets containing different failure modes affecting the flow (F) and/or 

the efficiency (E) of the rotating sub-components. 

Name # Units # Failure Modes Fan LPC HPC HPT LPT 
   E F E F E F E F E F 

DS01 10 1       X    
DS03 15 2       X  X X 
DS04 10 3 X X         
DS05 10 4     X X     
DS06 10 5   X X X X     
DS07 10 6         X X 

DS08a 15 7 X X X X X X X X X X 
DS08d 10 7 X X X X X X X X X X 

 

Table 2 - Scenario descriptors 𝑤 (i.e., flight data). 

# Symbol Description Units 

1 alt Altitude Ft 
2 Mach Flight Mach number - 
3 TRA Throttle-resolver angle % 
4 T2 Total temperature at fan inlet °R 
5 P2 Total pressure at fan inlet psia 



Table 3 - Auxiliary data 𝐴. 

# Symbol Description Units 

1 unit Unit number - 
2 cycle Flight cycle number - 
3 Fc Flight class - 
4 hs Health state - 

 

Table 4 - Measurements 𝑋𝑠. 

# Symbol Description Units 

1 Wf Fuel flow pps 
2 Nf Physical fan speed rpm 
3 Nc Physical core speed rpm 
4 T24 Total temperature at LPC outlet °R 
5 T30 Total temperature at HPC outlet °R 
6 T48 Total temperature at HPT outlet °R 
7 T50 Total temperature at LPT outlet °R 
8 P15 Total pressure in bypass-duct psia 
9 P21 Total pressure at fan outlet psia 

10 P24 Total pressure at LPC outlet psia 
11 Ps30 Static pressure at HPC outlet psia 
12 P40 Total pressure at burner outlet psia 
13 P50 Total pressure at LPT outlet psia 

 

3. Methodology 

The proposed method exploits Genetic Algorithms (GA) to find the optimal parameters of a modified 

kNN Interpolation (kNNI) integrated with a Least Squares Smoothing (LSS). To reach an online RUL 

value, the pre-processing and features extraction, kNNI and filtering, LSS and GA optimization 

phases were mainly carried out. All these steps are detailed in the following Sections and 

summarized in the right branch of the flowchart in Figure 2. In addition, Figure 2 includes the 

reference method in the left branch in order to highlight the differences between the proposed and 

benchmark methods. 

 

3.1 Pre-processing and features extraction 

First, pre-processing of the data was carried out. Since the dataset is mainly composed of 

pressure and temperature values referring to the different stages of the engine, these 

measurements have been calculated in relative terms by subtracting the temperature and 

pressure values at the fan inlet (i.e., T2 and P2). 

 



 

Figure 2 – Flowchart representing the proposed (in the right branch) and reference (in the left 
branch) methods. As can be seen, the main difference is the following observation: the reference 

method has a multivariate intrinsic a priori smoothing, while the proposed one implements a 
univariate a posteriori smoothing phase which allows improving RUL prediction performances. 



This first pre-processing phase made it possible to obtain a single matrix describing all the 

flights (both for development and test) with the data sampled at a frequency of 𝑓𝑠 = 1 Hz. 

Remember that the RUL value is given in cycle units and, consequently, it respects the 

following characteristics: it has constant value for each flight and decreases linearly with 

increasing flights. Since it turned out to be the best choice, after having recognized and 

appropriately separated the individual flights, the average value of each parameter has been 

calculated per each flight. Other features were also tested (RMS, skewness, and kurtosis), 

but only the mean value was used since it turned out to be the feature with the best 

performance. Attempts to extract the features by recognizing the various phases of the flight 

(take-off, cruise, and landing) were made, but the average value for the entire flight proved 

to be the most promising in terms of accuracy. In this way two 𝑟 𝑐 matrices were obtained, 

where 𝑐𝑑  =  4089 and 𝑐𝑡  =  2736 respectively represent the total number of flights 

including all the damages and all the units of the development and test dataset, while 𝑟 =

 13 represents the considered features. 

