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A B S T R A C T   

Acoustic Emission (AE) is a non-destructive structural health monitoring technique, which studies elastic waves 
emitted during crack formation. Utilizing piezoelectric sensors, these waves are converted into electrical signals 
for subsequent analysis, offering insights into crack propagation and structural durability. This study focuses on 
the identification of AE signal onset times, crucial for determining crack locations. Conventional methods often 
encounter challenges with background noise, prompting the need for innovative approaches. Leveraging a U-Net 
neural network, specialized in segmentation tasks, onset time identification is approached as a one-dimensional 
segmentation challenge. Through training and testing on Pencil Lead Break (PLB) test data, commonly used in AE 
evaluations, the effectiveness of the method is demonstrated even with continuous signals, suggesting potential 
applicability in real-time monitoring.   

1. Introduction and literature review 

In recent years, rapid advancements in artificial intelligence (AI) 
have revolutionized various fields (Wang and Siau, 2019), with deep 
learning emerging as a powerful paradigm for solving complex problems 
(Bengio et al., 2017). This paradigm shift has been particularly evident 
in the engineering domain (Tapeh and Naser, 2023; Voulodimos et al., 
2018a; Lee et al., 2018), where the introduction of AI techniques has 
resulted in innovative solutions and crucial insights. 

The increasing complexity of engineering problems, combined with 
the exponential growth of data, has prompted the use of AI methodol
ogies to extract meaningful patterns and make data-driven choices. 
Among these methodologies, deep learning techniques have garnered 
significant attention due to their ability to automatically learn hierar
chical representations from data, resulting in unparalleled performance 
in a variety of tasks. Deep learning, a subset of machine learning inspired 
by the structure and function of the human brain (Mitchell, 1997), has 
displayed remarkable proficiency in handling complex engineering 
problems. Deep neural networks are a versatile tool for engineers 
looking for innovative solutions because of their ability to automatically 
extract intricate features from large datasets (Melchiorre et al., 2022) 
and their adaptability to different domains. Artificial intelligence 

techniques have found applications in a wide range of fields, including 
pattern recognition (Bishop and Nasrabadi, 2006), material property 
prediction (Ciaburro and Iannace, 2021), automatic recognition of 
acoustic sources (Ciaburro, 2020), computer vision (Voulodimos et al., 
2018b), and others. 

This paper explores a specific application within this paradigm, 
focusing on deep learning model training for the critical task of detecting 
onset time in Acoustic Emission (AE) signals. 

Acoustic Emission (Scruby, 1987) is a technique employed in struc
tural health monitoring (SHM) tasks. SHM approaches (Sohn et al., 
2003; Pasca et al., 2022) are extensively used because they are suc
cessful at monitoring historical structures (Manuello et al., 2024), 
architectural heritage (Farrar and Worden, 2007) and infrastructures 
(Rosso et al., 2023a; Marasco et al., 2022; Melchiorre et al., 2023a). This 
enables comprehension of structural dynamics, allowing for prompt 
interventions with the aim of extending the service life of structures. 
Among Structural Health Monitoring (SHM) techniques, Acoustic 
Emission stands out as a valuable tool due to its passive, non-destructive 
nature (Lacidogna et al., 2015). These characteristics eliminate the need 
to damage or excite the monitored structure, making it suitable for 
continuous monitoring of existing structures (Niccolini et al., 2011; 
Manuello et al., 2019a, 2019b; Lacidogna et al., 2015; Manuello Bertetto 
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et al., 2020, 2023; Carpinteri et al., 2013; Rosso et al., 2023b). The 
implementation of these methods includes the use of piezoelectric sen
sors capable of recording the propagation of transient ultrasonic waves. 
These waves originate from the sudden release of elastic energy occur
ring during the formation of cracks. These waves typically have a fre
quency spectrum ranging from 1 kHz to 10 GHz (Gorman, 1991). 

The piezoelectric phenomenon (Arnau et al., 2004) allows the ul
trasonic waves to be converted by the sensors into an electric voltage 
that can be digitized and analyzed (Aggelis, 2011). The examination and 
analysis of the recorded signals allow deriving indirect insights into the 
nature of the formation and evolution of cracking patterns. In recent 
years, numerous techniques have been developed to localize, charac
terize, and quantify damage based on the study of acoustic emission 
signals (Ohtsu, 1987; Carpinteri et al., 2007; Ohtsu et al., 1998). 

In general, the application of Acoustic Emission (AE) is associated 
with two primary tasks: the classification of crack typology and the 
localization of the crack source. In this study, the emphasis is on the 
second task, as knowing the location of the crack source is crucial for 
comprehending the causes of damage and facilitates prompt mainte
nance interventions. The onset time of an AE signal is defined as the first 
time the elastic wave reaches the piezoelectric sensors (Carpinteri et al., 
2006). The accuracy in determining the onset time in AE signal is a 
critical aspect of damage localization because it directly impacts the 
precision of locating the crack event. As a result, various techniques for 
automatic detection of onset time have been developed over the years 
(Bai et al., 2017; Kurz et al., 2005). 

The threshold methods constitute the first category of techniques, 
relying on static or dynamic thresholds to discern when the signal 
transitions from background noise to actual Acoustic Emission (AE). 
Among these, the amplitude threshold method is the most common 
(Eaton et al., 2012; Sedlak et al., 2013), defining the onset time as the 
moment when the signal amplitude surpasses the predetermined 
threshold value (Rocchi et al., 2019). The primary challenge in using 
this method is determining the appropriate threshold for background 
noise. Selecting a threshold value that is too low may result in premature 
triggering by the preceding background noise, while selecting a value 
that is too high may result in missing the actual onset time of the signal. 
The optimization of the detection threshold value may be achieved for 
specific signal-to-noise ratio (SNR) values if known in advance. How
ever, in real-world applications, a broad range of SNRs can be encoun
tered, introducing vulnerability to measurement errors. Enhancements 
to the threshold approach include the use of complex dynamic threshold 
values, where the threshold is updated based on the average acoustic 
noise amplitude. The STA/LTA technique (STA - Short Term Average, 
LTA - Long Term Average) is based on this approach (Baer and Kra
dolfer, 1987). 

Other methods for determining the onset of AE signals have been 
developed in both the time as well as the time-frequency domains. 

In the time domain, Akaike (1974) introduced a statistical method 
for identifying the transition point in a time-series between noise and a 
coherent signal in the time domain. This method is commonly referred 
to as the AIC picker as it relies on the use of the Akaike Information 
Criterion (AIC) to autoregressive models. The main idea is to allow the 
proper division of acoustic emission signals into two stationary data
sets—before and after the onset time (Kurz et al., 2005). To enhance the 
accuracy of this method, an improved AIC procedure was introduced 
(Carpinteri et al., 2012). This technique relies on estimating the accu
racy of AE signals through the second derivative of the AIC function and 
a parameter associated with the propagation velocity of the elastic 
waves. 

To deal with signals with low signal-to-noise (S/N) ratios, a method 
relying on the variation in fractal dimension along the trace has been 
introduced (Boschetti et al., 1996). This fractal-based algorithm has 
demonstrated accuracy even in the presence of substantial noise but is 
considered to be considerably slower than other methods and is not 
well-suited for real-time applications. 

The Hinkley criterion (Hinkley, 1971) is another time-domain sta
tistical method that calculates the partial energy of a time-series for all 
samples of the signal. In this case, the global minimum of the partial 
energy function serves as an indicator of signal onset. 

In the time-frequency domain, certain methods involve the cross- 
correlation of the AE signal with a short Gaussian pulse at a specific 
frequency (Ziola and Gorman, 1991). The concept is that the onset time 
at a particular frequency is indicated by the peak of the correlation 
function. 

A similar method (Ciampa and Meo, 2010) for obtaining the 
time-frequency response has been developed, which employs the 
Continuous Wavelet Transform (CWT) (Sadowsky, 1996). In this case, 
the reference for the Time Difference of Arrival measurements was 
determined based on the time corresponding to the maximum of the 
squared modulus coefficients of the CWT, deviating from the conven
tional approach of using the signal onset. 

Traditional signal processing techniques, as discussed, have found 
widespread application for automatic onset time detection. However, 
despite their proven efficacy, these methods exhibit certain drawbacks 
when applied in practical, on-field scenarios. For instance, the 
threshold-dependent method shows instability in the presence of noise, 
particularly when the frequencies associated with background noise 
closely resemble those of the signals, a common situation in concrete 
structures. Additionally, other methodologies often rely on some form of 
predetermined threshold determined through trial and error or exhibit 
inherent instability. Moreover, some methods necessitate significant 
computational time, making them unsuitable for real-time applications. 

Therefore, in recent years, novel methodologies have been proposed, 
leveraging on the advent of Artificial Intelligence and Machine Learning 
techniques. 

