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Abstract: We show that 10G channels generate both amplitude and phase noise on 100G channels. 

Amplitude noise can be managed as the ASE and NLI noise, while the DSP robustness to the phase 

noise sets the guard-band. 
OCIS codes: (060.2330) Fiber optics communications; (060.1660) Coherent communications;  

 

1. Introduction 

In the market of back-bone networks, the bulk of the optical channels is dominated by coherent transceivers deploying 

100G and beyond. On the contrary, access and metro segments still rely on 10G transceivers based on the Intensity 

Modulation Direct Detection (IMDD) and operated on Dispersion Managed (DM) optical line systems (OLSs), 

because of large CAPEX savings. In particular, the upgrade of legacy but still widespread Synchronous Digital 

Hierarchy (SDH) networks to simpler WDM architectures is a large market potential for this technology, because a 

sudden and complete migration to coherent transmission would not be effective from a cost-advantage point of view. 

In the meantime, these technologies are evolving, targeting cost reduction also thanks to the extensive use of integrated 

photonics. So, a medium-term realistic scenario will include DM OLSs operated by mixed 10G/100G transceivers. 

It is well known that coherent transmission technologies are impaired by DM OLSs [1] and that joint 10G/100G 

transmission requires a guard-band to avoid large penalties on the 100G comb [2]. So, a realistic transmission scenario 

is the one depicted in Fig. 1: a DM OLS will deploy mixed 10G/100G transmission on different portions of the 

exploited bandwidth, separated by a guard-band. So far, as the analysis on the impairments of an IMDD 10G channel 

comb on 100G channels has not yet been assessed, engineering rules for the guard-band definition are still missing. It 

is of paramount importance to separate the effects that are generating amplitude disturbance similar to the nonlinear 

interference (NLI) generated by 100G-to-100G interaction from the ones that are inducing phase noise. The effects of 

amplitude disturbances on DSP-based coherent receivers is well known and can be managed and put under control by 

their inclusion in the signal-to-noise ratio (SNR) together with the ASE noise and the NLI. In this case, the use of the 

SNR as unique quality-of-transmission (QoT) figure holds. More delicate is the effect of phase noise possibly 

generated by 10G channels: it is not manageable within the SNR and the impairment it generates depends on the 

implementation of the DSP, mainly at the carrier-phase-estimation (CPE) stage. Moreover, 10G channels are 

polarized, so, their impairments will be affected by rotation of the PMD principal axes. Thus, all the impairments must 

be evaluated in the worst-case scenario, corresponding to polarization-aligned 10G channel combs, to avoid random 

out-of-services due to cycle-slips. 

In this work, we observe via simulation the effects of 10G interfering channels on a QPSK probe. We study the effect 

on one polarization axis to observe the worst-case effects. We show that the impairments arise from cross-phase 

modulation (XPM) and four-wave mixing (FWM). FWM generates only amplitude noise, while XPM generates both 

amplitude and phase noise. Also, the phase noise becomes dominant in case of DM OLSs with a small amount of 

undercompensated chromatic dispersion (CD) at each span, which is a typical scenario in metro WDM systems. 

Considering an 11-channel 10G comb, we show the overall effect on a QPSK probe focus on characterizing the phase 

noise as statistics and spectral occupation as it is the main phenomenon to be considered in defining the guard-band. 
 

 
Fig. 1. Scenario for mixed 10G/100G transmission 
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2. Observing the effects of IMDD modulation on PM-QPSK channels 

We observe via simulation the effects of IMDD on a QPSK on DM OLS. In such a scenario, non-linear impairments 

can be classified following the taxonomy for legacy IMDD systems. Self-phase modulation (SPM) is neglected, being 

a single channel impairment, which involves the coherent probe only;whereas, we focus on XPM and FWM originated 

by the IMDD pumps on the QPSK probe. Since XPM behaves as a modulation of the probe phase proportional to the 

pumps power, it can be modeled as a complex multiplicative noise 𝜌(𝑡) originated by 𝑁𝑝 IMDD pumps on the coherent 

probe, as proposed in [3]. The FWM portion falling on the probe bandwidth is instead an additive Gaussian noise 

depending only on the IMDD pumps power and fiber physical parameters. Thus, the coherent probe field 𝑎𝑅𝑋 at the 

receiver, after CD compensation and before the DSP can be written as Eq. 1. 