These matrices represent all flights within a multivariate space. It is assumed that, as the 

wear and the type of damage (and, therefore, the RUL value) vary, the position of the points 

within the multivariate space also varies. This is highlighted with a simple Principal 

Component Analysis (PCA) [38]. Indeed, representing the 6th and 7th principal directions, it 

can be observed in Figure 3 how the different types of damage are partially distinguished in 

certain regions of the PCA subspace. Its ramifications represent the different failure paths 

that correspond to the multiple degradation mechanisms (and, therefore, allow recognizing 

them). The first five Principal Components (PCs) have not been used since they collect 

information from the features with greater variance and are not necessarily those influenced 

by damages and units’ health conditions. In other words, PCs #6 and #7 representation 

corresponds to an orthogonal regression in which the residuals are analyzed. Furthermore, 

from Figure 4 it is also possible to notice how the RUL varies within the described subspace. 

This particular composition of the features allows noting that points describing each flight 

have high RUL values around the origin and move with directions depending on the type of 

damage as the RUL decreases. On these bases, after calculating a new point representing a 

generic flight with conditions 𝑤 and 𝑋𝑠, this should be located in the proximity of flights with 

similar wear, damage and RUL. 

 

3.2 k-Nearest Neighbors Interpolation 

After the extraction and adequate pre-processing of the features, the proposed method 

exploits the kNNI. Indeed, the Euclidean distances of the new point are calculated with 

respect to all points of the development dataset. The predicted RUL value is equal to the 

mean of the RUL of the nearest 𝑘 points, where the optimized value of 𝑘 is obtained by 

means of GA. Before calculating the distances between the flight under analysis and those 

of the development dataset, its features were standardized in z-scores using the average 

value and standard deviation of the development data. 

This method is more effective for low RUL values, i.e., towards the end of the engine's life. 

This is mainly because the points cloud is the densest in the region of space representing 



healthy conditions, with high RUL values. These conditions produce more noise for high RUL 

values. For this reason, specific filters have been designed and adopted for the selection of 

flights to be considered, based on auxiliary information from Table 3 (i.e., current flight cycle 

number and flight class, Fc). In this way, the kNNI allows examining the 𝑘 closest flights to 

the one under analysis among those present in the development dataset with the most 

similar conditions. A novel parameter 𝛿 has been added to establish the range of flight cycles 

to be considered for the use of these filters. This parameter is also optimized through GA. In 

addition to the use of these filters, the smoothing that will be used in the next phase will also 

reduce the noise at high RULs and, consequently, also the prediction error. 

 

 

Figure 3 - Representation of flights as the type of damage varies in a subspace generated by PCA. 

 

  

(a) (b) 

 

Figure 4 - (a) RUL distribution and (b) contour of RUL distribution in a subspace generated by PCA. 



3.3 Least Square Smoothing 

As mentioned in the previous Sections, the kNNI has been integrated in a novel approach 

with an LS [39] smoothing method to improve the RUL prediction, and consequently to 

reduce the error. The importance of adding this smoothing technique is substantial for 

obtaining more precise results. Indeed, the LSS allows considering a greater amount of 

information for each prediction. This is due to the fact that LSS technique considers all flight 

data starting from 𝑛0 to predict the RUL (�̂�𝑛,𝑛0
𝐿𝑆𝑆 ) of the 𝑛-th flight, while the RUL (�̂�𝑛

𝑘𝑁𝑁𝐼) 

obtained through kNNI would only consider this last flight information. In addition, it is 

possible to notice that the proposed smoothing method finds its application after the kNNI. 

For this reason, it performs the smoothing in the univariate time domain rather than in the 

multidimensional space domain. The latter is equivalent to a Gaussian kernel convolution, 

which does not consider the time variable and potentially flattens the distribution of 

different RULs. 

 

 

Figure 5 – Exemplary chart representing the trends of the kNNI-predicted RUL (�̂�𝑛
𝑘𝑁𝑁𝐼), LSS-

predicted RUL (�̂�𝑛,𝑛0
𝐿𝑆𝑆 ) on the 𝑛-th flight (Eq.8), and (�̂�𝑛=𝑁,𝑛0

𝐿𝑆𝑆 ) on the flight 𝑛 = 𝑁 (where 

𝑁 represents the last available flight) with an offline backpropagation, performed for one 

of the considered units. To clarify the nomenclature, the main variables used in the 

demonstrations have been reported. 

