
14 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Software-Defined Radio Implementation of a LoRa Transceiver / de Omena Simas, J. P.; Riviello, D. G.; Garello, R.. - In:
SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 24:15(2024). [10.3390/s24154825]

Original

Software-Defined Radio Implementation of a LoRa Transceiver

Publisher:

Published
DOI:10.3390/s24154825

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991728 since: 2024-08-16T08:17:44Z

MDPI

Citation: de Omena Simas, J.P.;

Riviello, D.G.; Garello, R.

Software-Defined Radio

Implementation of a LoRa Transceiver.

Sensors 2024, 24, 4825. https://

doi.org/10.3390/s24154825

Received: 27 June 2024

Revised: 19 July 2024

Accepted: 22 July 2024

Published: 25 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Software-Defined Radio Implementation of a LoRa Transceiver
João Pedro de Omena Simas † , Daniel Gaetano Riviello and Roberto Garello *

Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129 Torino, Italy;
joao.simas@usp.br (J.P.d.O.S.); daniel.riviello@polito.it (D.G.R.)
* Correspondence: roberto.garello@polito.it
† Current address: Department of Electronic Systems Engineering (PSI), University of São Paulo,

São Paulo 05508-010, Brazil.

Abstract: The number of applications of low-power wide-area networks (LPWANs) has been
growing quite considerably in the past few years and so has the number of protocol stacks. Despite
this fact, there is still no fully open LPWAN protocol stack available to the public, which limits
the flexibility and ease of integration of the existing ones. The closest to being fully open is LoRa;
however, only its medium access control (MAC) layer, known as LoRaWAN, is open and its physical
and logical link control layers, also known as LoRa PHY, are still only partially understood. In this
paper, the essential missing aspects of LoRa PHY are not only reverse engineered, but also, a new
design of the transceiver and its sub-components are proposed and implemented in a modular and
flexible way using GNU Radio. Finally, some examples of applications of both the transceiver and
its components, which are made to be run in a simple setup by using cheap and widely available
off-the-shelf hardware, are given to show how the library can be used and extended.

Keywords: Internet of Things; LoRa; software-defined radio; GNU Radio

1. Introduction

The main characteristics of low-power wide-area networks (LPWANs) are large cover-
age areas, low-power consumption (involving battery operated devices most of the time),
and low data rates. The number of applications of this kind of technology has been grow-
ing in the past few years, especially with the rise of interest in Internet of Things (IoT)
applications, in particular, related to the implementation of wireless sensor networks.

Despite this big interest in this field and the growing number of applications of
LPWAN, a completely open protocol stack is still missing. The closest thing to it that
is available at the moment is the LoRa protocol stack; however, only its upper layer,
i.e., the MAC layer, is open. The LoRa Protocol stack, usually referred simply as LoRa, is
usually subdivided into two parts: LoRa PHY, which, contrary to what the name implies,
encompasses not only the physical layer aspects of this protocol stack, but also the logical
link control (LLC) sublayer of the data link layer, and LoRaWAN, which comprises the
medium access control sublayer of the Open Systems Interconnection (OSI) data link layer.

While LoRaWAN is open and publicly available [1], LoRa PHY is not. Some attempts
have been made to reverse engineer it and propose designs for its demodulator [2–7],
but some details are still not fully clear, which has prevented the implementation of a fully
working, free, and open-source LoRa PHY transceiver.

In this paper, we continue previous work in the literature on reverse engineering the
missing details of LoRa’s lower layers, and we propose an implementation of a fully free
and open-source software-defined transceiver with the goal of allowing for further research
and development to be carried out on this protocol stack by the scientific community.
Also, this implementation is made to be modular to give more flexibility and ease the
implementation of custom solutions at the lower levels to users of this technology. Finally,
four example applications of the developed receiver and transmitter are given, both in terms

Sensors 2024, 24, 4825. https://doi.org/10.3390/s24154825 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24154825
https://doi.org/10.3390/s24154825
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0008-8223-4586
https://orcid.org/0000-0002-7714-9191
https://orcid.org/0000-0003-0292-4648
https://doi.org/10.3390/s24154825
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24154825?type=check_update&version=1

Sensors 2024, 24, 4825 2 of 25

of hardware and extra software. The first application illustrates how individual blocks can
be used to implement simpler tasks, which do not require the full transmitter/receiver
chain; it is a detector that can detect transmitted frames and infer which spreading factor
(SF) and channel were used for the transmission and derive statistics in order to analyze
the traffic in the network. The last three applications illustrate how the developed receiver
and transmitter blocks can be used to implement more complex systems and extend GNU
Radio functionalities.

The paper is organized as follows. In Section 2, we introduce LoRa. In Section 3,
we present the reverse engineering of the LoRa physical layer, while in Section 4, we
introduce a LoRa receiver structure. In Section 5, we address the GNU Radio transceiver
implementation and the hardware setup, while in Section 6, we show some examples of
applications. Finally, Section 7 contains our conclusions.

2. LPWAN and the LoRa Protocol Stack

In order to illustrate the context within which the LoRa protocol stack is situated in
the framework of LPWAN, a brief description on some key topics is given in this section.

2.1. Low-Power Wide-Area Networks

Given that there is no standard definition for what exactly classifies as a LPWAN, it
is not simply a network that covers a wide area and employs low-power devices. One
attempt to define it, given the current applications that identify themselves as LPWAN, is
the RFC8375 [8], published by the Internet Engineering Task Force (IETF). The following
sums up their main characteristics:

Most technologies in this space aim for a similar goal of supporting large numbers
of very low-cost, low-throughput devices with very low power consumption, so
that even battery-powered devices can be deployed for years. LPWAN devices also
tend to be constrained in their use of bandwidth (BW), for example, with limited
frequencies being allowed to be used within limited duty cycles (usually expressed as
a percentage of time per hour that the device is allowed to transmit). As the name
implies, coverage of large areas is also a common goal. So, by and large, the different
technologies are aimed at deployment in very similar circumstances.

Also, some important structural similarities among all the existing LPWAN “technolo-
gies”, a name given to protocol stacks combined with network topologies, are pointed out.
Mainly, they are organized in terms of the following:

• End devices that communicate with Radio Gateways via a wireless link;
• Radio Gateway that connects to end devices using the LPWAN protocol and to a net-

work gateway using Transmission Control Protocol (TCP) and Internet Protocol (IP);
• Network Gateway that connects the radio gateway to the internet (i.e., to an applica-

tion server);
• Authentication Server that handles authentication, the joining of new devices to the

network, and the assignment of encryption keys. This might be implemented in the
same hardware as the Network Gateway.

Some of the most widely used LPWAN technologies are LoRa (i.e., LoRaWAN + LoRa
PHY), Sigfox, and Narrowband IoT (NB-IoT). Table 1 shows a brief comparison of these
three technologies in terms of their uplink communication characteristics in the physical,
LLC, and MAC layers:

Sensors 2024, 24, 4825 3 of 25

Table 1. Comparison of selected characteristics of LoRa, NB-IoT, and Sigfox.

LoRaWAN + LoRa PHY

Band Industrial, Scientific, and Medical (ISM)
Modulation Chirp Spread Spectrum (CSS) (Section 2.3)
Bandwidth 125, 250, or 500 kHz [9]
Physical Bit Rate 0.37–27.4 kbit/s (See Section 2.3)
Multiplexing Different-SF Chirp Interference Resistance (See [10])
Channel Access Deterministic Time Slots [1]

NB-IoT

Band Same as LTE
Modulation BPSK/QPSK [11]
Bandwidth 3.75 or 15 kHz [11]
Physical Bit Rate 3.75, 7.5, 15 or 30 kbit/s [11]

Multiplexing Single Carrier Frequency Division
Multiple Access with Frequency Hopping [12]

Channel Access Contention-based random access procedure [12]

Sigfox

Band ISM
Modulation Differential BPSK [13]
Bandwidth 0.1 kHz or 0.6 kHz [13]
Physical Bit Rate 0.1 kbit/s or 0.6 kbit/s [13]
Multiplexing Random Frequency Time-Division Multiple Access [13]
Channel Access Deterministic Time Slots [14]

As it can be seen, although each of the three can be classified as LPWAN technologies,
they have very distinct design paradigms. Sigfox takes a minimalistic approach, employing
one of the simplest possible modulations, and making the hardware as equally simple,
but ending up sacrificing bit rate.

NB-IoT is designed around the constraint of implementing an IoT LPWAN-oriented
protocol stack, while reusing all the existing LTE standards as much as possible. This allows
for existing components, software, and, more importantly, infrastructure built for LTE to be
reused for NB-IoT. This constraint, however, also makes sure that NB-IoT inherits much of
the complexity of the LTE protocol stack, which is arguably unnecessary in this context.