An early example of employing machine learning techniques for 
localizing the source of acoustic emission signals was pioneered by 
Emanian et al. (Emamian et al., 2003). The method involves eliminating 
background noise in AE signals through a combination of covariance 
analysis (Bilgen and Insana, 1998), Principal Component Analysis (PCA) 
(Wold et al., 1987), and differential time delay estimates (Weiss and 
Weinstein, 1983). Subsequently, a self-organizing map (SOM) neural 
network (Kohonen, 1990) is employed to differentiate between the noise 
and AE signals. 

In 2003, Ince et al. (2010) proposed a method based on the Support 
Vector Machine (SVM) algorithm (Suthaharan and Suthaharan, 2016). 
In this case, hierarchical clustering and SVM are introduced for clus
tering AE signals and detecting P-waves for microcrack locations in the 
presence of noise. Pairwise correlation analysis (Thompson et al., 2012) 
is used to identify clusters of AE events. Afterwards the identification of 
clusters, an averaging step is performed to obtain “super” AE with an 
improved Signal-to-Noise Ratio (SNR). The characteristic features in the 
time and frequency domains are extracted from the data by employing 
autoregressive modeling (Sodsri, 2003), wavelet packets (WP) (Maradei 
et al., 2003), and discrete Fourier transform (Sundararajan, 2001). 
Finally, These features are utilized to train SVM classifiers with proba
bilistic outputs to obtain the onset time of the signals. 

In 2020, Zhang et al. (2020) conducted a study comparing three 
machine learning classifiers, combined with continuous wavelet trans
form (CWT) preprocessing, to achieve high-precision onset time detec
tion. The comparison included an Extreme Learning Machine (ELM) 
classifier (Wang et al., 2022), a decision tree classification model (DTC) 
(Priyanka, 2020), an ensemble tree model (RFC) (Weinberg and Last, 
2019), and a deep belief network (DBN) classifier (Hua et al., 2015). 

In 2020, Chen et al. (2020) proposed using deep learning models, 
specifically Convolutional Neural Network (CNN) (Gu et al., 2018), for 
onset time detection. The method employs the short-time Fourier 
transform as a feature extraction method to provide the input parame
ters to the CNN classifier. 

In 2021, Jierula et al. (2021) adopted a back propagation neural 
network model (Buscema, 1998) for detecting damage locations in pile 
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foundations using acoustic emission signals. 
In 2022, Zonzini et al. (2022) demonstrated the superior accuracy of 

deep learning models compared to traditional techniques for onset time 
detection in highly noisy scenarios. Specifically, they compared the 
accuracy of a Convolutional Neural Network and a capsule neural 
network (Patrick et al., 2022) with the classical Akaike Information 
Criterion (AIC). The results indicate that the deep learning models 
achieved a 10 × improvement in accuracy. 

In 2023, Melchiorre et al., 2023b, 2023c demonstrated the robust
ness of the deep learning models in the onset time detection. A Con
volutional Neural Network (CNN) for Sound Event Detection (SED) 
(Mesaros et al., 2021) was trained on normalized seismic accelerograms 
and subsequently tested it on Acoustic Emission (AE) signals. The 
models demonstrated high accuracy in identifying the onset time. 

The applications of machine learning and deep learning techniques 
mentioned above have demonstrated the effectiveness of using new 
methods in the field of noise emissions. These techniques have proven to 
be very robust and capable of increasing accuracy in determining the 
onset time in acoustic emission signals. However, research in this field is 
still ongoing as the methodologies shown still have limitations related to 
the use of computationally and storage-intensive algorithms or the need 
for data preprocessing techniques to improve the SNR. Furthermore, 
these techniques operate on signal segments, necessitating the use of 
preprocessing techniques to define signal windows suitable for classifi
cation through machine learning algorithms. 

This paper introduces a novel deep learning model for detecting 
onset times in acoustic emission signals. The method utilizes a U-Net 
neural network (Ronneberger et al., 2015), specifically designed for 
segmentation tasks. The onset time detection problem is transformed 
into a one-dimensional segmentation task, with the model trained to 
classify each point in the acoustic emission signals. Each point in the 
time-series is assigned a probability of belonging to the signal or back
ground noise. To minimize false positives, a rolling average probability 
is implemented, smoothing the probability function along the 
time-series and mitigating issues resulting from signal discontinuities. 

Various dimensions of the proposed architecture were tested to 
identify a model achieving accurate onset time detection while being 
computationally and storage-efficient. This resulted in a lighter model 
compared to the more commonly used convolutional neural networks in 
the acoustic emissions field. Furthermore, the method is designed to 
work directly on continuous signals without the need for dataset pre
processing techniques. The objective is to create a technique applicable 
directly in the field with the ambition of real-time onset time 
identification. 

The effectiveness of the proposed method was assessed using a 
dataset derived from a Pencil Lead Break (PLB) test (Madarshahian 
et al., 2019a). The PLB test is a test specifically employed to replicate 
acoustic emission signals for the calibration of instrumentation and 
methodologies. The core concept involves fracturing a pencil lead 
against a concrete block. This fracture produces an elastic wave closely 
resembling those generated by cracks. The elastic wave travels from the 
pencil to the concrete block and can be recorded by piezoelectric 
transducers. A significant advantage of this approach is the ability to 
ascertain the location of the fracture. This allows the assessment of the 
precision of both the instrumentation and the techniques employed for 
crack localization. 

2. Methodology 

2.1. The importance of the onset time detection 

The acoustic emissions are transient stress waves generated by the 
release of energy within a material, often associated with the initiation 
or propagation of cracks, fractures, or other structural defects. 

The analysis of acoustic emissions signals is widely employed in 
structural monitoring as it enables the identification of defects and 

damage within the structures. Generally, this method is utilized for 
monitoring, localizing, and quantifying damage in a structure during its 
operational conditions. This allows for the quantification of the energy 
released during the propagation of fractures within the structures. 
Moreover, the analysis of the obtained data enables the assessment of 
the durability performance of the structures. The monitoring system 
employed for the acoustic emission technique consists of various 
piezoelectric sensors that digitize the elastic wave emitted during crack 
propagation. This system is typically installed on the structure during its 
operational life. It records the AE signals emitted by fractures resulting 
from the stress to which the structure is subjected during its service life. 
In this way, the monitoring does not necessitate active loading of the 
structure, enabling passive and non-destructive monitoring of the 
structure itself. 

Among the various parameters that can be obtained from the analysis 
of AE signals, one of the most important is the onset time, because the 
precise identification of onset time in acoustic emission signals is crucial 
for accurately localizing cracks. 

In a simplified scenario, the elastic wave travels directly from the 
emission point to the piezoelectric sensors. This implies that the wave 
path can be represented as a direct line connecting the point of the crack 
occurrence and the sensors. The shortest wave path model is a common 
simplification in the field of acoustic emissions (Carpinteri et al., 2012; 
Madarshahian et al., 2019b). In particular, this assumption can be 
adopted for the onset time identification methods. This is because, 
although the signals of both P-waves (longitudinal waves) and S-waves 
(shear waves) could be used for crack characterization, the onset time 
identification is generally performed only on P-waves signals. This 
choice is motivated by their reduced vulnerability to disturbances from 
multiple side reflections, structural noise, and sensor response. 

Under the assumption of the shortest path model, the distance d0− A 
between the crack source at S0 = (x0, y0, z0) and the location of the 
piezoelectric sensor A, SA = (xA, yA, zA) can be calculated using the 
Equation (1). 

d0− A =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x0(1) − xA)
2
+ (y0 − yA)

2
+ (z0 − zA)

2
√

(1) 

If the medium is assumed to be homogeneous, the wave speed c can 
be considered constant, and the time it takes for the elastic wave to 
travel from the crack source to the piezoelectric sensor can be obtained 
using Equation (2). 

TA =
d0− A

c
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x0 − xA)
2
+ (y0 − yA)

2
+ (z0 − zA)

2
√

c
(2) 

In general, the source location (x0, y0, z0), the absolute time of the 
crack event t0 and the wave speed c are unknown. This implies that 
Equation (2) cannot be solved directly. However, by analyzing the AE 
signals, it is possible to retrieve the relative arrival times at each 
transducer ΔtA. Thus, Equation (2) can be rewritten by subtracting the 
wave arrival time from a reference transducer (TR) from both sides of the 
equation, as follows: 

ΔtA = TA − TR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x0 − xA)
2
+ (y0 − yA)

2
+ (z0 − zA)

2
√

c
− TR (3) 

Equation (3) can be reformulated for each sensor. Therefore, with a 
minimum of 5 sensors, it is possible to establish a system of equations 
that determines all the unknowns in the problem. Specifically, this im
plies that by obtaining the onset time of the AE signal recorded by at 
least 5 different sensors, it becomes feasible to calculate the precise 
location of the crack. 