 

The objective to be achieved with this fitting technique is to calculate the predicted RUL, 

denominated �̂�𝐿𝑆𝑆(𝑛|𝑛0, 𝑘, 𝛿), minimizing the error 휀(𝑛) of the kNNI prediction 

�̂�𝑘𝑁𝑁𝐼(𝑛|𝑘, 𝛿) with respect to the theoretical RUL 𝑅(𝑛) thanks to the proposed LSS, as 

shown in Figure 5. The variable 𝑛 refers to a generic flight under analysis, 𝑛0 is the first 

recorded flight (which does not strictly correspond to the aircraft’s first flight), 𝑘 and 𝛿 are 

the hyperparameters intrinsic to the kNNI method. For the sake of simplicity, the previous 



notation is abbreviated by removing the 𝑘 and 𝛿 parameters and reporting 𝑛 and 𝑛0 

variables to the subscript, if any. The theoretical discrete RUL line follows the equation: 

𝑅𝑛 = 𝑅0 +𝑚 ⋅ 𝑛 (1) 
 

where 𝑅𝑛 is the theoretical RUL on the 𝑛-th flight, 𝑅0 is the total number of flights that an 

aircraft can perform (which corresponds to the RUL prediction before the turbofan’s first 

flight), and 𝑚 = −1 is the line slope since the RUL is measured as number of flights. Given a 

filtered set of data 𝐼𝑙  depending on 𝑘 and 𝛿 parameters, the kNNI RUL prediction is equal to: 

�̂�𝑛
𝑘𝑁𝑁𝐼 =

1

𝑘
⋅ ∑ 𝑅𝑙
𝑙∈𝐼𝑙(𝑘,𝛿)

 (2) 

 

That said, the LSS method could be applied to minimize the error 휀𝑛 which coincides with 

the squared difference between the kNNI-predicted RUL (�̂�𝑛
𝑘𝑁𝑁𝐼) and the theoretical RUL 

(𝑅𝑛): 

휀𝑛 = ∑(�̂�𝑗
𝑘𝑁𝑁𝐼 − 𝑅𝑗)

2
𝑛

𝑗=𝑛0

= ∑(�̂�𝑗
𝑘𝑁𝑁𝐼 − 𝑅0 + 𝑗)

2
𝑛

𝑗=𝑛0

 (3) 

 

where 𝑗 is a generic flight in the [𝑛0, 𝑛] interval. By deriving Eq. (3), it is possible to obtain 

the estimate of the intercept 𝑅0̂𝑛,𝑛0 (which corresponds to 𝑅0 plus an error fraction) which 

minimizes the error: 

𝑅0̂𝑛,𝑛0 =
1

𝑛 − 𝑛0 + 1
∑(�̂�𝑗

𝑘𝑁𝑁𝐼 + 𝑗)

𝑛

𝑗=𝑛0

 (4) 

 

Considering that the predicted RUL line follows the same behavior of the theoretical one in 

Eq. (1): 

�̂�𝑛,𝑛0
𝐿𝑆𝑆 = 𝑅0̂𝑛,𝑛0 − 𝑛 (5) 

 

it is possible to obtain the LSS-predicted RUL: 

�̂�𝑛,𝑛0
𝐿𝑆𝑆 =

1

𝑛 − 𝑛0 + 1
∑(�̂�𝑗

𝑘𝑁𝑁𝐼 + 𝑗)

𝑛

𝑗=𝑛0

− 𝑛 = (6) 

=
1

𝑛 − 𝑛0 + 1
∑ �̂�𝑗

𝑘𝑁𝑁𝐼

𝑛

𝑗=𝑛0

+
1

𝑛 − 𝑛0 + 1
∑ 𝑗

𝑛

𝑗=𝑛0

− 𝑛 = (7) 

=
1

𝑛 − 𝑛0 + 1
∑ �̂�𝑗

𝑘𝑁𝑁𝐼

𝑛

𝑗=𝑛0

−
𝑛 − 𝑛0 + 1

2
 (8) 

 