Finally, LoRaWAN is built with the main goal of being a flexible LPWAN protocol
stack that takes advantage of the benefits of the LoRa CSS modulation. Since LoRaWAN is
specifically designed for LPWAN applications, it results in having all the flexibility that
Sigfox lacks without the complexity that comes with NB-IoT. Furthermore, it carries all the
benefits that the CSS modulation has over the conventional ones.

The choice of working on LoRa for this paper was driven mainly by its flexibility and
the fact that among the three IoT protocols, it is the only one whose lower layers (LoRaPHY)
are neither public nor well known.

2.2. LoRaWAN

According to LoRaWAN’s specification [1], LoRaWAN is a MAC layer protocol made
to run on top of the LoRa PHY physical layer, with the main goal of running networks of
battery-powered end devices, which should run continuously for a long time.

In terms of network topology, usually a LoRaWAN network follows a “star-of-stars”
topology with the usual organization described in the previous section on LPWAN (Section 2.1),
where multiple gateways connect to a network server and the end devices connect to one
or more gateways.

It is also important to note that LoRaWAN is designed to operate reliably on ISM
bands which are to be shared with other devices using a variety of other protocols. To cope

Sensors 2024, 24, 4825 4 of 25

with this issue, in addition to the LoRa CSS modulation, it uses some MAC layer techniques,
such as transmitting the message multiple times, hopping between channels in a pseudo-
random fashion, and changing spreading factors, and consequently bit rates, in order to
improve transmission robustness if needed.

Finally an important aspect of LoRaWAN is that it is uplink-focused, i.e., it gives special
importance to messages between the end devices and the gateways; most of the MAC
behavior is triggered by these. The main reflection of this fact is that in the most common
form of operation (communication between A-class devices and gateways), downlink
communication is only allowed in time slots located at fixed delays after the transmission
of an uplink message.

2.3. LoRa Chirp Spread Spectrum Modulation

The CSS modulation used by LoRa PHY consists in using linear chirps as symbols;
that is, signals with the form

xi(t) = A exp

{
jπβ mod

(
t − Ts

i
Nsym

, Ts

)2
+ φ

}
, i ∈ {0, ..., Nsym}, t ∈ [0, Ts), (1)

as shown in [15], where

• Ts is the symbol period;
• β is a parameter which determines the speed of growth of the instantaneous frequency

of that signal, which will be referred in the rest of the paper as the chirp rate;
• mod(a, b) is the real number remainder function defined as

mod(a, b) = min
r∈R+

{a = qb + r, q ∈ Z}; (2)

• Nsym is the total number of symbols in the CSS modulation.

The parameters used by the LoRa PHY modulation are as follows:

• The mean bandwidth of the signal (BWCSS), which relates with Ts and β as

BWCSS = βTs. (3)

This can be set to a set of predefined values, described in [16]; however, the LoRaWAN
specification only uses 125 kHz and optionally 250 kHz for uplink messages and
500 kHz for downlink messages.

• The spreading factor is not only the number of bits that each symbol encodes, i.e,
Nsym = 2SF, but it is also related to the previously mentioned parameters, such that

2SF = BWCSSTs. (4)

These signal sections have instantaneous frequency

fi(n) = β mod
(

t − Ts
i

Nsym
, Ts

)
(5)

and the phase shift φ at each symbol is used to ensure the phase continuity of the signal.
To illustrate the effects of these parameters, Table 2 and Figure 1 show the resulting

physical bit rates with some of the possible parameter combinations, mainly the ones used
in LoRaWAN:

Sensors 2024, 24, 4825 5 of 25

Table 2. Physical bit rate values (in kbit/s) for selected combinations of BW and SF (Rb = BW · 2−SF · SF).

BW (kHz)
SF 7 8 9 10 11 12

125 6.84 3.91 2.2 1.22 0.67 0.37
250 13.67 7.81 4.39 2.44 1.34 0.73
500 27.34 15.63 8.79 4.88 2.69 1.46

7 8 9 10 11 12
10-1

100

101

102

Spreading Factor

P
h
ys

ic
a
l B

it
R

a
te

 (
k
b
it/

s)

BW =125 kHz
BW =250 kHz
BW =500 kHz

Figure 1. Physical bit rate in function of SF and BW for some of the possible values.

3. Reverse Engineering The LoRa Physical Layer
3.1. Experimental Setup

To perform the following analysis, a combination of the data provided in [17] and data
captured with a simple experimental setup was used.

This setup, shown in Figure 2, consisted of a board based on the Atmega328P micro-
controller connected to a module based on the SX1278 integrated circuit (IC), which,
among some other features, is a LoRa transceiver, and a RTL2832U-based USB software-
defined radio (SDR) receiver (commonly referred to as RTL-SDR) connected to a PC.
The first was programmed to transmit signals with the desired parameters and then they
were received and recorded using the RTL-SDR and a simple flowgraph in GNU Radio to
be subsequently decoded using a piece of software written on MATLAB/Octave developed
for this study [18].

LoRa TxRx
Module

Micro-
controller

RTL-SDR GNU Radio
Flowgraph

IQ Sample
File

Octave
Script

PC

Figure 2. Diagram of the used experimental setup.

3.2. Previous Works
3.2.1. General Transmitter Structure

In [2,3], similar structures for the LoRa receiver are proposed. Given those and the
information provided in [16], we can summarize those structures as being composed of the
following blocks connected sequentially, as shown in Figure 3.

After reverse engineering the whole protocol process, whose details will be described
in the following sections, a new revised structure is proposed, shown in Figure 3.

Sensors 2024, 24, 4825 6 of 25

Randomizer/

Whitening
Interleaver

Linear

Encoder

Gray

Decoder
Modulator

Append

Preamble

Randomizer/

Whitening
Interleaver

Linear

Encoder

Gray

Decoder
Modulator

Append

Preamble

Figure 3. Transmitter structures, from previous works (top) and proposed (bottom).

• Linear Encoder
The encoder encodes the bits with a (CR + 4,4) code, except for the data bits, which are
always encoded with a (8,4) code.
As mentioned above, the header bits are interleaved in a different manner than the
payload bits. Actually, as mentioned in [3], it is the header bits plus the number
of payload bits to complete 8 symbols, the 5 header code words plus SF-7 payload
code words with 4-CR zeros added to the most significant bit to extend them to also
have 8 bits, therefore resulting in 8*(SF-2) bits. They are then interleaved with a SF-2
interleaver, and the resulting symbol numbers are multiplied by 4, resulting in eight
symbols in the {0; 4; 8; ...; 2SF − 4} range. This enhances the robustness of the header
bits against noise.
The proposed linear encoder is the same as before, but in the following section on
coding, a new, more intuitive description of the codes used is given.

• Interleaver
This is a standard diagonal interleaver that turns a sequence of (CR + 4)-bit code words
into a sequence of length SF-bit words, with the exception of the header bits that are
interleaved with an 8-bit to (SF-2)-bit interleaver. The interleaver is kept as described
in the literature.

• Randomizer/Data Whitening
The randomizer takes as input two sequences of the same length: a pseudo-random
binary sequence (referred to in [2,3] as a whitening sequence) and the output of the
interleaver; the ouput is the result of the exclusive or operation (XOR) between the
two sequences.
This is the block which was changed the most; not only is its position changed in
the receiver chain, but its structure is also fully reverse engineered and described
more intuitively than before. Please note that the position of the randomizer was
changed because in the previous works the whitening sequence needed to be reverse
engineered for every set of parameters; therefore, an arbitrary sequence extracted from
a commercial transmitter was applied. In our proposed solution, the randomizer adds
(modulo-2 addition, i.e., exclusive or) a pseudo-random sequence of bytes generated
by a linear-feedback shift register (LFSR) which is independent from the modulation
parameters. Note that this sequence is only added to the payload bytes and not to the
header or the payload “cyclic redundancy check (CRC)”.

• Gray Decoder
The gray decoder turns the SF-bit (or (SF-2) if inside the header) words into sym-
bol numbers. This structure is kept the same as described in the literature.

• Modulator
The modulator generates the chirps corresponding to each symbol number. This
structure is kept the same as described in the literature.

• Append Preamble
This block adds a fixed preamble to the beginning of the resulting signal. This structure
is kept the same as described in the literature, with the exception of a slight change on
the size of the section of downchirp.

Sensors 2024, 24, 4825 7 of 25

3.2.2. Physical Layer Packet Structure

The LoRa PHY packet is composed of a preamble, followed by LoRa PHY’s logical link
control layer frame, modulated in CSS, as it can be seen in the plot of Short-time Fourier
Transform (STFT) (Figure 4).

