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Abstract—Sleep covers approximately one-third of life, pro-
viding the necessary recovery to fundamental body functions.
Sleep deprivation and poor sleep quality cause several side
effects in everyday life; among others, the efficiency of the
immune system progressively decreases, enhancing the arise of
pathologies. Therefore, the evaluation of sleep quality is crucial
for providing information about personal health status. However,
a uniform and robust method for the assessment of sleep quality
is still missing. In this preliminary study, Obstructive Sleep
Apneas (OSAs), sleep macro pattern and sleep micro pattern
are identified and then combined to provide a comprehensive
sleep evaluation. For this purpose, a subset of physiological
variables (HR, HRV, SpO2, body movements) is derived from
Polysomnography (PSG) and exploited for the development of
rule-based algorithms. This reduced parameter set is selected
considering further implementations on wearable off-the-shelf
commercial devices.

Index Terms—Sleep, Sleep Quality, Obstructive Sleep Apnea,
Hypopnea, Obstructive Sleep Apnea Syndrome, Sleep Macro
Pattern, Sleep Micro Pattern, IOT, Smartwatch, ECG, SpO2

I. INTRODUCTION

Sleep is characterized by sequences of behavioral states
related to Autonomous Nervous System (ANS) functions.
It is a complex physiological process linked to each indi-
vidual and covers approximately one-third of the lifespan.
The circulatory, respiratory, musculoskeletal and central ner-
vous systems, are restored during sleep. Sleep also plays
a crucial role in the consolidation of memories, learning,
physical development, emotion regulation, and quality of
life. A sustained deprivation of sleep or poor sleep quality
decreases the efficiency of the immune system and increases
the risk of cardiovascular pathologies, hypertension, obesity,
metabolic deregulation, diabetes, but also daytime drowsiness
[1], [2]. Daytime drowsiness is a widespread problem that
leads to a variety of issues. It reduces focus on everyday
activities, playing a particularly crucial role in people involved
in driving (e.g., professional truck drivers, public transport
drivers, etc.) [2].
A sleep disorder that significantly affects sleep quality is
Obstructive Sleep Apnea Syndrome (OSAS). As reported by
the American Academy of Sleep Medicine (AASM), Obstruc-
tive Sleep Apnea (OSA) can be considered both obstructive
sleep hypopnea and obstructive sleep apneas, defined as a 10s
reduction of airflow of 30% or 90%, respectively. The level of

OSAS is evaluated with the Apnea-Hypopnea Index (AHI),
which is the average number of apneas per hour. The OSAS
associated with a subject can be classified as follows [3]:

• Healthy, if AHI < 5;
• Mild, if 5 ≤ AHI < 15;
• Moderate, if 15 ≤ AHI < 30;
• Severe, if AHI ≥ 30.

Sleep quality can be further evaluated by the analysis of
the sleep pattern itself. Starting from a macroscopic point
of view and considering a normal young adult, sleep is
composed of two behavioral states: Rapid Eye Movement
(REM), which constitutes approximately 20% of Total Sleep
Time (TST), and Non-Rapid Eye Movement (NREM) sleep.
NREM sleep is moreover subdivided into light sleep (stage 1
or NREM 1), intermediate sleep (stage 1 or NREM 2), and
deep sleep (stage 3-4 or NREM 3-4). REM and NREM sleep
alternate cyclically across sleep, constituting at least 3 cycles
of approximately 90 to 110 minutes. The typical human sleep
cycle is shown in Figure 1 and described below:

• sleep begins with stage 1, which usually persists for 1
to 7 minutes from sleep onset;

• stage 2 follows the brief episode of stage 1 and continues
for 10 to 25 minutes;

• stage 3 occurs, lasting only a few minutes in the first
cycle;

• stage 3 is transitional to stage 4, which lasts 20 to 40
minutes in the first cycle;

• first sleep cycle ends with REM sleep, which takes 1 to
5 minutes.

