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Abstract
In the last years, Control Moment Gyros (CMGs) are widely used for high-speed 
attitude control, since they are able to generate larger torque compared to “classi-
cal” actuation systems, such as Reaction Wheels . This paper describes the attitude 
control problem of a spacecraft, using a Model Predictive Control method. The fea-
tures of the considered linear MPC are: (i) a virtual reference, to guarantee input 
constraints satisfaction, and (ii) an integrator state as a servo compensator, to reduce 
the steady-state error. Moreover, the real-time implementability is investigated using 
an experimental testbed with four CMGs in pyramidal configuration, where the 
capability of attitude control and the optimization solver for embedded systems are 
focused on. The effectiveness and the performance of the control system are shown 
in both simulations and experiments.

Keywords  MPC Controller · Real-time Implementability · Control moment gyro · 
Experimental tests on attitude control

1  Introduction

The growing interest in space exploration is focusing the research in the develop-
ment of space architectures able to be independent and self-sustainable. Nowadays, 
space missions for satellites require the capability to rapidly change the attitude with 
high slew rate, both to ensure the success of the mission and to avoid catastrophic 
impacts among crafts (Yadlin 2011; Courie et  al. 2018). In general the attitude 
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control can be defined as the process aimed to stabilize and adjust the orientation 
of spacecraft during space maneuvers (National Academies of Sciences and Medi-
cine 2016). Precise attitude tracking control of small satellites is a demanding task 
due to the limited hardware resources of sensors, actuators, and processors equipped 
on-board. During the years, attitude control systems based on Control Moment 
Gyros (CMGs) have been used for a large scale of satellites as they can generate a 
large torque compared to Reaction Wheels (RWs) systems. Though CMG systems 
can provide rapid slew capability and high pointing accuracy not using any of the 
limited propellant dedicated to the main propulsion system, an important difficulty 
is their inherent geometric singularity problem, regardless of how many CMGs the 
system is equipped with. Various efforts have been made to overcome this trouble-
some problem, and many CMG singularity avoidance methods have been developed, 
with different advantages and disadvantages (Kraft 1993; Wie 2005; Lee et al. 2007; 
Chakravorty 2012).

A configuration with CMGs and steering scheme for rapid maneuvering of Earth 
observation satellites is presented in paper (Yadlin 2011). The CMG singularity 
arises when the torque vectors of all the CMGs are aligned on a plane, so that the 
CMG system cannot produce a control torque in the normal direction of that plane. 
Different configurations of CMGs systems are compared in Miceli (2007), using 
a single PID controller with a steering law based on the Moore-Penrose inverse 
matrix to avoid the singularity condition. The analysis is particularly interesting for 
the comparison among different actuator system: the first two are CMG systems in 
pyramidal configuration with a different skew angles, the third system is a cluster of 
two CMGs and four RWs.

Even if Proportional Integral Derivative (PID)-based controllers are largely 
used in industrial applications, they are used in cases where the plant has a sim-
ple dynamics and where an appropriate proportional and damping gains are able to 
ensure a stable behavior of the control system. These controllers, combined with a 
Singular Direction Avoidance (SDA) steering law (Ford and Hall 2000), are usually 
designed for CMG-based space systems, as in Xin et al. (2015); Bedrossian et al. 
(2005), Ciavola et al. (2019). However, if the system to be controlled is more com-
plex, the implementation of an optimal control strategy could be better. The optimal 
control solution is easy and simple to design, and the feedback gains can be com-
puted by solving a Riccati equation. The most successful methodology among the 
optimal control environment is the Model Predictive Control (MPC).

As clear from literature (Wang and Boyd 2009; Mayne 2014; Mammarella et al. 
2018), however, one of the main drawback of the MPC control scheme is related 
to the online optimization problem and to the difficulty of embedding a real-time 
solver for the on-board implementation. A practical solution, usually used for MPC 
implementation on embedded systems, is the offline evaluation of the control law, 
uploaded on-board by means of lookup tables Bemporad et al. (2002). In literature, 
gain scheduling design are usually proposed for linear time-varying (LTV) system, 
but for spacecraft control using CMGs there is a limitation due to the high number 
of independent time-varying variables. So, gain scheduling design can be unfeasi-
ble. Moreover, in space applications, to handle uncertainties and fast changes on 
the dynamics, this solution is usually not adopted. For this reason, the real-time 
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implementation (translated in a real-time solver) is a key aspect for the on-board 
implementation of an MPC control system.

MPC was first applied successfully for plants with slow dynamics (Qin and Badg-
well 2003; Yu-Geng et al. 2013). However, in the last years, it was widely applied 
to different areas, as space applications. Indeed, only few control methodologies are 
able to address challenging tasks, required by space observations and missions, as 
deeply explained in Eren et al. (2017). The main advantages of using MPC control-
lers are related to two main aspects: (1) the MPC controller can directly calculate 
the angular velocity of the gimbals without calculating the external control torque, 
(2) input, state and hardware constraints can be included in the implementation. The 
first aspect enables us to avoid using the conventional steering laws with the sin-
gularity problem to drive the CMG system. Besides, the second aspect guarantees 
computational feasibility, secure operation, and the best possible performance of 
the system. As a consequence, the stability of the closed-loop system and its fea-
sibility are guaranteed, while even the tracking performance is improved under the 
constraints.