Figure 4. STFT of a section of a real LoRa signal.

The preamble is composed of the following:

• A sequence of consecutive upchirps, which can be of length 6 to 65,535, as mentioned
in [16];

• Two symbols, referred to as a sync word, used for network identification;
• Two and a quarter downchirps.

A visualization of this signal can be seen in Figure 5, using a plot of the STFT of a real
LoRa signal captured via SDR.

Figure 5. STFT of the preamble of a real LoRa signal.

As previously mentioned in the section on previous works (Section 3.2), the packet is
composed by the LLC payload preceded by a preamble. The structure described there seems
to be correct, with a slight correction: the downchirps where found to be slightly shorter
than two and a quarter. A length of 2 + 1/4 − 2-SF symbols was determined empirically.
The need for this change arose from observations during testing of the proposed receiver
structure (see Section 4), as there was a systematic time offset in synchronization. Also,
while using the receiver implemented in [19] that is based on the description from [3]
for large frames (with payloads with length close or equal to 255 bytes) with a known
input, and looking at how the received symbol numbers drift monotonically from the
expected ones, we can see that there is some inaccuracy in the synchronization, further
giving evidence to this hypothesis.

As a side note, this detail is probably the reason why the whitening/randomizer was
not reverse engineered on previous papers.

Sensors 2024, 24, 4825 8 of 25

3.2.3. Logic Link Control Layer Structure

1. Coding
Both [2,3] cite that the linear encoding used in LoRa PHY is some form of Hamming
encoding and [3] explicitly describe it for CR = 4, as the usual form of Hamming(8, 4),
mainly a code with generator matrix:

1 0 1 0 0 0 1 0
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 0
1 1 1 1 1 1 1 1

.

With a permutation with the following permutation applied to the coded word:(
5 0 1 2 4 3 6 7

)
,

represented in one-line notation. By applying the bit permutations to the generator
matrices of the codes proposed in [2,3] and implemented in [19], in order to not
need the extra bit-permutation step, new generator matrices were obtained. Also,
the nibbles of the coded word were inverted to obtain a systematic code, which also
resulted in a more intuitive structure of the randomizer, giving more evidence that
this is indeed the intended bit ordering. For each of the possible CR values, mainly 1,
2, 3, and 4, the obtained generator matrices are listed in Equations (6)–(9), respectively,
as follows:

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

; (6)

1 0 0 0 1 0
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 0 1

; (7)

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

; (8)

1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

. (9)

Note that all the obtained linear codes are systematic and with the exception of the first
code, which is a simply a parity bit, the three others are all derived from Hamming(7,4).
For CR = 3, the code is a systematic version of it, whereas for CR = 2 the code is a
reduced version of this code obtained by removing the last bit, which results in a
systematic (6,4) code; the last one (CR = 4) is a form of the extended Hamming(8,4)
code obtained by adding an extra parity bit to the form of Hamming(7,4) used for
CR = 3.

2. Randomizer
Also referred to as a whitening block, the randomizer is partially reverse engineered
in both [2,3] in a direct approach by assuming randomization is performed as the
result of the XOR operation between a fixed arbitrary sequence and the output of the
interleaver. These sequences were then extracted by sending all-zeros payload mes-
sages and looking at the resulting de-interleaved symbols, which should be the same
as the whitening sequence. Note that, in this way, they depend on the modulation

Sensors 2024, 24, 4825 9 of 25

parameters (SF, CR, and the possible use of lowDataRate). These sequences can be
found in [19].
The Berkelamp–Massey algorithm is an algorithm that finds the shortest LFSR that
encodes a given sequence in GF(2), i.e., the Galois field of order 2. This approach
is equivalent to solving the linear system that arises from the LFSR structure for a
number of data points (bi+N = ∑N−1

i=0 bi−1−kak for i ∈ {0, ..., M − 1}) using Gaussian
elimination in GF(2). By taking the whitening sequences obtained in [3], used in [19],
passing them through the decoder, grouping the obtained bits in a 8xN column bit matrix,
and then running the Berkelamp–Massey algorithm on the first bytes, it can be seen that
the sequence can be generated by a degree-8 LFSR with the following polynomial:

P(x) = x0 + x3 + x4 + x5 + x7. (10)

The state of this LFSR is modulo-2 added to each of the data bytes to act as a random-
izer. Furthermore, it is worth noting that the sequences provided by Robyns in [19]
diverge from those generated by this LFSR after a certain position, but this is probably
due to a symbol rate offset or an imprecision on the alignment that caused the last
symbols of the message not to be aligned when using the receiver used in [19]. This
conclusion was reached because the symbol numbers at the end of a 255-byte length
frame slowly drift from the ones obtained in this work.
It has to be pointed out that the whitening sequences proposed in [3] do work. Even
with this problem, as the symbol number offsets caused by the time drift due to the
inaccuracy in synchronization are deterministic and therefore can be compensated in
the de-randomization process by changing the whitening sequence, like it was carried
out unknowingly in [3].

3. Frame Structure
In [3], the header structure seen in Table 3 is proposed as follows:

Table 3. General structure of the LoRa LLC.

Starting Bit Function

0 Payload Length (1 byte)
8 CR (3 bits)

11 CRC Present (1 bit)
12 Header Checksum High Nibble (HN) (4 bits)
16 Header Checksum Low Nibble (LN) (4 bits)
20 Payload (0 to 255 bytes)

20 + 8 × (Payload Length) Payload “CRC” (2 bytes) (optional)

Each part of the frame is described in detail in the following sections.
By analyzing the structure of the header, and given the previous description given
in [3], the structure of the frame was found to be the one shown in Table 4.

Table 4. Proposed general structure of the LoRa LLC frame.

Starting Bit Function

0 Payload Length HN (4 bits)
4 Payload Length LN (4 bits)
8 CR (3 bits)

11 CRC Present (1 bit)
12 Header Checksum HN (4 bits)
16 Header Checksum LN (4 bits)
20 Payload (0 to 255 bytes)

Sensors 2024, 24, 4825 10 of 25

Table 4. Cont.

Starting Bit Function

20 + 8 × (Payload Length) Payload “CRC” (2 bytes) (optional) 1

20 + 8 × (Payload Length + 2) Padding Nibbles 2

1 The payload “CRC” was found not to be in the usual ordering and not to be a usual CRC sum. Check its section
for more details. 2 These padding nibbles are added so the encoding of the payload plus the payload nibbles plus
the CRC (if present) plus these extra nibbles are a multiple of SF and therefore give rise, after the interleaver, to a
whole number of symbols. How exactly these numbers are generated in real hardware is not clear, but they seem
to make no difference as, while testing the implemented transmitter, they were set to zero, which is not what
usually happens in the commercial transmitters; they still functioned normally.

Note that the nibbles might seem to be inverted to that described in [3]. This is due to
the change in the description of the coding.
Each part of the frame is described in detail in the following sections:

(a) Payload Length
The length of the payload in bytes. Note that the two nibbles are in a “little endian-
like” ordering with the upper nibble coming first and then the lower nibble.

(b) CR
The CR parameter of the LoRa PHY modulation as described in the Semtech
documentation [20], which is not the code rate, but the difference between the
code length and the code rank—this second always being equal to 4.

(c) CRC Present
Single bit that indicates whether or not the payload “CRC” is present. If it is ’1’,
then it is present, and if it is ’0’, it is not.

(d) Header Checksum
A checksum calculated from the first 12 bits of the header. Its presence is men-
tioned in [3], but its exact structure is not mentioned—only that its 5 least
significant bits are non-zero.
The same “little endian-like” ordering used in the payload length was assumed.
As described in Robyn’s work [3], 3 of the bits of the checksum are always 0,
which in the assumed ordering are the last 3 bits (5 to 7). After doing some
analysis, it was found that the checksum can be calculated as

c = Gh, (11)

where c is the bit column vector representation of the checksum, h is the vector
of the first 12 bits of the header, and G is a 8 × 12 matrix in GF(2):

G =

1 0 0 0 0 1 0 0 1 1 1 1
0 1 0 0 1 0 1 1 1 1 1 1
0 0 1 0 1 0 1 0 0 1 0 1
0 0 0 1 0 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

. (12)

i. Reverse Engineering Methodology
In order to reverse engineer this checksum, initially, the reasonable assump-
tion that the bits of the header checksum is a linear function (in modulo-2
arithmetic) of the data bits of the header was made. Then, by decoding
the headers of frames from captured waveform files, putting them as rows
of a matrix, and then applying the Gauss–Jordan elimination algorithm in
modulo-2 arithmetic. In this way, if we start with a matrix with 12 linearly

Sensors 2024, 24, 4825 11 of 25

independent rows (in the canonical linear space in GF(2)12), we obtain a
matrix M, such that

M = [I G⊺], (13)

i.e., M is the result of the horizontal concatenation between the transpose of
G and the 12 × 12 identity matrix I.

