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Summary

Urbanization and the development of complex transportation infrastructure in
the cities present new challenges in urban logistics and parcel delivery problems.
Thus, it has been subject to a significant shift in scientific interest over the last
decades. Furthermore, with the rapid evolution of delivery services and the e-
commerce market, the delivery business model has shifted from offer-driven to
demand-driven, with the product frequently becoming available after the order is
placed. This shift becomes possible due to the introduction of novel management
approaches, including fleet consolidation and third-forth party logistics (3-4PL).
However, real-world uncertainty strongly impacts their effectiveness since once the
actual demand becomes known, the cost of changing the logistic scheme is never
negative. Therefore, optimizing the logistics scheme on a longer time horizon is
required, which is also called tactical capacity planning.

This thesis investigates the feasibility of introducing robust tactical planning
approaches to assist decision-making under demand uncertainty. Recent approaches
to this problem are based on stochastic programming and bin-packing problems
as the baseline mathematical framework. However, multiple stochastic variables
in the detailed problem description lead to exponential complexity growth and
computational limitations related to the real-case problem scenarios. Therefore, we
explore the possibilities of introducing (meta-) heuristics and practical frameworks
to predict demand, enabling decision-making tools and online platforms on the
tactical planning horizon. Data availability and recent advances in machine learning
(ML) and deep learning models are exploited to support this process. Furthermore,
analysis of the historical demand provides valuable support to the application of
ML to demand prediction or even first-stage solutions of physical and temporal
capacity allocation (fleet requirements).

As a result, we developed a framework for incorporating ML into existing, well-
stated optimization problems. Furthermore, we created a new problem suitable for
the logistics managers’ actual needs for using 3-4PL. The main scientific impact
of this thesis is that we kept involved optimization problems to be deterministic
or with low complexity, drastically reducing computational time while threatening
demand uncertainty and remaining adaptable to new incoming information. The
industrial significance consists in enabling the usage of the so-called intelligence
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logistics platforms by providing a fast and accurate solution for realistic problem
instances comparable to the actual situation in large urban agglomerations.
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Chapter 1

Introduction

Urbanization and the development of complex transportation infrastructure in
the cities present new challenges in urban logistics. and rising living standards
have dramatically increased demand for services and goods in relevantly small areas.
These conditions have paved the way for a competitive environment where logistic
companies fight for market share by continuously providing flexibility in delivering
options while maintaining high resource efficiency.

Figure 1.1: Last mile managerial decision levels

Third-party logistics (3PL) becomes an essential part of modern delivery schemes
since it allows fleet flexibility and translates into the advantage of reducing fleet
investment while maintaining the same quality of service [92]. , which should be
optimized under conditions of uncertain demand, i.e., the customers’ orders are
unknown or only partially known.

In the existing literature, specific models are developed for each decision level.
The crucial In BPP, we want to optimally pack a set of items (goods) into a

set of containers (vehicles). Later on, it evolved to account for the different costs
and volumes of vehicles as Variable Cost and Size Bin Packing Problem (VCSBPP)
[30]. However, the actual demand uncertainty treatment is provided with the in-
volvement of Stochastic Items, namely VCSBPPSI [27]. The bins included in the
capacity plan are chosen in advance without exact knowledge of what items will be
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Introduction

dispatched. If the planned capacity is insufficient, extra capacity is purchased at a
higher price during the operational phase.

A previous study on the VCSBPPSI has shown that commercial solvers are not
able to deal with real-scaled instances of the problem with more of the 200 items in a
reasonable amount of time, thus justifying the implementation of heuristics or even
the introduction of new specific problems [27, 11]. In particular, the progressive
hedging (PH) heuristic has proven to be the most effective [26]. However, despite
its good performance in its classical form, it cannot solve real-world instances when
decisions must be made within a short period, as in e-commerce applications.

Such a drawback requires new methods, among which the most promising are
the ones applying machine learning (ML) methods. In recent years, the so-called
learning to optimize (L2O) have quickly surfaced as efficient and effective solutions
to many optimization problems [17]. The key idea of this approach is to train a
machine learning algorithm to learn the optimization process over a set of training
problem instances and generalize it to new testing problems. Even if these meth-
ods require a time-consuming training phase, the inference step requires negligible
computational time, thus enabling their usage in a real-time setting. Furthermore,
these approaches have been proven to have good generalization capabilities with
respect to realistic instances since they may use practitioners’ insights without any
architectural modification. Nevertheless, there are two major gaps in the literature
concerned with the L2O concept. First, only a few papers consider ML heuristics
tailored to solve two-stage stochastic optimization problems [82, 39]. Second, ML
algorithms are widely used together with other techniques (e.g., with genetic algo-
rithm [1] or with exact solver [5]) but only a few times are used alone. In fact, the
major limitation to directly predict the solution is the inability to handle variable
hard constraints [39]. The present thesis contributes to filling these gaps by intro-
ducing a specific ML-based heuristic for VCSBPP, which enables the solution of
realistic instances containing up to 1000 orders.

This approach benefits from the generalization abilities of the ML but requires
”on the fly” training and a forecasting scheme. Herefore, tuning the forecasters
for each delivery scheme application becomes a non-trivial task due to the small
data pull available. Moreover, the algorithm’s complexity and computing time
minimization should be leveraged with the provided accuracy of demand satisfac-
tion. However, there are different methodological aspects of the application of this
approach to last-mile delivery, which improve the aforementioned issues. Then,
applying the so-called quantile forecast methodologies as Gaussian Process (GP)
regression dramatically improves the ability of the whole algorithm to satisfy uncer-
tain delivery demand [100, 99]. Lastly, it is possible to artificially increase the data
samples to provide the pre-trained ML algorithms for further use in the ”online”
manner.
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In Chapter 3, we present a detailed literature review of the fleet capacity man-
agement models on the tactical decision scheme. It includes the existing optimiza-
tion models and heuristics to approximate the solution to the problem. In addition,
we cover the existing literature on demand forecasts in the tactical range decisions
in logistics and existing application scenarios of the outlined problem.

In Chapter 4, we introduce ML-based heuristics for VCSBPPSI. Firstly, we
cover the problem formulation and methodological aspects of ML-based heuristics.
Then we concentrate on the feature analysis for ML classifiers, which is the most
critical issue, and outline stability tests. Then, we compare the introduced ML-
based heuristics performance with the existing state-of-the-art methods such as
Progressive Hedging heuristics and typical sampling approach for MILP solver.
Next, we perform computational experiments on different problem samples with a
wide range in sample size. Finally, we conclude this chapter with a real-case study
of fleet size management in Turin, Italy, and the scientific and industrial impact of
the proposed methodology.

Chapter 5 is entirely devoted to demand forecasting for further fleet capacity
management on the tactical decision range. Firstly, we propose a zoning-based
demand forecast with an approach to existing deterministic VCSBPP. Next, we
cover VCSBPP formulation and methodology of the algorithm, coupling this prob-
lem with the city zoning and demand forecast. Then, we outline the application
of the proposed method to the real scenario of tactical fleet allocation in Antwerp,
Belgium. Having identified the performance of the VCSBPP-based approach, we
highlight the strong and weak points of the proposed approach and possible indus-
trial application. We continue the topic of the zone-based demand forecast with the
introduction of ZCAP, which aims to assign vehicles to identified zones, minimizing
the costs involved. After the mathematical formulation of ZCAP, we provide an
updated methodology of the zone-based demand forecast suitable to be coupled
with ZCAP. Finally, we outline the experimental results of the proposed approach
for the real-case study of fleet size management scenario on the 60 working days of
a last-mile delivery company in Antwerp, Belgium.

Chapter 6 outlines the conclusions of the proposed thesis with the future work.
We highlight the main scientific and industrial impact of the proposed models and
algorithms and discuss future work in the direction of models and methods for
last-mile delivery under demand uncertainty.

3
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Chapter 2

Problem description

This chapter recalls the crucial problem tackled in the presented thesis. Stating
the framework and highlighting its industrial application emphasizes research and
industrial impact and constrains the applied methodology and research field. As
mentioned, this thesis deals with the tactical-operational range decision on capacity
management under uncertain demand. There are multiple scenarios of such con-
text, which we describe in the following, along with the details and issues facing
different stakeholders in this process. Finally, we highlight the primary purpose of
the provided research work.

In general logistics applications, having enough capacity to adequately perform
crucial activities such as supplying, storing, and distributing goods is paramount
for any successful and competitive company. Thus, companies have to plan for
sufficient capacity to be available at the desired time and appropriate locations to
satisfy the customers’ demand [27]. The capacity types could be transportation
modes (e.g., space in ship or train, cargo bikes or vans) or storage space within
given city distribution center facilities.

Since logistics activities are often subcontracted, capacity planning assumes the
contracting 3-4PL firms book the required capacity beforehand. The results of these
negotiations often take the form of medium-term contracts, specifying both the
capacity to be used and the approximate supply location required. Consequently,
changing the planned logistics scheme quickly increases costs for both the shipping
company and 3-4PL. Nevertheless, capacity changes can be mitigated with the
modern tendency of fleet consolidation, although it should be planned beforehand,
as discussed further. The outlined problem setting is relevant in different contexts,
where the main ones are last-mile delivery and long-haul transportation.

Capacity planning on a tactical scale in long-haul transportation plays a central
role in securing a successful supply. Typically, the shipper negotiates contracts with
carriers on multi-type capacities, such as trucks, ships, trains, etc., which are used
to perform shipping activities every day, week, or month. Storage capacity is also
a subject for planning, enabling the consolidation of goods, and requires specific
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contracting. Both capacity types are booked for a specific planning horizon, e.g.,
one semester, season, or year. The result of such an agreement is the contract
estimating the quantity, type, and capacity and the expected costs of the booked
capacity and possible capacity variations occurring during a typical execution of
the operational stage [26, 27]. Indeed, given the time lag between the signing of the
contract and the logistics operations, as well as the hazards and risks associated
with predicting future supply and demand levels, several sources of uncertainty
affect the contract negotiation. Therefore, uncertainty in demand is commonly
presented in a modeling approach for the underlined application.

In the realm of last-mile delivery, tactical capacity planning aims to ensure the
efficient execution of consolidation. Private and public stakeholders, such as tran-
sit authorities, collaborate to form partnerships for capacity sharing and integrated
decision-making. This collaboration aims to consolidate freight and mitigate the im-
pact of urban freight transportation and logistics on the city. In industry, multi-tier
city logistics systems are proven to be most effective in regulating the highlighted
collaborations [23]. In the capacity planning part of such systems, managers must
secure the required numbers of vehicles of various types, which will be available to
perform the transportation operations correctly. This decision enables the sharing
of the vehicles on the route and city distribution centers’ storage space to reduce
the economic and environmental operational costs. Nevertheless, the uncertainty
in delivery demand impacts greatly such decisions since the shipping of goods in
the city area depends on a tremendous amount of parameters and constraints com-
pared to long-haul transportation. Examples of demand-changing factors include
the inclusion of e-commerce in a shared logistic scheme, various client-dependent
parameters such as discounts, holidays, etc., and goods-related constraints in the
food or fragile items supply. Therefore, supporting the last-mile delivery is strictly
related to the main goal of the proposed work, capacity planning under uncertainty.

Multi-tier smart urban transportation systems are implementing the provided
approaches to the decision-making process and collaborative environment [88, 32].
The goal of such systems is to reduce the negative impacts (i.e., costs, congestion,
noise, etc.) associated with the vehicles transporting freight in urban areas by more
efficiently using their capacity (i.e., increasing the average vehicle fill rate and re-
ducing the number of empty trips that are performed). These multi-tier systems are
based on the application of two general principles: (i) the consolidation of loads
originating from different shippers within the same vehicles and (ii) the coordi-
nation of the distribution operations within the city. In this case, using multiple
transportation tiers enables the system to utilize specifically adapted infrastructure
and specialized fleets at each tier to attain the overall goal better.

Consequently, such city logistics systems evolved to provide more integrity and
robustness with decision support platforms, namely Intelligent Decision Support
Platform (IDSP) [107]. Using IDSP to automate planning and optimization op-
erations results in profits for stakeholders involved in collaborative city logistics
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systems. The goals of IDSP may slightly differ depending on the exact industrial
application, but the core principle is to apply the shared knowledge to balance
supply (capacity) and demand. In city logistics, shippers or clients represent the
demand side, and carriers of the logistics 3-4PL companies supply the required
capacity to move the actual goods. In such a setting, there are different critical
requirements for IDSP to meet the expectations of both types of stakeholders.

The timing of the IDSP response plays a central role in actualizing the lo-
gistics scheme. This is due to the frequent demand volume changes by shippers
since once the new order appears in the system, the whole logistic scheme may
be subject to change to reduce operational costs. The system response time is
defined by optimization cycles, depending on the underlying problem complexity.
Therefore, reducing complexity or providing suitable heuristics to approximate the
near-optimal solution to the capacity problem for the supply side is of direct use
for every stakeholder in the system.

Another cornerstone of IDSP for planning is accounting for uncertainty on the
demand side. In the case of last-mile logistics, it is hardly predictable due to
many variations and trends. The uncertainty treatment in such a case requires
complex computing solutions, which reciprocally influence the response time of
the whole system. Therefore, a certain level of hedging against uncertainty and
demand aggregation is required for the forecasting methodology to be accurate and
computationally reasonable.

In industrial applications of last-mile logistics, demand is commonly related to
the geographical location of the target customers or business. This is due to a
strict correlation between the city district and its infrastructure. Therefore, data
aggregation into certain city zones is commonly adopted by logistic managers in the
demand uncertainty treatment. Moreover, frequently on the tactical decision scale,
each city zone is associated with a certain driver and vehicle type provided by the
city routes’ infrastructure and legal policies. Therefore, delivery data aggregation
into city zones is a logical step toward a robust forecast methodology for further
capacity management.

In the present research thesis, we approach the mentioned issues enabling the
successful applications of IDSP in last-mile logistics. The core mathematical prob-
lem is therefore considered VCSBPPSI. Firstly, we propose a new heuristic for the
VCSBPPSI suited to tactical capacity management to achieve a reasonable time
solution for large-scale problem instances. This achievement applies to intelligent
systems in long-haul transportation as well. Secondly, we provide the zone-based
forecasting methodology coupled with a deterministic capacity management prob-
lem (VCSBPP). Lastly, we provide a new optimization problem coupled with a
zone-based demand forecast, enabling fleet capacity optimization approaching city
infrastructure but not each order treatment. These findings aim to speed up the
re-optimization cycle of IDSP, applied to the last-mile logistics. Consequently, it
reduces the operational costs for each stakeholder in the collaborative multi-tier
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logistic system.
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Chapter 3

Literature review

3.1 Optimization problems for logistics planning
Multiple optimization problems concern the tactical decision level last-mile de-

livery applications. Many of them are based on the concept of packing a set of given
items into a set of various containers (bins) [74, 109]. The crucial characteristics
enabling the thesis-related classification of the provided problems are the structure
of the objective function and the elaboration of the real-world related uncertainty.

One of the fundamental problems in the fleet management application field is
the Variable Cost and Size Bin Packing Problem (VCSBPP) [30]. This problem
aims to minimize the cost of used containers (bins), which depends on the charac-
teristics of each vehicle in the last-mile application. Moreover, it accounts for the
vehicles’ different sizes (capacities) and costs, constraining the volume of items to
handle. Although this problem received a scientific interest in providing efficient
lower bounds and heuristics [30, 52, 58], its applications in the last-mile delivery
field and for the tactical range decisions are quite limited [40]. This is because
VCSBPP formulation is deterministic in its basic form and, therefore, does not
allow the introduction of uncertain variables.

This extension is crucial to represent the uncertain demand related to the tac-
tical decision scheme, where the customer’s orders are partially or completely un-
known. VCSBPPSI is on a particular scope of this thesis since it was successfully
applied in the last-mile tactical decision scheme regarding the usage of 3PL under
orders uncertainty in [26]. Furthermore, the limitations related to the involvement
of stochastic items in VCSBPP can be solved by applying Machine Learning-based
heuristics [5, 11]. Nevertheless, the demand uncertainty in this framework has to be
carefully defined through the suitable probability distribution derivation. There-
fore, future research is needed for a self-inclusive framework for demand uncertainty
elaboration.

Another example of approaching the tactical decision level is presented in [24],
Mentioned problems consider the item and bin-specific item-to-bin assignment costs
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depending on many physical, economic, and temporal parameters. The experimen-
tal results of introduced heuristics to this problem in a one-period and multi-period
setting showed the high-performance and robustness regarding solution quality and
computational efficiency. Nevertheless, this work covers the case of perfect informa-
tion about the delivery orders (demand), which makes it hardly applicable in the
last-mile delivery field due to the aforementioned problems of last-minute orders in
e-commerce.