In Guiggiani et  al. (2015) a Model Predictive Controller for spacecraft attitude 
tracking with RWs actuators is proposed and the controller is designed for desatura-
tion of the RWs, without fuel consumption, compensating the gravity gradient tor-
ques. In paper Ashok et al. (2016) the problem of attitude control of spacecraft using 
CMGs in pyramidal configuration is faced with the implementation of a method to 
avoid the singularity condition by means of Nonlinear MPC (NMPC). A singular-
ity avoidance term is introduced in the cost function to be minimized, in order to 
generate a control input that moves away from the singularity when the CMG sys-
tem approaches the neighbourhood of the singularity, and to rapidly converge to a 
desired attitude when the CMG system stays away from the singularity. Even if the 
implementation of an NMPC is treated, this paper still uses a steering law to cal-
culate the value of the gimbal angular velocities. When a steering law is included 
in the closed-loop scheme, the controller generates the input and the steering law 
generates the gimbal rates value, avoiding the singularity condition, separately. So, 
it should happen that the generated torque differs from the controller torque, com-
promising the control performance in avoiding singularity. This problem can be 
resolved by generating directly from the controller the control input that does not 
achieve singularity.

In light of these circumstances, this paper proposes an MPC based attitude con-
troller for the CMG system, which directly generates the gimbal rates so as to avoid 
the singularity problem possibly caused by the steering laws. The proposed method 
is based on an MPC method with additional features in Wada and Tsurushima 
(2016), which are virtual reference state and integrator state. Although the literature 
provides a linear MPC controller, it optimizes not only a sequence of control inputs, 
but also a virtual reference signal and an integrator state. These additional optimiza-
tions improve attitude tracking performance and reduce the steady-state error with 
the guarantee of recursive feasibility and constraints satisfaction. The further con-
tribution of this paper is to verify the real-time implementability of the proposed 
MPC controller using an experimental testbed with four CMGs in pyramidal con-
figuration. By floating the experimental equipment via spherical air bearing and by 
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matching the center of rotation and the center of gravity of the equipment, the test-
bed simulates spacecraft attitude dynamics. Since ground experiments of spacecraft 
attitude control are very difficult, and furthermore MPC controllers require imple-
mentation of real-time optimization, there have been a few references, which con-
duct experimental verification of MPC based spacecraft attitude control. We dem-
onstrate both simulation and experimental results of the proposed method, and also 
show an optimization solver, which is easy to be translated and computationally effi-
cient for on-board implementation.

The paper is organized as follows. In Sect. 2 the dynamics of the analyzed sys-
tem is considered, focusing on attitude dynamics. The testbed system is described 
in Sect. 2.2. The MPC controller is introduced in Sect. 3, including the virtual refer-
ence and the integrator state. The real-time implementability of the proposed MPC 
controller is also discussed in Sect.  3.1. The Simulation results are described in 
Sect. 4 and the experimental test in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 � Preliminaries

Some preliminaries on Linear Matrix Inequalities (LMIs) and on MPC control sys-
tem are first introduced. The LMI approach is used for the definition of the control-
ler gains and the Yalmip Matlab toolbox Lofberg (2004) is considered.

Given the symmetric matrices Fi = FT
i
∈ ℝn×n , with i = 0,… ,m , a LMI problem 

has the form

where x ∈ ℝm . The inequality symbol in Eq. (1) means that F(x) is positive definite, 
i.e. uTF(x)u > 0 for all nonzero u ∈ ℝn . This LMI is equivalent to a set of n polyno-
mial inequalities in x.

Moreover, it is possible to find nonstrict LMIs, with the form

The LMI problem in Eq. (1) is a convex constraint on x and the set {x|F(x) > 0} is 
convex indeed. Multiple LMIs such as F(1)(x) > 0,… ,F(p)(x) > 0 can be expressed 
as the single LMI diag(F(1)(x),… ,F(p)(x)) > 0 , where ���� denotes a diagonal 
matrix composed by the elements.

Whether the matrices Fi are diagonal, the LMI F(x) > 0 is just a set of linear 
inequalities. Nonlinear convex inequalities are represented as an LMI problem using 
Schur complements.

where Q(x) = Q(x)T , R(x) = R(x)T and S(x) depend affinely on x, is equivalent to

(1)F(x) ≜ F0 +

m∑
i=1

xiFi > 0

(2)F(x) ≥ 0

(3)
[
Q(x) S(x)

S(x)T R(x)

]
> 0,
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It is often possible to deal with problems in which the variables are matrices as 
follows

where A ∈ ℝn×n is given and P = PT is the variable. We can put the Lyapunov ine-
quality in Eq. (5) in the form of Eq. (1) considering P1,… ,Pm as a basis for symmet-
ric n × n matrices (m = n(n + 1)∕2) and then taking F0 = 0 and Fi = −ATPi − PiA . 
Furthermore, leaving LMI inequalities in a condensed form as Eq. (5) may lead to 
more efficient computation.

Consider the quadratic matrix inequality

where A, B, Q = QT , R = RT > 0 are given matrices of appropriate sizes and P = PT 
is the variable. It can be expressed as the LMI problem

This representation shows that the quadratic matrix inequality in Eq. (7) is convex 
in P.

In some problems it is possible to find linear equality constraints on the vari-
ables such as

where P ∈ ℝk×k is the variable. In order to write Eq. (8) in the form F(x) > 0 we 
can eliminate the equality constraint considering P1,… ,Pm as a basis for sym-
metric k × k matrices with trace zero (m = (k(k + 1)∕2) − 1) and P0 as a sym-
metric k × k matrix with TrP0 = 1 . Thus, F0 = diag (P0,−A

TP0 − P0A) and 
Fi = diag (Pi,−A

TPi − PiA) , for i = 1,… ,m , should be used in the analysis. The 
LMIs defined in this paper are solved with the Matlab Toolbox Yalmip Lofberg 
(2004).