(e) Payload “CRC”
The CRC sum of the payload. It is mentioned in [2,3], but its exact structure was
not known.
The payload “CRC” was found to be calculated by taking the polynomial in
GF(2) relative to the payload data in little endian ordering, taking the remainder
of its division with the polynomial x0 + x5 + x12 + x16, and then taking the
corresponding bit string and storing it in big endian ordering. Note that this
division is equivalent to computing the CRC sum of the data starting from the
second byte (in little endian order) with the above-mentioned polynomial and
using the first byte as the initial value of the algorithm.

i. Reverse Engineering Methodology
Initially, given what was already known, it was assumed that the CRC sum
was really a CRC sum and had a degree-16 polynomial. In order to reverse
engineer the payload CRC, using the above-mentioned test setup, frames
whose payload was the powers of two, i.e., only one ‘1’ byte and all the
others ‘0’, with length 1 up to 7 were transmitted, captured, and decoded.
For the sake of simplicity, all byte orderings referred to in the rest of this
description are big endian. When observing the data, it can be seen that
when only the last 2 bytes are non-zero, the CRC is the same as those last
2 bytes, but in opposite ordering. Given this, three things were inferred
as follows:

• The byte ordering of the CRC was the opposite of that of the data.
• The checksum was not a direct CRC sum, but the direct remainder of

the polynomial division of the data without multiplying its polynomial
by xn, where n is the order of the CRC.

• The data used in this calculation is in little endian order because the
CRC sum was the same as the data but inverted when only two non-
zero bytes are transmitted.

Given those three, if the last bytes of the payload are zero, the checksum is
equivalent to a usual CRC sum of the data in little endian mode, ignoring
those last two bits. Therefore, it was possible to use the open-source tool
CRC RevEng [21] to find the polynomial if this checksum was indeed a
CRC. This program tests a collection of known used CRC polynomials and
checks if any are consistent with the given data plus CRCs. By running
it with payload data, the program yielded the polynomial 0x1021 and
indicated that the data was indeed taken in little endian ordering. For
further testing, with all power-of-two length payloads, it was verified that
this CRC coincided with the one calculated by the commercial transceiver
for payload lengths 1 up to 7 bytes.

4. Receiver Structure

As the transmitter structure was already described in Section 3.2.1 to illustrate the
structure of the frame, in this section, a structure for the receiver is proposed. The receiver
architecture can be divided into four main blocks:

• Frequency Estimator
• Correlation Synchronizer
• Symbol Decision
• Frame Decoder

Sensors 2024, 24, 4825 12 of 25

4.1. Frequency Estimator

The goal of this block is to estimate the instantaneous frequency of the signal, given
some known chirp rate, or equivalently, a symbol factor and a CSS bandwidth. This can be
formally defined as finding, for each time instant n, some f ∈]− 1

2 ; 1
2], such that minimizes

J(f , n) = E

∣∣∣∣∣ N

∑
i=−N

x(i + n) cos
(

πβi2
)

ej2π f i

∣∣∣∣∣
2
, (14)

or, equivalently, that maximizes

K(f , n) = E
[
|Yn(f)|2

]
(15)

with

Yn(f) =
N

∑
i=−N

x(i + n) cos
(

πβi2
)

e−j2π f i = DTFT
[(

x(i + n) cos
(

πβi2
))

i∈{−N,...,N}

]
, (16)

where, for some N ∈ N, where x(i) is the received signal that consists of the LoRa signal
added to a zero-mean white noise process n(i) with variance σ2

n , while DTFT denotes the
discrete-time Fourier transform.

Note that cos(πβi2) = 1
2

(
ejπβi2 + e−jπβi2

)
is used instead of e−jπβi2 , as the LoRa

CSS signal uses not only upchirps, but also downchirps, the second for synchronization,
as described in the section about the modulation; by using the sum of a downchirp and an
upchirp, when multiplied by this reference signal, the signal vector will present a peak on
its spectrum at its middle frequency when either chirp is present.

To estimate this value, two approaches are proposed.

1. Stochastic Gradient Descent
If it is assumed there is no interfering signal other than Gaussian noise, this problem
can be approximated with a simpler optimization problem using only one sample,
i.e., to minimize the cost function:

J(w) = E
[∣∣∣x(n + 1)e−j2πβ − w∗x(n)

∣∣∣2], w ∈ C, (17)

using f̂ = − arg(w)
2π as the instantaneous angular frequency estimate. The solution

of this problem can be easily estimated using stochastic gradient descent, i.e., an
order-1 adaptive filter. For the reverse engineering carried out in this work, an order-1
normalized least mean squares filter was used whose coefficient-update function
reduces to

w(n + 1) = w(n)(1 − µ) + µ

(
x(n + 1)e−j2πβ

x(n)

)∗
, µ ∈ R+, (18)

which is equivalent to passing the signal e−j2πβxi+1
xi

through a single pole IIR low
pass filter.
Also, to avoid division by zero errors, the alternative equation

w(n + 1) = w(n)(1 − µ) + µ sgn
(

e−j2πβx(n + 1)∗x(n)
)

, µ ∈ R+ (19)

can be used.
An example of the output signal of this block, in which the input signal is composed
of a sequence of LoRa frames with SF = 7 whose spectrogram is shown in Figure 6,
can be seen in Figure 7.

Sensors 2024, 24, 4825 13 of 25

Figure 6. Spectrogram of the input signal composed of a sequence of LoRa frames with SF = 7, CRC
on, and payloads of a single byte containing powers of 2 (1, 2, . . . , 128).

Figure 7. Output signal of the stochastic gradient descent frequency tracker given the described test
signal at its input (zoomed into frequencies from 0 to 0.2).

2. Discrete Fourier Transform (DFT) Peak
The previous method presents some problems as if multiple local maxima are present
in the short-time spectrum, e.g., if there is an interfering signal, the frequency estimate
will converge to an intermediate solution that minimizes the square error of the sim-
plified cost function and not the global maximum that optimizes the original function.
If the squared magnitude of the DTFT of the signal windowed by a (2N + 1)-sample
rectangular window around each sample is seen as the probability density of the
instantaneous frequency process, the original problem can be interpreted as finding
its mode, whereas the simplified process converges to its mean; therefore, it is only
working if the interfering signal’s mean is equal to its mode, as is the case for a signal
with Gaussian interference.
To cope with this problem, we can use the following estimator for the frequency:

f̂ (n) =
1
N

arg max
k

(
|Yn(k)|2

)
, (20)

where

Yn(k) = DFT

(x(i + n) cos

(
πβ

(
i − N − 1

2

)2
))

i∈{0,...,N−1}

k

, (21)

which is equivalent to computing the original cost function at N points and taking the
point that maximizes it.
Additionally, to compute the cost function at more frequency points, the order of the
DFT can be increased while applying a small rectangular window to the signal, i.e.,

f̂ (n) =
1

N′ arg max
k

(∣∣Y′(k)
∣∣2) , (22)

Sensors 2024, 24, 4825 14 of 25

with

Y′(k) = DFT

(x(i + n)w(i) cos

(
πβ

(
i − N′ − 1

2

)2
))

i∈{0,...,N′−1}

k

, (23)

where

w(i) =

{
1 if |i| ≤ N′

0 if |i| > Nw
(24)

and Nw ≤ N′.
This method presents some issues in terms of computational cost; however, it has
much better performance in terms of resistance to interference from signals with
different symbol factors [10], as multiplying the signal by cos(πβi2) spreads the
spectrum of the interfering signals and collapses the desired signal to a single (or two,
in the case of the CSS modulation at the transition of two symbols) peak.
To address the performance issues, the f̂ (k) estimator can be computed at a lower rate
than the input signal, i.e.,

f̂ (n) =
1

N′ arg max
k

(∣∣Y′′(k, d)
∣∣2), d ∈ N , (25)

where

Y′′(k, d) = DFT

(x(i + dn) cos

(
πβ

(
i − N′ − 1

2

)2
))

i∈{0,...,N′−1}

l

. (26)

Just as in the previous method, an example of output of this block when receiving the
beginning of the same test signal is shown in Figure 8.

Figure 8. Output signal of the DFT peak frequency tracker given the described test signal at its input.

4.2. Correlation Synchronizer

This part is split into three sections: the calculation of the correlation, the actual
synchronization/alignment, and the compensation.