2.2. Deep learning architecture 

Section 2.1 outlines the reasons why the identification of onset time 
in Acoustic Emission signals is crucial for crack localization. While this 
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task is relatively straightforward for expert users to address manually, 
the challenge arises with the automatic identification of the onset time, 
which is essential for enabling automated and real-time structural 
monitoring. Moreover, in practical monitoring scenarios, it is typical to 
record thousands of signals, rendering manual onset time detection 
virtually impossible. 

As discussed in the literature review provided in Section 1, numerous 
methods have been developed over time for this task. In particular, 
various solutions involve the application of machine learning methods 
for onset time identification. In this paper, an innovative deep learning- 
based method is introduced for onset time identification. The approach 
addresses a one-dimensional binary classification problem, determining 
whether each point in the recorded signal is related to background noise 
or constitutes an integral part of the AE signal. 

The methodology relies on a neural architecture known as U-Net 
(Ronneberger et al., 2015). This architecture represents a specialized 
type of Convolutional Neural Network (CNN) tailored for addressing 
segmentation tasks, particularly in the realm of image processing. The 
U-Net model finds its primary application in image segmentation, with 
numerous studies in the literature showcasing its efficacy, particularly 
within the medical domain (Du et al., 2020; Siddique et al., 2021). 

The U-Net architecture is structured as an encoder-decoder model 
(see Fig. 1), facilitating the capture of both local and global context 
information effectively. It comprises two primary components: the 
contracting path (encoder) and the expansive path (decoder) (Long 
et al., 2015). 

In the contracting path or encoder, a series of convolutional and 
pooling operations are applied to progressively decrease the spatial di
mensions of the input image while increasing the number of feature 
channels. This process aids in extracting high-level features and forming 
a compressed representation of the input. The encoder consists of mul
tiple repetitive blocks, each containing consecutive convolutional layers 
with ReLU activation, followed by max-pooling layers. These blocks aim 
to capture increasingly abstract features while reducing spatial 
resolution. 

Conversely, the expansive path, or decoder, employs a sequence of 
up-convolutional and concatenation operations to gradually restore the 
spatial information lost during encoding. This path enables the network 
to generate a segmentation map matching the spatial dimensions of the 
input image. The decoder comprises multiple repetitive blocks, 
featuring up-convolutional layers to boost spatial resolution, followed 
by concatenation with corresponding feature maps from the contracting 
path. This combination helps merge low-level and high-level features, 
critical for precise localization. 

The adopted U-Net encoder comprises N convolutional blocks, where 
experiments were conducted for N ∈ (Wang and Siau, 2019; Bengio 
et al., 2017; Tapeh and Naser, 2023; Voulodimos et al., 2018a). Each 
block contains two 1D convolutional layers, each followed by a GELU 
activation function. Similarly, the decoder mirrors the encoder but 
employs upsampling to enhance temporal resolution. Finally, the output 
layer consists of a 1D convolutional layer followed by a softmax acti
vation function. 

A notable feature of the U-Net architecture is the incorporation of 

skip connections, linking feature maps from the contracting path 
directly to corresponding blocks in the expansive path. This design en
ables the decoder to access and utilize multi-scale information from 
earlier network stages, enhancing segmentation accuracy. 

Towards the end of the expansive path, a 1 × 1 convolutional layer 
with softmax activation is applied to generate a pixel-wise probability 
map. Each pixel in the output map indicates the probability of belonging 
to a specific class. During training, the network is optimized using 
appropriate loss functions like dice loss or cross-entropy loss, aiming to 
minimize the disparity between predicted segmentation maps and 
ground truth. 

In summary, the U-Net architecture offers a robust framework for 
segmentation tasks, leveraging the advantages of both global and local 
context information through its encoder-decoder structure and skip 
connections. 

2.3. Dataset 

The dataset utilized to train the U-Net neural network is obtained by 
(Madarshahian et al., 2019a). The dataset discussed in the paper origi
nates from artificial acoustic emission (AE) tests conducted on a con
crete block. These tests utilized pencil lead breaks (PLBs) to generate 
elastic waves for data collection. 

The data were collected from a concrete block specimen measuring 
30.5 cm × 31.0 cm × 112 cm composed of Portland cement, coarse 
aggregate, natural sand, and a sodium hydroxide solution to achieve a 
water-to-cement ratio of 50%. 

Ten piezoelectric AE sensors, operating within a frequency range of 
200–850 kHz, were then affixed to the specimen using epoxy and 
stainless steel holders. 

The sensors were connected to a 24-channel Express-8 AE data 
acquisition system data acquisition system with a threshold of 31 dB 
manufactured by MISTRAS Group (MISTRAS Group, 1978). This setup 
facilitated the recording of stress waves emitted by the PLBs. PLBs, each 
with a diameter of 0.3 mm, were subsequently broken ten times at three 
predetermined locations. The resulting stress wave signals captured by 
the sensors were then amplified, digitized, and recorded by the data 
acquisition system. The recorded signals have been disclosed in CSV 
files. Each file contains metadata such as the test date, test time, sample 
interval, signal unit, number of data points, and channel numbers. 

Fig. 2 presents examples of signals from the dataset depicted both as 
time-series and as spectrograms in the frequency domain. The spectro
grams are generated by applying a Fourier transform to the signals. It is 
apparent from the figure that distinguishing the point separating the 
background noise from the acoustic emission signal is not straightfor
ward in the spectrograms. This indicates that the background noise often 
shares similar frequencies with the signal, particularly in concrete 
structures. Consequently, filtering signals to eliminate or mitigate 
background noise is not always feasible. As a result, the accuracy of 
many automatic onset time identification techniques, such as threshold- 
based methods, is diminished. 

The dataset consists of 98 time-series sampled at a rate of 1000 kHz, 
corresponding to a sampling period of T = 1 μs. Each AE signal consists 

Fig. 1. Architecture of the U-Net model implemented in the analysis of AE signals. The output is the probability for each time stamp to be signal rather than 
background noise. 
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of 1024 time samples, with the onset time event preceded by a constant 
pre-triggering period of 256 μs  This setup facilitates straightforward and 
automated labelling of the signals. In particular, label 0 has been 
assigned to the background noise, and label 1 is assigned to the actual 
signal. 

In this study, the objective is to develop an automated methodology 
for identifying the onset time in acoustic emission (AE) signals, appli
cable in real-time scenarios. Unlike traditional approaches involving 
preprocessing techniques to segregate AE signals into distinct time- 
series, a different method is adopted here. The signals in the training 
dataset for the neural network are amalgamated into a single time- 
series, achieved by randomly shuffling the signals. 

To ensure that the network learns the features of acoustic emissions 
rather than the symmetry of the input data, the dataset is processed in a 
specific manner. This involves ensuring that the onset time does not 
consistently occur at a fixed time step, such as 256. Instead, all the time- 
series are concatenated to form a single long signal, which is then 
segmented with a stride of multiple windows of varying lengths. Each 
window becomes a new time-series representing a data point in the new 
dataset. Crucially, each window may or may not contain an onset time, 
and if it does, the onset time can occur at any time step within the 
window. 

Additionally, in the initial part of each signal containing background 

noise, a random segment was trimmed to create a time-series with non- 
uniformly spaced acoustic emission signals. Subsequently, the resultant 
signal was partitioned into a 75% training set and a 25% validation set. 

2.4. Neural network training and data segmentation 

This study attempted to reduce computing costs and streamline the 
approach in order to create the basis for the development of a real-time 
monitoring system. Hence, it was chosen to utilize the time-series data 
directly as input for the neural model. 

This is in contrast to the approach adopted in many existing works, 
which relies on spectrogram-derived signal segmentation commonly 
utilized in convolutional networks for image segmentation (Melchiorre 
et al., 2023b, 2023c). This choice prevents the need for Fourier trans
form preprocessing of the signals. Moreover, processing the time-series 
as one-dimensional input data reduces computational costs signifi
cantly when compared to methods that employ two- or 
three-dimensional input data, such as those leveraging image colors. 

The model assigns a probability to each signal point, indicating the 
likelihood of it belonging to either class. Consequently, every time-step 
receives a probability score, indicating its probability of being associ
ated with either background noise or the AE signal. 

In general, given an input signal x = (x1,…xN), the output of the U- 

Fig. 2. Illustration depicting examples of signals from the utilized dataset, presented in both time-series format (left) and as spectrograms (right). The amplitudes are 
normalized, while the frequencies are denoted in Hertz [Hz]. 
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Net neural network yields a vector of probabilities p = (p1,…pN). Here, 
each pi denotes the probability of xi being part of either the background 
noise or the actual AE signal. 

To obtain the final label, a threshold on the probability determined 
by the neural model T is set, and all points with a probability qi > T are 
classified as the AE signal, otherwise, they are classified as part of the 
background noise. The onset time is denoted by the point where there is 
a transition from background noise to the AE signal, indicated by the 
probability exceeding the defined threshold. 