It is worth mentioning that BPP evolved to account for different aspects of
the last-mile delivery application, not only uncertainty on item and fleet charac-
teristics. In general, the time dimension recently started to be treated with BPP.
The authors in [36] introduced the temporal BPP (TBPP) as a generalization of
the standard BPP where each item has to be packed within a given time win-
dow. Another problem involving time delivery window elaboration is introduced
as VCSBPP-TD in [87]. The authors provided a model formulation and real-case
study of the VCSBPP-TD application to manage the satellite hub in the last-mile
logistics, reducing the gap between the tactical and operational phases. Finally, in
[2], authors account for additional (optional) items to be loaded together with the
required items, providing a profit management side to the problem, which brings
us to the other optimization strategy for packing problems described below.

In contrast to the cost minimization, in the Multi-Handler Knapsack Problem
under Uncertainty (MHKPu), given a set of items characterized by volume and
random profit and a set of potential handlers, the authors try to maximize the
expected random profit provided by each chosen item [97]. Negligible computing
time provided with the deterministic approximation of the problem makes it an
excellent predictive tool for considering stochastic handling costs in supply chain
problems and tactical last-mile decisions. Finally, the Generalized Bin Packing
Problem (GBPP) unifies the objective function and characteristics of the afore-
mentioned problems by selecting the subset of profitable non-compulsory items to
be loaded together with the compulsory ones into the appropriate bins [3]. The
GBPP provides a generalization approach to the existing state-of-the-art models
and can be reduced to various problems, such as VCSBPP or Knapsack Problem.
Furthermore, it was extended to account for the random oscillations in the item
profit under the name SGBPP, improving the model’s applicability for the logis-
tics managers in the last-mile delivery field on the tactical optimization range [96].
Finally, it was successfully applied to a set of realistic problem instances with up
to 1000 items in the delivery applications with the suitable heuristics, showing ac-
ceptable optimality gaps [4]. Summarising the characteristics of the aforementioned
problems that have found application in the last-mile delivery field on the tactical
decision range, most of them have been proven to provide robust modeling support
for the managerial decisions with the available information but limited uncertainty
treatment capabilities due to computing complexity issues [40, 26, 90].
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3.2 Demand uncertainty treatment
This approach allows us to hedge against real-world uncertainty and recover a

feasible solution in the second stage when orders and profits are known [39]. There-
fore, the multi-stage approach is frequently considered redundant in the tactical
decision scheme since the whole process can be approximated with the two-stage
cycles. Despite this widely adopted assumption, multiple models involve the multi-
periodicity and so-called non-myopic approaches in the tactical decision scheme
[24].

Nevertheless, approximating uncertainty is still a non-trivial task in the typical
scenario decomposition approach [11, 28, 26, 96]. It is worth mentioning that even
the BPP (the basic component of almost every outlined problem) is known to be
NP-hard in the strong sense [60, 47]. In turn, the complexity of the stochastic
problem rises exponentially with each scenario involved. For instance, it has been
proven that for VCSBPPSI realistic instances with a considerable amount of vehicles
and items to deliver (more than 200 items and 50 vans in the big city) become
computationally intractable, as in the time spent and the memory consumed [40,
11]. Thus, heuristics are required to solve the two-stage stochastic programs in
tactical last-mile applications.

To the author’s knowledge, the heuristics that shows the best performance on
two-stage stochastic programs so far is the PH [26]. Initially proposed in [101], it is
based on the augmented Lagrangian relaxation of the non-anticipative constraints of
the stochastic problem. The PH converges to the optimal solution if the problem is
convex, while there is no convergence guarantee if the problem has integer variables
(as for the VCSBPPSI). Nevertheless, it has shown good performance as a heuristic
for several discrete problems [89, 28]. Recent advances in PH-based heuristics
have proposed using the sum of the absolute rather than the sum of the squared
(as done in the augmented Lagrangian relaxation) [42, 66]. This improvement
leads to a linear programming problem instead of a quadratic one, thus reducing
the computational burden and increasing the solver’s efficiency and effectiveness.
Despite its excellent performance, the PH algorithm requires solving several integer
sub-problems. As a result, its computational time is not negligible, and it cannot
be used in real-time applications such as logistic platform support or to solve huge
realistic instances of big city cases with more than 1000 parcels [61, 11]. These
findings the way to the ML-based heuristics and L2O approach advent, to which
the current thesis contributes in the further chapters.
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3.3 Machine Learning applications in optimiza-
tion for logistics

The application of ML methods for optimization is a recent and growing topic
in the literature. The most recent surveys on the topics include [75], which consid-
ers the application of ML to the traveling salesman problem, [48], which includes
the ML and optimization applications to the last-mile delivery, [108], which re-
sumes data-driven ML meta-heuristics, and [83], which analyzes the applications
of deep learning to mathematical programming under uncertainty. Based on our
literature analysis, most applications use ML to decide the optimal values of param-
eters/hyperparameters of some solution techniques [68, 78, 22] or to approximate
complex terms of the objective function [7]. Nevertheless, to our knowledge, few
researchers have directly tried to find the optimal solution to an optimization prob-
lem by directly using ML techniques [5, 76]. The advantage of these methods is that
they can compute accurate solutions in real-time applications. In particular, they
can be effective in blockchain-based solutions, where the smart contracts cannot
use traditional heuristic approaches due to the consequent decrease in the overall
system performance [14, 91].

Concerning the application of ML to stochastic combinatorial optimization
problems, the issue is that most works are devoted to being applied to VRP, which
models the operational decision level [48]. Nevertheless, to the best of the authors’
knowledge, it is possible to identify three representative papers in the thesis main
question setting: [77], [63], and [5]. The first presents a general agent-based ML
adaptation for combinatorial optimization problems. It requires considerable tun-
ing and does not account for uncertainty. This fact prevents its application to
the VCSBPPSI, for instance. In the second, the authors apply different ML-based
heuristics to approximate the second stage of the two-stage stochastic program.
Consequently, it reduces the computational burden related to the scenarios but
leads to a non-linear optimization problem. It is worth mentioning that second-
stage approximation with ML was further extended to a richer class of two-stage
stochastic problems in [62]. Nevertheless, in the present thesis, we elaborate on
the first-stage decision variables approximation, providing a robust solution with
reduced computational effort since the second stage remains intact. Therefore,
the combination of ML approximation of the first and second stages is a subject
for further research. The third paper is an example of the effective usage of the
L2O stream. It presents a simple-to-implement ML heuristic that uses classifiers
to decide the variables’ values. In particular, the heuristic exploits the power of
a supervised ML algorithm that assigns to each binary variable the probability of
being 0 or 1 based on a predefined set of features; from these values, the variables
whose result is closest to the bounds are directly set to the predicted value, while
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for the most uncertain ones, a run of the exact solver is executed, with a signifi-
cantly reduced search space. One more similar approach dealing with constraints
and not with variables has been proposed in [56]. In particular, the authors first
identify the invariant constraint set of MILP instances offline. Then, they train
a machine learning method for detecting an invariant constraint set as a function
of the problem parameters of each instance. Finally, they predict the invariant
constraint set of the new unseen MILP application and use it to initialize the con-
straint generation method. This approach can be seen as the dual of the approach
proposed in [5].

Another approach to account for the demand uncertainty is the straightforward
forecast for the stochastic parameters followed by a problem solution with obtained
deterministic values. In general, demand prediction is vital for many fields of
application, such as the food industry, perishable goods supply, or crowd shipping
[41]. Nowadays, e-commerce presents a new challenge for demand forecasting since
highly fluctuating data characterize it. Unfortunately, few methods can capture
such a complex data structure due to high uncertainty and no evident trend. Thus,
more sophisticated and robust approaches have to be applied. For example, in
[67], authors successfully used the Long Short Term Memory (LSTM) network to
predict the logistics delivery demand in the manually defined sub-region of the city.
The result of this work is a two-dimensional LSTM, which enables the company to
have a reliable support decision system for future decisions. However, this approach
is characterized by many empirical parameters and requires manual city division.
Hence, further work is required in this direction.

3.4 Clustering applications in last-mile logistics
In our search for the attempts to improve In other words, it is crucial to account

for the variables connected to the spatial allocation of the order to improve the
performance of the time series forecast. However, a straightforward introduction of
the multivariate regression complicates the problem multiple times [64]. Thereby,
the existing approaches adopt clustering to access the spatial information of the
demand, as hierarchical clustering approach in [53]. One more example of clustering
is introduced in [81], where has been applied the division of the customers into
different logical segments following the monthly volume of products delivered for
the further applications of the demand forecasting methods to each of them.

In general, many managerial approaches benefit from clustering methods [59]. A
large body of research exists on consumer behavior segmentation in an e-commerce
context within the marketing field. Part of that research strand focuses on iden-
tifying shopping value, or user segmentation [33, 54]. Unsurprisingly, this field of
literature received a boost during the pandemic [57, 50]. For instance, authors in
[105] propose an approach to zoning the urban area for an effective delivery system.
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The finding of this work is based on the commercial software modeling the traffic
flow, which confirms the idea of implicit zoning for managerial insides.

Moreover, authors in [38] conduct research on city zoning with managerial in-
sides, proposing a decision-making tool based on clustering methods to identify
the best zoning approach for logistic purposes. In that study, the authors mostly
involved different spatial and socioeconomic data, proving the importance of in-
frastructure in urban freight-related decisions. Finally, starting from the socioeco-
nomic characteristics of individuals, in [18], the authors map the overall demand
for e-commerce groceries. Unsurprisingly, the strict correlations between the city
infrastructure (physical shop locations, etc.) and demand were identified. The
remaining gap in converting these online shopping probabilities into an effective
value for freight trips is covered in [6], where authors identify the main drivers for
the number of household freight trips.

Similarly, in [84], authors analyzed the city division from the placement of col-
lection and delivery points and their accessibility to reduce failed home deliver-
ies for logistics companies. They used a clustering approach to identify the spa-
tial structure of existing stores and evaluate their accessibility. The above efforts
demonstrate a shift toward the usability of the mentioned models of city zoning for
logistics operators and companies. For years, the logistic managers were separating
the urban area and assigning a driver for each of the obtained regions. This city
zoning provides time-space correlations but typically approaches traditional infor-
mation, such as the ZIP codes or historical regions[38]. Moreover, the authors in
[39] have proven that the application of unsupervised clustering methods to obtain
the city zoning based on the data of the underlying city structure, not necessarily
orders history, dramatically improves the effectiveness of the city zoning from the
last-mile delivery perspective.

The intuition of city separation is widely adopted in logistics managerial liter-
ature concerned with strategic decisions. For instance, the two-tier city logistics
model divides the urban area into two regions: external zones with hubs and inter-
nal with so-called satellites [31, 25, 103]. The principal component of such a division
is the fleet consolidation points, where the goods are moving from one vehicle type
to another, e.g., the tram stops in Amsterdam city to transfer the parcels to cargo
bikes. Nevertheless, such city separation reflects city infrastructure implicitly due
to the rules of satellite placement, as the tram would stop only in locations that
are not harmful to the city road and public transport traffic. Almost every two-tier
logistic model includes a concept of micro consolidation, representing a fleet consol-
idation between two tiers (types) of vehicles, which appears to be a driver for the
city zoning, as shown in [104]. In this manuscript, authors proved empirically that
the clustering (or zoning) of the urban territory basis helps in the implementation
of rational logistics solutions in last-mile applications. Notice that clustering the
city in the geographical area implies the introduction of the microzones, which has
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been proven to directly impact the operational level [55], due to the straightfor-
ward assignment of each of the vehicles to serve a predefined area. Moreover, it is
employed to tweak the Vehicle Routing Problem, which is used on the operational
level, with the cluster of the clients, taking which the driver can not leave the area
until serving them [110, 45].

Finally, an excellent example of a provided problem combination with city zon-
ing is introduced as Two-Echelon Electric Vehicle Routing Problem with Time
Windows and Partial Recharging [12]. The authors used a two-echelon formula-
tion to distinguish the urban zone and restricted traffic zones (low emission zones
or LEZ), in which classical transport is not allowed to enter. In fact, with the
government restrictions concerning city centers and LEZ, it becomes paramount to
combine traditional vehicles with electric cargo bikes and vans [46, 10]. Therefore,
zoning or clustering approaches become an essential tool in the logistics models,
enabling the inclusion of city structure information.

Recently, a districting problem was introduced and studied, which aims at opti-
mal city separation for multiple tasks, such as the design of commercial sales areas,
political districting, waste collection, etc. [37].
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Chapter 4

Machine Learning Heuristics for
Variable Cost and Size Bin
Packing Problem with Stochastic
Items

The chapter is organized as follows. Section 4.1 presents the mathematical de-
scription of the VCSBPPSI. introduced ML heuristic and the PH algorithm are
described in Section 4.2 and Section 4.3 correspondingly. The experimental set-
ting and numerical results are presented in Section 4.4. In addition, interesting
policy-making and managerial insights are derived from the real case study on par-
cel delivery in the metropolitan area of Turin, Italy, in Section 4.5. Finally, the
scientific and industrial impact of the introduced heuristics is presented in Section
4.6. The content of this chapter has been published in [11].

4.1 Variable Cost and Size Bin Packing Problem
with Stochastic Items

This section recalls the VCSBPPSI problem, possible applications, and the
mathematical formulation [27]. The VCSBPPSI concerns the decision problem
of a shipper, which needs to secure the capacity of different types from a carrier to
meet its uncertain demand.

Let us consider a set of scenarios S with cardinality S. Since the information
related to the items is unknown in the first stage, we define the set of items to be
packed in scenario s as Is Each item i ∈ Is has a random volume vs

i . Bins are
divided into two sets: the set of bins available during the first stage J and the set
of bins available in scenario s, Ks. Each bin j ∈ J and k ∈ Ks is characterized by a
cost cj and ck and by a volume Vj and Vk, respectively. Notice that both bin costs
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book bins observe items book more bins if needed

first stage second stage

Figure 4.1: Graphical representation of the sequence of decisions and stages.

and volumes are deterministic because they are known in advance and represent a
shared knowledge between the decision-maker and the 3-4PL provider. Since the
second-stage bins are booked on the spot market and not ahead, we consider that
ck/Vk > cj/Vj ∀ j ∈ J k ∈ Ks. Moreover, the model considers the following binary
decision variables:

• xs
ij, i ∈ I, j ∈ J ∪Ks, s ∈ S equal to 1 if the item i is packed in the bin j in

scenario s;

• yj, j ∈ J equal to 1 if bin j is booked;

• zs
k, k ∈ Ks equal to 1 if bin k is booked in scenario s.

The VCSBPPSI formulation is

min
∑︂
j∈J

cjyj +
∑︂
s∈S

ps(
∑︂

k∈Ks

ckz
s
k) (4.1)

s.t.
∑︂
j∈J

xs
ij +

∑︂
k∈Ks

xs
ik = 1, ∀i ∈ Is, ∀s ∈ S (4.2)

∑︂
i∈Is

vs
ix

s
ij ≤ Vjyj, ∀j ∈ J , ∀s ∈ S (4.3)∑︂

i∈Is

vs
ix

s
ik ≤ Vkz

s
k, ∀k ∈ Ks, ∀s ∈ S (4.4)

xs
ij ∈ {0,1}, ∀i ∈ Is, ∀j ∈ J ∪ Ks (4.5)
yj ∈ {0,1}, ∀j ∈ J (4.6)
zs

k ∈ {0,1}, ∀k ∈ Ks, (4.7)

where ps is the probability of realization of the scenario s ∈ S.
The objective function (4.1) minimizes the sum of the cost of booking the first-

stage bins and the expected cost associated with the extra capacity bought on
the spot market. Constraints (4.2) ensure that each item is packed in a single bin.
Constraints (4.3), and (4.4) ensure that each bin’s capacity is not exceeded. Finally,
Constraints (4.5)–(4.7) specify the domain of the decision variables.
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Model (4.1)-(4.7) has J + J
∑︁

s Is + ∑︁
s Ks + ∑︁

s KsIs variables, where the terms
account for yj, xs

ij, zs
k, and xs

ik, respectively. This problem contains the classical
one-dimensional bin packing problem as a particular case. There, all the bins
have the same capacity and cost. Since the bin packing problem is an NP-hard
problem in a strong sense [47] thus, also the VSBPP is NP-hard [21] as well as the
aforementioned stochastic version of it, VCSBPPSI. It is worth mentioning that if
we reverse the objective function to account for the profit of each item, VCSBPP
boils down to Multiple Knapsack Problem, which is known to be an NP-hard in the
strong sense [112, 98]. Therefore, we found VCSBPPSI the most useful formulation
for 3-4PL usage, but this problem will be discussed in the following thesis chapters.