3 � Model definition

As briefly introduced before, the main objective of this paper is the precise atti-
tude control of a testbed, equipped with four Control Moment Gyros (CMGs) 
in pyramidal configuration. The testbed is considered as a rigid body, in which 
Euler’s equation and quaternion kinematics are included Markley and Crassidis 
(2014). After the definition of the dynamic and kinematic equations of the test-
bed, the Linear Time-Invariant (LTI) mathematical model is derived in a state 
space formulation.

(4)R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0

(5)ATP + PA < 0

(6)ATP + PA + PBR−1BTP + Q < 0,

(7)
[
−ATP − PA − Q PB

BTP R

]
> 0

(8)P > 0, ATP + PA < 0, Tr P = 1
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3.1 � Attitude dynamics modeling

For the study of spacecraft dynamics, two reference frames are usually consid-
ered: an Inertial Reference Frame and a Body Reference Frame, as in Fig. 1.

The Inertial Reference Frame considered in this study is the Earth-Centered 
Inertial (ECI) that is also called Inertial Geocentric Reference Frame (Fig. 1). It 
is commonly used to study the motion of a body orbiting around Earth and it has 
its origin in the Center-of-Mass (CoM) of Earth.

The Body Reference Frame (Fig. 2) has been adopted to describe the attitude 
dynamics once introduced the CMGs to the equations of motion. The origin 
of the Body Reference Frame is in the CoM of the spacecraft and it is rigidly 
attached to the body.

Taking into account the previous assumption, the Euler’s equation of motion 
can be written as Srinivasan et al. (2014)

Fig. 1   Earth-Centered Inertial Reference Frame and Body Reference Frame

Fig. 2   Configuration of a 
pyramidal testbed equipped with 
4 CMGs

β

YbXb
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where the subscript B indicates variables in the Body Reference Frame, �B ∈ ℝ3 is 
the angular velocity of the spacecraft, hB ∈ ℝ3 is the angular momentum, MB ∈ ℝ3 
is the torque vector defined as

Fi is the force which has a momentum with respect to the CoM, and ri is the dis-
tance between the CoM and the considered force. For a generic body, the inertia ten-
sor J directly relates the angular velocity with the angular momentum. The angular 
momentum h of a rigid body, referred to its CoM, can be defined

Considering the testbed system, Eq. (10) can be rewritten as

Thus, the total angular momentum is the sum of two terms: (1) the angular momen-
tum of the spacecraft, and (2) hC

B
 is the term given by CMG system, which for a 

pyramidal configuration is

 with

where �i ∈ ℝ4 is the gimbal angle, for i = 1, ..., 4 ., and h� = J��� ∈ ℝ denotes the 
angular momentum of each wheel. Since we suppose four identical wheels rotating 
at the same constant speed, h� is a constant scalar.

Combining the previous equations, the Euler’s equation here considered is

For a cluster of 4 CMGs, the internal angular momentum vector hC
B
 is a non linear 

function of the gimbal angles �i , with i = 1, ..., 4 , of each CMG, as in Eq. (12). The 
time derivative of Eq. (12) is

(9)MB = ḣB + 𝜔B × hB,

MB =

n∑
i=1

ri × Fi.

(10)h = J�.

(11)hB = JB�B + hC
B
.

(12)hC
B
= h�

4∑
i=4

hi(�i),

(13)h1(�1) =
⎡⎢⎢⎣

− sin(�1) cos �
cos(�1)

sin(�1) sin �

⎤⎥⎥⎦
, h2(�2) =

⎡⎢⎢⎣

− cos(�2)
− sin(�2) cos �
sin(�2) sin �

⎤⎥⎥⎦
,

(14)h3(�3) =
⎡⎢⎢⎣

sin(�3) cos �
− cos(�3)

sin(�3) sin �

⎤⎥⎥⎦
, h4(�4) =

⎡⎢⎢⎣

cos(�4)
sin(�4) cos �
sin(�4) sin �

⎤⎥⎥⎦
,

(15)MB = 𝜔B × (JB𝜔B + hC
B
) + JB𝜔̇B + ḣC

B
.
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where the matrix A(�) ∈ ℝ3×4 , considering a fixed skew angle � , is

The columns of matrix A(�) express the contribution of each CMG to ḣC
B
 . Finally, 

the following assumptions are considered 

1.	 The initial angular momentum is zero, and consequently �B(0) = 0

2.	 The initial torque applied to the body is zero, MB(0) = 0

With these hypotheses, starting from Eq. (15) and substituting Eq. (16), we can 
easily obtain the following simplified equation for the angular acceleration

This latter equation relates the angular acceleration of the testbed to the angular rate 
of the gimbals 𝜃̇ , which is the control input vector in this system. For the definition 
of the model, the subscript that indicates the Body Reference Frame is omitted for 
simplicity.

The kinematic equation of the system using a quaternion representation is

with q = [qT
v
, q4]

T = [q1, q2, q3, q4]
T ∈ ℝ4 , where qv = [q1, q2, q3]

T ∈ ℝ3 is the vec-
torial part of the quaternion, and q4 is the scalar term.

The matrix �(q) ∈ ℝ4×3 is defined as:

Combining Eqs. (18) and (19) obtained previously, the following mathematical 
model can be obtained

where the system state vector is defined xp =
[
q

�

]
∈ ℝ

np , with np = 7.

