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1. Introduction

The proposals [1, 2] for an holographic correspondence between String (or M-) theory on

Anti-de Sitter backgrounds and suitable boundary gauge theories have provided a powerful

tool for the study of the strong coupling regime of SYM theories. Amazingly enough, phe-

nomena like confinement, chiral symmetry breaking and strong-weak Seiberg dualities in

certain N = 1 gauge theories are already described in terms of the dual classical supergrav-

ity [3]. These extremely encouraging results are however limited to a very restricted number

of examples. A similar analysis in a non-conformal N = 2 framework has been hampered

so far by the presence of enhançon singularities and, although a number of achievements

were recently made in this direction [4], a completely satisfactory picture of the gravity

dual is still missing. The proposals involving maximally supersymmetric compactifications

of M-theory on AdS4 × S7 or AdS7 × S4 are instead limited by the poor understanding

of the superconformal field theories living on M-branes. Despite these immediate difficul-

ties, the correspondence have enlightened a beautiful interplay between gauge theory and

gravity physics and the impressive amount of results in the last few years justify the initial

enthusiasm (for a review and references see [5]).

The low energy physics around vacua of type II (or 11-dimensional) supergravities

involving AdS spaces times spheres (or more general Einstein spaces) can be efficiently

described in terms of suitable gauged supergravities on AdS vacua. These effective de-

scriptions are believed to be consistent truncations of a higher dimensional supergravity

theory reduced on the internal Einstein space. A solution of the gauged supergravity de-

fines a solution in the higher dimensional theory and vice-versa, although the details of the
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lifting are often hard to determine. In a nice series of works pioneered by [6], domain wall

solutions of five-dimensional N = 8 supergravity that interpolate between Anti-de Sitter

vacua with different number of supersymmetries were studied and a detailed correspondence

between bulk fields and composite operators in the infrared gauge theory was constructed.

Although the equations of motion of gauged supergravities which describe interesting flows

are typically rather complicated to solve, many important features of the flow can already

be read from the physics around the two fixed points. Moreover the complete interpolating

solution, when not known analytically, can be dealt with numerically, obtaining some valu-

able information about the flow. In the cases where an analytic kink solution is available, a

more quantitative information like correlation functions, scalar operator mixings, etc. can

be determined explicitly from the flow (see [7] and references therein).

The aim of the present paper is to provide examples of analytic kink solutions of three

dimensional gauged supergravity, where the details of the flow and the lift to nine or ten-

dimensions can be explicitly displayed. The solutions describe the near horizon limits of

D1D5 and D1D5+KK monopoles bound state systems in freely acting orbifold compactifi-

cations of type IIB. They will always contain a trivial T 4 orK3 part on which the D5 branes

are wrapped. For simplicity we will omit this part in most of our discussion and refer to the

lift as a lift to five or six dimensions. The domain wall solutions will be determined as so-

lution of five-dimensional supergravity after reduction from more familiar six-dimensional

geometries on a circle with non-trivial bounday conditions. In the case of pure D1D5 sys-

tem the solution interpolates between an AdS3 × S2 and a dilatonic AdS2 × S3 vacuum of

five dimensional supergravity. The latter can be better described in terms of a further lift

to six-dimensions where it is given by the more familiar AdS3 × S3 vacuum with constant

dilaton. In the case of D1D5+KK monopole and fluxes, the five-dimensional solution can be

extended all the way out of throat to a Ricci-flat asymptotic geometry with constant dilaton

and therefore a sensible five-dimensional description is avaible at the two ends of the flow.

From the CFT point of view the walls describe the RG-evolution out of two dimensional

N = (4, 0) conformal field theories living on the AdS3 boundaries. Amazingly, the whole

flow is generated by a non-trivial choice of boundary conditions on the familiar D1D5

systems for type IIB on M4 with M4 being T 4 or K3. More precisely the solution describes

the near horizon geometry of D1D5 systems in type IIB on M4 × R × (R4 × S1)/ZNσ 1
N
,

with ZN acting as a rotation of R4 and σ 1
N

an order N shift along a longitudinal circle

of radius NR. The two fixed point geometries, which we will refer to as “deep inside”

and “asymptotic” regions, can be reached by sending R to zero or infinity while keeping

N large but fixed. In the case R → 0 the effects of the shift can be neglected and the

system effectively lives in type IIB on M4×R×S1×R4/ZN (see [8, 9] for example). At the

other end of the flow R→∞ the theory decompactifies to IIB on M4×R1,5. Alternatively

one can think of the orbifold as a compactification of the system on a circle of radius

R, where fields on the circle are periodic only up to a ZN rotation of the transverse

S3. Upon reduction to five dimensions this procedure leads to Melvin solutions with

non-trivial NS-NS fluxes. The ZN will be always embedded inside an SU(2)L subgroup

of the full SO(4) isometry group of S3 and therefore the solution preserves half of the

original N = (4, 4) supersymmetries. Similar ideas have been extensively exploited in

– 2 –
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the construction of flux-brane solutions [10, 11] (see [12] for earlier works in the subject).