It is worth noting that considering deterministic bin volumes in the second stage
(i.e., Vk instead of V s

k ) does not entail a modeling restriction. In fact, Vk affects
Constraints (4.4) only and, by dividing both terms of the equation for Vk, we obtain∑︂

i∈Is

ψs
ix

s
ik ≤ zs

k,

where ψs
i = vs

i /Vk is a random coefficient even if Vk is not. Thus, by considering a
suitable distribution for vs

i , it is possible to incorporate the effect of stochasticity
in the second-stage volumes. Moreover, it is possible to model an item whose order
is known in the first stage by setting vs

i = v̄i, ∀s ∈ S.
Finally, please notice that model (4.1)-(4.7) can be infeasible if the bins’ volume

is insufficient to contain all the items. Nevertheless, in the following, we do not
consider this issue since the number of bins available through 3-4PL providers is
usually much greater than the volume of the bins to allocate.

4.2 Machine Learning Heuristic
This section introduces the ML heuristic based on a supervised classifier applied

to the first-stage variables. We are not interested in the second stage variables since
the real decisions that have to be implemented are the ones of the first stage [8].
The main idea is to classify each bin according to whether it belongs to the set
that must be booked or not by using its characteristics. Intuitively, given a set of
bins and items to deliver, it is reasonable to assume that the bins characterized
by the lowest cost per unit of volume will be in the solution. However, this may
lead to a simplistic and sub-optimal decision rule, i.e., to book all the bins with a
cost per unit lower than a threshold. The ML heuristic generalizes this guess by
considering more features (e.g., the exact value of the continuous relaxation of the
associated decision variable, reduced costs, etc.) and a more sophisticated decision
rule provided by the non-linearity of the ML classifiers.

In particular, for each first-stage bin j ∈ J , a vector of features f j is computed.
This vector is fed into a classifier that has been trained to compute ŷj, an estimation
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of yj. In other words, the classifier defines two classes of bins: those used in the
solution (ŷj = 1) and those that are not (ŷj = 0).

The training dataset is built by collecting the features and the respective optimal
value of yj for all the items j of several instances. Thus, the training dataset is
made by a set of observations (f j, yj). We present a pseudo-code in Algorithm 1
to further clarify this procedure.

Algorithm 1 Training set building.
1: D = ∅
2: for k = 1, 2, ...K do
3: Generate a problem instance
4: y ← solution of the problem (4.1)-(4.7).
5: for j = 1, 2, ...J do
6: Compute the features f j

7: Add to D the features f j and the label yj

8: end for
9: end for

Since the classifier acts as a general function that for each bin computes the
associated yj variables, the features selected must collect information on the qual-
ity of the single bin as well as the interaction between the other bins. In Table
4.1, we summarize the considered features with a short description and the cor-
responding equations to compute them. In particular, we consider a first set of
features describing the characteristics of the single bin from an economic point of
view (Relative cost sum, Relative cost max Unitary cost) as well as from a
physical point of view (Relative capacity sum, Relative capacity max). De-
spite being related to every single bin, these features are normalized with respect
to the characteristics of the other bins. Since the best normalization procedure is
not known as a priory, several features consider different strategies. Of course, we
expect that when applying feature selection, just a small subset of them would be
selected. Then, we consider features collecting the information about the likelihood
of having a particular bin in the final solution, namely Continuous relaxation,
Reduced cost, Items placed avg, Items placed max and Items placed min.
All these quantities are obtained by solving the continuous relaxation of the model.
Thus, they can be computed really fast with the polynomial complexity algorithms.
While Continuous relaxation and Reduced cost measure the likelihood of a
given bin to be booked, Items placed avg, Items placed max and Items placed
min measure their utility in the second stage. Since xs

ij is equal to one if the item i
is assigned to container j in scenario s, the greater is the ∑︁

j x
s
ij, the more the use-

fulness of bin j. Here, we propose a different way to measure the same quantity, and
we expect to select just a few of them. Bins with high values of these coefficients
can be successfully used to hedge against the unexpected volume in the second
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stage of the problem. Finally, Unitary cost wrt ss avg, Unitary cost wrt ss
max, Unitary cost wrt ss min measure the economic convenience of using a first
stage bin against a second stage one. This coefficient is particularly useful to detect
possible bins whose unitary costs are not too convenient with respect to the ones
in the second stage.

Table 4.1: Feature description and computation.

Feature name Description Expression
Relative cost sum Relative cost of bin j, normalized through summation cj∑︁

j∈J cj

Relative cost max Relative cost of bin j, normalized through maximum cj

maxj∈J cj

Relative capacity sum Relative capacity of bin j, normalized through summation Vj∑︁
j∈J Vj

Relative capacity max Relative capacity of bin j, normalized through maximum Vj

maxj∈J Vj

Unitary cost Unitary cost of bin j , defined as its ”gain” cj/Vj

maxj∈J (cj/Vj)
Continuous relaxation
solution

The value of yj in the continuous relaxation
of Model (4.1)–(4.7) -

Reduced cost The normalized value of the reduced cost rj of the bin in the continuous
relaxation of Model (4.1)–(4.7)

rj

maxj∈J rj

Items placed avg The average quantity of the items placed into the bin j
in the continuous relaxation of Model (4.1)–(4.7)

1
S

∑︁
s∈S

∑︁
i∈I x

s
ij

Items placed max The maximum quantity of the items placed into the bin j
in the continuous relaxation of Model (4.1)–(4.7) maxs∈S

∑︁
i∈I x

s
ij

Items placed min The minimum quantity of the items placed into the bin j
in the continuous relaxation of Model (4.1)–(4.7) mins∈S

∑︁
i∈I x

s
ij

Items capacity The theoretical number of item that the bin may contain Vj
1
S

∑︁
s∈S

1
Is

∑︁
i∈Is vs

i

Items capacity quant The theoretical item capacity, where q(vs
i , 0.8)

is the 0.8 quantile of the vs
i

Vj
1
I

∑︁
i∈I q(vs

i ,0.8)

Unitary cost wrt ss avg The unitary cost of the bin with respect to estimations
of the second-stage unitary cost, defined through
averaging, maximum and minimum functions (gj = cj/Vj)

gj
1
K

∑︁
k

1
S

∑︁
s∈S

gs
k

Unitary cost wrt ss max gj

maxk
1
S

∑︁
s∈S

gk

Unitary cost wrt ss min gj

mink
1
S

∑︁
s∈S

gs
k

The computation of the proposed features can be done in polynomial time since
the most expensive operation is to solve the continuous of Model (4.1)–(4.7), which
requires negligible computational effort compared to the solution of the exact model.
It is interesting to point out that from a general point of view, the ML heuristic can
be seen as a complex decision rule similar to the precedence rule used in scheduling
problems. In fact, as in scheduling applications, we use a given feature (earliest
due date, weighted shortest processing time first, etc.) to decide which operation
must be processed first, the ML heuristic uses a complex decision function based
on a set of features to decide which first stage bins to book.

Finally, it is worth noting that the decision-maker can introduce other features
to add particular insights (e.g., the risk or financial exposition of the provider
of bins j, or integrating with IoT data [73, 13]). This fact is indeed one of the
main strengths of the presented heuristics. Another one is its generality and the
possibility of applying it to every two-stage stochastic problem characterized by
binary variables. However, the feature selection process is the cornerstone of this
approach since it influences the bias/overfitting of the classifier regardless of its
own structure. This problem is discussed in detail in Subsection 4.4.4.
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Algorithm 2 ML heuristic.
1: Compute continuous relaxation of the problem (4.1)-(4.7)
2: for j = 1, 2, ..., |J | do
3: f j ← features for bin j (Table 4.1)
4: ŷj ← classify(f j)
5: end for
6: Solve problem (4.1)-(4.7) with yj = ŷj for each scenario s
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4.3 Customized Progressive Hedging
The PH consists of an augmented Lagrangian relaxation of the non-anticipative

constraints. Its convergence to the optimal solution is guaranteed if the problem is
convex, and it has proved to be an effective heuristic in several cases when convexity
is not guaranteed [42].

ys
j = ys′

j ∀s /= s′ with s, s′ ∈ S and j ∈ J ,

which can be rewritten as

ys
j = ȳj ∀s ∈ S, j ∈ J , (4.8)

where ȳj = ∑︁|S|
s=1 psy

s
j . As mentioned above, the PH is the augmented La-

grangian relaxation of the non-anticipativity constraints. The term ”augmented”
refers to the fact that, in order to increase the speed of convergence, the typi-
cal PH scheme adds the squared l2 norm of the error term (i.e., given u, v ∈ Rn,
||u−v||22 = ∑︁n

i=1(ui−vi)2) to the cost function. To maintain the problem’s linearity,
we used a customized version of the PH, proposed by [42] and successfully applied
by [66]. In this customized version, the l2 norm is replaced with the l1 norm (i.e.
given u, v ∈ Rn, ||u − v||1 = ∑︁n

i=1 |ui − vi|). As a result, for each scenario s, the
following problem is obtained:

min
∑︂
j∈J

cjy
s
j +

∑︂
k∈Ks

ckzk +
∑︂
j∈J

θs|ȳj − ys
j |

s.t. (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7),
(4.9)

where θs is the penalty term that weights the difference between the different solu-
tions of the scenario problems.

The overall heuristic is outlined in Algorithm 3, where ρ is the Lagrangian
multiplier associated with the non-anticipative constraints, and ε is a stopping
parameter for ending the algorithm if g(k) = ps

∑︁|S|
s=1 ||y(k) − ys̄

(k)||1 . If the
condition (4.8) holds, we say that the solutions have reached a consensus and the
algorithm converges. As the reach of the consensus in a mixed-integer problem is
not guaranteed, a variable fixing procedure is used if needed.

In the following, with a slight abuse of notation, PH refers to the described
technique.

4.4 Numerical Results
This section reports the numerical experiments for assessing the performance

of the proposed heuristics. generation procedure in Subsection 4.4.1. Then, in
Subsection 4.4.2, we study the out-of-sample stability of the approach. Moreover,
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Algorithm 3 Customized progressive hedging.
1: k := 0
2: g(k) := + ∞
3: ȳ(k) := 0
4: θ(k)

s := 0 ∀ s ∈ S
5: while g(k) ≥ ε do
6: for s in S do
7: y(k)

s ← Solution of the problem (4.9).
8: θ(k+1)

s := ρ |ȳ(k) − y(k)
s |

9: end for
10: ȳ(k+1) := ps

∑︁|S|
s=1 y

(k)
s

11: g(k) := ps
∑︁|S|

s=1 ||y(k) − ys̄
(k)||1

12: k := k + 1
13: end while
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Subsection 4.4.3 and 4.4.4 present the implementation of the ML heuristic and the
feature selection process, respectively. Finally, in Subsection 4.4.5, the optimality
gaps of the two heuristics with respect to the exact solver are quantified, and in
Subsection 4.4.6, the comparison between the PH and the ML heuristic on large
instances is performed. All the computation experiments are performed on an Intel
Core i7-9750H CPU @ 2.60 GHz. The exact solver used for comparison is Gurobi
9.1.2 [51].

4.4.1 Instance Generation
The instance generator procedure generalizes the one in [27]. In particular, for

each instance, we consider the following parameters:

• Max items: the maximum number of items that must be shipped, i.e., the
maximum cardinality of Is over all the scenarios;

• Known items: the number of items with known volumes (i.e., the one for
which vs

i = v̄i, ∀s ∈ S);

• Min volume and Max volume: the minimum and maximum volume of each
item;

• Bins available: the number of bins available during the first stage;

• Max bins second stage: the maximum number of bins in the second stage,
i.e., the maximum cardinality of Ks over all the scenarios;

• Min bin capacity and Max bin capacity: the maximum and minimum
volume of the bin capacity.

In the experiments, four types of instances are considered, namely, small,
medium, large, and benchmark. The small instances are meant to represent sit-
uations in which each bin may contain at most a few items; this is common in
applications such as food delivery, in which the freight is delivered by bikes. The
large instances model bins that may contain several items; this is a setting when
large vans and containers are considered for transportation. The medium instances
have intermediate characteristics. The benchmark instances have the highest vari-
ability but the lowest dimension, so they are used to compare the two heuristics
with respect to the exact solver and to train the ML heuristics.

The parameters for each instance type are shown in Table 4.2.
Given the parameters, the following operations for the instance’s generation are

performed:

• The number of items for each scenario is sampled from a uniform in [Known
items, Max items].
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Table 4.2: Parameters used for instance generation.

Instance type benchmark small medium large
Max items 100 1000 2000 3000

Known items 50 500 1000 1000
Min volume 3 10 3 3
Max volume 20 15 15 5

Bins available 10 120 60 30
Max bins

second stage 10 120 60 30

Min bin capacity 10 10 50 100
Max bin capacity 500 50 100 500

• For each item, its volume is uniformly sampled in [Min volume, Max volume]
(if the item is deterministic, only one realization is considered for all the
scenarios).

• The number of bins available during the second stage is sampled from a
uniform in [0, Max bins second stage].

• For each bin, its capacity is uniformly sampled in [Min bin capacity, Max
bin capacity].

• The costs for the first-stage bin j ∈ J is Cj = V 2η
j , where η is uniformly

sampled from [0.7, 1.3] [27].

• The costs for the second-stage bin k ∈ Ks is Cj = V 2ρ
j , where ρ is sampled

uniformly from [1.4, 1.8] [27].

that the sum of the volumes of the items is smaller than the sum of the volumes of
the bins and that the volume of each bin is much greater than the size of each item.
These two assumptions are reasonable since, in several applications, the number of
bins available through 3-4PL providers is enough to contain all the items, and the
volume of the parcels is smaller than the one of the bins.

4.4.2 Stability Test
Before starting with the experiments, it is necessary to compute the out-of-

sample stability of the proposed model [8]. The procedure used is standard: We
generate S scenarios and use them to solve Model (4.1)–(4.7). We then generate
S ′ >> S new scenarios (called ”out-of-sample” because they are not used for the
solution computation), and we compute the average cost over the S ′ scenarios
by fixing the first-stage solution obtained. The percentage difference between the
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optimal value of Model (4.1)–(4.7) and the obtained average for different values
of |S| is shown in Figure 4.2. On the x-axis, we outline the number of scenarios
S in the problem. On the y-axis, we plot the percentage difference between the
objective function of out-of-sample and actual solutions. In particular, for each
value of S, we consider S ′ = 10000, and we average the results over a 100 instance
of the benchmark type. As the reader can notice, 150 scenarios are needed to have
a percentage gap lower than 3%. Thus, we set S = 150 for the exact method in the
following.

Figure 4.2: Exact approach stability test results.

Figure 4.3: PH heuristics stability test results.

The effect of the number of scenarios also has to be quantified in the proposed
heuristics. We expect that the greater the number of scenarios S, the better the
solution performance in the out-of-sample test. Therefore, we consider the average
gap between the solution obtained using the S scenario and the one obtained by
using 5% more scenarios (i.e., (1 + 0.05)S). In other words, we are considering the
marginal gain from adding 5% more scenarios to the solution. Figure 4.3 and 4.4
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Figure 4.4: ML heuristics stability test results.

show the results, which were averaged over 300 instances (100 small, 100 medium
and 100 large).On the x-axis, we outline the number of scenarios S in the main
problem (used with PH or ML heuristics). On the y-axis, we plot the percentage
difference between the objective function of out-of-sample and actual solutions.

For the ML heuristics, 110 scenarios are enough to have a marginal gain from
adding more scenarios close to zero. Instead, the PH needs 150 scenarios. In the
following, we set S = 150 for the PH and S = 110 for the ML heuristics.

In this section, we analyze the solutions’ characteristics and the properties of
the mathematical model. In particular, we consider benchmark instance and set dif-
ferent numbers of items and bins available in the two stages. For each combination,
we compute the following:

• the computational time of the exact solver;

• the fraction of the total cost due to the renting of first-stage bins (first-stage
cost);

• the expected value of perfect information (EV PI) computed as EV PI =
RP −W S

RP
, where RP is the optimal value of the recourse problem, and WS is

the optimal value of the wait-and-see problem (i.e., the problem that assumes
perfect knowledge of the future). For the RP computation, we consider 150
scenarios, while we compute the EV PI by using 1000 out-of-sample scenarios;

• the value of the stochastic solution (V SS) computed as V SS = EEV −RP
EEV

,
where EEV is the expected value of using the solution of the expected value
problem. Because of the stochasticity influence, the second stage sets Is and
Ks to compute the expected value problem, we consider the sets Ī and K̄
obtained by selecting all the items and bins that are present in more than
50% of the scenarios. As for the EV PI, the RP is computed by considering
150 scenarios, and the V SS is computed using 1000 out-of-sample scenarios.
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The obtained results are shown in Table 4.3. All the values are averaged on 10
instances. As expected, the computational time increases as the number of items
and bins increases. Since the exact solver generates an out-of-memory exception,
we do not solve instances with more than 150 items, 10 first-stage bins, and 10
second-stage bins.