The neural model has been adapted to process the one-dimensional 
signal as input and conduct segmentation to classify each point in the 
signal accordingly. Two distinct classes have been established: class 0, 
encompassing all points attributed to background noise, and class 1, 
designated for all points representing the actual AE signal. 

The model then generates the probability for each signal point to 
belong to either class. Consequently, each time-step is assigned a 
probability indicating its likelihood of being associated with either the 
background noise or the AE signal. 

An illustration of signal classification is depicted in Fig. 3. Here, the 
segment of the signal highlighted in blue denotes the background noise, 
while the portion in red signifies the AE signal. The onset time is visually 
indicated by a vertical green line, marking the transition from back
ground noise to AE signal. 

In this study, various neural models were evaluated by adjusting the 
length of the input sequence and the depth of the U-Net architecture. 
Specifically, outcomes were compared across three distinct input 
sequence lengths: 512, 1024, and 2048 samples. Furthermore, the ex
amination involved three different depths of the neural model: 2, 3, and 
4. Here, the depth signifies the number of encoding/decoding blocks 
employed in the architecture. 

During the training phase, careful consideration was given to setting 
the maximum number of epochs, which was established at 200 itera
tions. This decision aimed to strike a balance between computational 
efficiency and ensuring adequate model convergence. Additionally, to 
prevent overfitting and ensure optimal performance, an early stopping 
mechanism was implemented. This mechanism, based on the loss 
metric, allowed training to halt if no improvement was observed in the 
validation set performance over a specified number of epochs, set at 20 
in this study. 

The choice of loss function is a critical aspect of neural network 
training, influencing the ability of the model to accurately capture the 
underlying patterns in the data. In this study, binary cross-entropy was 
selected as the loss function due to its suitability for binary classification 
tasks, such as distinguishing between background noise and acoustic 
emission signals. This decision was supported by its widespread adop
tion and proven effectiveness in similar applications (Ruby and Yenda
palli, 2020; Ho and Wookey, 2019). 

Furthermore, the optimization algorithm employed to update the 
model parameters plays a pivotal role in the training process. The ADAM 

optimizer, renowned for its efficiency and robustness, was chosen for 
this task. Configured with a learning rate of 10− 4, ADAM dynamically 
adjusts the learning rate during training, facilitating faster convergence 
and improved performance. This combination of hyperparameters was 
aimed at optimizing the training process, enabling the model to effec
tively learn the underlying patterns in the data. 

It is important to note that in this preliminary study, manual 
exploration of a suitable combination of the hyperparameters of the 
model was employed, given its validity and widespread adoption (Ani
tescu et al., 2019). 

In Fig. 4, the loss and accuracy of the models across various training 
epochs are depicted, with blue representing metrics for the test set and 
red for the validation set. The graphs illustrate the performance of 
models with different depths and varying input vector lengths. 

Early stopping was employed in the majority of models, indicating 
their susceptibility to overfitting. Specifically, only in the larger models 
with four encoding/decoding blocks and an input segment length of 
2048 samples, the training continued through all 200 epochs. Despite 
variations in training duration, it is evident that all models ultimately 
converge to comparable final loss and accuracy values. 

Following the model training, it was observed that all classification 
errors in the output exhibited a consistent pattern. Specifically, there 
were instances where the model erroneously categorized samples from 
the background noise as part of the AE signal. However, it was 
exceedingly rare for the model to make the opposite error, i.e., 
misclassify samples from the signal as part of the background noise. An 
illustration of misclassification error is depicted in the initial graph of 
Fig. 5. Here, three onset time predictions (indicated by red dashed lines) 
are compared with a single real onset time (depicted by a green solid 
line). 

The misclassification mentioned above leads to the occurrence of 
spurious onset times in the signal. Specifically, each misclassification 
error, followed by the correct classification of the subsequent point as 
background noise, results in the definition of a spurious onset time. 
Table 1 provides an overview of the number of spurious onset times 
obtained by the various models, considering both the training and 
validation sets. 

This characteristic tendency is inherent to the approach adopted and 
had been previously noted in (Melchiorre et al., 2023c). In that instance, 
adjustments to the threshold T were made to mitigate this issue. Spe
cifically, the probability threshold value required to classify a point as 
part of the AE signal was increased to values exceeding 90%. 

In this study, a novel approach was adopted to mitigate the occur
rence of spurious onset times. The proposed method involves smoothing 
the probability values obtained from the output of the U-Net, thereby 
reducing the impact of misclassification errors. Misclassifications often 
lead to localized fluctuations in the probability values of neighboring 
points, as illustrated in Fig. 5. 

The smoothing process entails averaging the probability values over 

Fig. 3. Each data point within the time-series undergoes classification as either “background” or “signal” by a U-Net model. The onset time is identified when the 
classification label transitions from “background” to “signal”. 
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a window comprising 50 samples. This rolling averaging procedure is 
applied along the signal, generating a smoothed probability function 
(refer to Fig. 5). Subsequently, a threshold of T = 0.5 is applied to the 
smoothed function, serving as the basis for classifying samples at each 
time step. Unlike the direct classification based on the probabilities 
provided by the neural model, this approach utilizes the smoothed 
probabilities derived from the rolling average. 

This methodology yields a significant reduction in the occurrence of 
spurious onset times. Table 1 presents the number of spurious onset 
times obtained under both the direct classification based on the neural 
model probabilities and the corrected classification employing the 
rolling average method. 

The adopted method demonstrated significant effectiveness, with 
instances where it reduced the number of spurious onset times by over 
90%. 

3. Results 

This section presents a comparative analysis of the results achieved 
with various neural models. The comparison focuses on evaluating each 
model using classical machine learning metrics. 

In this comparison, the assessment of different neural models in
cludes a range of evaluation metrics such as Accuracy, Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and F1-score. These 
metrics are the classical metrics used to evaluate machine learning 
models and are defined as follows: 

Accuracy =
Number ​ of ​ True ​ Predictions
Total ​ Number ​ of ​ Predictions

(4)  

MAE =

∑n
i=1|True ​ Valuei − Predicted ​ Valuei|

n
(5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(True ​ Valuei − Predicted ​ Valuei)
2

n

√

(6)  

F1 − score =
1

1
Precision +

1
Recall

(7) 

Where: 

Precision =
True ​ Positives

True ​ Positives + False ​ Positives
(8)  

Recall =
True ​ Positives

True ​ Positives + False ​ Negatives
(9) 

The various neural models, along with their corresponding 

Fig. 4. Training and validation loss and accuracy for the U-Net models with different lengths of the input, and a depth of 4.  
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evaluation metrics, are summarized in Table 2. The metrics are pre
sented for both the training and validation sets. 

Specifically, Table 2 displays the outcomes obtained by varying the 
length of the input sequence considered during model training and the 

depth of the U-Net architecture, ranging from two to four levels. The 
inclusion of a longer input sequence aims to enable the model to capture 
the context surrounding the event and improve its ability to identify the 
event onset time. Additionally, increasing the number of levels and 
parameters in the ANN allows for a better fit to the dataset, paying 
attention to avoiding the overfitting phenomenon. 

The metrics presented in the table showcase the models effectiveness 
in accurately classifying signal samples and distinguishing between 
background noise and AE signal. Notably, all models achieve accuracies 
exceeding 0.97, with some reaching peaks above 0.9999. Furthermore, 
the mean absolute error (MAE) values demonstrate consistently low 
errors across the board, with the best result recorded at 0.006 when 
evaluated on the test set. 

The metrics illustrated in Table 2 underscore remarkably high- 
performance levels. However, delving deeper into understanding the 
factors driving such impressive outcomes is imperative. It is crucial to 
acknowledge that the utilized metrics evaluate the effectiveness of the 
model in categorizing individual samples within the time-series. To gain 
a comprehensive understanding of the achieved results, it is vital to 
consider the distinct structure of the time-series. Initially, the time-series 

Fig. 5. Effects of smoothed probability with rolling average correction. The top section displays predictions based on model output probabilities. In the middle 
section, a comparison is shown between U-Net probabilities and the rolling average correction. The bottom section presents predictions using the smoothed 
probability. Dashed red vertical lines indicate predicted onset times from U-Net probabilities, solid green vertical lines represent actual onset times, and blue dash-dot 
lines depict onset time predictions after applying Rolling Average correction. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 

Table 1 
Number of spurious onset time detected by the U-Net outputs before and after 
applying the rolling average correction.  

Model U-Net Predictions R.A. Correction 

Seq. Len. Depth Train Validation Train Validation 

2048 4 0 19 0 1 
2048 3 0 57 0 10 
2048 2 191 242 9 13 
1024 4 0 21 0 2 
1024 3 0 56 0 7 
1024 2 485 270 32 24 
512 4 5 22 2 2 
512 3 0 70 0 5 
512 2 625 282 37 21  

Table 2 
Performance comparison of various U-Net models based on classical machine learning metrics.  