Rearranging the previous equation, the state equation of the system is

(16)ḣC
B
= h𝜔A(𝜃)𝜃̇,

(17)A(�) =
⎡
⎢⎢⎣

− cos(�1) cos � sin(�2) cos(�3) cos � − sin(�4)
− sin(�1) − cos(�2) cos � sin(�3) cos(�4) cos �

cos(�1) sin � cos(�2) sin � cos(�3) sin � cos(�4) sin �

⎤
⎥⎥⎦
.

(18)𝜔̇B = −h𝜔J
−1
B
A(𝜃)𝜃̇.

(19)q̇ =
1

2
𝛴(q)𝜔,

�(q) =

⎡
⎢⎢⎢⎣

q4 − q3 q2
q3 q4 − q1
−q2 q1 q4
−q1 − q2 − q3

⎤
⎥⎥⎥⎦
.

(20)ẋp =

⎡⎢⎢⎣

q̇

𝜔̇

⎤⎥⎥⎦
=

⎡⎢⎢⎣

1

2
𝛴(q)𝜔

−h𝜔J
−1A(𝜃)𝜃̇

⎤⎥⎥⎦
,
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The state of the system is xp ∈ ℝ7 and the control input is 𝜃̇ ∈ ℝ4 , that is the angular 
rates of the gimbals. The matrix B̄p can be considered to be a (external) parameter-
dependent matrix as B̄(𝜃).

A linearisation is performed assuming that the initial gimbal angles are 
�0 = [0, 0, 0, 0]T . This fixed value is used to evaluate the matrix A(�) , so the matrix 
B̄p is constant. The desired attitude in terms of �d and qd = [q1,d, q2,d, q3,d, q4,d]

T is 
considered as equilibrium point, to have a constant state matrix. We linearize Āp matrix 
around the terminal value of the desired attitude. Thus, more precisely, the constant 
matrix Āp(qd(T)) is used, where “T” denotes the terminal time.

So, we have

with the following output equation

where y = [qT
v
,�T ]T ∈ ℝ6 and I3 ∈ ℝ3×3 is the identity matrix.

3.2 � Testbed description

The testbed considered in this work is the one developed in Higashiyama et al. (2020), 
which is depicted in Fig.  3. Physical parameters of the testbed is summarized in 
Table 1. The testbed simulates a spacecraft using a metal plate equipped with the four 
CMGs in pyramidal configuration, a PC, two microcomputers, and three sets of coun-
ter weights. The metal plate is floated by compressed air via spherical air bearing, and 
the center of rotation and the center of gravity of the testbed is matched by manually 
adjusting the counter weights. The attitude and the angular velocity are estimated via 
a triaxial gyroscope and accelerometer called the 3-Space Sensor made by YEI Tech-
nology, and a low-pass filter. Moreover, the nominal moment of inertia is estimated by 
applying the least-square method to a regressor representation of the Euler’s equations 
of the uncontrolled rotational motion.

(21)ẋp =

⎡
⎢⎢⎣

04×4
1

2
𝛴(q)

03×4 03×3

⎤
⎥⎥⎦
xp +

⎡
⎢⎢⎣

04×4

−h𝜔J
−1A(𝜃)

⎤
⎥⎥⎦
𝜃̇ = Āp(xp)xp + B̄p(𝜃)𝜃̇

(22)ẋp =

⎡
⎢⎢⎣

04×4
1

2
𝛴(qd(T))

03×4 03×3

⎤
⎥⎥⎦
xp +

⎡
⎢⎢⎣

04×4

−h𝜔J
−1A(𝜃0)

⎤
⎥⎥⎦
𝜃̇,

(23)y =

⎡⎢⎢⎣

I3 03×4

03×4 I3

⎤⎥⎥⎦
xp = C̄pxp,
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4 � Design of an MPC controller

Starting from the research of Wada and Tsurushima (2016), a linear MPC with inte-
grator as a servo compensator is considered to control the attitude of a spacecraft/
testbed. The integrator is included to reduce the steady-state error. From the opti-
mization procedure, instead of only the control input, a virtual reference signal and 
an integrator state are also evaluated. The virtual reference signal w is a variable 
that substitutes the original reference signal r in the control algorithm in order to 
guarantee input constraints satisfaction. The controller has to decide at each sam-
ple time if the integrator state xc must be optimized or not. If xc is not optimized, it 
evolves according to the integrator equations in order to guarantee the steady-state 
error elimination. Instead, if xc is included in the optimization problem, the opti-
mized value of this variable gives a rapid decrease of the cost function value.

The plant system is described in the following state space formulation

(24)xp(k + i + 1|k) = Apxp(k + i|k) + Bpu(k + i|k)

Fig. 3   Testbed with 4 CMGs in pyramidal configuration

Table 1   Physical parameters of the testbed

Variable Nomenclature Numerical value Unit

Mass of the testbed m 21.2 kg

Inertia tensor of the testbed J

 

⎡⎢⎢⎣

0.464 0.0 0.0

0.0 0.534 0.0

0.0 0.0 0.610

⎤⎥⎥⎦

kg m 2

Skew angle � 45 deg
Wheel angular momentum h

w
0.0576 Nms
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where xp ∈ ℝ
np is the state of the plant, u ∈ ℝm is the control input and y ∈ ℝ

ny is 
the system output. In our case the matrix Dp is null. In the MPC control system, the 
matrices of Eq. 21 are translated in discrete time as follows Ap ∶= Id + Āpdt , and 
Bp ∶= B̄pdt . C̄p = Cp . Moreover, following the literature, (⋅)(m|k) means a value at 
time m calculated at time k.