Thanks to Eq. (8), it can be noted that the LSS-predicted RUL �̂�𝑛,𝑛0
𝐿𝑆𝑆  is equal to the difference 

between the kNNI-predicted RUL �̂�𝑗
𝑘𝑁𝑁𝐼 average value on flights in the [𝑛0, 𝑛] interval and 

half the number of flights performed by the unit in the same interval. Furthermore, Eq. (8) 

allows directly using the predicted RUL �̂�𝑛,𝑛0
𝐿𝑆𝑆  on the 𝑛-th flight to calculate the next flight 

RUL �̂�𝑛+1,𝑛0
𝐿𝑆𝑆  through: 

�̂�𝑛+1,𝑛0
𝐿𝑆𝑆 = 𝑅0̂𝑛+1,𝑛0 − (𝑛 + 1) =

(𝑛 − 𝑛0 + 1) ⋅ 𝑅0̂𝑛,𝑛0 + (�̂�𝑛+1
𝑘𝑁𝑁𝐼 + 𝑛 + 1)

𝑛 − 𝑛0 + 2
− 𝑛 − 1 (9) 

 

In this way, the computational effort is lightened by avoiding the calculation of a sum on 𝑛 −

𝑛0 + 1 terms at each new flight to be predicted. This aspect is of considerable importance 

for real-time applications as it allows to significantly reduce the computational effort thus 

making online implementation faster. 

 

3.4 Cumulative and moving averages mixture filter adapted for an online application 

The described model exploits the LS principle to generate smoothing. Focusing on the LSS 

result in Eq. (11), this can be implemented both as a Cumulative Average (CA) [40] and as a 

Moving Average (MA) [41] by changing the initial data point 𝑛0. Indeed, the model analyzed 

and used so far only considers the variation of the flight 𝑛 under analysis given a starting 

flight 𝑛0. However, the method can potentially predict the RUL by varying both parameters 

𝑛0 and 𝑛, introducing a sliding window of length 𝑁𝑤. Then, a generalization as a Cumulative 

and Moving Averages (CMA) model was proposed to consider a more generic LS-based 

smoothing, exploiting an additional parameter to optimize the model and reach more 

precise predictions. 

The main difference that distinguishes traditional CMA from the proposed method is that 

they cannot be used in a real-time model. Indeed, they allow to smooth the curve by 

calculating the new corrected value with 𝑁𝑤/2 flights delay (i.e., centering the new 

calculated value with respect to the considered [𝑛0, 𝑛] interval). For this reason, it is 

necessary to adapt the CMA to make it applicable to a real-time prognostic system. 

Therefore, the considered windows of length 𝑁𝑤 are not centered with respect to the 𝑛-th 

flight under analysis (as it is typically performed) but they are aligned on the 𝑛-th flight so 

that the window allows considering the previous 𝑁𝑤 flights. 

Therefore, it is possible to introduce the LSS model generalization in terms of a CMA mixture 

filter adapted for an online application. Indeed, the model generalization for the online RUL 

prediction during the 𝑛-th flight can be rewritten as in the following equation:  

{
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where 𝑁𝑤 is the sliding window dimension that will be optimized taking into account the 

RMSE optimization, as described in Section 4. It can be observed that the (𝑛 − 𝑛0) < 𝑁𝑤 

condition causes the RUL prediction as an online CA, while an online MA is used for the 

second condition. The implementation of the 𝑁𝑤 window allows considering a reduced 

number of flights, diminishing the noise peculiar to the first predictions. 

 

4. Optimization  

The model developed so far consists of the integration of LSS with the kNNI and the related use of 

filters. As explained in the previous Sections, it turns out to be a parametric model. Indeed, the 

choice of 𝑘 and 𝛿 (which allow identifying within the development dataset the flights most similar 

to the case under analysis) influences the model precision. For this reason, their optimal values are 

obtained using a Genetic Algorithm (GA) hyperparameter tuning. Furthermore, the optimization of 

the sliding window dimension 𝑁𝑤 is added to these parameters if the generalized version of the 

proposed method is considered, as per Section 3.4. 