 𝑎𝑅𝑋(𝑡) = 𝜌(𝑡)𝑎𝑇𝑋(𝑡) + 𝑛𝐹𝑊𝑀(𝑡) (1) 

 𝜌(𝑡) = 𝑛(𝑡) ∙ 𝑒𝑗𝜙(𝑡) (2) 

Here, 𝑎𝑇𝑋 is the coherent probe field at the transmitter output, 𝑛𝐹𝑊𝑀(𝑡) is the FWM disturbance falling within the 

probe bandwidth. For the XPM noise 𝜌(𝑡), 𝑛(𝑡) is the amplitude noise originated by the phase-to-amplitude 

conversion due to CD, 𝜙(𝑡) is responsible for the phase noise on the coherent signal. Also, assuming that superposition 

principle holds, the cumulative XPM noise 𝜌(𝑡) is obtained as the product of the 𝜌𝑖(𝑡), 𝑖 = 1 … 𝑁𝑝 generated by the 

single IMDD pumps. Hence, 𝜌(𝑡) = ∏𝜌𝑖(𝑡) and for the single components Eq. 3 holds. 

 𝑛(𝑡) = ∏ 𝑛𝑖(𝑡)

𝑁𝑝

𝑖=1

,    𝜙(𝑡) = ∑ 𝜙𝑖(𝑡)

𝑁𝑝

𝑖=1

 (3) 

 

In order to observe the effects of IMDD on QPSK, we have simulated the propagation of a single QPSK probe 

propagating together with several 10 Gbps IMDD pumps over a 20-span SMF DM link (Fig. 1), also looking at the 

impact of different dispersion maps by varying the inline residual dispersion 𝐷𝑅𝐸𝑆,𝐼𝐿 at the end of each span. Actual 

span lengths have been randomized with respect to the average 50 km to avoid unrealistic FWM resonances. 

Accumulated CD is fully recovered at the end of the link as it is done by coherent receivers. SPM is avoided by 

keeping the probe power sufficiently low (-20 dBm). In order to observe XPM effects, we performed an extensive set 

of pump & probe simulations - i.e., by propagating a coherent probe and one IMDD pump – varying 𝐷𝑅𝐸𝑆,𝐼𝐿 from 0 

ps/nm (full CD compensation at the end of each span) to the Uncompensated Transmission (UT), the pump power 

𝑃𝑝𝑢𝑚𝑝 in the -1 to 4 dBm range and the pump-probe spacing Δ𝑓 in the 50GHz frequency grid until 1 THz spacing. 

Simulations were done using the FFSS split-step library [4]. Pump & probe configurations ensure that no FWM noise 

falls on top of the coherent probe; hence, the XPM noise contribution of the 𝑖-th pump alone 𝜌𝑖(𝑡) is obtained from 

  
(a) (b) 

  
(c) (d) 

Fig.2. Amplitude noise variance and phase noise standard deviation obtained with 20 span SMF pump & probe simulation varying (a) the 

dispersion map (𝐷𝑅𝐸𝑆,𝐼𝐿) and pump-probe frequency spacing Δ𝑓at 𝑃𝑝𝑢𝑚𝑝 = 1 dBm. (c) Effects superposition test for XPM effects at 𝐷𝑅𝐸𝑆,𝐼𝐿 =

50 ps/nm. (d) Variance of FWM peaks arising from 11 IMDD channels at 𝑃𝑝𝑢𝑚𝑝 = 1 dBm for various dispersion maps. 