Table 4.3: For a different instance dimension, the computational time of the exact
solver, the fraction of the cost given by the first-stage bins, the EV PI, and the
V SS are computed.

Bins
Items f.s. s.s. Comp. Time [s] First-Stage Cost [%] EVPI [%] VSS [%]

50 5 5 4.5 (2.4) 98.8 (0.8) 21.7 (16.8) 129.1 (34.4)
75 5 5 12.4 (3.8) 82.4 (2.4) 16.7 (17.2) 137.4 (54.7)
100 5 5 45.1 (4.2) 75.8 (3.5) 18.3 (13.6) 72.3 (31.1)
125 5 5 129.3 (10.7) 62.1 (3.7) 5.4 (8.8) 81.3 (37.4)
150 5 5 510.2 (21.4) 65.9 (3.4) 9.6 (9.1) 84.0 (32.9)
50 5 10 75.4 (1.8) 95.3 (0.5) 12.4 (11.4) 48.5 (31.2)
75 5 10 198.7 (10.5) 66.9 (5.4) 7.3 (8.1) 53.0 (19.0)
100 5 10 1074.4 (64.6) 67.8 (6.3) 10.7 (10.6) 60.0 (43.9)
125 5 10 1235.7 (91.3) 62.9 (6.5) 11.3 (12.1) 78.6 (43.8)
150 5 10 1384.9 (111.9) 60.9 (5.2) 3.1 (5.8) 53.2 (18.9)
50 10 5 5.0 (3.2) 97.1 (1.3) 26.3 (17.3) 126.3 (74.3)
75 10 5 10.2 (4.2) 84.3 (6.4) 18.9 (15.9) 129.5 (60.8)
100 10 5 14.3 (5.6) 81.3 (5.8) 15.9 (14.0) 116.5 (55.9)
125 10 5 86.5 (11.2) 80.3 (4.3) 16.8 (12.4) 76.5 (27.5)
150 10 5 446.8 (23.7) 77.8 (7.2) 12.6 (11.5) 72.7 (32.0)
50 10 10 50.5 (9.2) 91.8 (2.2) 10.2 (10.2) 53.6 (39.1)
75 10 10 274.7 (15.6) 80.0 (5.1) 10.5 (11.3) 85.8 (56.4)
100 10 10 2028.1 (129.9) 77.5 (5.9) 11.4 (11.0) 60.9 (31.5)
125 10 10 2828.2 (213.5) 67.4 (6.8) 8.6 (7.9) 55.0 (19.8)
150 10 10 3755.0 (401.3) 66.2 (6.6) 9.0 (9.1) 54.2 (20.1)

It is interesting to note that the more items and second-stage bins that are
considered, the more the percentage of the first-stage cost decreases. The reason
for this is that waiting to allocate items with a wider set of alternatives in the
second stage becomes more convenient. Moreover, having more bins in the second
stage increases the probability of a convenient bin appearing, along with the fact
that the volume and quantity of the items become fully known in the second stage,
making the second-stage bins more attractive. In every instance, 50 items are
deterministically generated (as stated in Table 4.2). Despite this, the first-stage
cost is never 100%, nor for the instances with 50 items, since, in a few instances,
the first-stage capacity is not enough to pack all the items. As can be seen, EV PI
decreases as the number of second-stage bins increases. The same behavior can be
observed for the V SS. This effect is due to the lower importance of hedging against
risk in the first stage when there are more bins in the second stage. Nevertheless,
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while EV PI is always lower than 30%, the V SS lowest value is 48.5%, which could
generate poor performance in the application. This is also due to the definition of
the EV P for a problem in which uncertainty affects the second-stage sets (Is and
Ks). However, this discussion on the problem structure itself lies beyond the thesis
scope.

4.4.3 Machine Learning Heuristic
In this section, we explore different configurations for the ML heuristic. We

considered 12 different classification approaches for the ML heuristic and compared
their performances during the experimental phase. The considered classifiers are
outlined below:

• KNN: The K neighbors classifier checks the distance from the test examples
to the training sample, also called the centroid. The group of samples that
gives the smallest distance is identified as belonging to the same class.

• L SVM: The support vector machine with a linear kernel is a well-known
robust classification method, the intuition behind which is to draw a hyper-
plane in the data space to maximize the distance between points belonging to
different classes identified by this hyper-plane. The standard version of the
distance measure is the linear kernel.

• RBF SVM: The support vector machine with a radial basis function (RBF)
kernel, a more sophisticated version of the SVM, uses the kernel trick to
identify the distance through the RBF function, which checks for non-linear
correlations in the data.

• GP: The Gaussian process classifier with an RBF kernel offers the great
potential of GP regression adaptability and a closed-form solution with pa-
rameter optimization inside the loop.

• DT: The decision tree classifier divides a dataset into smaller subsets based
on the chosen criteria. Once the data is divided into one sample, it assigns
the class. The current approach identifies the entropy criteria for randomly
splitting the data while simultaneously constraining the structure of the tree
by a minimal number of samples in the leaf by 30 and 10 samples to split.

• RF: The random forest classifier consists of multiple random DT classifiers
linked together, which means that RF is an ensemble learning method. Hence,
the final class is assigned by most of the trees, which preserves the method
from overfitting.
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• NN 1l: The multi-layer perceptron (MLP) classifier 1 hidden layer of 100
neurons. The number of features defines the input layer size, and the output
neuron provides the class identification with the sigmoid function.

• NN ml: A convolutional neural network (CNN) consisting of 3 hidden layers
with a size of 25, 50, 15 neurons, respectively. The number of features de-
fines the input layer for all the feed-forward CNN. This structure of CNN is
classified as a deep neural network and can construct more complex functions.

• AB The AdaBoost classifier is a meta-estimator obtained by fitting a chosen
classifier (DT in this case) and then making additional copies of one on the
same dataset, but with the additional adjustment of the weights for incor-
rectly classified instances.

• LR: Logistic regression is a classifier built on statistical regression, where the
output is categorized with a 0 or 1 label, depending on the probability of
belonging to a specific class.

• LDA: Linear discriminant analysis is represented by the projection of all
data points into a line, further combining them into classes based on their
distance from a chosen point or centroid. This classifier has the advantage of
dimensionality reduction but is best fitted for the linear relations in the data.

• LSTM: The long short-term memory network-based classifier is based on
recent advancements in the recurrent NN structure, which provides us with
short-term memory. It has performed admirably on highly fluctuating data
[113] and demand prediction [67, 40]. A very basic version of LSTM with a 1
hidden layer of 50 neurons is applied.

All the outlined approaches were implemented with the help of the Scikit-learn
library [86], and we set all the methods to return a 0-1 label. In fact, several
ML techniques may produce results between 0 and 1 instead of pure 0-1 labels.
Such algorithms’ results can be associated with the probability of a given item
being selected in the optimal solution. In such a case, it is possible to obtain
a solution to the problem by fixing a threshold on that probability. Nevertheless,
this threshold is a hyper-parameter of the algorithm requiring ad-hoc tuning. Thus,
for the sake of simplicity, we consider ML algorithms that return a label, postponing
the investigation of more general ML techniques to future study.

The training set for the classifiers is generated by solving multiple benchmark
problems with the exact solver and using the optimal solutions as labels. The
training set used for the experiments includes 400 solved instances for a total of
4000 records (each benchmark instance has 10 first-stage bins).

Let us consider visual examples to straighten the classifier application logic and
better explain the heuristic. To do so, we pick 200 random samples of training data
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collected, and we show two feature diagrams in Figure 4.5. Each point of the two
graphs represents two features related to a first-stage variable yj, j ∈ J , and it is
colored in blue if, in the optimal solution yj = 1, and in red if yj = 0.

(a) (b)

Figure 4.5: Feature graphs. Reduced costs vs. unitary cost on the left;
relative capacity sum vs. relative cost sum on the right.

In Figure 4.5a, the considered features are reduced costs and unitary cost.
If the reduced costs are zero or close to zero (the bottom part of the graph), there
are more points with yj = 1. By moving from the bottom of the graph up to the
top (i.e., considering the greater reduced cost), the density of yj = 1 decreases while
the density of yj = 0 increases. There are a few points with high reduced costs
and yj = 1 (near the point (0.2, 0.8) in Figure 4.5a). This is due to a particular
lower unitary cost for those bins. The behavior with respect to the unitary costs is
peculiar: there are several points with low unitary costs with yj = 0 and a consistent
number of points with high unitary costs with yj = 1. This could be due to the
fact that we are not considering several other features that can better characterize
the bins on the two-dimensional graphs. On the other hand, it is confirmed with
the feature analysis in Subsection 4.4.4 that unitary cost does not provide the
most relevant information concerning the optimal solution.

In conclusion, it is important to stress that these graphs are just graphical
examples to better explain the intuition behind the ML heuristic and have no other
goals.

4.4.4 Features Analysis with SHAP
In this section, we analyze the set of features defined in Section 4.4.1 to select

the most significant ones. To do so, we use the SHapley Additive exPlanations
(SHAP) values proposed by [69]. SHAP is a widely used approach for explaining
machine learning models based on cooperative game theory. The feature values
act as players in a coalition, and Shapley values represent the weights of a fair
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distribution of the ”payout” between them. In other words, it is a measure of the
contribution of each of the features to receiving a targeted class. Hence, the mean
of SHAP values is essential for this work, as it represents the total contribution to
the bin selection, regardless of whether it is positive or negative. More specifically,
we adopted the SHAP tree explainer [70], a version of SHAP for tree-based machine
learning models. As for the testing model, we chose the random forest classifier
introduced above. Figure 4.6 shows each introduced feature’s mean SHAP values.

Figure 4.6: Mean of the SHAP values for each of the features.

This result shows that the decision value of continuous relaxation is an essential
feature in our approach but not the only one contributing to the final outcome.
Furthermore, the reduced costs and bin characteristic features provide important
information. In contrast, the second stage estimates are the least important in
this model, and the Items placed min has no impact on the decision. Therefore,
in the following experiments, we consider the 5 features with the greatest SHAP
value: Continuous relaxation, Reduced cost, Relative cost max, Relative
cost sum, and Items capacity quant. It is worth noting that some of the most
important features are the same used for other heuristics [72]. Nevertheless, the
proposed methodology can produce the same results without prior experience, look-
ing only at the data. Thus, it can be extended to other optimization problems
characterized by binary variables.

4.4.5 Heuristics Comparison
In this section, we test the performance of the proposed heuristic and the one

of the PH against the commercial solver Gurobi [51]. The results are described in
Table 4.4. All the values are averaged over 500 benchmark instances. The first two
columns represent the average computational time and its standard deviation.
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Table 4.4: Comparison of exact and heuristic solutions.

Model Computing time [s] Computing time σ [s] Gap [%] Gap σ[%] Gap f.s. [%] Gap f.s. σ [%]
Exact 1829 2560 - - - -
PH 9.86 2.15 1.75 2.94 4.36 23.67

KNN 4.47 0.81 5.91 7.05 7.49 23.62
L SVM 4.43 0.76 28.68 56.38 -23.97 38.54

RBF SVM 4.44 0.74 3.87 3.18 1.48 15.71
GP 5.59 1.14 4.88 4.90 7.71 21.39
DT 4.46 0.76 4.15 3.46 5.00 20.86
RF 4.45 0.80 5.29 5.99 2.93 18.20

NN 1l 4.49 0.88 6.13 10.36 2.69 23.44
NN ml 4.45 0.80 6.44 12.41 7.96 24.25

AB 4.46 0.79 7.80 13.73 -1.19 23.51
LR 4.44 0.81 6.31 7.08 -11.80 21.56

LDA 4.45 0.82 6.31 7.08 -11.80 21.56
LSTM 4.74 0.82 4.03 7.96 -10.93 21.18

Both the ML heuristic and the PH significantly decrease the computational
time needed in exchange for a reasonable gap. In particular, the ML heuristic is
the fastest heuristic method, with an average time of around 4.5 s. The RBF SVM
classifier provides the best gap, with an average of 3.87% and a standard deviation
of 3.15%. The L SVM classifier performs poorly with optimality gaps greater than
20%. This is because the investments in the first stage are too small (23% less than
the optimal solution), which leads to a strategy that books the majority of bins in
the spot market, leading to the worst average performance and very high variance.
This high variance is due to both the lucky case, in which a book in the spot market
is cheap, and the unlucky case, in which booking beforehand at a lower price is the
optimal strategy. The PH has an average gap lower than the ML, but it took double
the time. Other methods that have good performance are the DT and the RF. Both
methods achieve reasonable results. Moreover, they are human-readable, making
them attractive in the application. To better understand the solution structure,
the averaged l1 distance between the exact first-stage decision variables and the one
computed by all heuristic approaches is highlighted in Table 4.5.

Table 4.5: Solution structure.
Solution PH KNN L SVM RBF SVM GP DT RF NN 1l NN ml AB LR LDA LSTM

Distance to
exact solution 0.646 0.375 1.167 0.438 0.479 0.458 0.396 0.500 0.417 0.417 0.667 0.667 0.646

All the heuristics return solutions close to the optimal ones in terms of first-
stage solutions, which is an important outcome that validates these approaches.
Nonetheless, a difference in the first-stage solution equal to 1.16 causes the L SVM
method to have 28.68% higher costs in the out-of-sample simulation. Thus, even a
small error in the first-stage solution may lead to bad out-of-sample performance.
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4.4.6 ML and PH Heuristic Comparison
Since the PH was shown to achieve lower OF gaps in the previous section, we

compute the gaps with respect to its performance. Moreover, in order to better
quantify the algorithm performance in the various application domains, we present
the results for the three types of instances (small, medium, and large). The results
are reported in Table 4.6, with each value being averaged over 100 runs. The first
three columns represent the average computational time of the two methods. The
second three columns show the out-of-sample gap calculated on 1000 scenarios,
and the last three columns show the average l1 norm of the distance between the
first-stage solutions.

It is important to notice that the computational time increases from small to
large instances. This is due to the fact that large instances consider a greater
number of items and bins than the other types (Table 4.2). This leads both the PH
and the ML heuristic to take more time (the PH must solve bigger sub-problems,
while the ML heuristic must solve larger, continuous problems).

The ML approach generally takes from 5 to 75 times less computational time
than the PH. In particular, the ML heuristic takes 5 times less for small instances,
15 times less for medium instances, and 75 times less for large instances. Thus, the
proposed methodology provides more advantages if the bins are large with respect
to the item size, making ML-based heuristics handy if large vans and containers
are considered.

The gaps also depend on the instance type. For small instances, the best
results are achieved by the GP; for medium instances, the LDA classifier is best; for
large instances, the best classifier is the LSTM. By considering their definition, it
is clear that classifiers with more expressive power are required if the complexity
of the problem increases. By considering all types of instances, the GP classifiers
achieve the best performance in terms of gap and computational time. However, the
difference in accuracy for almost all classification approaches lies in the boundaries
of 2%. Therefore, in practice, when choosing a classifier, other parameters, such as
the interpretability of the decisions, the transparency of the algorithm (as for the
decision trees), or the robustness of the application with respect to the industrial
setting, may be considered.

The l1 distance between the PH and the ML first-stage solutions does not differ
by more than 10%. Nevertheless, as stated above, these small differences in
solutions may lead to strikingly different performances in the second stage.

In summary, the proposed ML approach showed to be very promising, not only
in terms of computational time but also in terms of the optimality gap.
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Table 4.6: Resulting computational time, percentage gap, and the l1 distance to
the PH solution of the real scale problem test.