The optimization was carried out by predicting the flights contained in the test dataset thanks to 

the development dataset. In the prognostics field, there are several cost functions for the prediction 

evaluation [42]. In this case, the RMSE – usually employed in the prognostics field – has been chosen 

as score function both for GA optimization and for the following choice of 𝑁𝑤 intrinsic in the LSS 

phase: 

𝑅𝑀𝑆𝐸 = √𝐸 [(�̂�𝑛,𝑛0,𝑁𝑤
𝐶𝑀𝐴 − 𝑅𝑛)

2
] (12) 

where 𝐸[ ] represents the expected value operator, 𝑅𝑛 and �̂�𝑛,𝑛0,𝑁𝑤
𝐶𝑀𝐴  are respectively the real and 

estimated RUL via the generalized and adapted CMA mixture filter. Please note that the RMSE value 

is obtained as the average of the RMSEs inherent to each unit. An overall RMSEs mean value of all 

flights was not directly calculated because it would have entailed a greater importance to the units 

with longer life, while neglecting those with shorter lifetime. 

This model optimization can be divided into two phases: the first point concerns the parameters 𝑘 

and 𝛿, which vary the preceding kNNI conditions; the second phase concerns 𝑁𝑤, which allows 

modifying the a posteriori smoothing. In particular, the optimization of 𝑁𝑤 is implicit in the GA 

hyperparameter tuning as it is established as the RMSE minimization. Therefore, the following 

Subsections will describe the bias-variance optimization applied for 𝑁𝑤 and the ensuing GA 

implementation, which allows finding 𝑘 and 𝛿 parameters, which consequently determine the 

choice of 𝑁𝑤. 



4.1 RMSE optimization 

The RMSE optimization was introduced to minimize the prediction error and, consequently, 

to derive the related sliding window length 𝑁𝑤. This RMSE optimization allows minimizing 

the mean square discrepancy between the predicted and the real RULs. This procedure can 

be observed with a different and useful interpretation thanks to the RMSE decomposition 

into bias 𝛽 and variance 𝜎 [43]. The bias is the error that represents how much the expected 

value of the predictions differs from its real value, while the variance describes the 

predictions dispersion. The bias-variance trade-off was conceived as an attempt to 

simultaneously minimize these two types of errors to avoid underfitting and overfitting [44]. 

The RMSE and, consequently, the sum of the square bias and the variance usually have a 

parabolic-like trend that allows identifying a value of the reference index 𝑁𝑤 which 

minimizes both errors. Therefore, the RMSE optimization can be interpreted as the 

identification of the window length 𝑁𝑤 which allows generating a smoothing effect by 

reducing the variance to the detriment of a smaller bias increase. Figure 6 shows the RMSE 

trend with the related bias-variance decomposition calculated on the test dataset using the 

model with the GA optimized parameters 𝑘 = 1 and 𝛿 = 13 and the related value of 𝑁𝑤 =

72 which allows minimizing both errors. The value 𝑁𝑤 = 72 means that the described filter 

behaves as CA for the flights 𝑁 ≤ 72 and as MA for flights 𝑁 > 72. It can be further noticed 

that the error is approximately constant as the 𝑁𝑤 value increases. Consequently, the use of 

the LSS model described in Eq. (8) could be chosen and it is equivalent to maximizing the 

value of 𝑁𝑤 (i.e., using only an online CA). 

Finally, the predicted total life trends and the related histograms in Figure 7 show an example 

of how the proposed smoothing method allows considerably improving the precision of RUL 

predictions, substantially reducing the noise. This amelioration is observable since the mean 

value (explanatory of the bias) and the variance differs as the methods vary. The proposed 

method has been applied both using the general CMA form as in Eq. (11), and applying the 

CA form (which corresponds to Eq. (8) and represents a specific case where all the 

predictions are considered for the smoothing). Both the general CMA and the characteristic 

CA methods allow considerably reducing the variance while keeping the average value 

approximately equal.  

 



   

Figure 6 – MSE and bias-variance trade-off trends with 𝑘 = 1 and 𝛿 = 13 and the related 
identification of the optimal value 𝑁𝑤 = 72 which allow minimizing the prediction error. 

 

   

Figure 7 – On the left, an example of total life trends (i.e., sum of the predicted RUL, �̂�𝑛, 
and performed flights, 𝑛) predicted with kNNI, and smoothed through an adapted CMA 
(𝑘 = 1, 𝛿 = 13) in a general (with a sliding window of length 𝑁𝑤) and specific form (CA). 

On the right, histograms of the same data which show the differences between mean 
values and variances of the three predictions distributions. 