NREM and REM sleep continue to alternate through the
night: in physiological conditions, REM sleep usually be-
comes longer across the night, while deep sleep (NREM 3-
4) decreases. Therefore, by knowing the physiological sleep
macro-pattern, good quality sleep can be defined, for instance,
as 7 to 8 hours of TST, with different percentages of NREM 1
(2-5%), NREM 2 (45–55%), NREM 3-4 (5–15%) and REM
(20–25%) sleep [4]. In addition, many other features for
sleep quality estimation can be extracted from sleep macro-
structural analysis [2].
However, an effective sleep quality estimation requires going
deeper into the micro-structural analysis of sleep [1], [5].



Fig. 1. The progression of sleep stages across a single night in a normal
young adult volunteer [4].

Within this context, NREM sleep displays a distinctive pat-
tern known as the cycling alternating pattern (CAP), which
consists of two stages:

• Phase A, characterized by a lighter level of sleep;
• Phase B, where the sleep stage returns to its typical

behavior.
CAP sleep alternates with nonCAP (NCAP) sleep. CAPrate,
which represents the proportion of CAP in relation to NREM
sleep, serves as an indicator of sleep quality: a higher CAPrate
suggests poorer sleep quality. CAP is an EEG-related event,
but there is a correlation between CAP and autonomic arousal.
Thus, it is possible to estimate the arousability, considered as
a CAP-related variable [6]. An arousal is an activation of the
vigilance level, also known as micro awakening, that causes
an increase in HR typically during NREM sleep [8].
The aim of this work is to combine the analysis of OSAS,
which is the most common sleep-related breathing disorder,
with the analysis of sleep macro and micro-pattern, in order
to provide a feasible and robust evaluation of sleep quality.
The detection of OSAs and different sleep patterns will be
implemented by the proposed rule-based algorithms.

II. STATE OF THE ART

Sleep is analyzed with objective and subjective methods.
Subjective methods require the subjects to answer questions
or estimate their sleep parameters. A widely used subjective
method is the creation of a sleep diary, where the subject
writes his estimation of TST, Sleep Onset Latency (SOL),
satisfaction with the night spent, and other sleep parameters.
The gold standard of subjective sleep quality estimation is
the Pittsburgh Sleep Quality Inventory (PSQI). PSQI has 24
questions, 19 of them are self-reported, and the other 5 are
answered by someone who has slept with the subject [9].
The most employed objective methods for sleep evaluation
are Polysomnography (PSG) and actigraphy, often used in
combination with sleep questionnaires. PSG is the gold
standard for monitoring sleep by means of the detection of
various biomedical signals. PSG comprises electroencephalo-
gram (EEG), photoplethysmograph (PPG), electrocardiogram

(ECG), electrooculogram (EOG), electromyogram (EMG),
nasal cannula and thoracic and abdominal bands to measure
brain activity, blood saturation, heart rate (HR), eye move-
ment, muscle activity, breathing and respiration rate (RR),
respectively. The signals acquired by PSG are analyzed by the
sleep expert medical doctor, who provides the classification
and distribution of sleep stages throughout the night, named
hypnogram, and identifies eventual sleep disorders, including
sleep apneas. However, the PSG itself can affect sleep quality,
because subjects are disturbed by an unfamiliar laboratory
environment; moreover, it is time-consuming and expensive,
requiring professional equipment and a specialized medical
doctor [10]. Another medical instrument employed in sleep
analysis is actigraphy, which detects limb movement through
sensors worn on the wrist, leg and waist. Actigraphy is usually
exploited for long-period circadian rhythm monitoring. This
procedure is less intrusive and cheaper than PSG, but also
less accurate, measuring fewer parameters with less accurate
instrumentation [11]. Thus, there is an urgent need to develop
a reliable, non-intrusive, time and money-saving method for
a simplified sleep analysis.
Nowadays, consumer wearable devices offer an innovative
solution for a simplified sleep analysis based on cardio-
respiratory and accelerometer parameters [12]. Apple Watch
and Fitbit smartwatch are the most popular examples of wrist
wearable health devices employed even in sleep monitoring
[13]. Specifically, a recent study showed that Apple Watch
Series 6, exploited accelerometer, ECG, gyroscope and PPG
sensors, providing high sensitivity (99.1%) in detecting sleep
time, and adequate specificity (75.8%) in detecting wakeful-
ness, compared to the clinically validated Philips Actiwatch
Spectrum Pro [14]. Similarly, another work proved that Fitbit
smartwatch, exploiting accelerometer, ECG, gyroscope, PPG
and temperature sensors, showed higher sensitivity (95-96%)
and specificity (58-69%) values in detecting sleep time com-
pared to values of regular wrist actigraphy [15]. An additional
example of a novel consumer device for sleep monitoring
is OURA ring: worn on the finger, it provides comfortable
and continuous PPG measurement. Oura ring was tested with
60 subjects compared with ECG to measure HR and Heart
Rate Variability (HRV) during sleep, showing a very high
correlation (r2 = 0.972 and 0.943, respectively). Due to the
extremely reliable PPG signals, Oura ring is now employed
in sleep tracking, achieving 79% agreement with PSG for 4-
stage sleep classification (wake, light, deep, and REM sleep)
[16].
Sleep monitoring should not just be limited to the quantifi-
cation and classification of sleep macropattern, but should
also be extended to the analysis of sleep micropatterns and
pathologies. For instance, multiple devices have been devel-
oped for recognizing OSAs without needing the entire PSG
setup [17]. Some of them are electronic devices equipped
with sensors such as a naso-cannula for measuring breath, a
wristband for detecting HR, a thermistor, and a sensor placed
on a finger for detecting PPG, but there is a wide variety of