In our MPC formulation, both input and state constraints are considered as 
follows:

where the matrices �u ∈ ℝ2m×m , �u ∈ ℝ2m , �x ∈ ℝ
2np and �xp

∈ ℝ
2np×np.

Finally, the integrator equations are

with e ∈ ℝ
ny.

Combining the equations of the plant and the integrator, the error dynamics is 
defined as

where

and x = [xT
p
, xT

c
]T , C = [−Cp, 0],

The matrices � and �  are calculated for the tracking control problem in case of lin-
ear systems, and to guarantee input and state constraints satisfaction. The calculation 
procedure and the proofs are presented in Wada and Tsurushima (2016).

(25)y(k + i|k) = Cpxp(k + i|k) + Dpu(k + i|k),

(26)�uu(k + i|k) ≤ �u, ∀i ≥ 0

(27)�xp
xp(k + i + 1|k) ≤ �x, ∀i ≥ 0,

(28)xc(k + i + 1|k) =xc(k + i|k) + e(k + i|k)

(29)e(k + i|k) =w(k|k) − y(k + i|k),

(30)�(k + i + 1|k) =A�(k + i|k) + B�(k + i|k)

(31)e(k + i|k) =C�(k + i|k),

(32)�(k + i|k) =x(k + i|k) −�w(k|k)

(33)�(k + i|k) =u(k + i|k) − �w(k|k)

A =

[
Ap 0

−Cp I

]
, B =

[
Bp

0

]
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In this paper, the following cost function is considered and implemented

where Hs denotes the prediction horizon, and for a generic vector x and a square 
matrix A of appropriate dimension, ||.||A denotes the weighted Euclidean norm, 
namely, ||x||A ∶= (xTAx)1∕2 . The matrices Q, R, M, and P in (34) are positive-
definite. The first three matrices are design matrices, while the matrix P has to be 
obtained solving an LMI problem for the terminal controller of the dual-mode MPC 
guaranteeing recursive feasibility and stability, as described in Wada and Tsurush-
ima (2016).

The novelty in the defined cost function is found out in the last term, 
||�(w(k|k) − r(k|k))||2

M
 to include the virtual reference signal w into the optimiza-

tion procedure. The virtual reference changes from the original reference r in order 
to satisfy the constraints and to obtain better control performance. The last term pre-
vents w from being unnecessarily away from r, and also guarantees that the devia-
tion between w and r remains finite. Under the regulator condition relating to the 
existence of the matrices � and �  , the convergence of w to a step reference r is 
shown in Wada and Tsurushima (2016).

Using the prediction matrices S and T, the state prediction of the error system up 
to the horizon Hs is defined as

where

�̃  is the vector of the future state, instead �̃  is the optimized vector of the error sys-
tem inputs, obtained by the optimization procedure.

Now it is necessary to rewrite the constraints in function of the variables of the 
error system. The input constraints must be rewritten, considering 0 ≤ i ≤ Hs − 1 , as

where �̃u = ����[�u,⋯ ,�u] , �̃u = [�T
u
,… , �T

u
]T and �̃ = [� T ,… ,� T ]T.

The state constraints are rewritten as

�̃x = ����[�x,⋯ ,�x] , �̃x = [�T
x
,… , �T

x
]T and �̃ = [�T ,… ,�T ]T.

As already said, in the considered MPC, the integrator state can be or not opti-
mized. In order to decide if xc has to be optimized or not, a threshold �s must be 

(34)
J(k) =

Hs−1∑
i=0

{||�(k + i + 1|k)||2
Q
+ ||�(k + i|k)||2

R
}

+ ||�(k + Hs|k)||2P + ||�(w(k|k) − r(k|k))||2
M
,

(35)�̃ = T�(k|k) + S�̃,

�̃ =

⎡⎢⎢⎣

�(k + 1�k)
⋮

�(k + Hs�k)
⎤⎥⎥⎦

and �̃ =

⎡⎢⎢⎣

�(k�k)
⋮

�(k + Hs − 1�k)
⎤⎥⎥⎦
.

(36)�̃u(�̃ + �̃w(k|k)) ≤ �̃u,

(37)�̃x(T�(k|k) + S�̃ + �̃w(k|k)) ≤ �̃x.
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defined. The integrator state xc is reset at each sampling time so that the cost func-
tion value J(k) is minimized while J(k) is greater then �s . The control algorithm with 
integral action is used to achieve zero steady-state error when J(k) is less than or 
equal to �s.

The value of �s is determined by trial and error procedure. If �s = 0 , the robust-
ness against the disturbances cannot be assured. However, if �s is too large, the 
robustness against disturbances is improved but the tracking performance are not 
good. So, the parameter �s has to be chosen by considering a trade-off between 
tracking performance and robustness against disturbances.

4.1 � Real‑time implementability

For the implementation of the MPC control system, the required resources are cor-
related with the problem size (i.e., number of constraints, prediction horizon) and, 
at the same time, the efficiency of the solver algorithm for the optimization of the 
cost function. In addition to these two computational indices, on-board hardware 
capabilities and software architectures should also be considered. Implementation 
issues are discussed in this Section due to hardware constraints and limited com-
putational power of the embedded controller. Some simplifications of the code and 
analysis of the solvers are required. Moreover, since the GNC hardware is tested on 
Matlab/Simulink environment, the selection criteria for the solver includes compat-
ibility with this environment. In this paper, in implementing the proposed controller 
to the testbed, we equivalently convert the optimization problem formulated as an 
LMI optimization problem in Wada and Tsurushima (2016) into a quadratic pro-
gramming problem, which has much less computational burden, as

where �(k) is the optimized vector.
Moreover, the cost function is re-written using Matlab notation, to simplify the 

implementations on this environment. So, we have

where �(k) is a vector composed by the measured state of the system and by the ref-
erence signals.