 

4.2 Optimization by means of GA hyperparameter tuning 

After describing the RMSE minimization, it is necessary to optimize the 𝑘 and 𝛿 values 

necessary for the kNNI definition. The GA allows finding the optimal values of these two 

parameters, and implicitly obtain the related optimal 𝑁𝑤 value. 



A global optimization algorithm as GA has been chosen because it is well suited for 

optimization problems with a few design variables, when the cost function is discontinuous 

and when global optimum research is pursued [45,46]. Nevertheless, GA can recognize local 

minima of the cost function. For this reason, it has been decided to use the Monte Carlo 

method to make the cost function converging and to determine the optimal parameters. In 

particular, the optimal values that have been obtained are 𝑘 =  1, 𝛿 =  13, and 𝑁𝑤 = 72. 

This means that the kNNI will choose the most similar flight (i.e., with the shortest Euclidean 

distance within the multidimensional features space), filtered considering the units with +/- 

13 performed flights. The best sliding window dimension with these conditions has been 

subsequently found equal to 𝑁𝑤 = 72, which means that the generalized CMA filter behaves 

as an online CA if the flight under analysis 𝑛 ≤ 72 and as an online MA if 𝑛 > 72. 

 

5. Results 

The proposed methodology is meant to easily predict the aircraft RUL in real-time with a good 

degree of precision. This Section reports the results extracted with the optimized parameters 

obtained with the generalized LSS model. These CMA results are mainly compared with the 

reference kNN-based method [28] optimized with an evolutionary algorithm. It is noted that the 

optimized parameters are consistent with those of the method developed in this article. With this 

last comparison, it will be possible to observe the improvements with respect to the existing 

methods. Given that the reference method does not contemplate the use of specific filters (such as 

those introduced by this work in the interpolation phase), a further comparison between the CMA 

results and those obtained with the improved reference method with the same filters was 

considered. This further comparison with the same input data highlights the substantial 

improvements produced by the generalized a posteriori LSS. 

The results and the related comparisons have been carried out predicting the RUL on the entire test 

dataset, which includes 2736 flights on 36 units. The considered performance index is the RMSE, 

described by Eq. (12). The results obtained in terms of RUL predictions using the three considered 

methods (the reference method �̂�𝑛
𝑟𝑒𝑓

, the reference method upgraded with filters �̂�𝑛,𝛿
𝑟𝑒𝑓

, and the 

proposed method �̂�𝑛,𝑛0,𝑁𝑤
𝐶𝑀𝐴 ) are reported in Table 5. The improvements generated by the CMA 

method are highlighted thanks to the RMSE variations. The following paragraphs report some 

comments on the obtained results and the generated improvements (mentioned in the 

Introduction) observable from several aspects. 

  



Table 5 – Results obtained with the reference method [28] (�̂�𝑛
𝑟𝑒𝑓

) in terms of RMSE, and 

comparison with the related results obtained with the same method improved with the proposed 

filters (�̂�𝑛,𝛿
𝑟𝑒𝑓

) and the proposed method (online CMA mixture filter). The percentage variations of 

the improved and proposed methods with respect to the reference one are reported in brackets. 

Unit 
phases 

Reference method [28] 
(#flights) 

Filter-improved reference method 
(#flights) 

Proposed method 
(#flights) 

Overall 16.07 12.75 (-20.7 %) 7.43 (-53.8 %) 

I Quartile 18.31 14.76 (-19.4 %) 8.88 (-51.5 %) 

II Quartile 15.64 14.73 (-5.8 %) 7.15 (-54.3 %) 

III Quartile 15.67 10.89 (-30.5 %) 6.65 (-57.6 %) 

IV Quartile 11.09 8.50 (-23.3 %) 5.71 (-48.5 %) 

 

First of all, the main amelioration brought about by the present method consists in the RUL 

prediction precision compared to the literature methods, as shown in Figure 8. Indeed, the proposed 

model allows minimizing the real-time prediction error by means of the LSS method (generalized as 

an adapted CMA mixture filter for this specific application), which substantially corrects the kNNI-

predicted RUL thanks to the 𝑁𝑤 previous flights results. In particular, the developed method allows 

reducing the RMSE on the RUL estimation by 54% on average with respect to the original reference 

method (�̂�𝑛
𝑟𝑒𝑓

). The RMSE decrease could be also interpreted as a noise reduction in terms of 

oscillations on the prediction. In addition, comparing the CMA with respect to the reference method 

applied to the filtered dataset (�̂�𝑛,𝛿
𝑟𝑒𝑓

), it is possible to note that the proposed smoothing alone 

improves the RMSE on the RUL prediction on average. As initially mentioned, this means that the 

proposed smoothing – which acts in the time domain – allows improving the performance with 

respect to the invariant time method, which acts in the multivariate space domain. 