The case of supersymmetric flux-branes have been first discussed in [11]. Supersymmetric

versions of NSNS Melvin universes and the spectra of open strings living on D-branes in

these backgrounds have been discussed in [8] (see also [9] for similar results in the context

of RR flux-branes).

The second part of the paper is devoted to the study of the global properties of our

solutions, seen as “tilted” locally AdS3×S3 geometries in six dimensions. The effects of the

global identifications on AdS3 geometries have been studied in a beautiful paper by Brown

and Henneaux [13]. In particular, they showed how point mass solutions carrying non-

trivial momentum charges can be constructed in asymptotically AdS3 vacua by modding

the geometry over global identifications. The effect of the orbifolding in our AdS3 × S3

geometry is in some sense milder and the solutions still define vacua carrying no charges

at infinity. In addition we show how although the global isometry group is drastically

reduced from SL(2,R)L × SL(2,R)R × SU(2)L × SU(2)R to an SU(2)R × U(1)3 subgroup,

the full two-dimensional conformal group is restored at infinity and is realized in terms of

two copies of a Virasoro algebra with the expected central charge.

The paper is organized as follows: in section 2, we construct, via NS-NS Melvin fluxes,

domain wall solutions of five-dimensional supergravity and discuss their near and asymp-

totic fixed point limits. Section 3 is devoted to the discussion the global properties of

the kink solutions from the six-dimensional point of view. In section 4 we include some

concluding remarks and comment on interesting directions of future research.

2. Melvin universe as domain walls in five-dimensional supergravity

In this section we construct supergravity solutions corresponding to geometries that look

locally (but not globally) as products of AdS spaces times spheres. We follow closely the

lines of [10] where similar solutions were found for M-theory on Ricci flat spaces. As in

those cases the non-trivial warped geometry descends from more familiar solutions in higher

dimensions upon reduction on a torus with unusual boundary conditions. More precisely

we consider the case where a loop in a compact coordinate (not necessarily the eleventh

coordinate) is accompanied by a non-trivial shift on the transverse sphere. Upon reduction

to lower dimensions they lead to Melvin solutions with non trivial fluxes and profiles for the

dilaton field. In the context of the AdS/CFT correspondence the isometries of the spheres

are related to R-symmetries of the boundary conformal field theory. Turning on non-trivial

fluxes will then break part of these isometries leading to less supersymmetric AdS/CFT

duals. We are interested in the case where the fluxes are chosen in such a way that half of

the original supersymmetries are preserved. A typical example of such a configuration is

the flux 5-brane [11] of type IIA, involving a reduction on the eleventh dimensional circle

accompanied by a ZN rotation in the transverse R4. More general solutions involving

wrapped flux-branes were studied in [14].

The general idea behind the construction of Melvin solutions in Einstein gravity is quite

simple and can be described as follows [15]. Consider a given solution of the Einstein-Hilbert

equation of motion in D-dimensions described by a metric GMN (whose isometry group

– 3 –
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contains the isometries of a d-dimensional torus Td), a dilaton profile φ and a set of non-

trivial fluxes for the RR rank n field strength H. A solution is specified also by a choice of

boundary conditions along the directions of the torus. Different choices lead to inequivalent

(sometimes drastically different) physics which share with the original solution only its local

characteristics. After reduction to D-d dimensions they give rise to a rich class of solutions

of the lower dimensional gravity with various non-trivial fluxes and scalar profiles. More

precisely, denoting the spacetime index by µ = 0, . . . , D−d−1 and indicizing the directions

of the torus Td by i = D − d, . . . ,D − 1, a general choice of boundary conditions is given

by the identifications

xi ∼ xi + 2πniRi

xµ ∼ xµ + 2πni bµi Ri (2.1)

parameterized by the real parameters bµi , which describe a jump of 2πni bµi Ri along xµ

once one goes ni times around the cycle “i” of T d. In order to perform a reduction to D−d
dimensions it is convenient to introduce the coordinates x̃µ ∼ xµ− bµi xi with the canonical

orbits

xi ∼ xi + 2πniRi

x̃µ ∼ x̃µ . (2.2)