Model Train Validation 

Seq. Len. Depth Loss Acc MAE RMSE F1 AUC Loss Acc MAE RMSE F1 AUC 

2048 4 0.006 1.000 0.006 0.007 1.000 1.000 0.037 0.992 0.014 0.084 0.995 0.997 
2048 3 0.010 1.000 0.010 0.013 1.000 1.000 0.065 0.985 0.026 0.115 0.990 0.991 
2048 2 0.031 0.997 0.028 0.056 0.997 1.000 0.108 0.973 0.052 0.153 0.980 0.986 
1024 4 0.004 1.000 0.004 0.005 1.000 1.000 0.031 0.994 0.011 0.072 0.996 0.998 
1024 3 0.007 1.000 0.007 0.010 1.000 1.000 0.061 0.986 0.021 0.109 0.991 0.991 
1024 2 0.055 0.991 0.047 0.096 0.991 0.999 0.103 0.972 0.062 0.151 0.978 0.990 
512 4 0.012 0.999 0.008 0.019 1.000 1.000 0.032 0.993 0.015 0.072 0.996 0.998 
512 3 0.008 1.000 0.007 0.013 1.000 1.000 0.059 0.985 0.023 0.112 0.990 0.993 
512 2 0.052 0.987 0.040 0.095 0.990 0.999 0.092 0.971 0.054 0.148 0.978 0.993  

J. Melchiorre et al.                                                                                                                                                                                                                             



Developments in the Built Environment 18 (2024) 100449

9

consistently exhibits the presence of background noise, which is 
distinguishable from the subsequent emergence of the AE signal that 
arises when the wave reaches the sensor. 

In general, distinguishing between most samples belonging to these 
two phases along the time-series is not so challenging. However, accu
rately pinpointing the transition between background noise and the AE 
signal proves to be more difficult. Consequently, classical machine 
learning metrics may yield high performance, as the easily discernible 
initial and end samples heavily influence the evaluation of the neural 
models. Nevertheless, this evaluation method provides limited insight 
into the proximity of the predicted onset time to the actual onset time. 
Given that the transition time represents only a small fraction of the 
entire time-series, even a significant discrepancy between predicted and 
actual onset times may still result in high metrics scores. 

In this paper, to provide a comprehensive evaluation of the proposed 
models, a comparison was made based on the time difference Δt[μs] 
between the predicted onset time and the actual onset time. This eval
uation metric offers more meaningful insights than classical machine 
learning metrics. The discrepancy between the real and predicted onset 
times reflects the true error of the proposed neural models. This measure 
is directly linked to the accuracy of crack location identification. A 
larger difference between these two quantities indicates a greater error 
in crack evaluation. 

In this task, minimizing Δt is crucial due to the high propagation 
speed of AE signals. Assuming a propagation velocity of 4000 m/s, 
typical of wave propagation in concrete, even a small error in identifying 
the onset time can result in a significant error in locating the crack 
source. 

The average absolute temporal discrepancies Δt between predicted 
and actual onset times, measured in μs, are presented in Table 3 for all 
evaluated neural networks. Results are provided for both direct classi
fications using U-Net-calculated probabilities and the smoothing prob
ability method detailed in Section 2.4. 

Employing the corrective approach on model outputs notably en
hances the precision of the proposed methodology. The most optimal 
model achieves an average error of 7 μs, corresponding to an approxi
mate positional error of 2.8 cm, considering an acoustic wave velocity of 
4000 m/s. This improvement stems from a reduction in the incidence of 
false positive onset time events, which inflates the mean discrepancy 
with genuine onset times. 

Fig. 6 illustrates a comparative analysis of all trained models, high
lighting the variations in terms of Δt that is possible to achieve through 
the proposed methodology. The findings indicate that the primary factor 
influencing the outcomes is the depth of the U-Nets. As expected, 
heightened depth correlates with a notable enhancement in the accuracy 
of neural models in precisely identifying the onset time. Conversely, the 
length of the input signal sequence appears to exert less impact on the 
outcome. 

It is important to highlight that the attained high accuracy was 
accomplished without resorting to data preprocessing. Moreover, the 
study did not consider potential enhancements achievable by 

concurrently integrating multiple signals from piezoelectric sensors. 
While these techniques hold promise for further enhancing method ac
curacy, they fall outside the scope of this study. The research focuses on 
crafting a deep learning approach for real-time onset time identification 
in continuous signals. 

3.1. Comparison with other acknowledged methodologies 

In this section, the proposed method is validated through compari
sons with widely acknowledged signal analysis techniques aimed at 
distinguishing signal from background noise. Specifically, the method is 
compared with two different techniques: a threshold approach and the 
Change Point Method (CPM) for Change Detection. 

These methods operate under the assumption that the onset time 
aligns with a notable shift or fluctuation in the signal. However, this 
assumption is not always valid, and therefore, depending solely on this 
heuristic may lead to suboptimal outcomes. 

The initial comparison involved applying a threshold method based 
on the variance within the time-series. This method computes the 
variance across a sliding window along the signal. When the variance 
within the sliding window exceeds a predetermined threshold value, it 
indicates a transition from background noise to actual signal, thereby 
defining the onset time of the signal. 

The choice to utilize the variance threshold instead of the conven
tional mean is driven by the characteristic of the analyzed signals, which 
possess a zero mean. Therefore, the variance-based method is deemed 
more effective in this context. 

In this method, the parameters are represented by the size of the 
sliding window and the target value of the threshold. The definition of 
these parameters may represent a challenging task. To ensure an unbi
ased comparison with the method presented in this work, tests were 
conducted using various parameter values. Table 4 presents the results 
with the lowest error, obtained through experimentation with different 
parameter settings. Specifically, the table displays the outcomes for 
three sliding window sizes and a variance threshold of 6.5 × 10− 3. 

In Table 4, the comparison is made based on the average Δt (10− 6 s) 
between predicted and actual onset times. 

Even after tuning the parameters of the threshold method, as 
depicted in Table 4, the results achieved with the U-Net approach are 
superior to those obtained using the threshold method across all 
analyzed parameter combinations. 

In Table 4, when considering the optimal scenario with a sliding 
window size of 5, the deep learning method exhibits an average error 
that is less than half of that observed with the threshold method. 

This can mainly be attributed to the noise present in the signal, which 
can lead to false detections in regions distant from the actual onset time. 
Furthermore, if the sliding window is too large, it may identify onset 
times prematurely, while if it is too small, there may not be sufficient 
data for a meaningful computation of the variance. 

Further validation of the proposed methodology in this study was 
conducted by comparing the results with those obtained using the 
Change Point Method (CPM) (Ross et al., 2012; Ross, 2015) employing 
the Lepage test. 

In this case, it was observed that the low variance inherent in 
acoustic signals made the Change Point Method (CPM) overly sensitive, 
leading to erroneous identification of noise as onset time. 

In common practice, to reduce the method oversensitivity, a small 
amount of noise can be introduced to the data. In this case, 5% of the 
maximum fluctuation was used as background noise. 

Nevertheless, even with this preprocessing step, the method exhibi
ted the poorest performance, likely due to the intrinsic noise present in 
the signals used. 

The results are presented in Table 4. A comparison based on the 
average Δt reveals that the error obtained with this well-established 
methodology is four times higher than that of the presented 
methodology. 

Table 3 
Average Δt (10− 6 s) between predicted and actual onset times, with an estimated 
positional error assuming an acoustic wave propagating at a speed of 400 m/s.  

Model U-Net Predictions R.A. Correction 

Seq. Len. Depth Train Validation Train Validation Δx (cm) 

2048 4 0 14.63 0 7.03 2.812 
2048 3 0 86.27 0 21.34 8.536 
2048 2 142.83 201.98 4.74 28.56 11.424 
1024 4 0 25.58 0 10.62 4.248 
1024 3 0 81.71 0 22.12 8.848 
1024 2 211.24 207.67 19.59 35.64 14.256 
512 4 5.46 33.53 3.39 9.01 3.604 
512 3 0.11 89.39 0.11 16.51 6.604 
512 2 242.55 210.33 25.37 36.02 14.408  
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Finally, Fig. 7 provides an example of the onset time identification on 
a signal from the dataset using the three compared methodologies. This 
visual comparison further enhances the superior accuracy of the method 
discussed in this paper. 

3.2. Model validation on real AE signals 

In this Section, the efficacy of the deep learning approach outlined in 
this study is demonstrated by evaluating it with a dataset comprising 
real acoustic emission signals. These signals were recorded through 
laboratory experiments conducted on concrete samples. Specifically, a 
three-point bending test was performed on a fiber-reinforced concrete 
specimen. 

The tested sample, measuring 120 × 30 × 15 cm, included a centrally 
located notch with a depth of 5 cm. Loading was applied until failure, 

with control over the crack mouth opening displacement (CMOD). To 
record the acoustic emission waveforms emitted during fracture for
mation, a piezoelectric sensor was positioned on the specimen short 
side. Signals were sampled at a frequency of 1000 kHz. 