The tested solvers are

•	 quadprog, the interior-point-convex algorithm provided by the Matlab Optimiza-
tion Toolbox to solve quadratic programming problem,

•	 fmincon, Matlab function that can implement four different algorithms: interior-
point, Sequential Quadratic Programming (SQP), active set, and thrust-region-
reflective. Also this solver deals quadratic programming problems.

min
�

1

2
�(k)TH�(k) + f T�(k) subject to: Acon� ≤ Bcon

min
�

1

2
�(k)TH�(k) + �(k)TF�(k) +

1

2
�(k)TY�(k) subject to: Acon� ≤ Bcon
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•	 quadwright, a quadratic programming solver developed by J. Currie presented in 
Currie (2014); Wright (1996), able to speed up the computational capabilities for 
embedded applications.

All these solvers are tested in simulations. The software quadprog can use a thrust-
region-reflective method for handling problems with bounds and linear equality con-
straints. However, it showed an high computational effort and cannot be translated 
in C code. The solver fmincon is usually used for nonlinear constrained problems 
and it finds a constrained minimum of a scalar function of several variables starting 
at an initial estimate. This solution is not a global minimum, but it is computational 
efficient. Finally, the quadwright provides the smallest computational times, because 
it has been developed with a focus on efficient memory use and high speed con-
vergence. For the experimental verification, we create a C++ code with Eigen and 
eiquadprog libraries. The Eigen library is a C++ template library for linear alge-
bra, and the eiquadprog Guennebaud et al. (2011) library is a C++ routine working 
with Eigen data structures for solving quadratic programming problems based on the 
Goldfarb-Idnani active-set dual method.

5 � Simulation results

The simulations are performed in Matlab, with an Intel Core i7 at 2.4GHz and 8GB 
RAM. The selected sampling time is 25 ms and the prediction horizon Hs is 5 steps. 
The MPC solver, as previously said, is quadwright. The controller parameters are 
defined in Table 2.

The reference signals for the quaternion are evaluated from the evolution of 
the angular velocity, starting from Eq. (19), for all different simulation cases. Fur-
thermore, in all the simulations the initial conditions are null states x, except for 
x4(0) = q4 = 1 and null gimbal angles � . So, the initial conditions are the ideal qua-
ternion and null angular velocities. Two set of simulations are considered: (1) in the 
first set of simulations, all the three angular velocities are changed. Trapezoidal vari-
ations of the angular velocities are simulated, (2) in the second set of simulations, 
triangular variations of an angular velocity is examined.

Table 2   MPC Controller Parameters

Variable Nomenclature Numerical 
value

Units

Input constraint (gimbal motors speed max value) 𝜃̇ 1 rad/s

Angular velocity constraint of the testbed � 25 deg/s

Acceleration constraints on the CMG motors 𝜃̈ 2 rad/s2

Prediction horizon H
s

5 –
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5.1 � First set of simulations

All the simulations are performed for both of the linear classical MPC and the MPC 
with optimization of virtual reference signal and integrator state in order to com-
pare their control performance. Here, all the three angular velocities are changed. 
A simulation time of 20 seconds is considered. The desired angular velocities in 
the first simulation are �d = [7, 3, 1]T deg/s. The desired quaternion are evaluated 
from Eq. (19). Comparing Figures  5, 6  and 7, it is clear that MPC with optimi-
zation of integrator state and virtual reference has better performance with respect 
to the classical MPC, even if all the angular velocities are changed. Moreover, a 

Fig. 4   Quaternion vectorial components for case 1 with classical MPC

Fig. 5   Angular velocity components for case 1 with classical MPC
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noisy input is obtained by the classical MPC as in Figure 8. The control input of the 
MPC with integrator state and virtual reference is shown in Figure 9. In a similar 
way, noisy variation of the gimbal angles can be observed in Figure 10, whereas no 
noisy response is observed in Figure 11. Instead, no difference can be observed in 
the quaternion behavior, as in Figures 4, 5 and 6. Finally, to show the effectiveness 
of the proposed controller, a singularity index is evaluated, which is det(AAT ) , as 
in Higashiyama et al. (2020). Highest is the singularity index, more effective is the 
singularity avoidance. The singularity indices are in Figures 12 and 13. As in the 

Fig. 6   Quaternion vectorial components for case 1 with MPC with optimization of virtual reference sig-
nal and integrator state

Fig. 7   Angular velocity components for case 1 with MPC with optimization of virtual reference signal 
and integrator state
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previous results, a noisy behavior is observed in Figure 12. Moreover, a small value 
is obtained if no additional optimizations are included.

In the second simulation, as before, a step variation of the three angular veloci-
ties is considered with two variations of the angular velocities. A simulation time 
of 10 seconds is considered: (i) �d = [2, 2, 2]T deg/s between 2 and 4 seconds, (ii) 
�d = [4, 4, 4]T deg/s between 5.5 and 8 seconds. As for the previous case, the state 
variables (angular velocities and quaternion) are analyzed for the classical MPC 
and the one with optimization of virtual reference signal and integrator state. 
Moreover, control input and gimbal angles are also considered. All the results 

Fig. 8   Control input of case 1 with classical MPC

Fig. 9   Control input of case 1 with MPC with optimization of virtual reference signal and integrator state
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are in Figs. 14,15, 16, 17, 18, 19, 20 21. Finally, the singularity index is analyzed 
to show the effectiveness of the proposed MPC controller. As in Figs. 22 and 23, 
even in this simulation the singularity index of the MPC with optimization of vir-
tual reference signal and integrator state is greater than the classical MPC with no 
additional optimizations.