4.2.1. Correlator

The correlation is calculated by taking the most recent Npr samples of the instantaneous
frequency generated by the frequency estimator, where Npr is the size of the fixed part
of the preamble, i.e., the sync word plus the downchirps and computing its normalized
correlation with the expected preamble, i.e.,

c(i) =
f̂n · pn

∥f̂n∥∥pn∥
, (27)

where f̂n = [f̂ (n), . . . , f̂ (n − Npr + 1)]H and [·]H denotes the Hermitian transpose.
Then this value and the first sample of the input vector are passed on to the next stage.

Sensors 2024, 24, 4825 15 of 25

An example of the outputs of this block when receiving the end of the preamble of a
LoRa PHY frame is given in Figure 9:

Figure 9. Output signals of the correlator when receiving the end of the preamble of a LoRa frame
with SF = 7, CRC on, and payload of a single byte containing a power of 2 (1, 2, . . . , 128).

4.2.2. Synchronizer

This block takes the two values generated by the correlator and looks for a local
maximum, given two thresholds. When the correlation is higher than the first threshold,
it starts trying to find the local maximum, and when the correlation gets lower than the
second threshold, it stops this detection and outputs the signal starting from the point of
maximum correlation between these two instants, already grouped in vectors of size nsym,
i.e., the number of samples in a symbol.

The resulting output, when the previously shown output of the correlator is the input
of the synchronizer, can be seen in Figure 10.

F
re

q
u

e
n

cy
 E

st
im

a
te

0.1

Sample

Figure 10. Synchronized signal, as generated by the synchronizer when its input is the previously
shown test signal.

4.2.3. Time-Frequency Shift Compensation

In this step, two parameters are estimated and compensated by adding an offset to
the instantaneous frequency signal: the frequency offset, i.e, the mean frequency of the
signal and the fractional time offset, i.e, the remaining non-integer time offset of the signal
after synchronization.

Sensors 2024, 24, 4825 16 of 25

Initially, the two sync word symbols and the two downchirps are demodulated using
a method similar to that described in the section on the multiple detection approach
(Section 4.3.2) for symbol detection, with the difference that the sync word samples are
subtracted by the expected sync word and the downchirps are demodulated considering
downchirp symbols. Also, two obtained new sync word symbols are demodulated together
generating a single offset value and the same is carried out for the two downchirps.

With these two values in hand, their average scaled by 1
nsym

gives an estimate of the

frequency offset, and their difference scaled by 1
2βnsym

gives an estimate of the fractional
time shift, as illustrated in Figure 11:

δ f =
symupchirps + symdownchirps

2nsym
, (28)

δt =
symupchirps − symdownchirps

2βnsym
. (29)

f

t
0

Figure 11. Illustration of the offset estimation procedure with a single upchirp (as sync word)
and downchirp.

Finally, the calculated frequency offset is subtracted from the frequency estimates sig-
nal, and, to avoid complex fractional resampling operations, the time offset is compensated
by adding an extra equivalent offset:

δ f ,t,eq = βδt, (30)

δ f ,tot = δ f + δ f ,t,eq, (31)

fcomp(n) = f (n)− δ f ,total , (32)

where β is the chirp rate relative to the current modulation parameters. This relies on
the local linearity of the frequency-time waveform, which allows the time offset to be
compensated by shifting in frequency.

4.3. Symbol Decision

In a similar manner to the frequency estimator, two methods of symbol demodulation
were proposed as follows: one based on the mean instantaneous frequency of the symbol
being detected, and one based on the mode.

Sensors 2024, 24, 4825 17 of 25

4.3.1. Minimum Squares Approach

This method, based on the one described in [3], incorporates the previously mentioned
frequency estimation techniques. It determines the symbol by calculating the inner product
between the symbol’s frequency samples and each expected symbol, selecting the one that
maximizes this result. Since the symbols are rotations of one another, this process can
efficiently be achieved by computing the circular correlation with the 0-th symbol, i.e., the
time-frequency representation of the base upchirp. This approach significantly reduces the
computational complexity from O

(
n2

sym

)
to O

(
nsym log2

(
nsym

))
, where nsym represents

the number of frequency samples per symbol in a DFT-based approach.
The main advantage of this approach is that it is insensitive to both frequency offsets

and frequency scaling, as the instantaneous frequency vector of the base upchirp has
zero mean.

In Figure 12, we show an example of the vector used as input to the symbol decision
block together with the samples of the decided symbol.

0 200 400 600 800 1000 1200
-0.1

-0.05

0

0.05

0.1

Sample

N
o
rm

a
liz

e
d
 I
n
st

a
n
ta

n
e
o
u
s

F
re

q
u
e
n
c
y

Received and ideal symbol samples for n
sy

 = 96, SF = 7

Symbol Samples

Detected Symbol Samples

Figure 12. Synchronized frequency samples of a received LoRa symbol together with the samples of
the symbol detected by the minimum squares decider block when given the former as an input.

4.3.2. Multiple Detection Approach

The previous method assumes the interfering signal has zero mean frequency within
the observation window, which is not necessarily true when using the DFT-based approach
for frequency estimation, as the behavior of the estimate in the transition is not very
predictable. In this region, there are two spectral peaks with magnitudes close two each
other; therefore, the maximum will alternate between them. To cope with this problem,
a new method is proposed that makes a decision for each of the points of the symbol and
takes the most frequent one using the following estimator:

si = mod
([(

f̂i − β

(
i −

nsym − 1
2

))
2SF

BW

]
, 2SF

)
, (33)

where the brackets represent the nearest integer rounding and f̂i is the vector of frequencies
estimated for the current symbol.

The main issue with this method is that it requires time-frequency alignment like the
procedure described in Section 4.2.3 to be performed beforehand.

Sensors 2024, 24, 4825 18 of 25

Also, to improve performance, only the middle half of the samples of the frequency
waveform are used, i.e., samples at instants i ∈ { nsym

4 , ..., 3nsym
4 − 1}. This also helps avoid

interference from neighboring symbols at the edges of the symbol due to time shifts.

4.4. Frame Decoder/Receiver Controller

This section implements the inverse of the steps described in Section 3.2.1, reads the
frame header, and performs the CRC check if needed. It executes the following operations
in order as follows:

• Gray Encoding
• Deinterleaving
• Decoding
• Randomization
• CRC Calculation

5. Transceiver and Hardware Implementation
5.1. GNU Radio Implementation

For the implementation of the receiver, GNU Radio was used. It is a free and open-
source software development toolkit used for the development of signal processing blocks
that can be connected in a flowgraph. Among all signal processing software development
toolkits, the choice of GNU Radio was based on its flexibility, customizability, and compati-
bility with very well-known SDR platforms. Please note that all the processing blocks work
in baseband in the host computer environment, as this is the main idea of SDR processing.
These custom blocks can be written in C++ or Python and the flowgraphs can be either
created using the GNU Radio Companion graphical interface and then exported to the
above-mentioned languages or directly written in those. All the GNU Radio-based code
developed for this study can be found at [22,23]. Please note that both the SDR-based
receiver and transmitter were tested and validated using a commercial LoRa IC, the SX1278,
to guarantee that they can communicate with original LoRa hardware.

5.1.1. Receiver

In order to keep the design modular, not only so it can be more easily modified, but
also to take advantage of the multi-threading capabilities GNU Radio provides, as each
block runs in a separate thread, each of the sections described in the previous section have
been implemented in separate blocks.

In addition to these, two extra blocks were added as follows:

• A receiver controller that, in order to control the flow of data and pass some necessary
information between the blocks, controls some aspects of all other blocks using mes-
sage ports, which are an asynchronous way of passing information between blocks
that GNU Radio provides.

• A chirp detector that, using an approach similar to that described in the DFT-based
symbol decision, takes the DFT of the signal multiplied by the linear chirp relative
to the selected set of modulation parameters (BWCSS, SF, and consequently the chirp
rate), computes the chirp-windowed DFT and the ratio between the energy in the
maximum bin and the mean energy on the remaining bins, and checks whether this
value is higher than some set threshold. Then, it uses this information to only allow
the flow of data downstream in the flowgraph when this detection happens in order
to avoid unnecessary calculations and consequently unnecessary power consumption.

Finally, all these blocks were connected together in a hierarchical flowgraph to create
a receiver block. An image of the flowgraph of the receiver is shown in Figure 13.