Computational time [s] Gap to PH solution l1 distance to PH solution
Instance small medium large small medium large small medium large

PH 177.1 2276 26076 - - - - - -
KNN 34.00 147.06 344.33 1.22% 1.99% 4.73% 1.227 2.063 3.800

L SVM 34.03 146.89 348.11 2.16% 2.50% 6.87% 1.600 2.125 3.400
RBF SVM 33.91 146.33 348.06 3.09% 1.84% 5.35% 3.727 3.813 8.100

GP 35.07 147.01 344.53 0.03% 2.20% 4.73% 1.200 2.125 3.800
DT 33.93 146.25 340.57 1.57% 2.01% 4.73% 1.273 2.063 3.800
RF 33.84 146.10 341.53 0.42% 2.01% 4.73% 1.545 2.063 3.800

NN 1l 33.85 146.35 353.53 1.22% 2.20% 6.12% 1.227 2.125 3.700
NN ml 33.96 146.62 345.46 1.22% 1.99% 4.73% 1.227 2.063 3.800

AB 33.89 146.08 347.38 4.06% 2.68% 6.45% 4.391 4.325 9.700
LR 33.88 143.75 340.09 0.91% 2.07% 5.00% 1.045 2.375 3.000

LDA 33.88 142.89 341.93 0.91% 1.69% 5.53% 1.045 2.313 3.100
LSTM 34.34 147.92 347.68 1.02% 2.53% 4.61% 0.818 2.188 3.400

4.5 Case study and managerial insights
In this section, we analyze the potential impact of the usage of the VCSBPPSI

solved via the ML heuristic and present relevant managerial insights on a case
study coming from recent industrial and institutional collaborations. We opted for
a last-mile application due to its increasing importance in terms of economic value
and the number of orders. In fact, the rapid increase of e-commerce is making
last-mile delivery one of the most challenging fields of development and research
in transportation. This research is part of the new Logistics and Mobility Plan
to be activated in 2025 and considers the effect of same-day deliveries [87, 95].
Sensitive data for the involved e-commerce and parcel delivery companies have
been anonymized and normalized by means of the data-fusion tool provided in [94].

The case study tackles a set of deliveries (characterized by delivery locations and
parcel volumes) within the Turin city center area (2.805×2.447km2), using a hetero-
geneous fleet of three types of vehicles: Cargo-Bikes (CBs), Electric Vehicles (EVs),
and Light Duty vehicles (LDs). Figure 4.7 displays the service area (red square)
and an example of the location of customers (blue circles). We consider 40 instances
with 500 deliveries each. Since these deliveries have no information related to de-
livery time, we generate the second-stage orders by randomly picking a percentage
of deliveries that we interpret to be originated from same-day orders. More in de-
tail, we call this percentage α and we consider α ∈ {10%, 30%, 50%, 70%, 100%}.
Scenarios are generated by applying the same process used for instance generation.
For each one of the 40 instances and each value of α, 10 instances are generated for
a total of 40× 5× 10 = 2000 instances.
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Figure 4.7: Service area in the case study

We compare the operational costs (i.e., the total cost of satisfying all the deliv-
eries) of the consolidation strategy considered in the VCSBPPSI, solved by the ML
heuristic using the GP classifier, against a single-echelon approach, which adopts
the state-of-the-art stochastic vehicle routing problem by [102], where a fleet of
LD vehicles is used. The parameters for the two models are taken from previous
works and are summarized in Table 4.7. It is worth noting that we compare two
different models: the VCSBPPSI, which considers only consolidation and a single-
echelon routing problem. This comparison makes sense in an urban environment
since routing has a limited effect on the final solution due to the small distances
[87]. In other words, in city logistic-capacitated routing problems, capacity con-
straints are the binding ones. Therefore, the comparison of the solutions of these
two models enables us to quantify the gain of consolidation regarding the standard
routing strategy often used in practice. Moreover, the results we provide are lower
bounds on the real efficiency of consolidation since the VCSBPPSI does not address
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routing, and better solutions can be obtained by merging the two problems.

Table 4.7: Sources of data for the Data-Fusion phase

Data type Source
Satellite localization [80, 94]
Orders data [9, 30]
Spatial data of demand [35]
Time distribution of the orders [35]
Vehicles characteristics and vehicle booking costs [94, 93]
Road network OpenStreet, 5T Road Sensors’ data [111]
Time-dependent travel times [71]
Environmental costs [9, 49]

The comparison of the solution provided by the two problems is performed by a
Monte Carlo-based simulation framework which is made by a module for simulating
the instance, one for georeferencing the data, and one for simulating the given routes
with real traffic data gathered by the network of sensors of the Municipality of Turin
provided by the company 5T [111]. The proposed Monte Carlo-based simulation
algorithm runs the following steps 10 times (see Figure 4.8 for a depiction of the
overall system):

1. Generate the instance by setting α and all the aforementioned parameters.

2. Solve the first stage problem:

• run it and compute the mix of vehicles for the first stage fleet if the
VCSBPPSI is considered

• consider a fixed fleet of LD vehicles if the single-echelon problem is con-
sidered

3. Given the first stage solution, solve the related second stage one by adjusting
the fleet according to the new deliveries and compute the route running:

• the heuristic in [102], if the VCSBPPSI is considered
• the stochastic VRP heuristic in [102], if the single-echelon problem is

consider

4. Compute the Key Performance Indicators related to the quality of service (in
terms of the number of parcels per hour, nD/h) and the environmental cost
(in terms of CO2 emissions of the overall last-mile chain) for each route. In
particular, according to the latest regulation, the ISO/TS 14067:2013 ”Green-
house gases - Carbon footprint of product - Requirements and guidelines for
quantification and communication”, we consider the sum of direct emissions
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from the fuel combustion process, indirect emissions, given by the fuel pro-
duction process and the long-haul shipment of the fuel, CO2 equivalent to
including other pollutants (e.g., NOx).

Figure 4.8: Monte Carlo simulation-optimization

Considering the computational effort, each run of the Monte Carlo requires
about 40 minutes when we solve the optimization problem by the dynamic and
stochastic vehicle routing algorithm by [102], while about 1 minute in the case
of the ML approach. Notice that the computational time also accounts for data
fusion and post-optimization modules. Thus, our ML approach has a significant
advantage over the classic dynamic and stochastic vehicle routing problem. This
issue becomes even more relevant if larger instances are considered.

Table 4.8 reports the average percentage gap between the total cost of the single-
echelon policy versus the consolidation for different values of α. The gap is defined
by (SE − SAT )/SE, where SE and SAT are the expected costs computed by the
Monte Carlo simulation of the single-echelon policy and the consolidation, respec-
tively. Thus, a positive value means a gain in the percentage of the consolidation
policy with respect to the single-echelon one. It is worth noting that a consolidation
policy always has better performance than a single-echelon one (up to 67% of cost
saving). This is further evidence that at the urban level, routing is less important
than consolidation [87].

In Table 4.9, we illustrate the effect of same-day deliveries on the total expected
cost computed with the Monte Carlo simulation. With this aim, we simulate the
behavior of the VCSBPPSI model, solved considering all deterministic deliveries
(α = 0), and in each column, we report the average increase cost with respect
to the case with α = 0 computed in percentage. Noticing that with α = 0 the
model has perfect information, thus we call the average percentage gap EV PIα.
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Table 4.8: Percentage gain of the consolidation policy with respect to the single-
echelon one

α: 10% 30% 50% 70% 100%
SE−SAT

SE
: 3.5 23.2 31.7 50.2 67.6

Having perfect knowledge about the deliveries can decrease the delivery costs up
to 137% (α = 100%). This justifies investments in methods able to forecast deliv-
eries or business models, reducing uncertainty’s impact. Nevertheless, even with
a rather limited impact of same-day delivery (α = 30%), the cost increment can
be sufficiently high to require a specific redesign of the business model toward the
integration of big data and prescriptive analytics. As shown in [93], allowing full
freedom to the customers without any prevision on the customers’ preferences may
cost the e-commerce company between 0.7 and 1.2 million euros per year in the case
of a medium-sized city such as Turin. While such inefficiency can still be accepted
in the present situation, where the e-commerce market is growing by two digits per
year, this becomes unacceptable in a more saturated market situation, where the
innovation curve moves towards the full competition phase and efficiency becomes
a key factor for a company to be in the business.

Table 4.9: Cost increase due to a lack of customers’ preferences analysis

α: 10% 30% 50% 70% 100%
EV PIα: 13.4 47.2 61.4 87.4 137.9

Table 4.10 shows the usage of the vehicle for different values of α. Each row
reports the average number of vehicles of each type for the first stage, second stage,
and the total. Notice that, being the averages of the values, they can be fractional.

If same-day delivery is limited (α ≤ 50%), a larger portion of CBs is used in
the second stage. This is not due to the unitary cost per volume (which is larger
for the greater impact of the freight dispersion and the consequent under-usage
of the volume), but to the flexibility of CBs, able to better absorb the effects of
the first-stage decisions. This explains the high investments of Venture Capital in
alternative and small-sized delivery options, such as drones, small robots, cargo
bikes, and other similar options. Instead, when α > 50%, the number of first-stage
LDs and EVs booked increases since booking big vehicles in the first stage is cheaper,
and with a large number of second-stage deliveries, the probability of filling them
is high. This characteristic of hedging against uncertainty makes investing in LDs
and EVs attractive for managing the increasing impact of customers’ preferences.

Finally, we analyze the two paradigms in terms of sustainability. The sustain-
ability of the service is computed as a mix of environmental, social, and operational
impacts. We consider the case of three different scenarios, according to the Moore
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Table 4.10: Effect of the customers’ choices over vehicle usage

Stage 10% 30% 50% 70% 100%
CB EV LD CB EV LD CB EV LD CB EV LD CB EV LD

1 stage 0.01 1.29 7.17 0.01 1.26 7.21 0.04 1.68 7.83 0.04 2.94 13.09 0.11 4.27 15.86
2 stage 26.40 0.00 0.00 26.43 0.00 0.00 26.50 0.00 0.00 14.93 0.00 0.00 7.95 0.00 0.00
Total 26.41 1.29 7.17 26.44 1.26 7.21 26.54 1.68 7.83 14.96 2.94 13.09 8.06 4.27 15.86

technology adoption curve [79]:

• Early phase of the penetration of the same-day delivery service. It corre-
sponds to the middle of the “scale-up” phase of the innovation sigmoid, which
corresponds to α = 10%;

• Market penetration of the same-day delivery service. It corresponds to the be-
ginning of the “compete” phase of the innovation sigmoid, which corresponds
to α = 50%;

• Maturity of the same-day delivery service. It corresponds to the end of the
“compete” phase of the innovation sigmoid, which corresponds to α = 70%.

For each scenario, we consider three market situations:

• Current situation: the instances described above;

• Downturn: the market is contracting up to 30% (only 70% of the whole set
of delivery is considered);

• Growth: the market is increasing up to 30% (the new delivery are randomly
generated as in [93]).

Table 4.11 reports the results of the sustainability analysis in terms of CO2
savings (Column 2) and nD/h (Column 3). All the savings are reported in terms
of percentage gap with respect to the single-echelon scenario. The savings are
computed for both indicators by considering 360 working days. For CO2 we also
report the tons gained by the mix of technology.

Generally speaking, the adoption of the VCSBPPSI leads to a consistent de-
crease of CO2 compared to the traditional delivery, with a gain of up to 40% in
the case of the largest diffusion of the service. Notice that, being this phase associ-
ated with the ”compete” phase of technological penetration, this reduction becomes
more crucial since it gives the companies adopting such a scheme in the early phase
of their life a competitive advantage in terms of value proposition, with a more
environmental-friendly impact. The nD/h increases, in line with the results by
[93], with an efficiency gain that is quite constant. Finally, we can notice how
the need for more flexible solutions is in line with the increasing adoption of more
eco-friendly solutions, such as cargo bikes and electric vans in the present, drones,
small automatic vehicles, and automated mobile lockers in the near future.
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Table 4.11: Sustainability analysis

α = 10%
Market condition CO2 savings [ton (%)] nD/h [%]
Current situation 18 (-21%) 11%

Downturn 13 (-18%) 5%
Growth 19 (-36%) 19%

α = 50%
Market condition CO2 savings [ton (%)] nD/h [%]
Current situation 22 (-34%) 12%

Downturn 16 (-24%) 9%
Growth 24 (-38%) 14%

α = 70%
Market condition CO2 savings [ton (%)] nD/h [%]
Current situation 26 (-30%) 15%

Downturn 24 (-21%) 11%
Growth 36 (-40%) 18%

4.6 Scientific and industrial impact
This chapter introduced a new general ML heuristic for solving the VCSBPPSI.

By carefully defining a set of features, it can compute reasonable solutions in a
significantly shorter time than the off-the-shelf solvers and other state-of-the-art
heuristics such as the PH. This result shows that it is possible to mimic the behav-
ior of the VCSBPPSI with an ML algorithm that behaves similarly to a complex
decision rule. This achievement paves the way for the exciting question of general-
izing the good results obtained by the precedence rule in scheduling problems for
other classes of problems with more complex decision rules. Moreover, the rela-
tively straightforward application of the proposed heuristic enables it to be used in
other problems characterized by binary decision variables.

The proposed heuristic achieved a good performance level and increased the
maximum size of instances that can be considered, with an impact also in real-world
applications. We claim that the proposed technique enables daily managerial de-
cision support for companies engaged in the modern trends of consolidated logistics
and 3-4PL usage. Furthermore, it is worth recognizing that the ML heuristic can
produce a solution that can be recovered in the second stage. Thus, no partic-
ular care has to be taken to ensure the proposed solution’s feasibility in normal
conditions and that it can be safely applied by logistic managers in the field.

In future studies, the performance of the outlined approach can be improved by
introducing real data features for each vehicle, e.g., CO2 emissions and the delivery
time. Moreover, we will consider further improving the proposed methodology in
future studies. Other exciting lines of research can be to add into the model other
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realistic issues such as 3D constraints, weight restrictions, as well as discounts and
tariffs definition by bilevel models.
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Chapter 5

Zone-based demand forecast for
fleet optimization

Provided the total demand volumes for each city zone, it is possible to apply
VCSBPP to optimize the required fleet capacity and answer the question of the
number of vehicles to rent/buy. Such application of VCSBPP with the zoning-
based demand forecast will be discussed in Section 5.2.

Another critical question arising in the city division application is the structure
of the city zoning. For years, most logistic companies separated the city following
the historical urban regions or the postal codes of each zone [104]. This approach
can be significantly improved with modern unsupervised learning or clustering tools
even without detailed data on the delivery orders [38]. Nevertheless, in this chapter,
we provide the city’s zoning regarding the homogeneity of the related delivery
demand variance, grounding this knowledge on the usage of the real data provided
by the last-mile delivery company. Furthermore, we handle the city zoning from
the fleet management perspective, relying on the reduced demand variance and the
possible outcomes of capacity and fleet distribution.

To better state the intuition behind the city zoning supporting the demand
forecast, let us look at the last-mile delivery orders locations for different days.
Figure 5.1 outlines the locations of delivery orders for two different days marked
with different colors (red and blue dots), plotted on the map of the city of Antwerp,
Belgium. The reader may notice that the overall pattern of the logistics request
remains the same in the geographical sense. In other words, crowded city zones
provide higher delivery demand than the zones with sparse and smaller buildings
and sparse demand. Moreover, the regions with rivers, parks, or industrial buildings
are logically characterized by the almost complete absence of orders. That confirms
our guess on the necessity of the location information incorporation to the demand
forecast and the importance of proper zoning of the urban areas for the logistic
companies.

Further, we employ ML-based demand volume predictions as the scenarios for
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Figure 5.1: Order locations in the city of Antwerp for two days highlighted with
red and blue colors for the first and the second day correspondingly. The overall
pattern remains the same.

the ZCAP, providing a practical and data-driven approach to tactical decisions
related to fleet capacity optimization.

of the logistics company in Subsection 5.2.3. The content of this chapter has
been partially published in [40].

5.1 Data acquisition and elaboration
Data collection is a crucial step in any real-world application in operations

research. For instance, generating realistic instances for optimization problems
requires knowledge about the probability distribution that can approximate real-
world phenomena.

During this process, we communicated with the logistic managers working on
the logistic hub in one of the biggest last-mile delivery companies, which is desired
to remain anonymous, in Antwerp, Belgium. information about the order location
in terms of latitude and longitude, the method of delivery (vehicle type), the cycle of
delivery, the timestamp of actual delivery handled along with the date, the number
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and weight of the parcels for each of the stop and the zip-code of the region of
delivery. Additionally, it presents a set of internal data codes as production groups
of orders, etc. These details can be useful for a general clustering approach but are
considered irrelevant to this work application since we are particularly interested in
geographical location correlations and the generalization of the introduced model‘s
applicability for any logistics company. It is worthwhile to mention that the data
was collected in 2019. Hence, the COVID-19 pandemic has not affected the provided
distributions.

The data elaboration starts with the homogeneous division of orders with mul-
tiple parcels to provide a straight correspondence of each data row for each parcel.
This assumption does not violate the data presentability since, in total, the frac-
tion of orders with multiple packages is less than 10%, each representing a relatively
small overall weight. Next, we decoded the vehicle numbers to provide a vehicle
type and corresponding capacity. Lastly, the latitude and longitude of each order
are mapped to the [0,1] range to exploit it as the features for the unsupervised
clustering algorithms and secure the anonymity of the data.