These simulations demonstrate the effectiveness of the MPC controller with addi-
tional features, that optimize the virtual reference signal and the integrator state.

Fig. 10   Gimbal angles of case 1 with classical MPC

Fig. 11   Gimbal angles of case 1 with MPC with optimization of virtual reference signal and integrator 
state
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5.2 � Second set of simulations

In this set of simulations, triangular variation of one angular velocity is proposed. 
This set of simulations is performed in simulation and by experimental tests as well 
(as detailed in Sect. 5). As in the previous section we show that the MPC with inte-
grator state and virtual reference has better performance than the classical one. Thus, 

Fig. 12   Singularity index of case 1 with classical MPC

Fig. 13   Singularity index of case 1 with MPC with optimization of virtual reference signal and integrator 
state
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in the following simulations we further investigate the performance of the MPC with 
integrator state and virtual reference.

As before, two cases are analyzed: (1) a rotation around the X-axis, namely the 
direction of [1, 0, 0]T of �d = [5, 0, 0]T deg/s, and (2) a rotation around Z axis of 
�d = [0, 0, 5]T deg/s. In both cases a triangular shape of the desired value is consid-
ered. Moreover, the desired quaternion is evaluated from Eq. (19).

Fig. 14   Quaternion vectorial components for case 2 with MPC with optimization of virtual reference sig-
nal and integrator state

Fig. 15   Angular velocity components for case 2 with MPC with optimization of virtual reference signal 
and integrator state
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As from Figs. 24 and 25, the controller is able to track the desired behavior, 
with a small control authority (Fig. 26). Moreover, the singularity index (Fig. 27) 
shows the ability of the controller to avoid singularity.

Similar results are obtained for the rotation around Z-axis (Figs. 28, 29, 30 and 
31). The singularity index shown in Fig. 31 implies that if the value of the index 
is close to zero, the CMG system is close to a singular state. Thus, the higher is 
this index, the higher is the controller ability to avoid singularity.

Fig. 16   Control input of case 2 with MPC with optimization of virtual reference signal and integrator 
state

Fig. 17   Gimbal angles of case 2 with MPC with optimization of virtual reference signal and integrator 
state



206	 M. Facchino et al.

1 3

6 � Experimental results

After performing simulations in Matlab environment, the MPC with optimization of 
the virtual reference signal is converted in C++ program language, and applied to 
the testbed in Fig. 3.

Corresponding to the simulations in Sect. 4.2, we perform two cases of experi-
ments: (1) a rotation around X axis of �d = [5, 0, 0]T deg/s, and (2) a rotation around 
Z axis of �d = [0, 0, 5]T deg/s. The desired trajectories of the angular velocity and 

Fig. 18   Quaternion vectorial components for case 2 with MPC with optimization of virtual reference sig-
nal and integrator state

Fig. 19   Angular velocity components for case 2 with classical MPC
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the quaternion are the same as in Sect. 4.2, which are shown in the dotted lines in 
Figs. 32 and 36, and Figs. 33 and 37, respectively.

The experimental results of the X-axis rotation are shown in Figs. 32, 33, 34 and 
35. Figs. 32 and 33 exhibit the angular velocity and the vectorial part of the quater-
nion of the testebed, respectively. Figure 34 shows the control inputs of the system. 
In addition, the singularity index is indicated in Fig. 35. Those experimental results 
correspond to the simulation results in Figs. 24, 6, 7 and 27 in Sect. 4.2.

Next, the experimental results of the Z-axis rotation are shown in Figs. 36, 37, 38 
and 39. Similarly, the angular velocity, the vectorial part of the quaternion, the con-
trol inputs, and the singularity index are respectively shown in Figs. 36 37, 38 and 

Fig. 20   Control input of case 2 with classical MPC

Fig. 21   Gimbal angles of case 2 with classical MPC
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Fig. 22   Singularity index of case 2 with classical MPC

Fig. 23   Singularity index of case 2 with MPC with optimization of virtual reference signal and integrator 
state
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39. Those experimental results correspond to the simulation results in Figs. 28, 29, 
30 and 31 in Sect. 4.2.

The unmodeled gravity torque due to the misalignment between the center 
of rotation and the center of gravity of the testbed inevitably arises in the ground 
experiments unlike the simulations. In particular, the X-axis rotation is seriously 
affected by the gravity torque disturbance. Moreover, under this setting, since the 
singular direction of two of the four CMGs is aligned to that of the required torque, 
the X-axis rotation is much difficult than the Z-axis rotation. Nonetheless, the pre-
sent MPC controller compensates the disturbance and successfully achieves attitude 

Fig. 24   Angular velocity components for a rotation around X axis

Fig. 25   Quaternion vectorial components for a rotation around X axis
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tracking control in both cases. These experiments verify the effectiveness and feasi-
bility of the proposed method.

Fig. 26   Control Input for a rotation around X axis

Fig. 27   Singularity index for a rotation around X axis



211

1 3

Design and validation of an MPC controller for CMG‑based testbed﻿	

7 � Conclusions

Control Moment Gyros (CMGs) are widely used for precise attitude control. This 
paper describes the attitude control problem of a spacecraft, using a Model Pre-
dictive Control (MPC) systems. The features of the considered linear MPC are: 
(i) a virtual reference, to guarantee input constraints satisfaction, and (ii) an inte-
grator state as a servo compensator, to reduce the steady-state error. Moreover, 
the real-time implementability is discussed, considering an optimized solver for 
embedded systems. Good performance are observed in simulations. However, the 

Fig. 28   Angular velocity components for a rotation around Z axis

Fig. 29   Quaternion vectorial components for a rotation around Z axis
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proposed linear MPC control system is not able to handle with additive distur-
bances acting on the experimental testbed and it is only partially able to com-
pensate this disturbance. In future works a control system able to handle and 
compensate the gravity gradient torque will be considered. Moreover, the gravity 
gradient disturbance will be also included in the model of the testbed itself.