Eq. 1 as the ratio between the received and transmitted coherent signal. Then, the amplitude noise 𝑛𝑖(𝑡) variance and 

the phase noise 𝜙𝑖(𝑡) standard deviation have been computed. Fig. 2 shows the most interesting results. As we 

approach the UT, amplitude noise becomes more significant with respect to phase noise (Fig. 2a) that is in accordance 

with the existing models for multilevel modulation formats with UT. Also, the entity of the impairment decreases by 

increasing the frequency separation (Fig. 2b). In Fig. 2c we show that the additivity hypothesis for XPM noise holds 

by comparing the sum of the pump & probe contributions with proper multipump simulations statistics. Furthermore, 

we have studied the FWM noise generation of a comb of IMDD channels by turning off the coherent probe. Fig. 2d 

plots the side FWM peaks variances generated by 11 pumps, with the main finding that the FWM generation is 

substantially independent of the dispersion map: it is indeed determined only by fiber parameters, the pump powers 

and their aggregate spectral occupancy. However, these metrics are here not comparable with XPM metrics because 

of the different nature of the two noises. 

3. Setting the guard-band 

The developed methodology provides a powerful engineering tool to evaluate the entity of the XPM induced phase 

noise. This acquires importance in the 10G/100G coexistence perspective since the typical dispersion map for DM 

links using a small under-compensation shows a significant amount of phase noise. From the system planning and 

orchestration point of view, the amplitude XPM noise can be regarded as another source of additive noise and 

mitigated by power optimization strategies accounting for it in SNR computation. Phase noise is instead a serious 

impairment for the DSP processing that can be kept under control only by an a priori knowledge of its strength and 

by setting a proper guard-band between the coherent and IMDD combs. To this aim, in Fig. 3a we report the 

magnitude, obtained using the effects superposition of pump & probe results, of both XPM amplitude and phase noise 

varying the spectral occupancy of the IMDD pumps and their distance from a coherent probe as a means of system 

design. It should be also noted that this investigation looks at the XPM impairments before the DSP processing, whose 

action potentially masks the entity of the physical phenomenon due to the effectiveness of the CPE algorithm which 

is strongly implementation-dependent. Also, phase noise appears as a narrow-band effect (Fig. 3b) since it depends 

on the bandwidth of the IMDD pumps, thus slower with respect to the PM-QPSK symbol rate. It follows that common 

CPE algorithms should be able to track and compensate for it. However, it can trigger cycle-slips in the DSP depending 

on its intensity that may also vary with fiber polarization axes. The PDFs for the phase noise are plotted in Fig. 3c. In 

general, the guard-band must be set after characterizing the XPM phase noise, and verifying that the CPE is able to 

follow phase noise also in case of worst polarization case that randomly happens depending on the mechanical stress. 

 3. Comments and conclusions 

We have observed via simulation the effects of 10G channels on 100G transmission and we have separated the 

amplitude from the phase noise effects. The amplitude noise coming from FWM and XPM can be managed by the 

SNR QoT figure together with the ASE noise and the 10G-to-100G NLI. On the other hand, the phase noise must be 

kept under control by setting a guard-band based on the maximum phase noise the DSP implementing the coherent 

receiver is able to tolerate. The knowledge of the different nature of 10G-to-100G effects can be also useful to develop 

specific DSP techniques aimed at mitigating the joint 10G/100G transmission. 
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Guard-band = 300 GHz 

  
Guard-band = 1000 GHz 
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Fig. 3. (a) XPM intensity on PM-QPSK probe vs guard-band and number of IMDD pumps at 𝑃𝑝𝑢𝑚𝑝 = 1 dBm. (b) Phase noise 𝜙(𝑡) spectrum 

and (c) estimated pdf on PM-QPSK probe by 11 IMDD pumps at 𝑃𝑝𝑢𝑚𝑝 = 1 dBm at 300 GHz and 1 THz guard-band.  