The selection of the recorded time window is determined using a 
threshold amplitude method, as outlined in (Carpinteri et al., 2012). 
Here, xt represents the time series. The threshold amplitude is estab
lished by comparing the average amplitude of a translated set of ten data 
points with four times the average amplitude of the signals from the first 
to the last recorded data point k. The amplitude threshold is expressed as 
follows: 

( ∑10
t=k+1|xt|

)

10
≥ 4

(∑k
t=1|xt|

)

k
(10) 

The signals were recorded for a duration of 1024 μs, matching the 
length of signals in the training dataset. Subsequently, the acquired 
acoustic emission signals were tested using the method based on the U- 
Net architecture. 

Fig. 8 demonstrates the method effectiveness in distinguishing 
background noise from the actual acoustic emission signals. Despite the 
inherent differences between signals generated by the PLB test and those 
from actual crack formation, the U-Net model trained solely on PLB test 
signals shows proficiency in identifying acoustic emission signals. 
However, it is important to highlight that the method was tested on 
signal segments trimmed to match the length of those used for training. 

Fig. 6. Comparison of different U-Net models considering the distance between the predicted onset time and the ground truth.  

Table 4 
Comparison of different onset time detection methods in terms of average 
Δt (10− 6 s) between predicted and actual onset times.  

Method Δt[μs] 

Variance Thresholding (window size = 3) 25.46 
Variance Thresholding (window size = 5) 22.50 
Variance Thresholding (window size = 7) 30.47 
CPM w/Lepage test 40.57 
U-Net 10.62  

Fig. 7. Example of the onset time identification using the three compared methodologies. Evaluation of the U-Net model (depth of 4 and sequence length of 1024) 
against the variance thresholding (window size of 5 and threshold of 6.5 × 10− 3) and the CPM model with the Lepage test. 
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To further enhance accuracy and enable the use of continuous signals, 
model training using real acoustic emission data is advisable. Addi
tionally, it is crucial to acknowledge that the tested acoustic emission 
signals were acquired in a laboratory setting, likely resulting in a lower 
background noise compared to field-recorded data. 

Additionally, to assess the applicability of the presented methodol
ogy to continuous signals, a recording lasting 0.2 s was obtained during 
the three-point bending test, with an acquisition frequency of 1000 kHz. 
This recording captured two distinct acoustic emission signals, each 
characterized by significantly different amplitudes. The first signal 
peaked at approximately 0.6V, while the second signal was merely 
around 0.01V, representing less than 2% of the maximum amplitude. 

Using the trigger method defined in (Carpinteri et al., 2012) or a 
conventional threshold method, it would have been challenging to 
detect the lower amplitude signal due to its minimal amplitude. How
ever, as depicted in Fig. 9, the U-Net model successfully identified the 
signal. 

In Fig. 10, a close-up view of the lower amplitude signal depicted in 
Fig. 9 is presented. The network successfully identifies the acoustic 
emission signal, despite the challenge posed by its significantly lower 
amplitude compared to the preceding signal. 

In conclusion, the validation tests conducted on a small but real 
dataset have successfully confirmed the efficacy of the proposed meth
odology. The method demonstrated precise identification of onset times 
even on authentic acoustic emission signals. A natural progression for 
this methodology could involve direct training of the neural network 
using a diverse dataset of real signals. This would include signals with 
varying signal-to-noise ratios, reflecting operational monitoring sce
narios in real-world field conditions. Such advancements could further 
enhance the robustness and applicability of the method. 

4. Conclusions 

This study presents a novel deep learning methodology for real-time 

Fig. 8. Model validation on real AE signals. The onset time (green line) is identified when the classification label transitions from “background” (blue) to “signal” 
(red). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. Model validation on a real continuous AE signal lasting 0.2 s, demonstrating the effectiveness of the proposed method in detecting acoustic emissions of 
varying amplitudes. Classification and related probability of belonging to the “background” (blue) or “signal” (red). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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identification of onset time in acoustic emission (AE) signals, with im
plications for structural health monitoring (SHM) in civil infrastructure. 
Through comprehensive experimentation on both simulated and real 
data, the efficacy of the proposed approach in accurately classifying 
signal samples and distinguishing between background noise and AE 
signals has been demonstrated. 

The results of the experiments showcase the remarkable performance 
of the developed models, achieving high levels of accuracy across 
different evaluation metrics. Notably, the models exhibit minimal mean 
absolute error (MAE), indicating robust performance in accurately 
identifying onset times in AE signals. Moreover, the incorporation of a 
rolling average correction technique significantly enhances the preci
sion of the proposed method, effectively reducing the average error 
between predicted and real onset times. Additionally, the method was 
compared with traditional methodologies for event detection widely 
used in signal processing, further validating its effectiveness. 

Potential future advancements for this approach may involve 
training the neural network directly using a diverse dataset of real AE 
signals, including those with varying signal-to-noise ratios. This would 
allow for the simulation of conditions found in real-world operational 
monitoring scenarios. These developments hold promise for further 
enhancing the method resilience and practical applicability. 

In summary, the findings of this study offer valuable insights into the 
application of deep learning techniques for AE signal analysis, 
advancing the field of SHM and paving the way for innovative solutions 
in structural defect detection and maintenance management. Further 
research in this area holds promise for continued improvements in ac
curacy and efficiency, ultimately benefiting the safety and resilience of 
built environments. 

CRediT authorship contribution statement 

Jonathan Melchiorre: Writing – review & editing, Writing – orig
inal draft, Validation, Supervision, Methodology, Investigation, Data 
curation, Conceptualization, Project administration, Resources. Leo 
D’Amato: Writing – review & editing, Visualization, Validation, Soft
ware, Investigation, Formal analysis, Methodology. Federico Agostini: 
Visualization, Software, Methodology, Investigation, Formal analysis. 
Antonino Maria Rizzo: Formal analysis, Investigation, Methodology, 
Software, Validation, Visualization, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

References 

Aggelis, D.G., 2011. Classification of cracking mode in concrete by acoustic emission 
parameters. Mech. Res. Commun. 38 (3), 153–157. 

Akaike, H., 1974. Markovian representation of stochastic processes and its application to 
the analysis of autoregressive moving average processes. Ann. Inst. Stat. Math. 26, 
363–387. 

Anitescu, C., Atroshchenko, E., Alajlan, N., Rabczuk, T., 2019. Artificial neural network 
methods for the solution of second order boundary value problems. Comput. Mater. 
Continua (CMC) 59 (1), 345–359. https://doi.org/10.32604/cmc.2019.06641. 

Arnau, A., et al., 2004. Piezoelectric Transducers and Applications, vol. 2004. Springer. 
Baer, M., Kradolfer, U., 1987. An automatic phase picker for local and teleseismic events. 

Bull. Seismol. Soc. Am. 77 (4), 1437–1445. 
Bai, F., Gagar, D., Foote, P., Zhao, Y., 2017. Comparison of alternatives to amplitude 

thresholding for onset detection of acoustic emission signals. Mech. Syst. Signal 
Process. 84, 717–730. 

Bengio, Y., Goodfellow, I., Courville, A., 2017. Deep Learning, vol. 1. MIT press 
Cambridge, MA, USA.  

Bilgen, M., Insana, M.F., 1998. Covariance analysis of time delay estimates for strained 
signals. IEEE Trans. Signal Process. 46 (10), 2589–2600. 

Bishop, C.M., Nasrabadi, N.M., 2006. Pattern Recognition and Machine Learning, vol. 4. 
Springer. 

Boschetti, F., Dentith, M.D., List, R.D., 1996. A fractal-based algorithm for detecting first 
arrivals on seismic traces. Geophysics 61 (4), 1095–1102. 

Buscema, M., 1998. Back propagation neural networks. Subst. Use Misuse 33 (2), 
233–270. 

Carpinteri, A., Lacidogna, G., Niccolini, G., 2006. Critical behaviour in concrete 
structures and damage localization by acoustic emission. In: Key Engineering 
Materials, vol. 312. Trans Tech Publ, pp. 305–310. 

Carpinteri, A., Lacidogna, G., Manuello, A., 2007. Damage mechanisms interpreted by 
acoustic emission signal analysis. In: Key Engineering Materials, vol. 347. Trans Tech 
Publ, pp. 577–582. 

Carpinteri, A., Xu, J., Lacidogna, G., Manuello, A., 2012. Reliable onset time 
determination and source location of acoustic emissions in concrete structures. 
Cement Concr. Compos. 34 (4), 529–537. 

Carpinteri, A., Lacidogna, G., Invernizzi, S., Manuello Bertetto, A.D.B., et al., 2013. Ae 
monitoring and structural modeling of the asinelli tower in bologna. In: Proceedings 
of the 13th International Conference on Fracture (ICF13), China Science Literature. 
Publishing House, p. 234. 