Sensors 2024, 24, 4825 19 of 25

CRC16

Polynomial: 0x1021

XorOut: 0x0000

ChirpDetector

samp_rate: samp_rate

bw: BW

SF: SF

DFTSize: symbolS...decimation

threshold: detectorThreshold

timeout: maxFrameTime

DFTDecim: detectionDecim

Correlation

Symbol: preambleNormalized

FFTMax

Dftsize: DFTSize

Window: chirpWindow

NibblesToBytes

Remainder

Divisor: 1

correlationSync

Corrmin: 800m

Corrstop: 600m

symbolSize: symbolSize

preambleSize: prea...zed.size

SF: SF

syncWordNumber: syn...dNumber

decode

Cr: 4

deinterleave

Sf: 7

Cr: 4

grayEncode

Sf: SF

randomize

receiverController

Sf: SF

lowDataRate: lowDa...Required

streamToHistoryVector

Nvect: DFTSize

Decimation: decimation

symbolDemodNew

Sf: SF

Symbolsize: symbolSize

Windowsize: int(symbolSize/2)

Int To Float

Scale: DFTSize

Multiply Const

Constant: decimation

Pad Sink

Label: dataOut

Pad Sink

Label: payloadLengthOut

Pad Sink

Label: reset

Pad Sink

Label: detectionOut

Pad Sink

Label: crcOut

Pad Source

Label: in

Figure 13. Flowgraph of the receiver in GNU Radio companion.

5.1.2. Transmitter

The transmitter follows the same design approach as the receiver; that is, it follows
the proposed structure and tries to be as modular as possible. Also, in addition to what
was previously described, two extra blocks were added as follows:

• A transmitter controller that controls all other blocks by setting the required parame-
ters, according to the parameters given to the transmitter, and depending on which
part of the packet is being transmitted. This block, differently to the controller in the
receiver, mainly uses tags to control the blocks to keep the implementation cleaner
(tags are another mechanism of asynchronous message passing on GNU Radio that
embeds itself into existing data streams instead of requiring an extra output in the
block). Also, this block (together with the other blocks) supports dynamically setting
all modulation parameters (SF, CR, BW, payload size) by sending a special tag to it.

• The append silence block. This is needed because of how GNU Radio works and how
most stock sink blocks are implemented, a continuous stream of data is required at
the output of the receiver; this block is controlled by the transmitter controller and
generates silence samples (i.e., of value zero) whenever the rest of the blocks are not
outputting any packets and outputs that data when it is available.

An image of the flowgraph of the receiver is shown in Figure 14.
In addition to the blocks themselves, another change was introduced. As it is not

trivial in GNU Radio to instantiate multiple instances of the receiver and use them with a
single sink, a mechanism to update the parameters of the transmitter via tags sent through
its input was implemented, so a single block can be used and receive data with different
modulation parameters to be controlled by external blocks.

Sensors 2024, 24, 4825 20 of 25

AppendPre�x

Sf: SF

Symbolsize: symbolSize

Nupchirps: nUpchirps

Syncwordnumber: syn...dNumber

AppendSilence

BytesToNibbles

CRC16

Polynomial: 0x1021

XorOut: 0

Encode

Cr: CR

FrequencyModGrayDecode

Nbits: SF

Interleave

Sf: SF

Cr: CR

SymbolMod

Sf: SF

Symbolsize: symbolSize

TransmitterController

Sf: SF

Symbolsize: symbolSize

Cr: CR

Payloadsize: payloadSize

Crcpresent: CRCPresent

Lowdatarate: lowDataRate

randomize

Pad Sink

Label: out

Pad Source

Label: in

Figure 14. Flowgraph of the transmitter in GNU Radio companion.

5.2. SDR Platforms and Hardware Setup

Since its introduction by Mitola [24], the software-defined radio concept has revo-
lutionized the approach of testing and prototyping in the wireless communication field.
The SDR concept is based on the fact that components, which conventionally were im-
plemented in analog hardware, are now instead implemented by means of software on
a computer or embedded system. This approach allows the re-use of the same hardware
for different purposes and communication systems; it is sufficient to change the software
on the computer. Table 5 shows a short list of the most well-known SDR platforms [25,26]
available in the market. The Universal Software Radio Peripheral (USRP) was one of the
first SDR platforms to gain popularity thanks to its seamless integration with GNU Radio.
Current USRP models B210 and X310 are mid- to high-level SDR transceivers that can offer
very high sample rates, large bandwidths, and high speed interfaces with a cost of a few
thousand dollars.

Table 5. List of SDR platforms.

Platform Frequency Maximum TX/RX? Interface PriceRange Sampling Rate

RTL-SDR RTL2832U 24 MHz–1.7 GHz 2.56 Msps Only RX USB USD 10DVB-T TV Tuner

HackRF One 1 MHz–6 GHz 20 Msps Yes USB 2.0 USD 300

LimeSDR 10 MHz–3.5 GHz 30.72 Msps Yes USB 3.0 USD 400Mini 2 PCIe

USRP B210 70 MHz–6 GHz 56 Msps Yes USB 3.0 USD 1100

USRP X310 DC-6 GHz 200 Msps Yes GbE USD 4800PCIe

For IoT narrowband applications, the required bandwidth and sample rate are much
less stringent; therefore, for our experiment, we used an RTL-SDR (RTL2832U chipset) to
work as a receiver and a HackRF One SDR transceiver to work as a transmitter. The main
drivers behind this choice were the relative low cost and wide availability of these devices.
The hardware setup was then completed with a Raspberry Pi 3A+ as the computer host to
run GNU Radio on it. A simple diagram depicting this setup is shown in Figure 15.

Sensors 2024, 24, 4825 21 of 25

USB

USB

Figure 15. Block diagram of employed hardware setup.

6. Example Applications

We will now showcase how the developed library can be used, not only to implement
the functionality of a simple transceiver, but also how it can be employed in more complex
applications that take advantage of the flexibility built into the blocks.

6.1. LoRa Detector: Another Application of the Chirp Detector

With some simple modifications, the above-mentioned Chirp Detector (in Section 5.1.1)
can also be used for detecting the presence of different SF signals in multiple channels. This
is especially useful, as it allows us to obtain useful statistics about the local channel/network
without all the computational resources required by multiple receivers running in parallel.
This was carried out by making its data output optional and adding a message output
port that, whenever it detects a transmission, is used to send out a message containing the
parameters of the block (SF, BW, and sample rate) and the normalized center frequency
of the band where the detection happened. In this way, by running multiple of these
detectors in parallel while keeping the sample rate high enough so multiple channels can be
observed simultaneously and sending the messages they generate to a block that receives
and interprets these messages, one can easily perform statistics on channel usage for each
SF and band. In order to demonstrate this, a simple block that takes these messages and
counts the detected transmissions on each channel-SF pair was developed. An image of the
entire flowgraph developed for this application is shown in Figure 16.

ChirpDetector

samp_rate: samp_rate

bw: 125e3

SF: 7

DFTSize: None

threshold: threshold

timeout: 5

DFTDecim: detectionDecim

ChirpDetector

samp_rate: samp_rate

bw: 125e3

SF: 8

DFTSize: None

threshold: threshold

timeout: 5

DFTDecim: detectionDecim

ChirpDetector

samp_rate: samp_rate

bw: BW

SF: 9

DFTSize: None

threshold: threshold

timeout: 5

DFTDecim: detectionDecim

ChirpDetector

samp_rate: samp_rate

bw: BW

SF: 10

DFTSize: None

threshold: threshold

timeout: 5

DFTDecim: detectionDecim

ChirpDetector

samp_rate: samp_rate

bw: BW

SF: 11

DFTSize: None

threshold: threshold

timeout: 5

DFTDecim: detectionDecim

ChirpDetector

samp_rate: samp_rate

bw: BW

SF: 12

DFTSize: None

threshold: threshold

timeout: 5

DFTDecim: detectionDecim

DetectionCount

Bw: BW

Nchannels: 5

ChannelWidth: 200e3

Message Debug

PDU Vectors: On

Soapy RTLSDR Source

Sample Rate: samp_rate

Center Freq (Hz): center_freq

Figure 16. Flowgraph of the LoRa multi-channel multi-SF detector.

Sensors 2024, 24, 4825 22 of 25

Also, it is worth pointing out that this extra information that is output by the chirp
detectors could be used in future implementations for controlling the center frequency of a
filter to which the input signal is fed, making it possible to select the channel in which data
is being transmitted with a certain SF and BW and forward it to an appropriate receiver,
thus allowing for the implementation of an efficient multi-channel receiver system.

6.2. Multi-Parameter, Multi-Channel Receiver

In this example application, five receivers are run in parallel, each with a different
spreading factor and with a sample rate of 1 MS/s, as shown in the flowgraph of Figure 17
In this way, any signal transmitted in any channel within a 1 MHz band with any spreading
factor can be received.

In addition, in order to allow simple integration with other applications, a TCP
interface is also added. In this particular setup, one can run the receiver at a dedicated
Raspberry Pi 3A+ and receive the data via TCP on any network-connected device.