sensors and signals for this purpose. In the considered devices,
there is also a smart mattress, with a balancing tube based on
ballistocardiography (BCG) that is able to detect movement
related to the breathing process [18]. The SD-101 is a
sheet-like medical device that has to be spread between the
mattress and a sheet. It has multipoint sensors that measure
respiratory movement detecting gravitational alterations in the
body [19]. It has a low specificity and a low accuracy for
OSAs detection, which can be improved by measuring also
SpO2 [20] The WatchPAT200 is a bracelet with an LCD
screen that can be equipped with other sensors; it detects
SpO2, HR, actigraphy, noise, and position, thus measuring
movement, snoring, sleep stage, and AHI [21]. The Sleep&Go
is a device that measures SpO2; moreover, it detects airflow
with a thermistor and rib-cage and abdominal movement with
inductive bands [22]. NOX T3 is a home sleep monitoring
system that records respiratory effort, PPG, airflow, oximetry
and snoring sounds. It has 2 bands for recording thoracic and
abdominal respiratory effort. It is also possible to plug two
bipolar channels (ECG, EMG or EEG) [23]. The Sonomat is a
device similar to the SD-101. It contains a series of vibration
and sound sensors able to recognize movements, breathing,
and heart sound [24]. SleepView is a 2 channel wrist device,
similar to a watch but with the addition of a naso-cannula and
a finger probe for oximetry. It records oral and nasal airflow,
snoring, SpO2, and HR. Moreover, it allows downloading data
and processing them with SleepView software [25]. Alice
PDx collects simultaneously airflow (nasal pressure cannula
and oral thermistor), effort (chest and abdominal movement
with two respiratory plethysmography belts), pulse oximetry
with a finger probe, and sleep (wrist actigraphy) [26]. Sleep
Design is a device with a microphone that extracts snoring
from environment noise [27]. Apnia is a seven-channel device
that records the respiratory flow, SpO2 and HR (by pulse
oximetry), an abdominal effort by inductive plethysmography,
corporal position, and snoring sounds [28]. AHI, Sensitivity
and Specificity of these devices are briefly reported in Table
I.
In this study, PSG was exploited for the sleep evaluation of
the participants provided by the doctor. PSG is a medical
device that measures physiological variables with high re-
liability; therefore, the development of the algorithms was
based on data extracted from PSG. Particularly, inspired by
sleep monitoring of consumer devices, only HR, HRV, SpO2

and body movements were considered: HR and HRV were
obtained from ECG, body movements were taken from the ac-
celerometer sensor located on the leg and SpO2 was detected
by PPG sensor placed on the finger. This reduced parameter
set was selected with the aim of implementing the proposed
algorithms in a wearable off-the-shelf commercial device (i.e.,
smartwatch). Analyzing HR, HRV and accelerometer data,
OSAs, sleep macro and micro patter were identified. Then, a
sleep quality evaluation was provided.