Chen, P.-H., Ding, J.-J., Huang, J.-Y., Tseng, T.-Y., 2020. Accurate onset detection 
algorithm using feature-layer-based deep learning architecture. In: 2020 IEEE 
International Symposium on Circuits and Systems (ISCAS). IEEE, pp. 1–5. 

Ciaburro, G., 2020. Sound event detection in underground parking garage using 
convolutional neural network. Big Data and Cognitive Computing 4 (3), 20. 

Ciaburro, G., Iannace, G., 2021. Modeling acoustic metamaterials based on reused 
buttons using data fitting with neural network. J. Acoust. Soc. Am. 150 (1), 51–63. 

Ciampa, F., Meo, M., 2010. Acoustic emission source localization and velocity 
determination of the fundamental mode a0 using wavelet analysis and a Newton- 
based optimization technique. Smart Mater. Struct. 19 (4), 045027. 

Du, G., Cao, X., Liang, J., Chen, X., Zhan, Y., 2020. Medical image segmentation based on 
u-net: a review. J. Imag. Sci. Technol. 

Eaton, M.J., Pullin, R., Holford, K.M., 2012. Towards improved damage location using 
acoustic emission. Proc. IME C J. Mech. Eng. Sci. 226 (9), 2141–2153. 

Emamian, V., Kaveh, M., Tewfik, A.H., Shi, Z., Jacobs, L.J., Jarzynski, J., 2003. Robust 
clustering of acoustic emission signals using neural networks and signal subspace 
projections. EURASIP J. Appl. Signal Process. 2003, 1–11. 

Farrar, C.R., Worden, K., 2007. An introduction to structural health monitoring. Phil. 
Trans. Math. Phys. Eng. Sci. 365 (1851), 303–315. 

Fig. 10. Zoomed-in view of the lower amplitude signal from Fig. 9, demonstrating the ability of the proposed to detect subtle acoustic emission signals that may be 
difficult to identify with traditional methods. 

J. Melchiorre et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S2666-1659(24)00130-3/sref1
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref1
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref2
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref2
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref2
https://doi.org/10.32604/cmc.2019.06641
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref4
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref5
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref5
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref6
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref6
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref6
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref7
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref7
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref8
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref8
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref9
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref9
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref10
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref10
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref11
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref11
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref12
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref12
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref12
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref13
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref13
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref13
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref14
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref14
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref14
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref15
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref15
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref15
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref15
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref16
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref16
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref16
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref17
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref17
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref18
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref18
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref19
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref19
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref19
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref20
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref20
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref21
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref21
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref22
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref22
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref22
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref23
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref23


Developments in the Built Environment 18 (2024) 100449

13

Gorman, M.R., 1991. Plate wave acoustic emission. J. Acoust. Soc. Am. 90 (1), 358–364. 
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., 

Cai, J., et al., 2018. Recent advances in convolutional neural networks. Pattern 
Recogn. 77, 354–377. 

Hinkley, D.V., 1971. Inference about the change-point from cumulative sum tests. 
Biometrika 58 (3), 509–523. 

Ho, Y., Wookey, S., 2019. The real-world-weight cross-entropy loss function: modeling 
the costs of mislabeling. IEEE Access 8, 4806–4813. 

Hua, Y., Guo, J., Zhao, H., 2015. Deep belief networks and deep learning. In: Proceedings 
of 2015 International Conference on Intelligent Computing and Internet of Things. 
IEEE, pp. 1–4. 

Ince, N.F., Kao, C.-S., Kaveh, M., Tewfik, A., Labuz, J.F., 2010. A machine learning 
approach for locating acoustic emission. EURASIP J. Appl. Signal Process. 2010, 
1–14. 

Jierula, A., Oh, T.-M., Wang, S., Lee, J.-H., Kim, H., Lee, J.-W., 2021. Detection of 
damage locations and damage steps in pile foundations using acoustic emissions 
with deep learning technology. Front. Struct. Civ. Eng. 15, 318–332. 

Kohonen, T., 1990. The self-organizing map. Proc. IEEE 78 (9), 1464–1480. 
Kurz, J.H., Grosse, C.U., Reinhardt, H.-W., 2005. Strategies for reliable automatic onset 

time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics 
43 (7), 538–546. 

Lacidogna, G., Manuello, A., Niccolini, G., Carpinteri, A., 2015. Acoustic emission 
monitoring of Italian historical buildings and the case study of the athena temple in 
syracuse. Architect. Sci. Rev. 58 (4), 290–299. 

Lee, S., Ha, J., Zokhirova, M., Moon, H., Lee, J., 2018. Background information of deep 
learning for structural engineering. Arch. Comput. Methods Eng. 25, 121–129. 

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic 
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 3431–3440. 

Madarshahian, R., Soltangharaei, V., Anay, R., Caicedo, J.M., Ziehl, P., 2019a. Hsu- 
nielsen source acoustic emission data on a concrete block. Data Brief 23, 103813. 
https://doi.org/10.1016/j.dib.2019.103813. https://www.sciencedirect.com/scienc 
e/article/pii/S2352340919301647. 

Madarshahian, R., Ziehl, P., Caicedo, J.M., 2019b. Acoustic emission bayesian source 
location: onset time challenge. Mech. Syst. Signal Process. 123, 483–495. 

Manuello Bertetto, A., Masera, D., Carpinteri, A., 2020. Acoustic emission monitoring of 
the turin cathedral bell tower: foreshock and aftershock discrimination. Appl. Sci. 10 
(11), 3931. 

Manuello Bertetto, A., Marmo, F., Melchiorre, J., 2023. Acoustic emission monitoring 
and thrust network analysis of the central nave vaults of the turin cathedral. In: 
Italian Workshop on Shell and Spatial Structures. Springer, pp. 241–249. 

Manuello, A., Niccolini, G., Carpinteri, A., 2019a. Ae monitoring of a concrete arch road 
tunnel: damage evolution and localization. Eng. Fract. Mech. 210, 279–287. 

Manuello, A., Masera, D., Carpinteri, A., 2019b. Ae damage assessment in the bell tower 
of the turin cathedral. Key Eng. Mater. 817, 579–585. 

Manuello, A., Marmo, F., Melchiorre, J., 2024. Investigating and monitoring central nave 
vaults of the turin cathedral with acoustic emissions and thrust network analysis. 
Develop. Built Environ., 100434 

Maradei, C., Piotrkowski, R., Serrano, E., Ruzzante, J., 2003. Acoustic emission signal 
analysis in machining processes using wavelet packets. Lat. Am. Appl. Res. 33 (4), 
443–448. 

Marasco, G., Rosso, M.M., Aiello, S., Aloisio, A., Cirrincione, G., Chiaia, B., Marano, G.C., 
2022. Ground penetrating radar fourier pre-processing for deep learning tunnel 
defects’ automated classification. In: International Conference on Engineering 
Applications of Neural Networks. Springer, pp. 165–176. 

Melchiorre, J., Sardone, L., Rosso, M.M., Aloisio, A., 2022. Intelligent structural damage 
detection with mems-like sensors noisy data. In: International Conference on 
Communication and Intelligent Systems. Springer, pp. 631–642. 

Melchiorre, J., Rosso, M.M., Cirrincione, G., Marano, G.C., 2023a. Compact 
convolutional transformer fourier analysis for gpr tunnels assessment. In: 2023 
International Conference on Control, Automation and Diagnosis (ICCAD). IEEE, 
pp. 1–6. 

Melchiorre, J., Rosso, M.M., Cucuzza, R., D’Alto, E., Manuello, A., Marano, G.C., 2023b. 
Deep acoustic emission detection trained on seismic signals. In: Applications of 
Artificial Intelligence and Neural Systems to Data Science. Springer, pp. 83–92. 

Melchiorre, J., Manuello Bertetto, A., Rosso, M.M., Marano, G.C., 2023c. Acoustic 
emission and artificial intelligence procedure for crack source localization. Sensors 
23 (2), 693. 

Mesaros, A., Heittola, T., Virtanen, T., Plumbley, M.D., 2021. Sound event detection: a 
tutorial. IEEE Signal Process. Mag. 38 (5), 67–83. 

I.N.M. MISTRAS Group, 1978. Mistras Group. https://mistrasgroup.com/. World 
Headquarters in Princeton Junction, NJ – USA.  

Mitchell, T.M., 1997. Mach. Learn. 
Niccolini, G., Carpinteri, A., Lacidogna, G., Manuello, A., 2011. Acoustic emission 

monitoring of the syracuse athena temple: scale invariance in the timing of ruptures. 
Phys. Rev. Lett. 106 (10), 108503. 