It is also worth to highlight that the CMA method has the advantage of increasing the precision for 

low RUL values, which concern the life phase of a mechanical system of greater criticality and 

relevance in the prognostic field. In this way, the closer you get to the end of a unit's life (i.e., the 

life phase with the highest criticality in terms of safety and maintenance), the greater the accuracy. 

For instance, this can be seen in Figure 5, where the flight-by-flight prediction of one unit of the test 

dataset is shown. It can be noted that, as the RUL decreases, the error decreases. This aspect can 

be observed in Table 5, where the RMSE on the predictions were calculated both considering the 

entire unit life and dividing it into quartiles. Indeed, it is possible to observe how the amelioration 

of the prediction improves even further at low RULs (i.e., III-IV quartiles). Nevertheless, the RMSE 

percentage reductions that the present method allows in comparison to the two benchmarks do 

not attain the maximum value in the last quartiles. This is explained by the fact that the very same 

benchmark prediction is more precise as the RUL decreases due to the data distribution in the 

multivariate space.  

 



   

Figure 8 – Comparison of RUL prediction for a test dataset unit obtained with the original 

reference method (�̂�𝑛
𝑟𝑒𝑓

), the reference method implemented with the proposed filters (�̂�𝑛,𝛿
𝑟𝑒𝑓

) and 

the generalized CMA (�̂�𝑛,𝑛0,𝑁𝑤
𝐶𝑀𝐴 ) method. 

 

6. Conclusions 

In this paper, a data-based approach has been developed for the RUL prediction of an aircraft 

engine. The method consists of the integration of a kNNI improved by applying the LSS principle and 

optimized by GA. It allows to obtain real-time RUL values with an online correction based on 

previous flights, which permits reducing the error. The correction obtained with the LSS both 

reduces the prediction error and achieves an improved real-time estimate. In addition, the LSS 

method has been generalized for this specific case as an adapted online CMA mixture filter, which 

uses an optimized sliding window of length 𝑁𝑤. The results obtained with the latter method show 

an overall RMSE of about 7 cycles. Compared to kNN-based methods existing in the literature which 

use an a priori multivariate space smoothing, the proposed procedure reduces the RMSE by about 

54% on average (where the application of the smoothing alone generates a significant 

improvement). The methods implementation is not complex and allows obtaining greater accuracy 

for flights with low RULs. This means that the error decreases in the more critical phase in terms of 

safety and maintenance (i.e., flights close to the end of life of each unit). This is evident from the 

results calculated on the predictions divided into quartiles. 

In addition to the performance improvements, the proposed method is theoretically less subject to 

the curse of dimensionality as it does not need to calculate 𝑘 distances to evaluate the weights to 

be adopted in the kNN-based reference method. Therefore, in cases where the optimal 𝑘 value is 

greater than 1, the present method would be subject to a lower computational effort. 



A further advantage of the proposed method consists in the independence of smoothing from the 

𝑘 parameter, while the reference method only generates a smoothing restricted to the optimal 𝑘 

value (the lower the optimal 𝑘 value, the more the smoothing will be consequently reduced). On 

the other hand, the proposed method allows performing an a posteriori smoothing and, hence, is 

not dependent on the 𝑘 parameter choice. Furthermore, the proposed method is highly flexible 

since its three parameters (𝑘, 𝛿, 𝑁𝑤) are automatically optimized according to the specific 

application. 

To conclude, it should be remembered that the present method further allows considering multiple 

types of damage thanks to the recognition of different failure paths in the multivariate space, unlike 

most of the methods existing in the literature which assume the presence of a single failure 

category. 
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