TABLE I
SLEEP-DISORDERED BREATHING HOME DETECTION DEVICES

Device Article AHI Sensitivity Specificity
SD-101 [19], [20] 5 95 60

15 88 86
Watch PAT200 [21] 5 96 43

10 90 69
15 92 77

Sleep&Go [22] 5 92 67
15 95 56

NOX T3 [23] 5 100 70
15 92 85

SonoMat [24] 5 94 77
15 88 91
30 100 96

SleepView [25] 5 80 95
15 87 85
30 95 93

Micromovement [18] 5 95 100
Sensitive 15 90 97
Mattress 30 90 95

Alice PDx T3 [26] 5 69 87
15 87 66

Sleep Design [27] 26 71 93
Apnia [28] 5 88 73

15 70 94
30 100 93

III. METHODS

For this preliminary study, a subset of 5 healthy adult
volunteers (3 male, 2 female) with a mean age of 49.2 years
was considered. A complete PSG test was carried out for each
subject for an entire night. ECG, accelerometer and SpO2 data
were extrapolating data from .edf PSGs files. HR and HRV
were calculated from ECG, as reported by Guagnano et al.
[29]. The considered physiological variables were analyzed
in post-processing. The development and validation of the
algorithms were carried out with Matlab.

A. OSAS

The proposed algorithm exploits HRV and SpO2 for iden-
tifying sleep apnea and calculating AHI. As defined by the
American Academy Sleep Medicine (AASM), apneas are a
cessation of airflow for at least 10s, usually accompanied by
a SpO2 reduction of at least 3% [30]. Interestingly, HRV
during an apnea, has a particular pattern. There is a relaxation
stage, where the activity of the parasympathetic system is
higher than the sympathetic one. In this stage, the HRV
grows in time until HRV stabilization. The stabilization is
interrupted by autonomic arousal, a stage where the activity
of the sympathetic system is higher than the parasympathetic
one. Here HRV decreases over time. The idea behind this
algorithm is a recognition of the HRV pattern, accompanied
by a SpO2 desaturation of at least 3% [29]. A schematic
representation of the proposed algorithm can be found in
Figure 2. Finally, the AHI is calculated by dividing the
number of found apneas by TST, evaluated in section III-B.



Fig. 2. A schematic representation of the algorithm for the detection of OSA

B. SleepScoring

Firstly, the awake-sleep transition was analyzed. Actigra-
phy, exploiting an accelerometer, is often used as a tool for
recognizing sleep onset. However, the accelerometer by itself
can recognize motionless wakefulness as a sleep stage or
miss the sleep onset for tremors or movement caused by
external conditions [31]. Therefore, in this study sleep onset
was detected by combining both the decrease of HR, typical
of wake-sleep transition, and the decrease of body movements
through accelerometer signal.
Then, sleep macro pattern recognition based on HR, HRV and
accelerometer measures was performed considering typical
behavior in different sleep stages [32], [33], [34]:

• in NREM sleep, HR is expected to be lower compared
to wakefulness and REM sleep;

• in REM sleep, HR increases similarly to wakefulness,
but the body is motionless;

• deep sleep (NREM 3-4) is characterized by less body
movements than light sleep.

Finally, sleep micro pattern was identified. A variable called
arousability was calculated, as the percentage of arousals in
NREM sleep.

IV. RESULTS

A. OSAS

The previously described algorithm for OSA detection
has been developed and has been tested with PSG data at
our disposal. The algorithm was executed on the above-
mentioned set of measures, having the effective number of
apneas scored by sleep expert medical doctor as a comparison

term. Evaluation is based on the following results and shown
in Table II:

• a True Positive (TP) is an OSA scored by both the
algorithm and the medical doctor;

• a False Positive (FP) is an OSA scored by the algorithm
and not scored by the medical doctor;

• a False Negative (FN) is an OSA not scored by the
algorithm but scored by the medical doctor.