LoRa Rx

BW: 125k

SF: 12

decimation: 16

detectionDecim: 8

detectorThreshold: 400

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: 1M

syncwordNumber: 0

LoRa Rx

BW: 125k

SF: 11

decimation: 16

detectionDecim: 8

detectorThreshold: 400

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: 1M

syncwordNumber: 0

LoRa Rx

BW: 125k

SF: 10

decimation: 16

detectionDecim: 8

detectorThreshold: 400

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: 1M

syncwordNumber: 0

LoRa Rx

BW: 125k

SF: 9

decimation: 16

detectionDecim: 8

detectorThreshold: 400

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: 1M

syncwordNumber: 0

LoRa Rx

BW: 125k

SF: 8

decimation: 16

detectionDecim: 8

detectorThreshold: 400

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: 1M

syncwordNumber: 0

LoRa Rx

BW: 125k

SF: 7

decimation: 16

detectionDecim: 8

detectorThreshold: 400

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: 1M

syncwordNumber: 0

Message Debug

PDU Vectors: On

Soapy RTLSDR Source

Sample Rate: 1M

Center Freq (Hz): 433M

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Socket PDU

Type: TCP Server

Host:

Port: 52001

MTU: 10k

Figure 17. Flowgraph of the multi-parameter, multi-channel receiver.

6.3. Variable Parameter Transmitter

In order to make the transmitter block able to have its parameters changed during
runtime, an interface based on GNU Radio’s tag propagation mechanism was implemented.
This allows for metadata containing modulation and band parameters to be optionally
propagated together with the data stream in order to change the parameters when needed.

In addition, an interface to translate a packet with a special format to GNU Radio
tags, extract the band information, if present, and generate a message to control a GNU
Radio signal source in order to select the band was also added to allow the transmitter to
be controlled by external devices via network. The packet consists of this structure:

struct loraPDUHeader {
int8_t hasHeader;
int8_t SF;
uint8_t CR;
bool payloadCRCPresent;
bool lowDataRate;
float BW;
uint8_t syncWordNum;
float fOffset;
};

followed by the actual payload data to be transmitted via the LoRa transmitter. The
hasHeader field is always 0x01 if a header with configuration is present; therefore, if one

Sensors 2024, 24, 4825 23 of 25

is not present, the user should send a single byte before the payload data with any value
other than 0x01. The flowgraph of the variable parameter transmitter is shown in Figure 18.

LoRaPDUHeaderReader

Lengthtagname: payloadSize

LoRa Tx

BW: BW

CR: 1

CRCPresent: True

SF: SF

lowDataRate: False

nUpchirps: nUpchirps

payloadSize: payloadSize

samp_rate: samp_rate

syncwordNumber: syn...dNumber

Signal Source

Sample Rate: samp_rate

Waveform: analog.GR_COS_WAVE

Frequency: 0

Amplitude: 1

O�set: 0

Initial Phase (Radians): 0

Multiply

Socket PDU

Type: TCP Server

Host:

Port: 52001

MTU: 10k

PDU to Tagged Stream

Length tag name: packet_len

Soapy HackRF Sink

Sample Rate: samp_rate

Center Freq (Hz): fr...center

Figure 18. Flowgraph of the variable parameter transmitter.

6.4. Multi-Parameter, Multi-Channel Transceiver

By joining the two previously mentioned flowgraphs, a full transceiver, which can
both receive and transmit with multiple modulation parameters and channels controlled
by a TCP interface, was implemented, and its flowgraph is shown in Figure 19. The idea
behind this is that it could potentially be used for implementing fully functional LoRaWAN
nodes and even gateways with the physical and logical link control layers, i.e., LoRa PHY,
running in a remote device, and the MAC layer protocols running in the local sender
device. However, it is worth noting that, in its current state, this application cannot be
run stably in the Raspberry Pi 3A+ due to random-access memory (RAM) speed and size
limitations, but it is very likely that with some extra optimization effort, it could be made
to run successfully in this device.

LoRaPDUHeaderGenerator

Lengthtagname: payloadSize

LoRaPDUHeaderGenerator

Lengthtagname: payloadSize

LoRaPDUHeaderGenerator

Lengthtagname: payloadSize

LoRaPDUHeaderGenerator

Lengthtagname: payloadSize

LoRaPDUHeaderGenerator

Lengthtagname: payloadSize

LoRaPDUHeaderGenerator

Lengthtagname: payloadSize

LoRaPDUHeaderReader

Lengthtagname: payloadSize

LoRa Rx

BW: BW

SF: 12

decimation: decimation

detectionDecim: det...onDecim

detectorThreshold: threshold

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: samp_rate

syncwordNumber: syn...dNumber

LoRa Rx

BW: BW

SF: 11

decimation: decimation

detectionDecim: det...onDecim

detectorThreshold: threshold

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: samp_rate

syncwordNumber: syn...dNumber

LoRa Rx

BW: BW

SF: 10

decimation: decimation

detectionDecim: det...onDecim

detectorThreshold: threshold

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: samp_rate

syncwordNumber: syn...dNumber

LoRa Rx

BW: BW

SF: 9

decimation: decimation

detectionDecim: det...onDecim

detectorThreshold: threshold

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: samp_rate

syncwordNumber: syn...dNumber

LoRa Rx

BW: BW

SF: 8

decimation: decimation

detectionDecim: det...onDecim

detectorThreshold: threshold

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: samp_rate

syncwordNumber: syn...dNumber

LoRa Rx

BW: BW

SF: 7

decimation: decimation

detectionDecim: det...onDecim

detectorThreshold: threshold

ignoreLowDataRateRequired: True

lowDataRate: False

samp_rate: samp_rate

syncwordNumber: syn...dNumber

LoRa Tx

BW: 125e3

CR: 1

CRCPresent: True

SF: 8

lowDataRate: False

nUpchirps: 5

payloadSize: 8

samp_rate: samp_rate_tx

syncwordNumber: 0

Message Debug

PDU Vectors: On

Socket PDU

Type: TCP Server

Host:

Port: 52001

MTU: 10k

PDU to Tagged Stream

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Tagged Stream to PDU

Length tag name: packet_len

Soapy HackRF Sink

Sample Rate: samp_rate

Center Freq (Hz): center_freq

Soapy RTLSDR Source

Sample Rate: samp_rate

Center Freq (Hz): center_freq

Figure 19. Flowgraph of an example of the full multi-parameter, multi-channel transceiver.

7. Conclusions

In this paper, we proposed our contribution on reverse engineering the lower layers
of LoRa, commonly referred to as LoRa PHY, we proposed a structure for its transceiver
and implemented this structure by using the GNU Radio software to be in conjuction with
widely available software-defined radio platforms. With regard to the reverse engineering
of LoRa PHY, all the missing details were revealed, together with the methodology used
to find them, and we thoroughly clarified how this part of this protocol stack works. For
the transceiver structure, new demodulation and synchronization methods were proposed,
which potentially bring better interference resistance performance with respect to the
previously proposed methods. As far as the actual implementation of the transceiver is
concerned, not only the feasibility of the proposed methods were tested with real hardware,
but also a completely free and open-source LoRa PHY transceiver implementation was
made available to serve as foundation for further research and development on this protocol

Sensors 2024, 24, 4825 24 of 25

stack. Also, an example of hardware implementation was proposed and tested, showing
how this implementation of the transceiver can be used, extended, and integrated by
exploiting the capabilities of the GNU Radio library. As a final remark, some technical
details and challenges still remain to be solved in future research, mainly to optimize
the transceiver algorithms and code for it to be able to run in even simpler hardware, to
increase its range of applications and to implement features which were not included in
this study, such as the support for LoRa’s implicit mode.

Author Contributions: Methodology, J.P.d.O.S. and D.G.R.; Software, J.P.d.O.S.; Writing—original
draft, J.P.d.O.S.; Writing—review and editing, D.G.R. and R.G.; Supervision, D.G.R. and R.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original data presented in the study are openly available in GitLab
at https://gitlab.com/jpsimas/librelora.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. The LoRa Alliance Technical Committee LoRaWAN™ 1.1 Specification. Standard. Lora Alliance, Inc.: Beaverton, OR, USA,

2017. Available online: https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1 (accessed on
26 June 2024).

2. Knight, M.; Seeber, B. Decoding LoRa: Realizing a Modern LPWAN with SDR. In Proceedings of the GNU Radio Conference
2016, Boulder, CO, USA, 12–16 September 2016; Volume 1.