The last step of the data elaboration is to provide the ability to construct a
time series. Therefore, we used the provided timestamps and routing cycles to
separate orders with different consequential working days, ranging from day 1 to
day 60. Table 5.1 provides the obtained data sample. The reader can notice that
we reformulate parcel weights as the theoretical volume each vehicle can handle up
to a specific limit, depending on the vehicle type. Given the recommended weight
load constraints for each vehicle type provided by managers, this assumption allows
us to represent the vehicle capacities in the same terms.

Table 5.1: Elaborated data sample structure.

Day Vehicle Volume Latitude Longitude
1 Cargo bike 0.5 0.242795 0.421381
1 Cargo bike 2.02 0.235659 0.421326
1 Cargo bike 0.2 0.2358 0.424618
1 E-van 0.1 0.236413 0.424969
1 Cargo bike 0.53 0.235914 0.426217
1 Van 1.3 0.233161 0.424218
1 Cargo bike 0.96 0.231968 0.425738
1 E-van 0.08 0.231473 0.422909
1 Cargo bike 0.42 0.230358 0.416805
1 Cargo bike 0.54 0.230225 0.411416
1 Van 2.1 0.230205 0.411439
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5.2 Zone-based demand forecast with VCSBPP
This section outlines the first approach of zone-based demand forecast for fleet

management on the tactical logistic scheme. It involves the usage of the deter-
ministic VCSBPP, outlined in Subsection 5.2.1. Afterward, we provide a forecast
algorithm outlined in Subsection 5.2.2. This algorithm unifies the unsupervised K-
means clustering with the regression utilized to obtain predicted values. Next, we
check the performance of 4 different forecasters based on the ARIMA model, GP
regression, NN with a simple one-layer structure, and the recent LSTM network.
Finally, in Subsection 5.2.3 are outlined the computational results of the application
of the proposed algorithm for the 50 days ”on-the-fly” working scenario.

5.2.1 Variable Cost and Size Bin Packing Problem
approach to capacity optimization in the literature [44, 52, 15]. Firstly, VCS-

BPP was introduced along with the lower bounds and the suitable heuristic in [30].
Here, we briefly recall the VCSBPP formulation to approach it in the following
sections.

Let I(|I| ≤ ∞) be the set of items to be loaded. Each item i ∈ I has a volume
vi. Let J (|J | ≤ ∞) be the set of available bins and let Vj and cj be the volume
and the cost of the bin j, respectively. It is worth mentioning that VCSBPP is
a one-stage problem, in contrast to its stochastic version provided in Section 4.1.
Therefore, we observe only one finite set of available bins J . Notice that both
bin costs and volumes are deterministic but not necessarily integers. Compared to
the original problem, this improvement becomes available due to the application
of a modern MILP solver and relatively small deterministic problem size, which
makes the application of the heuristic redundant. However, it does not impact the
overall performance, except that we can use the continuous volumes provided by
the forecasters. Finally, the model considers the following binary decision variables:

• yj, j ∈ J equal to 1 if bin j is booked and 0 otherwise;

• xij, i ∈ I, j ∈ J equal to 1 if the item i is packed in the bin j and 0 otherwise.

The VCSBPP formulation is the following:
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min
∑︂
j∈J

cjyj (5.1)

s.t.
∑︂
j∈J

xij = 1, ∀i ∈ I, (5.2)
∑︂
i∈I

vixij ≤ Vjyj, ∀j ∈ J , (5.3)

xij ∈ {0,1}, ∀i ∈ I,∀j ∈ J (5.4)
yj ∈ {0,1}, ∀j ∈ J . (5.5)

The objective function (5.1) minimizes the total fixed cost of the selected bins.
Constraints (5.2) ensure that each item i ∈ I is packed in a single bin. Constraints
(5.3) ensure that each bin’s capacity is not exceeded. Finally, Constraints (5.4) and
(5.5) specify the decision variables’ domain.

5.2.2 Zone-based demand forecast algorithm with VCSBPP
Thus, our starting goal is to group the orders in different clusters according to

their geographical location to define zones. Therefore, we deal with the case of
unsupervised learning, where the only guess on parameters required is the number
of microzones. Among all the possible clustering algorithms in this field, we initially
selected the K-means because it is easy to tune state-of-the-art algorithm [20, 19].
After the data is clustered with K-means, we can forecast the next-day demand for
each defined microzone by approaching the time series of each cluster demand. In
this experiment, we explore four different forecasting approaches, comparing the
performances by computing the real-case scenarios of the data provided.

Firstly, we fit the Gaussian Processes (GP) regression model [100]. To apply
it, we adopt the theoretical assumption of the joint Gaussian distribution of the
random variables, which allows us to use the closed-form solution, which is quickly
adaptable to changes in the data trends. The fitting process in the context of the GP
regression is the optimization of the parameters of the mean and kernel functions,
which are chosen to be linear mean and Radial basis functions, respectively. The
output from the fitted model is the mean m(t + 1) and the variance σ2(t + 1) on
the next day (time t+1), which provides the safety of choosing the predicted value.
More precisely, we recall that the 2σ bounds around the predicted mean guarantee
the 99% probability of finding the next sample in the considered boundaries, which
is proven in [106]. We use this fact to introduce safety in the next-day demand by
choosing the prediction for the next time slot to be v(t+ 1) = m(t+ 1) + 1

2σ(t+ 1).
Another model to compare the performance is the ARIMA model, which consists

of three basic components: differencing order, auto-regressive (AR), and moving-
average (MA) terms. Each term is characterized by the associated parameters,

49



Zone-based demand forecast for fleet optimization

which are d, q, p correspondingly [16, 34]. To set the parameters, we used the
python package pmdarima model1, able to fit the ARIMA model automatically
defining the d, q, p coefficients.

The Neural Network-based forecast recently showed high accuracy and robust-
ness to highly chaotic data, which is the case of demand delivery history. Hence,
we choose to use two models based on it. As the primary case, we feed the 1 hidden
layer NN with the data with an input lag of one day. In such a way, we move the
window over the delivery history data for each cluster to train NN, and for the last
step, we predict the expected volume. In addition, we use the Long-Short Term
Memory (LSTM) network, which is the type of basic Recurrent Neural Network
with a particular cell structure. The details of the LSTM structure can be found
in [67, 113, 65]. For our purpose, we train the simple LSTM network without the
hidden layers by feeding it with the data with the input lag.

Having the predicted total volume of orders for each of the defined clusters, we
can move to the next step. Defined problem setting requires not just the conclusion
on the overall volume of goods to move but the number and types of vehicles to use.
To compute these quantities, we use the VCSBPP. In the problem formulation, the
bin volumes are assigned in correspondence to the vehicles presented in the given
data. In particular, the vehicles used are three types of vans with a big capacity
(150-500 kg) and one type of cargo bicycle with a small capacity of 20 kg. In
this experiment, the bin costs are defined, with the help of the company, to be
Pb = Cb + 0.2 ∗ max(Cb), where Pb is the cost of the selected type b of the bin,
and Cb is the capacity of associated bins. This choice reflects the real case scenario
of increased cost in terms of rent, fuel, and emissions for bigger vehicles. The
addition of the 20% of the capacity of the largest bin represents the fixed costs as,
for example, a driver’s salary.

Concerning the definition of the items in the VCSBPP formulation, the pre-
dicted total parcel volume for the whole cluster is considered one item, which is
the essential feature of our approach. This way, we assign each vehicle to a spe-
cific geographical microzone since each item corresponds to the cluster. However,
the case of a small number of clusters leads to obtaining the items with a volume
higher than any capacity available since they represent the sum of the volumes of
the parcels for the whole cluster. In such a case, the VCSBPP is infeasible by
definition.

To deal with this issue, we increment the number of clusters in the K-means
algorithm. This approach has its profits and drawbacks. First, we have to notice
that the K-means clustering algorithm introduces the new centers by separating the
largest existing cluster. To prove it, we plot an example of obtained clusters on the
same day data but with a different number of clusters in Figure 5.2. The reader can

1http://alkaline-ml.com/pmdarima/
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notice that the newly introduced cluster lies in the zone with the highest number of
orders of the previous setting, marked with the red circle. Thus, we obtain a process
of division of the largest cluster. Generalizing this idea, by increasing the number
of clusters, we lower the demand for each of them, thus balancing the demand and
available vehicle volumes. This process allows us to tune the number of clusters
by the simple increment of it whenever we receive the infeasibility of the VCSBPP.
We can also observe that increasing the number of clusters leads to better accuracy
of the predictions but increases the computational burden as a drawback. It is
related to the fact that the forecast must be made once for each identified cluster.
Moreover, it increases the size of the instance we have to solve with VCSBPP,
but this impact is negligible due to deterministic problem formulation. Finally,
obtaining an accurate prediction in the limit case of the same number of clusters
and customers is impossible. However, in practice, it is never reachable until one of
the customer’s demands occupies the whole largest vehicle. The outlined approach
is a practical way to balance the algorithm’s performance in terms of accuracy and
computational complexity.

Figure 5.2: First-day demand clustered with K-means with 12 clusters (left) and
13 clusters (right). Highlighted the zone of new introduced cluster. The x and y
axis represent the latitude and longitude values correspondingly.

The proposed overall prediction-optimization framework follows the approach
in [114]. We run the algorithm ”on the fly,” starting the simulation with the as-
sumption of the knowledge of the orders made in the first 5 days. After receiving
this information, we perform a clustering step with a few starting clusters. Then,
we perform the forecast of the aggregated volume of the orders for each of the clus-
ters. Each predicted microzone demand volume is considered one item we want to
pack into the available vehicles (bins). To do so, we optimize the VCSBPP with
the Gurobi solver package [51]. If the problem is infeasible, we increase the num-
ber of clusters and repeat the procedure. The pseudo-code of the overall Capacity
Forecast algorithm is outlined below as the Algorithm 4, where the n is the starting
number of clusters, Vb is the set vehicle capacities given, and b is the indicator set of
bin type for each vehicle available. The Data consists of the historical data of the
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orders done in the form of the geographical position of the order and the volume
of the corresponding parcels, i.e., the last three columns of Table 5.1. Further, the
Data(c) contains the total volume of orders separated by each cluster c.

Algorithm 4 Capacity Forecast algorithm
1: procedure Capacity Forecast( n, Data, Vb, b )
2: while True do
3: Clusters← Clustering(n,Data)
4: for c in Clusters do
5: vn ← Forecast(Data(c))
6: end for
7: V ehicles← VCSBPP (items = vn, bins = Vb(b))
8: if Infeasible then
9: n← n+ 1

10: else
11: return (V ehicles, vn)
12: end if
13: end while
14: end procedure

The algorithm’s output is the number and types of bins to book, the predicted
volume for each cluster vn, and the total cost incurred, computed by the value of the
objective function of the VCSBPP. To test the performance of the proposed method,
we compare the cost obtained using the outlined capacity forecast algorithm and
the cost received from the solution of the VCSBPP using the actual order volumes
observation of the next day. By doing so, we can estimate the relative loss of
resources with the application of our approach compared to the theoretical case of
perfect information. It is worthwhile noting that for the usage of the VSCBPP, it
is crucial to get an estimation of the cost of the fleet assignment. In fact, since the
VSCBPP is a discrete problem, the relation between the parameter of the instance
and the final cost is nonlinear. Thus, evaluating our method just by using the
error in the forecast demand may lead to an unfair or incomplete evaluation. This
characteristic follows from the choice to consider discrete bins.

5.2.3 Experimental results of zone-based demand forecast
with VCSBPP

Meanwhile, the first 5 days are considered passed, and the demand is known.
The data acquisition for this experiment is described in the section 5.1. Then,
to forecast the demand volume, we construct a multiple time series of the daily
volumes of the parcels for each identified cluster, assuming the knowledge of the
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previous 5 days delivery history and enriching it with new days while the algorithm
runs daily.

As mentioned above, the main step of the algorithm validation is the compar-
ison of the objective function cost values of the VCSBPP solution obtained by
passing into it the predicted order volumes and the real volumes. For simplicity,
the obtained solutions are called the predicted and real (actual) demand VCSBPP
solutions accordingly. Since the cost and capacity of the bins in our setting are
linearly dependent, it is possible to consider the difference in the cost as the dif-
ference in the capacity required to rent predicted by our algorithm and the actual
required capacity of the next day. We expect to have equal or higher values of the
capacity of the predicted solution mainly due to considering the total volume for
each cluster as one item. Thus, our solution provides a slight approximation error
by construction. Nevertheless, it is possible to fix this issue only by introducing a
suitable optimization problem, which will be discussed in the following sections.

Figure 5.3: The daily comparison of the values of the objective function for the
solutions of the VCSBPP for the predicted with GP regression (blue) and actual
(brown) demand.

Particular attention in results elaboration should be devoted to the case of the
GP regression. It provides a safety treatment in the forecast by its construction
since the predicted volume is computed as m(t + 1) + 1

2σ(t + 1). Thus, a higher
amount of predicted volumes follows with the higher capacity requirements. Figure
5.3 plots the daily comparison of the VCSBPP objective function values for the
demand predicted with GP regression and actual data. On the y-axis, we plot
the obtained objective function values of the VCSBPP solution with predicted and
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actual demand volumes. On the x-axis, we outline the day number in the simu-
lation. The reader may notice that the predicted solution is way higher than the
actual. On the other hand, from the tactical decision point of view, there must
be no points with the predicted capacity being lower than the real VCSBPP solu-
tion, i.e., there are no scenarios in which the company can not satisfy the demand.
Hence, this forecasting method assumes maximal safety in the decision about the
required capacity. However, it is required to carefully choose the σ bound for the
predicted values to be safe in satisfying the demand and not overestimate the de-
mand. In this case, we observe that a capacity that can be roughly compared to one
van distinguishes the predicted solution with the highest capacity from the actual
one. That is acceptable from the tactical decisions point of view since the solution
perfectly satisfies the completely uncertain demand, but further improvement in
the forecasting mechanics could decrease this gap. However, the reader can notice
that the predicted capacity with the GP regression perfectly follows the shape of
the actual demand. Thus, with a manual tune and update of safety bounds (σ
multiplier), it is possible to obtain an accurate empirical solution for the provided
task.

The required capacities obtained by ARMIMA, NN, and LSTM-based forecasts
coupled with VCSBPP are outlined in Figure 5.4. On the y-axis, we plot the
obtained objective function values of the VCSBPP solution with predicted and real
demand volumes. On the x-axis, we outline the day number in the simulation.
The reader can notice that their output accurately follows the pattern of the actual
demand solution objective function values. However, there are multiple points
(days) where it is lower than the real solution, meaning the demand would only
be partially satisfied. Thus, the introduction of some safety to the decision is
required. The fixed threshold for each cluster’s predicted volumes could be one
option. However, introducing such a threshold is a highly empirical task, and it
should be treated from the financial perspective of the problem, which is out of the
scope of this application.

To better compare the forecasters, we address the RMSE metrics. The averaged
among clusters demand prediction RMSE for all the forecasting models is outlined
in Figure 5.5. On the y-axis, we plot the obtained RMSE values of the forecasters.
On the x-axis, we outline the day number in the simulation. This comparison
shows forecasters’ performance regardless of the optimization problem usage. Still,
in such complex correlations and constantly changing trends of demand forecasting
data, it is impossible to expect a convergence of any forecast to a stable error level.
Nevertheless, we can observe that GP regression is the most stable method; the
LSTM network and ARIMA model show the trend to improve the performance
with the data enrichment; the one-layer NN-based forecast appears to be very
accurate in the beginning and hence fast to train, but loses the performance with
time, that could be due to the overfitting issues.

The VCSBPP solution structure for all four forecasting methods is outlined
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Figure 5.4: The daily comparison of the values of the objective function of solu-
tions of the VCSBPP with perfect information and the three forecasting methods:
ARIMA, NN, and LSTM.

Figure 5.5: The averaged among clusters demand prediction Root Mean Square
Error for the four different forecasting methods.

in Table 5.2. It shows the percentage of the bins chosen by different algorithms
from all available capacities. The vehicle type is outlined with the corresponding
capacity. This percentage is averaged over all the solutions of the 45 days. Hence,
the sum of it for each of the methods is not supposed to be 100%. From the table,
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we can check which capacity is preferred by the logic of the overall framework and
the influence of the particular forecasting approach. The results can be compared to
the actual VCSBPP solution structure with the full knowledge of the real demand.
The bin costs and the mean of Root Mean Squared Errors (RMSE) for the total
demand volume prediction in the 45 days are also outlined.

Table 5.2: The VCSBPP solution structure comparison.