Ohtsu, M., 1987. Acoustic emission characteristics in concrete and diagnostic 
applications. J. Acoust. Emiss. 6 (2), 99–108. 

Ohtsu, M., Okamoto, T., Yuyama, S., 1998. Moment tensor analysis of acoustic emission 
for cracking mechanisms in concrete. Struct. J. 95 (2), 87–95. 

Pasca, D.P., Aloisio, A., Rosso, M.M., Sotiropoulos, S., 2022. Pyoma and pyoma_gui: a 
python module and software for operational modal analysis. SoftwareX 20, 101216. 

Patrick, M.K., Adekoya, A.F., Mighty, A.A., Edward, B.Y., 2022. Capsule networks–a 
survey. J. King Saud Univer.-comput. Inform. Sci. 34 (1), 1295–1310. 

Priyanka, D. Kumar, 2020. Decision tree classifier: a detailed survey. Int. J. Inf. Decis. 
Sci. 12 (3), 246–269. 

Rocchi, A., Santecchia, E., Ciciulla, F., Mengucci, P., Barucca, G., 2019. Characterization 
and optimization of level measurement by an ultrasonic sensor system. IEEE Sensor. 
J. 19 (8), 3077–3084. 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for 
biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., 
Frangi, A.F. (Eds.), Medical Image Computing and Computer-Assisted Intervention – 
MICCAI 2015. Springer International Publishing, Cham, pp. 234–241. 

Ross, G., 2015. Parametric and nonparametric sequential change detection in r: the cpm 
package. J. Stat. Software 66 (8). https://doi.org/10.18637/jss.v066.i03. 

Ross, G., Tasoulis, D., Adams, N., 2012. Nonparametric monitoring of data streams for 
changes in location and scale. Technometrics 53, 379–389. https://doi.org/ 
10.1198/TECH.2011.10069. 

Rosso, M.M., Aloisio, A., Melchiorre, J., Huo, F., Marano, G.C., 2023a. Noise effects 
analysis on subspace-based damage detection with neural networks. Structures 54, 
23–37. Elsevier.  

Rosso, M.M., Aloisio, A., Parol, J., Marano, G.C., Quaranta, G., 2023b. Intelligent 
automatic operational modal analysis. Mech. Syst. Signal Process. 201, 110669 
https://doi.org/10.1016/j.ymssp.2023.110669. 

Ruby, U., Yendapalli, V., 2020. Binary cross entropy with deep learning technique for 
image classification. Int. J. Adv. Trends Comput. Sci. Eng. 9 (10). 

Sadowsky, J., 1996. Investigation of signal characteristics using the continuous wavelet 
transform, johns hopkins apl technical digest, 17 (3), 258–269. 

Scruby, C.B., 1987. An introduction to acoustic emission. J. Phys. E Sci. Instrum. 20 (8), 
946. 

Sedlak, P., Hirose, Y., Enoki, M., 2013. Acoustic emission localization in thin multi-layer 
plates using first-arrival determination. Mech. Syst. Signal Process. 36 (2), 636–649. 

Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V., 2021. U-net and its variants for 
medical image segmentation: a review of theory and applications. IEEE Access 9, 
82031–82057. 

Sodsri, C., 2003. Time-varying Autoregressive Modelling for Nonstationary Acoustic 
Signal and its Frequency Analysis. The Pennsylvania State University. 

Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R., 
Czarnecki, J.J., 2003. A Review of Structural Health Monitoring Literature: 
1996–2001, vol. 1. Los Alamos National Laboratory, USA, p. 16. 

Sundararajan, D., 2001. The Discrete Fourier Transform: Theory, Algorithms and 
Applications. World Scientific. 

Suthaharan, S., Suthaharan, S., 2016. Support Vector Machine, Machine Learning Models 
and Algorithms for Big Data Classification: Thinking with Examples for Effective 
Learning, pp. 207–235. 

Tapeh, A.T.G., Naser, M., 2023. Artificial intelligence, machine learning, and deep 
learning in structural engineering: a scientometrics review of trends and best 
practices. Arch. Comput. Methods Eng. 30 (1), 115–159. 

Thompson, J., Smith, B., Warner, A., Jot, J.-M., 2012. Direct-diffuse decomposition of 
multichannel signals using a system of pairwise correlations. In: Audio Engineering 
Society Convention, vol. 133. Audio Engineering Society. 

Voulodimos, A., Doulamis, N., Bebis, G., Stathaki, T., 2018a. Recent developments in 
deep learning for engineering applications. Comput. Intell. Neurosci. 2018. 

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., et al., 2018b. Deep 
learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018. 

Wang, W., Siau, K., 2019. Artificial intelligence, machine learning, automation, robotics, 
future of work and future of humanity: a review and research agenda. J. Database 
Manag. 30 (1), 61–79. 

Wang, J., Lu, S., Wang, S.-H., Zhang, Y.-D., 2022. A review on extreme learning machine. 
Multimed. Tool. Appl. 81 (29), 41611–41660. 

Weinberg, A.I., Last, M., 2019. Selecting a representative decision tree from an ensemble 
of decision-tree models for fast big data classification. J. Big Data 6 (1), 1–17. 

Weiss, A., Weinstein, E., 1983. Fundamental limitations in passive time delay 
estimation–part i: narrow-band systems. IEEE Trans. Acoust. Speech Signal Process. 
31 (2), 472–486. 

Wold, S., Esbensen, K., Geladi, P., 1987. Principal component analysis. Chemometr. 
Intell. Lab. Syst. 2 (1–3), 37–52. 

Zhang, M., Li, M., Zhang, J., Liu, L., Li, H., 2020. Onset detection of ultrasonic signals for 
the testing of concrete foundation piles by coupled continuous wavelet transform 
and machine learning algorithms. Adv. Eng. Inf. 43, 101034. 

Ziola, S.M., Gorman, M.R., 1991. Source location in thin plates using cross-correlation. 
J. Acoust. Soc. Am. 90 (5), 2551–2556. 

Zonzini, F., Bogomolov, D., Dhamija, T., Testoni, N., De Marchi, L., Marzani, A., 2022. 
Deep learning approaches for robust time of arrival estimation in acoustic emission 
monitoring. Sensors 22 (3), 1091. 

J. Melchiorre et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S2666-1659(24)00130-3/sref24
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref25
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref25
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref25
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref26
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref26
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref27
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref27
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref28
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref28
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref28
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref29
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref29
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref29
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref30
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref30
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref30
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref31
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref32
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref32
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref32
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref33
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref33
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref33
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref34
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref34
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref35
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref35
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref35
https://doi.org/10.1016/j.dib.2019.103813
https://www.sciencedirect.com/science/article/pii/S2352340919301647
https://www.sciencedirect.com/science/article/pii/S2352340919301647
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref37
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref37
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref38
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref38
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref38
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref39
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref39
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref39
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref40
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref40
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref41
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref41
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref42
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref42
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref42
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref43
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref43
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref43
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref44
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref44
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref44
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref44
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref45
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref45
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref45
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref46
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref46
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref46
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref46
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref47
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref47
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref47
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref48
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref48
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref48
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref49
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref49
https://mistrasgroup.com/
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref51
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref52
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref52
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref52
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref53
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref53
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref54
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref54
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref55
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref55
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref56
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref56
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref57
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref57
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref58
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref58
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref58
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref59
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref59
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref59
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref59
https://doi.org/10.18637/jss.v066.i03
https://doi.org/10.1198/TECH.2011.10069
https://doi.org/10.1198/TECH.2011.10069
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref62
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref62
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref62
https://doi.org/10.1016/j.ymssp.2023.110669
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref64
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref64
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref65
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref65
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref66
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref66
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref67
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref67
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref68
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref68
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref68
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref69
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref69
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref70
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref70
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref70
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref71
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref71
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref72
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref72
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref72
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref73
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref73
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref73
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref74
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref74
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref74
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref75
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref75
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref76
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref76
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref77
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref77
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref77
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref78
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref78
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref79
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref79
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref80
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref80
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref80
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref81
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref81
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref82
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref82
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref82
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref83
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref83
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref84
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref84
http://refhub.elsevier.com/S2666-1659(24)00130-3/sref84

	Acoustic emission onset time detection for structural monitoring with U-Net neural network architecture
	1 Introduction and literature review
	2 Methodology
	2.1 The importance of the onset time detection
	2.2 Deep learning architecture
	2.3 Dataset
	2.4 Neural network training and data segmentation

	3 Results
	3.1 Comparison with other acknowledged methodologies
	3.2 Model validation on real AE signals

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