From TP, FP and FN sensitivity, specificity, and positive
predictive value (PPV) were obtained. They are defined as:

sensitivity = TP/(TP + FN) (1)
PPV = TP/(TP + FP ) (2)

The goal of this algorithm is not to obtain a substitution to
the medical scoring, but to screen healthy, mild, moderate and
severe OSAS using a little set of measures acquirable with
a commercial off-shelf smartwatch. Moreover, the algorithm
requires less than 1 minute to process a night scoring instead
of hours needed by a sleep expert medical doctor. In addition,
this methodology is cheaper than the gold standard PSG
exam. Table II shows that healthy and affected subjects are
always recognized. The most difficult part is distinguishing
mild (AHI between 5 and 14) and moderate (AHI between
15 and 30) subjects, this was failed with subject 5, but they
were never confused with healthy or severe subjects.

B. Sleep Scoring

The output of the algorithm for sleep analysis provided
various parameters for the estimation of sleep quality. Firstly,
TST found with the algorithm was compared to the PSG
analysis of medical doctor, as reported in Table III. Good,
medium and low-quality sleep were classified for TST > 7
hours, 5 ≤ TST ≤ 7 and TST < 5, respectively. A precise
correspondence was seen for records 1, 2, and 5, while
for both records 3 and 4 the algorithm overestimated TST.
Considering that sleep onset was accurate for almost all the
records, as reported in Table III, this result demonstrated that
further improvements must be implemented for awake time.
Then, sleep was classified into its macro-pattern, which
comprises (NREM 1-2), deep (NREM 3-4) and REM stages.
However, particular attention was given to the identification
of sleep micro-pattern, defined by the alternance of phase A
and phase B in NREM sleep. Phase A is characterized by a
very high presence of arousals, which deeply affected sleep
quality. Therefore, the percentage of phase A in NREM
sleep, named arousability, was evaluated as a parameter for
sleep quality assessment. Table III shows the comparison
between arousability evaluated in NREM sleep scored by
medical doctor and by the algorithm. Good, medium and
low-quality sleep was classified for arousability > 0.025,
0.015 ≤ arousability ≤ 0.025 and arousability < 0.025,
respectively. A precise correspondence was seen in record 1,
3, 4, and 5, while in record 2 algorithm overestimated the



TABLE II
SECOND SCORING AND ALGORITHM COMPARED

Rec. apneas from apneas from AHI from AHI from TST Severity Severity TP FP FN Sensitivity PPV
scoring algorithm scoring algorithm scoring algorithm

1 0 5 0 1 06:07:04 Healthy Healthy 0 5 0 100% 0%
2 61 30 10 5 06:21:03 Mild Mild 29 1 32 48% 97%
3 136 151 19 21 07:05:32 Moderate Moderate 91 58 44 67% 61%
4 0 6 0 1 04:29:03 Healthy Healthy 0 1 0 100% 0%
5 107 77 15 11 06:57:30 Moderate Mild 63 13 44 59% 83%

TABLE III
SLEEP QUALITY EVALUATION

Rec. Doctor Algorithm Doctor Algorithm Doctor Algorithm
TST TST Sleep Onset Sleep Onset Arousability Arousability

1 medium medium 22:37:20 22:25:27 good good
2 medium medium 23:47:11 23:57:04 good medium
3 medium good 22:45:24 22:42:09 low low
4 low medium 0:40:18 0:18:24 low low
5 medium medium 0:33:37 0:30:35 low low

number of arousals.

V. CONCLUSION

In this study, rule-based algorithms for sleep quality eval-
uation were successfully developed. Particularly, HR, HRV,
SpO2 and body movements were chosen as inputs, consider-
ing the possibility of the implementation on a commercial
off-shelf smartwatch. The algorithms were developed on
physiological variables extracted from PSG, which is the gold
standard for sleep monitoring. The level of OSAS, TST and
arousability were successfully calculated and combined for
evaluating a primary screen of sleep quality. However, due
to the limited size of the dataset, further validations of the
algorithm will be performed.
In a clinical context, sleep quality is monitored with PSG,
considering ECG, EOG, EMG, EEG, and a lot of other param-
eters, measured with high-quality instruments and evaluated
by an expert. Undoubtedly, results acquired from medical
exams have very high accuracy, but the procedure is invasive
and time-consuming. Therefore, portable devices represent a
more comfortable and less expensive way to obtain prelimi-
nary information about sleep.
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