Capacities, kg 150 500 300 20 RMSE
Costs, eu 250 600 400 120 -

Real demand
solution 52.86% 23.21% 37.05% 68.75% -

GP prediction 9.29% 79.46% 35.98% 2.68% 58.5
ARIMA prediction 2.75% 61.76% 15.69% 0.98% 44.8

NN prediction 1.18% 61.27% 16.18% 0.49% 43.4
LSTM prediction 3.53% 52.49% 23.24% 0.49% 75.4

From the solution structure table, it is clear that the proposed approach is prone
to choose the biggest vehicle available regardless of the forecasting tool. This is
because we consider the collected volumes of the orders inside each cluster as one
item. However, this is not a problem for the case when the set of bin types does not
differ much in capacities, as in the typical supply chain problem [26] and in last-
mile and e-commerce applications, where the parcel sizes are small [9]. Moreover,
this issue can be fixed by introducing the appropriate optimization problem, as
discussed below.

• The introduction of a suitable optimization problem of assigning vehicles
(capacities) to the zone is required to improve the approximating issues of
the whole framework and to cope with the zone-based demand forecast.

• Introduction of the more training data available is essential to provide a rea-
sonable background of the forecasters with NN-based regressions.

• The optimal city zoning from the fleet managing perspective has to be elab-
orated.

Outlined issues are elaborated on in Section 5.3.

5.3 Zone-based demand forecast with ZCAP
The outlined problem refers to the different demand volume scenarios, which

can be obtained with the forecasting algorithms outlined in Subsection 5.3.2. In
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addition, we discuss the methodological aspects of the whole framework improve-
ments, compared to the existing approach outlined in Section 5.2. In particular,
we discuss two strategies for city zoning in Subsection 5.3.3 and the training data
enrichment process provided in Subsection 5.3.4. Finally, we discuss the computa-
tional results of the provided approach in Subsection 5.3.7 and the scientific and
industrial impact of the provided results in Subsection 5.3.8.

5.3.1 Zone Capacity Assignment Problem
This problem aims to assign a fleet of capacities (vehicles) to provided city zones

with minimal cost. This assignment considers the constraints on uncertain demand
volume satisfaction for each zone with the provided vehicle capacities. In contrast
to existing approaches, such as VCSBPPSI, we assign capacities to the urban areas’
zones. This change improves the accuracy of the overall demand forecast and fleet
capacity management framework, as proven in [40].

To introduce demand uncertainty, let us consider a set of scenarios S with a
finite cardinality S. Let J be the set of identified city zones where delivery demand
must be satisfied with the available vehicles. We consider each sample of prediction
data as the different scenario s ∈ S of problem realization with the probability πs.
Therefore, for each zone j ∈ J , we assign the demand V s

j , j ∈ J , s ∈ S for each
scenario.

Let I be the finite set of vehicles available in the first stage of the problem. Each
vehicle available in the first stage is characterized by the non-negative cost ci, i ∈ I
and capacity vi, i ∈ I. Analogously, we define the set of vehicles available on the
second stage of the problem K with corresponding costs ck, k ∈ K and capacities
vk, k ∈ K. Let us consider the following decision variables:

• yi = 1 if vehicle i ∈ I is used, and 0 otherwise

• zs
k = 1 if vehicle k ∈ K is used in scenario s ∈ S, and 0 otherwise

• xij ∈ [0, 1] is the fraction of capacity vi of vehicle i ∈ I assigned to the zone
j ∈ J

• θs
kj ∈ [0, 1] is the fraction of capacity vk of vehicle k ∈ K assigned to the zone
j ∈ J in realization s ∈ S

Using the above notation, the zone capacity assignment problem can be stated
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as follows:

min
∑︂
i∈I

ciyi +
∑︂
s∈S

πs
∑︂
k∈K

ckz
s
k, (5.6)

s.t.
∑︂
j∈J

xij ≤ yi, ∀i ∈ I (5.7)
∑︂
j∈J

θs
kj ≤ zs

k, ∀k ∈ K, ∀s ∈ S (5.8)
∑︂
i∈I

vixij +
∑︂
k∈K

vkθ
s
kj ≥ V s

j , ∀ j ∈ J , ∀s ∈ S (5.9)

yi ∈ {0,1}, ∀i ∈ I (5.10)
zs

k ∈ {0,1}, ∀k ∈ K, ∀s ∈ S (5.11)
xij ∈ [0,1], ∀i ∈ I, ∀j ∈ J (5.12)
θs

kj ∈ [0,1], ∀k ∈ K, ∀j ∈ J , ∀s ∈ S (5.13)

The objective function (5.6) aims to minimize the total cost of vehicles used
in the first stage and the expected cost of vehicles used in the second stage. Con-
straints (5.7) ensure that each assigned first-stage vehicle would impact the final
cost. Constraints (5.8) ensure that each assigned second-stage vehicle would im-
pact the final cost. Constraint (5.9) represents the absolute predicted demand
satisfaction requirement for each scenario. Finally, Constraints (5.10-5.11) are the
integrality constraint on the variables yi and θs

kj. Meanwhile, Constraints ((5.12) -
(5.13)) regulate that the capacity assignment variables remain continuous, enabling
travels to multiple zones.

5.3.2 Demand forecast algorithm with ZCAP
This subsection is devoted to the Zone-based demand forecast algorithm, which

employs ZCAP. The general idea of the approach follows the ”divide and conqueror”
strategy, presented in [40]. In detail, we follow the main steps of the outlined
methodology: divide the urban area into Nzones zones, forecast the demand volume
for each zone, and use the prediction results to provide a fleet requirement. How-
ever, we adapt this strategy to the ZCAP, improving the robustness and accuracy
of the entire framework.

The algorithm’s first step is the city grid separation into different zones. With
the grid city separation, we collect the delivery demand history for each identified
zone by assigning each customer in the data to one zone. Summarizing the de-
mand volume (parcel weight in case of data available) for each zone and each day,
we obtain the time series, where each time leg (day) corresponds to the summed
demand volume. These time series are available for each zone, thus formulating
a two-dimensional data array with dimensions Nzones x Days, where Days is the
number of working days in the data available up to a current moment. It is worth
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mentioning that the identified zones without assigned orders in the entire dataset
are not considered in the following procedure since due to the city infrastructure
(parks, highways, etc.).

Further, this data is fed to a set of forecasters trained for each identified zone.
Each time series of specified demand volumes of the corresponding zone forms a
training data sample for the forecaster. After training, we receive a predicted value
for each zone with the chosen forecaster based on the given time series. This value
is considered the ”next-day” demand for each zone j in one possible realization of
uncertainty, i.e., one scenario s ∈ S in ZCAP outlined in Subsection 5.3.1. the
cardinality of the set of scenarios S for ZCAP. Finally, the last step of the proposed
approach is the optimization of ZCAP, identifying the fleet requirements for the
next time slot.

Each forecasting approach used in the outlined algorithm and its short descrip-
tion with the parameters used is provided in the following:

• ARIMA. Forecast based on the well-known ARIMA model [43]. To set the
parameters, we used the python package pmdarima model2, able to fit the
ARIMA model automatically defining the coefficients.

• GP. A Gaussian Process-based regression can be applied with the assump-
tion of joint Gaussian distribution of random variables [100]. We follow the
methodology in [40], but reduce the predicted volume to be mean(t + 1) +
3
8σ(t+ 1), given that it satisfies the next day demand.

• RF A forecaster based on a Random Forest (RF) regression. The time series
is fed to RF with a sliding window of 10 sample size. The following approaches
are fed with the same sliding window methodology of 10 samples. To construct
RF, 100 estimators are applied.

• XGBoost Forecast based on XGBoost classifier. We identified the 30 esti-
mators parameter as the best fit for the provided forecast scenario.

• NN 1L NN-based forecast. We follow the approach provided in [40]. In this
setting, we used the 1 hidden layer of 100 neurons with ”Relu” activation
function.

• NN ML NN-based forecast with augmented network structure of 2 hidden
layers with 32 and 8 neurons.

• DNN NN-based forecast with 3 hidden layers, which can be classified as the
Deep NN. We set 64, 32, and 16 neurons for these DNN hidden layers.

2http://alkaline-ml.com/pmdarima/
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• LSTM Long-Short Term Memory network-based forecast. We train the sim-
ple LSTM network with one hidden layer of 100 neurons by feeding it with
the data with the input lag [40, 67, 113].

• LSTM ML Long-Short Term Memory network-based forecast with a multi-
layer structure consisting of 2 layers with 64 and 32 neurons.

The sliding window size indicated for each forecasting method is tuned manually
to obtain the best forecast accuracy in terms of the Rounded Mean Squared Error
(RMSE). Most forecasting methods are implemented with the help of the Scikit-
learn library [86]. Meanwhile, the NN-based forecasters are tuned with PyTorch
library [85].

The main parameter to be tuned in the proposed setting is the number of zones
Nzones, corresponding to the data aggregation level. The low number of zones
leads to underestimating the underlying city infrastructure complexity and poor
forecasting accuracy. On the contrary, increased Nzones leads to a low zoning data
aggregation level, which provides forecasters with poor generalization ability. In
other words, we expect a high error level on the test dataset, similar to overfitting
issues in ML nomenclature.

Therefore, we must identify optimal Nzones for each time slot since the data
available is enriching daily with the new orders becoming known. Experimental
results in Subsection 5.3.5 show that the variance dependency function on the zone
number is not convex. Nevertheless, we can apply a global optimization algorithm
to identify optimal Nzones and underlying city separation in the daily scheme. For
this purpose, we involve GP regression as the global optimization scheme for param-
eter Nzones. This approach allows us to approximate the optimal Nzones regarding
the obtained forecasters’ variance with a minimal function sampling, which is the
most computationally heavy part [99]. Moreover, the methodology of GP regres-
sion implies the closed-form solution with the hyper-parameters auto-tuning, which
provides a more robust environment for final users as logistic managers.

The flowchart of the introduced algorithm is outlined in Figure 5.6. The reader
can notice that the algorithm’s first step is dividing the past delivery D days data
according to a grid on the map with Nzones cells. If the obtained Nbar with GP
regression coincides with the current Nzones parameter, we continue to ZCAP. If not,
we repeat the outlined Nzones optimization procedure with setting Nzones = Nbar.

The entire daily zone-based demand forecast with the ZCAP is outlined as Al-
gorithm 5. It is worth mentioning that this algorithm takes a set of all outlined
classifiers, the entire dataset available for the current day, capacities of vehicles
available (Cb), as well as its available number b. The outlined algorithm returns a
set of vehicles required to serve the next-day demand and the predicted demand
volumes. In this algorithm, with a slight abuse of notation, we set each demand fore-
cast as one scenario s ∈ S for ZCAP. In addition, we denote GPregression(var(Vc))
as the procedure of fitting the GP regression to the function, which takes Nzones
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Figure 5.6: Zone-based forecast with ZCAP Nzones optimization flowchart.

as input and provides the resulting total standard deviation of predicted values for
each forecaster.

5.3.3 City zoning: clustering vs. grid
Division of the urban service area into different regions is a widely adopted

practice by logistic managers. For years division of the city by historical areas
or with postal codes was the basic knowledge to approach the tactical decisions
in the last mile. Furthermore, given this division, the fleet is usually assigned to
each fixed zone. This intuition lies behind the formulation of ZCAP, outlined in
Subsection 5.3.1. However, recent studies showed that the zoning of the logistics
service area with modern clustering tools dramatically improves the quality of mod-
eling approaches, reducing daily demand variance for each zone and thus implicitly
providing stronger spatial correlations [38]. Therefore, the optimal city zoning for
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Algorithm 5 Fleet optimization algorithm with ZCAP
1: procedure Daily fleet optimization( Data, Forecasters, Cb, b )
2: while True do
3: Zones← Grid separation(Nzones, Data)
4: for s in Forecasters do
5: for c in Clusters do
6: V s

c ← Forecast(Data(c),method = s)
7: end for
8: end for
9: Nbar

ˆ ← arg min(GPregression(var(Vc)))
10: if Nbar

ˆ == Nzones then
11: V ehicles← ZCAP (Demand = V s

n , bins = Cb(b))
12: return (V ehicles, V s

n )
13: else
14: Nzones = Nbar

ˆ
15: Go to Step 3
16: end if
17: end while
18: end procedure
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uncertain logistics models must be elaborated.
Introduced ZCAP in Subsection 5.3.1 provides more variability for the zoning

approaches. Therefore, we decided to compare the clustering of the previous or-
ders by introducing a grid on the city map with the K-means clustering approach
outlined in [40]. The grid is chosen to symmetrically separate the entire provided
region with equivalent segments on latitude and longitude. Unfortunately, the
more sophisticated grid sells require more parameters and are thus less adaptable
to further optimization. Nevertheless, this question requires further research.

We compare the performance of the two outlined approaches on the aforemen-
tioned dataset of the last-mile delivery demand history in Antwerp, Belgium. First,
we randomly select 8 different days in the data and apply grid and K-means clus-
tering. Then, for the following experiment, we fixed the number of zones to be
Nzones = 120 to check both methods’ performance.

Figure 5.7 outlines the demand volume distribution for each zone obtained with
a grid separation on 8 different working days. The equivalent demand distribution
on clusters obtained with the K-means for the same days is outlined in Figure 5.8.
We plot each zone’s associated demand volume on the y-axis and the zone number
on the x-axis. The zones are reordered in demand volume decreasing order for
each outlined day in both figures. In addition, the demand volume for each day is
marked with a different color. Therefore, we obtain a demand volume distribution
for multiple days with different zoning approaches.

The reader can notice that the peak volume for the grid distribution is higher
than with the K-means clustering. This peak is related to the group of particularly
loaded regions in the city, such as commercial districts. Meanwhile, the demand
distribution obtained with K-means clustering is smoother and characterized by a
so-called ”fat tail”, meaning there are more clusters with low but not zero demand.
However, in both cases, we receive a similar form of distribution that confirms an
equivalence between both methods.

Therefore, we plot the received demand volume variance with both methods for
the entire dataset (60 working days) in Figure 5.9. We plot each zone’s associated
demand volume variance on the y-axis and the zone number on the x-axis. In this
plot, the zone number remains fixed for each day but is reordered in a variance-
decreasing order. At this point, we receive completely different distributions from
the demand forecast perspective since we aim to reduce the demand variance. From
the integral of both distributions (surface under function), we receive 26.7% overall
variance reduction with grid separation. That reduction is related to the rigid cou-
pling of the spatial information with the grid clustering compared to the K-means.
Moreover, identified zero-demand zones are excluded from further elaboration with
the forecasters, significantly reducing the computing time of the following prediction
step. Therefore, we provide the experimental results based on the grid separation
of the city in the following work.
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Figure 5.7: Distribution of demand volume for 120 zones obtained with a grid city
separation for 8 different days.

Figure 5.8: Distribution of demand volume for 120 zones obtained with a K-means
city separation for 8 different days.
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Figure 5.9: Distribution of demand volume variance for 120 zones obtained with a
K-means clustering (blue) and grid city separation (red) for 60 working days.

5.3.4 Demand data enrichment for Zone-based demand fore-
cast

Most modern forecasting methods rely on the enormous sets of data available
(Big Data phenomena), providing a complex forecasting mechanism enabling ap-
proximation of the real-world data-generating process. This requirement is partic-
ularly relevant for forecasters based on Deep NN (DNN) models, which assume a
complex multi-layer structure of the NN employed. Therefore, this section discusses
the methodology of demand data generation for further training the forecasters.

Delivery demand data generation is a complex task, which requires derivation
of the probability distribution for parcels’ weight and location of order. The basic
idea of the proposed approach follows the city division into quadrants of different
demand densities, outlined in [29]. However, in contrast to the previous approach,
we introduce the probability of order appearing for each region. Therefore, we
apply the grid of the urban area with N cells. To each cell of the grid n ∈ [1, N ],
we assign a probability pn, which is computed as follows:

pn = qn

max(Qn) , (5.14)

where qn ∈ Qn is the number of orders in the available data, and Qn is the vector
containing the order numbers for each identified cell. In such a way, we provide
a two-dimensional probability distribution from which we can sample the training
data, which improves the approximating ability with the increase of the parameter
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N . Moreover, we obtain a continuous probability distribution in the limit case of
N −→∞.

Figure 5.10: Histogram comparing the true parcel weight distribution with the
generated chi-squared distribution with 0.15 degrees of freedom.