3. Robyns, P.; Quax, P.; Lamotte, W.; Thenaers, W. A Multi-Channel Software Decoder for the LoRa Modulation Scheme. In
Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security, Funchal, Portugal, 19–21 March
2018. [CrossRef]

4. Ghanaatian, R.; Afisiadis, O.; Cotting, M.; Burg, A. Lora Digital Receiver Analysis and Implementation. In Proceedings of the
ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17
May 2019; pp. 1498–1502. [CrossRef]

5. Busacca, F.; Mangione, S.; Tinnirello, I.; Palazzo, S.; Restuccia, F. SDR-LoRa: Dissecting and Implementing LoRa on Software-
Defined Radios to Advance Experimental IoT Research. In Proceedings of the 16th ACM Workshop on Wireless Network
Testbeds, Experimental Evaluation & CHaracterization, Sydney, NSW, Australia, 17 October 2022; pp. 24–31. [CrossRef]

6. Marquet, A.; Montavont, N.; Papadopoulos, G.Z. Towards an SDR implementation of LoRa: Reverse-engineering, demodulation
strategies and assessment over Rayleigh channel. Comput. Commun. 2020, 153, 595–605. [CrossRef]

7. Tapparel, J.; Afisiadis, O.; Mayoraz, P.; Balatsoukas-Stimming, A.; Burg, A. An Open-Source LoRa Physical Layer Prototype
on GNU Radio. In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [CrossRef]

8. Farrell, S. Low-Power Wide Area Network (LPWAN) Overview; RFC, Ed.; Technical Report; Internet Engineering Task Force (IETF):
Fremont, CA, USA, 2018. [CrossRef]

9. The LoRa Alliance Technical Committee LoRaWAN™ 1.1 Regional Parameters. Standard. Lora Alliance, Inc.: Beaverton, OR,
USA, 2017. Available online: https://resources.lora-alliance.org/technical-specifications/lorawan-regional-parameters-v1-1ra
(accessed on 26 June 2024).

10. Dunlop, B.; Nguyen, H.H.; Barton, R.; Henry, J. Interference Analysis for LoRa Chirp Spread Spectrum Signals. In Proceedings of
the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019;
pp. 1–5. [CrossRef]

11. Schlienz, J.; Raddino, D. Narrowband Internet of Things Whitepaper. In White Paper, Rohde&Schwarz; 2016; pp. 1–42. Available
online: https://www.rohde-schwarz.com/tw/applications/narrowband-internet-of-things-white-paper_230854-314242.html
(accessed on 26 June 2024).

12. Martiradonna, S.; Piro, G.; Boggia, G. On the Evaluation of the Nb-Iot Random Access Procedure in Monitoring Infrastructures.
Sensors 2019, 19, 3237. [CrossRef] [PubMed]

13. SIGFOX. Sigfox Connected Objects: RADIO Specifications, Labège—France. 2020. Available online: https://build.sigfox.com/
sigfox-device-radio-specifications (accessed on 26 June 2024).

14. SIGFOX. Sigfox Device Cookbook—Communication Configuration, Labège—France. 2018. Available online: https://build.
sigfox.com/sigfox-device-cookbook (accessed on 26 June 2024).

https://gitlab.com/jpsimas/librelora
https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1
http://doi.org/10.5220/0006668400410051
http://dx.doi.org/10.1109/ICASSP.2019.8683504
http://dx.doi.org/10.1145/3556564.3558239
http://dx.doi.org/10.1016/j.comcom.2020.02.034
http://dx.doi.org/10.1109/SPAWC48557.2020.9154273
http://dx.doi.org/10.17487/rfc8376
https://resources.lora-alliance.org/technical-specifications/lorawan-regional-parameters-v1-1ra
http://dx.doi.org/10.1109/CCECE.2019.8861956
https://www.rohde-schwarz.com/tw/applications/narrowband-internet-of-things-white-paper_230854-314242.html
http://dx.doi.org/10.3390/s19143237
http://www.ncbi.nlm.nih.gov/pubmed/31340521
https://build.sigfox.com/sigfox-device-radio-specifications
https://build.sigfox.com/sigfox-device-radio-specifications
https://build.sigfox.com/sigfox-device-cookbook
https://build.sigfox.com/sigfox-device-cookbook

Sensors 2024, 24, 4825 25 of 25

15. Afisiadis, O.; Cotting, M.; Burg, A.; Balatsoukas-Stimming, A. On the Error Rate of the LoRa Modulation With Interference. IEEE
Trans. Wirel. Commun. 2020, 19, 1292–1304. [CrossRef]

16. Liando, J.C.; Gamage, A.; Tengourtius, A.W.; Li, M. Known and Unknown Facts of LoRa: Experiences from a Large-Scale
Measurement Study. ACM Trans. Sen. Netw. 2019, 15, 16. [CrossRef]

17. Robyns, P. gr-lora-samples: A Collection of Raw LoRa Test Signal Samples for the gr-lora Project. Available online: https:
//github.com/rpp0/gr-lora-samples (accessed on 26 June 2024).

18. de Omena Simas, J.P. lorasim-matlab: A MATLAB/Octave-Based LoRa PHY Simulator. 2020. Available online: https:
//gitlab.com/jpsimas/lorasim-matlab.git (accessed on 26 June 2024).

19. Robyns, P.; Peter Quax, W.L.; Thenaers, W. gr-lora: An Efficient LoRa Decoder for GNU Radio. 2017. Available online:
https://zenodo.org/records/892174 (accessed on 26 June 2024). [CrossRef]

20. Semtech. AN1200.22 LoRa Modulation Basics. 2015. Available online: https://semtech.my.salesforce.com/sfc/p/#E0000000
JelG/a/2R0000001OJk/yDEcfAkD9qEz6oG3PJryoHKas3UMsMDa3TFqz1UQOkM (accessed on 26 June 2024).

21. Cook, G. CRC RevEng: Arbitrary-Precision CRC Calculator and Algorithm Finder. 2019. Available online: https://reveng.
sourceforge.io/ (accessed on 26 June 2024).

22. de Omena Simas, J.P. gr-LibreLoRa: A GNURadio Based LoRa PHY Receiver and Transmitter Implementation. 2020. Available
online: https://gitlab.com/jpsimas/librelora.git (accessed on 26 June 2024).

23. de Omena Simas, J.P. Software-Defined Radio Implementation of a LoRa Detector and Transceiver. Master’s Thesis, Politecnico
di Torino, Turin, Italy, 2020. Available online: https://webthesis.biblio.polito.it/21315/ (accessed on 26 June 2024).

24. Mitola, J. The Software Radio Architecture. IEEE Commun. Mag. 1995, 33, 26–38. [CrossRef]
25. Popescu, D.C.; Vida, R. A Primer on Software Defined Radios. Infocommun. J. 2022, 14, 16–27. [CrossRef]
26. Rumsch, N.; Seidlitz, L.; Andre, J. Current State of Hardware and Tooling for SDR. In Proceedings of the Seminar Innovative

Internet Technologies and Mobile Communications (IITM), Munich, Germany, 6 March–17 August 2023; pp. 109–114. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TWC.2019.2952584
http://dx.doi.org/10.1145/3293534
https://github.com/rpp0/gr-lora-samples
https://github.com/rpp0/gr-lora-samples
https://gitlab.com/jpsimas/lorasim-matlab.git
https://gitlab.com/jpsimas/lorasim-matlab.git
https://zenodo.org/records/892174
http://dx.doi.org/10.5281/zenodo.892174
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001OJk/yDEcfAkD9qEz6oG3PJryoHKas3UMsMDa3TFqz1UQOkM
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001OJk/yDEcfAkD9qEz6oG3PJryoHKas3UMsMDa3TFqz1UQOkM
https://reveng.sourceforge.io/
https://reveng.sourceforge.io/
https://gitlab.com/jpsimas/librelora.git
https://webthesis.biblio.polito.it/21315/
http://dx.doi.org/10.1109/35.393001
http://dx.doi.org/10.36244/ICJ.2022.3.3
http://dx.doi.org/10.2313/NET-2023-11-1_19

	Introduction
	LPWAN and the LoRa Protocol Stack
	Low-Power Wide-Area Networks
	LoRaWAN
	LoRa Chirp Spread Spectrum Modulation

	Reverse Engineering The LoRa Physical Layer
	Experimental Setup
	Previous Works
	General Transmitter Structure
	Physical Layer Packet Structure
	Logic Link Control Layer Structure

	Receiver Structure
	Frequency Estimator
	Correlation Synchronizer
	Correlator
	Synchronizer
	Time-Frequency Shift Compensation

	Symbol Decision
	Minimum Squares Approach
	Multiple Detection Approach

	Frame Decoder/Receiver Controller

	Transceiver and Hardware Implementation
	GNU Radio Implementation
	Receiver
	Transmitter

	SDR Platforms and Hardware Setup

	Example Applications
	LoRa Detector: Another Application of the Chirp Detector
	Multi-Parameter, Multi-Channel Receiver
	Variable Parameter Transmitter
	Multi-Parameter, Multi-Channel Transceiver

	Conclusions
	References