Fig. 30   Control Input for a rotation around Z axis

Fig. 31   Singularity index for a rotation around Z axis
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Fig. 32   Angular velocity components of the testbed in the experiment of X-axis rotation

Fig. 33   Vectorial part of the quaternion in the experiment of X-axis rotation
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Fig. 34   Control input signals in the experiment of X-axis rotation

Fig. 35   Singularity index in the experiment of X-axis rotation
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Fig. 36   Angular velocity components of the testbed in the experiment of Z-axis rotation

Fig. 37   Vectorial part of the quaternion in the experiment of Z-axis rotation
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Fig. 38   Control input signals in the experiment of Z-axis rotation

Fig. 39   Singularity index in the experiment of Z-axis rotation
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Appendix: preliminaries on model predictive controller

Model Predictive Control is a control strategy that uses a dynamic model of 
the system, in order to make a prediction of the future behaviour of the system 
itself and consequently to “choose” the best control input. Since it is a model-
based approach, the definition of the mathematical model of the system is impor-
tant to obtain a good control performance. From one hand, the model has to be 
descriptive enough to capture all the most important characteristics of the sys-
tem, in order to make predictions as much as possible near to the real evolution 
of the process. On the other hand, if the model is too detailed, the complexity 
is increased, and the control system reaches a high computational cost, that can 
be processed just by expensive hardware devices Rawlings and Mayne (2009). 
At each sample time, the controller computes the sequence of control inputs for 
the actual and next sample times in open loop fashion, but just the first one of 
this sequence is applied to the plant. At the next sample time, the procedure is 
repeated from the beginning, without considering the other control input values 
obtained in the previous sample time. The number of control inputs, collected in 
the control sequence, depends on the capability of the controller itself to “look 
forward” in the future. This characteristic is defined by a parameter called Reced-
ing Horizon Hs.

The following linear dynamic model of the system in state space formulation is 
considered:

The first equation is the state equation, where x ∈ Rnp is the system state, and u ∈ Rm 
is the control input. The second equation is the output equation, and y ∈ Rny is the 
output vector.

The matrices of the state space system are: (1) the state matrix A ∈ Rnp×np , (2) 
the control matrix B ∈ Rnp×m , (3) the output matrices C ∈ Rny×np and D ∈ Rny×m . 
The notation x(k + 1|k) indicates the value of the state x at time k + 1 calculated 
at time k.

The prediction matrices S and T are defined using the defined model of the sys-
tem, for the evaluation of the optimal sequence of control inputs

(38)x(k + 1|k) = Ax(k|k) + Bu(k|k)

(39)y(k|k) = Cx(k|k) + Du(k|k).
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At each sample time a convex optimization problem is solved, where a cost function 
is minimized, to obtain the optimal sequence of the control inputs. The cost function 
at time k is defined as

where Q,R and P are the weighting matrices, defined as follows

The cost function can be rewritten as

Matrix P is the terminal cost function, to ensure feasibility and stability to the MPC. 
Combining the prediction equation (40) and cost equation (42), we have

(40)

⎡
⎢⎢⎢⎣

x(k + 1�k)
x(k + 2�k)

⋮

x(k + Hs�k)

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

B 0 ⋯ 0

AB B ⋯ 0

⋮ ⋮ ⋱ ⋮

AHs−1B AHs−2B ⋯ B

⎤
⎥⎥⎥⎦

���������������������������������
S

⎡
⎢⎢⎢⎣

u(k�k)
u(k + 1�k)

⋮

u(k + Hs − 1�k)

⎤
⎥⎥⎥⎦

�����������������������
ũ(k)

+

⎡
⎢⎢⎢⎣

A

A2

⋮

AHs

⎤
⎥⎥⎥⎦

���
T

x(k�k).

(41)

J(k) = x(k + Hs|k)TPx(k + Hs|k)

+

Hs−1∑
j=0

x(k + j|k)TQx(k + j|k) + u(k + j|k)TRu(k + j|k),

R = RT > 0

Q = QT ≥ 0

P = PT ≥ 0.

(42)

J(k) = x(k�k)TQx(k�k) +
⎡⎢⎢⎢⎣

x(k + 1�k)
x(k + 2�k)

⋮

x(k + Hs�k)

⎤⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

Q 0 0 ⋯ 0

0 Q 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮

0 ⋯ 0 Q 0

0 0 ⋯ 0 P

⎤
⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Q

⎡⎢⎢⎢⎣

x(k + 1�k)
x(k + 2�k)

⋮

x(k + Hs�k)

⎤⎥⎥⎥⎦

+ ũ(k)T

⎡⎢⎢⎢⎣

R 0 ⋯ 0

0 R ⋯ 0

⋮ ⋮ ⋱ ⋮

0 ⋯ 0 R

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

R

ũ(k).
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Rewriting the previous equation:

One of the main feature of the MPC controller is the definition of the input and state 
constraints, in the optimization problem. The input and state constraints are defined 
as follows:

Finally we can define the constrained optimal control problem (Quadratic 
Programming)
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