Concerning the actual parcel weight, it requires manually deriving the distribu-
tion. Figure 5.10 shows a histogram comparing the true parcel weight distribution
with the generated Chi-squared distribution with 0.15 degrees of freedom and the
same sample size of the whole dataset available. The parcels’ weight is outlined on
the x-axis with the bars, and the parcels’ quantity is outlined on the y-axis. To
match the values of the parcels‘ weight, we multiply every generated value by a
re-scaling constant coefficient of 20. As the reader can notice, the generated sam-
ple follows the true data, and the obtained X ∼ 20 χ2(0.15) is suitable for this
particular problem case. Nevertheless, the Chi-squared distribution can be suit-
able to approximate every case of parcel weight distribution. Meanwhile, the daily
total orders number parameter follows the normal distribution with the mean and
variance of the actual data available.

Lastly, we study the dependence of the zone number parameter N on demand
volume variance for each zone in the outlined data generation process to improve
its accuracy. For this purpose, we generate a sample of demand data with the
outlined procedure of the same size as the whole data available and N parameter
ranging from 10 to 200 clusters. Then, we check the standard deviation of demand
for each zone in the unified data sample (generated and available). Figure 5.11
outlines each zone’s resulting demand volume standard deviation with the zone
number parameter N change in the data generation process. On the x-axis, we
plot the changing zone number parameter N ; on the y-axis, we outline the demand
volume standard deviation between zones. The reader may notice that the demand
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variance decreases with a more detailed city grid (higher zone number) up to a
certain parameter N = 150. After this point, the more detailed city grid provides
more demand variations for each zone, resulting in an ”overfitting” of the proposed
data generation scheme. Therefore, we adopt the parameter N = 150 suitable for
the provided city area.

Figure 5.11: Total demand volume standard deviation for each zone with the change
of the zone number parameter N zones in the data generation process.

5.3.5 Zone number influence to demand forecast
To check this correlation, we fixed the day D = 25 and changed the number

of zones parameter Nzones. The mean of prediction error percentage between each
forecaster, introduced in Subsection 5.3.2, with the change of Nzones is outlined
in Figure 5.12. On the y-axis is plotted the error between the actual demand
volume and predicted value in percentage, and on the x-axis are outlined zone
number parameters. The reader can notice an improvement in the accuracy of all
forecasting methods around the 64 and 99 identified zones, corresponding to the
best city zoning settings.

Meanwhile, Figure 5.13 plots the overall standard deviation of predicted demand
volumes with all aforementioned forecasters for different zone number Nzones pa-
rameters for the same day. On the x-axis, we provide the number of zones (Nzones);
on the y-axis, we plot the standard deviation between the predicted volumes of
each forecaster.

The reader can notice that the obtained function is not convex. However, the
point of 64 zones provides the least variance between forecasters. This, in fact,
corresponds to the parameters of the least forecasting error in Figure 5.12, which
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Figure 5.12: Total absolute error percentage of predicted demand volumes sum
with different forecasters for different Nzones parameter.

confirms our guess that the least variance between forecasters provides the best
accuracy for each forecaster. Moreover, the reader can notice that the accuracy of
forecasters, in general, improves with the decrease of variance between predicted
values. Therefore, we obtain the suitable parameter to identify the optimal city
zoning for the zone-based demand forecast since improvements in forecast accuracy
provide more accurate fleet management with the ZCAP as well.

Figure 5.13: Total standard deviation of predicted demand volumes sum with dif-
ferent forecasters (y-axis) for different Nzones parameter (x-axis).
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Although the provided experiments propose a good intuition on the optimal
city zoning, the forecasting accuracy can be significantly improved by defining the
optimal zone number Nzones for each working day. To show it empirically, we
provide the resulting forecasting accuracy for 3 different days with the zone number
change. For this result, we outline the forecasting scenario for 3 non-consecutive
days with the step of 5 days with changing zone number parameters in the city grid.
In Figure 5.14 are outlined the resulting forecasting accuracy mean (left picture,
y-axis) and standard deviation of the predicted zone volumes (right picture, y-
axis) with the changing zone number parameter Nzones on the x-axis for 3 different
days. This setting allows us to catch the forecasters’ performance with the data
enrichment and zone number changes. For the day 25, we can see that the
setting of 64 zones shows the lowest prediction error and variance. In addition,
we receive around 5% accuracy improvement for all the classifiers compared to the
worst scenario of the 49 zones, which is a considerable improvement. The division
to 64 zones corresponds to the optimal zone number for the day 25. However, with
the following forecast simulation and data enrichment, the optimal zone number
in terms of forecasters’ accuracy is increasing. For the day 30, we can observe a
minimal absolute prediction error at the point of the 99 zone number parameter.
This setting follows with the minimal standard deviation of the predicted values in
the same point of 99 zones for this day. Moreover, the same result is observable
for the day 35 in the point of 120 zones. Herefore, with the data enrichment,
the city zoning should become more detailed to provide the best accuracy of the
underlying city structure. Moreover, these results confirm the previous guess that
it is necessary to identify the best zoning parameter for each forecasting scenario,
which is possible to do by relying on the standard deviation of the predicted values
for all the forecasters available.

Figure 5.14: Absolute prediction error mean (left) and standard deviation of the
predicted zone volume (right) of forecasters with different zone number parameters
for three different days.
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5.3.6 Experimental setup for ZCAP and VCSBPPSI
This subsection briefly recalls the experimental setup details used in this work.

To validate the performance of the proposed zone-based demand forecast with the
ZCAP approach, we compare it with the existing baseline method of the solution
of the VCSBPP with the stochastic items (VCSBPPSI) [27, 26]. The experiment
was performed on the real data of 60 days delivery orders in Antwerp, Belgium,
with the assumption of knowledge of the first 10 days. During the simulation,
the data sample increased accordingly to the new daily data available, and all the
previous days were used as the training data for forecasters. Moreover, we enrich the
”known” days for 200 days with the data generation process outlined in Subsection
5.3.4. To compute the solution of the ZCAP and VCSBPPSI employed off-the-
shelf solver Gurobi 9.1.2 [51]. All the computation was performed on the machine
with the Intel Core i7-9750H CPU @ 2.60 GHz. Due to the high computational
complexity of VCSBPPSI, we apply the Progressive Hedging heuristics introduced
in [42], and refer to the approximated solution as the VCSBPPSI result.

The VCSBPPSI model assumes that the probability distribution for the uncer-
tain demand volume is given. However, in the case of data available, it is possible to
manually derive a suitable probability distribution to adapt it to the given data. We
refer to the data generation process description in Subsection 5.3.4 for the details on
probability distribution derivation. We make the same hypothesis of Chi-squared
distribution (X ∼ 20 χ2(0.15)), which is confirmed to be the most suitable for the
data available (see Figure 5.10).

Next, we must set up the fleet parameters, such as vehicle types, capacity, and
costs. In the provided data, we identified the presence of 3 vehicle types: cargo
bikes, e-vans, and light-duty vans. The vehicles’ capacities correspondingly were
100, 300, and 600 kilograms. To model the most realistic scenario, we follow the
number of available vehicles in the data to have 12 bikes, 12 e-vans, and 6 regular
vans in the first and second stages of both problems. Lastly, the cost of the vehicles
is subjected to uncertainty and generated following the procedure outlined in [27,
11] and practitioners’ suggestions. The first-stage cost ci is generated as vehicle
capacity powered to q, where q equals two multiplied by uniformly random value
with a different range, depending on vehicle type. The second-stage costs ck are
computed similarly, but q equals three multiplied by the same distribution. This
setting refers to the typical case of increased vehicle rent costs in the second stage
of the problem (operational phase). The summary of the fleet parameters can be
found in Table 5.3.
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Table 5.3: Experimental setting summary.

Vehicle type Cargo bike E-van Van
vi 100 300 600
ci v∗∗

i 2U(0.2, 1.2) v∗∗
i 2U(0.6, 1.6) v∗∗

i 2U(0.9, 1.9)
ck v∗∗

i 3U(0.2, 1.2) v∗∗
i 3U(0.6, 1.6) v∗∗

i 3U(0.9, 1.9)

5.3.7 Experimental results of zone-based demand forecast
with ZCAP

This subsection discusses the experimental results of zone-based demand fore-
cast with ZCAP compared to the traditional VCSBPPSI model. The experimental
setting for the 50 working days simulation is outlined in Subsection 5.3.6. We start
with the graphical comparison of both approaches’ performance on a daily basis.
Then, we compare both approaches’ obtained solution structure and averaged char-
acteristics.

Firstly, we check the demand satisfaction criteria, as the most important in the
tactical decision scheme. We compute the parameter ∆ as the difference between
the actual demand Dz, z ∈ [1, Nzones] and the capacity of the chosen vehicles:

∆ =
∑︂
i∈Î

ci −
Nzones∑︂

1
Dz, (5.15)

where Î is the subset of the vehicles chosen on both stages of the optimization
problem. In addition, we compute the same parameter for the actually used vehicles
in the provided dataset.

Figure 5.15 outlines the resulting ∆ for VCSBPPSI, ZCAP, and actually used
vehicles on a daily basis. in which we want to simulate the fleet management
scenario, and on the y axis, we plot the ∆ parameter in units corresponding to
the capacity defined in Subsection 5.3.6. The reader may notice that the lowest ∆
parameter values correspond to the ZCAP solutions, except in the first time step.
Meanwhile, with the VCSBPPSI, we obtain a better logistics scheme in terms of
capacity used compared to the vehicles involved in the given dataset. This is true
except at one point in the day 12, where the optimization point suggests more
capacity than used in the real data. It is related to the drastic drop in the demand
in the day 12, which is not estimated with the introduced probability distribution
of demand. Finally, it is worth mentioning that both approaches satisfy the next-
day demand since there are no points with the negative ∆ parameter. However,
the ZCAP shows a considerable improvement in used capacity reduction, especially
close to the end of the simulation (days 54 - 60). We relate this to the fact that the
proposed zone-based forecasting algorithm with ZCAP has been adapted (trained)
to real data, thus showing better accuracy with time.
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Figure 5.15: Resulting ∆ for VCSBPPSI, ZCAP, and actually used vehicles on a
daily basis

Figure 5.16 plots the daily cost reduction (in percentage, x-axis) of application
VCSBPPSI and ZCAP problems, compared to the cost of the actual solution in
the given data. On the y-axis is outlined the day number in the simulation. in
almost every case compared with the VCSBPPSI application. We can observe a
cost reduction of up to 64% compared to the used fleet capacity and, on average,
around 20% cost improvements compared to the state-of-the-art approach. This
improvement confirms the initial guess on the benefits of a data-driven approach
compared to the traditional methods. Moreover, with the daily data enrichment,
we expect more stable results on demand forecast and fleet capacity management
in the following.

Concerning the obtained solution structure, in Table 5.4 we outline the decision
values for each vehicle type: cargo bikes (CB), e-vans (EV), and light duty vans
(LD). We separated each problem’s first and second-stage decisions and averaged
them over the 50 days working scenario. The reader may notice that in both ap-
proaches, the first-stage vehicles are more attractive in terms of cost and, thus, are
frequently chosen to serve the demand regardless of the vehicle type. Additionally,
we can observe a significant overall reduction in the total number of vehicles chosen
with ZCAP. In fact, ZCAP provides a more flexible fleet management strategy due
to the increased fraction of second-stage vehicles chosen. This fact corresponds to
the lucky cases when the second-stage capacity better fits the demand regardless
of the increased cost. Finally, we can observe that ZCAP is slightly better at
utilizing the smaller vehicles overall, which provides a better cost reduction. Nev-
ertheless, without loss of generality, ZCAP allows the inclusion of CO2 related costs
and constraints to each vehicle type to provide an even better balanced capacity
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5.3 – Zone-based demand forecast with ZCAP

Figure 5.16: Total absolute error percentage of predicted demand volumes sum
with different forecasters for different Nzones parameter.

distribution.

Table 5.4: Solution structure of VCSBPPSI and ZCAP.

Vehicle type CB EV LD
VCSBPPSI F.S. 0.977124 0.970588 0.993464
VCSBPPSI S.S. 0.01634 0.003268 0.019608

ZCAP F.S. 0.856209 0.811765 0.760784
ZCAP S.S. 0.054902 0.004575 0.001307

Finally, in Table 5.5, we outline the main performance metrics for each ap-
proach, averaged over the entire test period. They include the total capacity volume
used in the solution, the averaged capacity ∆ outlined above, the overall solution
cost, the percentage of cost reduction compared to the really used fleet of vehicles,
and a computing time of the optimization problem. The reader may notice the
overall better performance of the ZCAP-based approach: we managed to reduce
the used capacity by around 27.4%, provided a fleet with almost 60% less empty
space without knowledge about demand, significantly reduced the involved costs
and computing time of the problem. Nevertheless, to provide a fair comparison be-
tween algorithms, we outline the computing time of the optimization problem only,
which is almost negligible for ZCAP (around 0.2 seconds on Intel i7-9750H CPU
@ 2.60GHz), regardless of the data sampling, zoning, or prediction. Evidently, the
entire zone-based forecasting algorithm outlined in Subsection 5.3.2 requires much
more computational effort. However, we expect this issue will be mitigated with
the logistics company working scenario due to the constantly increasing availability
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of more data. This, in turn, stabilizes involved parameters (as Nzones) and enables
the usage of pre-trained forecasters, especially in the case of NN-based regression.

Table 5.5: Performance comparison between VCSBPPSI and ZCAP.

Approach VCSBPPSI ZCAP
Capacity used 4172.549 3027.843
Capacity ∆ 1958.805 814.0987

Costs involved 515026.3 226461
Cost reduction [%] 31.54897 49.72781
Computing time [s] 288.275 0.202957

5.3.8 Industrial and methodological impact of zone-based
demand forecast with ZCAP

All the forecasting methods performed considerably better in terms of RMSE
with additional training data generated with the process described in this chapter.
Finally, the results of the introduced pipeline application to the 50 working days
of the logistics company simulation with preliminary knowledge of the past 10
days were compared to the VCSBPPSI application with the derived Chi-squared
probability distribution for the uncertain items. The results showed a significant
reduction in operational costs, used capacity, and empty space in the vehicle load
compared to the traditional approach based on VCSBPPSI.

Furthermore, the city’s division into different service zones mimics the widely
adopted capacity optimization strategies in-field on the tactical level, reducing the
gap between industry and operational research. the potential reduction in half-
empty carriers around the city. Furthermore, achieved safety in demand coverage
raises the possibilities of ML applications in the logistic service providers‘ man-
agement software. Likewise, recently appearing online logistics platforms unifying
capacity management and consolidation can adapt the proposed framework freely
due to low computational time and a quick response time from the IDSP. Finally,
the proposed approach relies on historical delivery data only, facilitating its indus-
trial application to every business scheme.

such as e-van charging limits, bike travel distance from hub limits, etc. These
changes could reduce the CO2 around the city and lower the noise in the city
centers. Furthermore, following the practitioners’ experience, the time load of the
drivers remains an emerging problem for the study of last-mile delivery problems,
which has to be included in the derived framework in the future. Lastly, we are
concerned about optimal city zoning with the ML classification to support logistics
managers on the tactical and strategic decision levels and further research toward
reducing the gap between the academy and industry.
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Chapter 6

Conclusions

Involvement of the uncertain items in such problems enables its application to
tactical capacity management scenarios. In particular, Variable Cost and Size Bin
Packing Problem with Stochastic Items (VCSBPPSI) provides a fleet with various
capacities while minimizing the cost in uncertain demand conditions. However,
VCSBPPSI is characterized by a high computational complexity related to uncer-
tainty treatment. Therefore, in this thesis, we introduced new Machine Learning
(ML) based heuristics to obtain its solution for realistic problem instances in a
reasonable time with a high number of orders and vehicles (up to 2000 orders).

We compare the proposed heuristic performance with the exact (sampling) ap-
proach and widely adopted Progressive Hedging approach. In addition, we provide
a case study and of ML heuristics application to fleet management scenarios in
the urban area of Turin, Italy. where the solution should be requested in an on-
line manner. Moreover, the relatively straightforward application of the proposed
heuristic enables its usage in other problems characterized by binary decision vari-
ables. engaged in the modern trends of consolidated logistics.

Firstly, we apply the deterministic VCSBPP to the obtained forecast setting to
provide the required fleet capacity for the ”next-day” delivery. Then, we replace
it with the introduced Zone Capacity Assignment Problem (ZCAP), which enables
fleet capacity management under uncertain demand with existing city zoning and
forecast approaches. Finally, we provide extensive computational experiments for
both methods on the 60 working days scenario of a logistics company in Antwerp,
Belgium. The performance comparison of the introduced methods with VCSBPPSI
shows an improvement in daily demand volume coverage, computing time reduction,
a significant reduction in costs, used capacity, and empty space in the vehicle load.
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dia Gómez-Santillán, Nelson Rangel-Valdez, Marıéa Lucila Morales-Rodrıéguez,
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