In terms of these new coordinates the D-dimensional metric can be rewritten (after recon-

structing squares) as

ds2D = GMN dxM dxN

= gij (dx
i +Ai

µdx̃
µ) (dxj +Aj

µdx̃
µ) + gµν dx̃

µ dx̃µ (2.3)

with

gij = Gij + 2Gµi b
µ
j +Gµν b

µ
i b

ν
j

Ai
µ = gij

(

Gµj + Gµν b
ν
j

)

gµν = Gµν −Ai
µ gij A

j
ν . (2.4)

After reduction on T d we are left with a “dilatonic” solution with metric gµν , non-trivial

profiles gij for the scalars coming from the metric and fluxes related to the lower dimensional

gauge fields Ai
µ. In addition the six-dimensional rank n field strength, which in the new

coordinates is given by

HM̃1...M̃n
= ∂M̃1

xM1 · · · ∂M̃n
xMn HM1...Mn (2.5)

gives rise to a rank n− 1 and a rank n forms given by

Hn
µ̃1...µ̃n−1

= Hµ̃1...µ̃n−1i

Hn−1
µ̃1...µ̃n

= Hµ̃1...µ̃n −Hµ̃1...µ̃n−1iA
i
µ̃n

+ cyclic permutations . (2.6)
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We will be mainly interested in the case d = 1. Denoting by “x” the compact coordinate

xD−1, the D-dimensional metric can be rewritten as

ds2D = e2σ (dx+Aµ dx̃
µ) (dx+Aν dx̃

ν) + gµν dx̃
µ dx̃ν (2.7)

with e2σ ≡ ΛGxx and Λ, the (D-1)-dimensional metric and the gauge field potentials

given by

Λ = 1 + 2
Gµx

Gxx
bµ +

Gµν

Gxx
bµ bν

Aµ = e−2σ (Gµx +Gµν b
ν)

gµν = Gµν − e2σ AµAν . (2.8)

Together with the H fluxes (2.6), the field strength F ≡ dA, the metric g and the

dilaton e−2φ ≡ Re−2ΦD+σ, they define a solution of the (D-1)-dimensional equations of

motion coming from the supergravity theory with bosonic action (in the string metric)

S = 2π

∫

dD−1x
√−g

[

e−2φ
(

R+ 4 (∂φ)2 − (∂σ)2 − e2σ

4
F 2

)

−

− eσ

2n!
H2
n −

e−σ

2(n− 1)!
H2
n−1

]

. (2.9)

2.1 D1D5 systems in presence of NS-NS fluxes

In this subsection we construct flux solutions of five-dimensional supergravity descending

from AdS3 × S3 vacua. The starting AdS3 × S3 geometry have been extensively studied

in the context of the AdS/CFT correspondence and are associated to two-dimensional

CFTs describing the low energy excitations of bound states of D1D5 branes (or a stack

of NS5 branes and fundamental strings) wrapping a four manifold M, with M4 = T 4 or

K3. It is natural to ask how different choices of boundary conditions in the N = (4, 4)

two-dimensional CFT (after compactifying the six-dimensional black string on a circle) are

realized in the dual supergravity.

The near horizon solution describing a bound state of Q = Q1Q5 D1D5 branes is

described by the AdS3 × S3 six-dimensional metric and self-dual RR field strength

ds2 =
r2

`2
(−dt2 + dx2) +

`2

r2
dr2 + `2 dΩ3

Htxr =
2 r

`2

Hθϕ1ϕ2
= 2 `2 sin 2 θ , (2.10)

where r2 = x22 + · · · + x25 is the radial distance from the D-brane system, `2 = g6
√
Q

the squared of the Anti-De Sitter and S3 radius and g6 = gst/
√
vM the six-dimensional

coupling constant.1 Finally

dΩ3 = dθ2 + dϕ2
1 + dϕ2

2 + 2 dϕ1 dϕ2 cos 2 θ , (2.11)

1We will always measure distances in units of α′.
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denotes the line element along the transverse three sphere with 0 ≤ θ ≤ π/2, 0 ≤ ϕ1 ≤ π

and 0 ≤ ϕ2 ≤ 2π. We would like to consider the effect of introducing non-trivial boundary

conditions along the “σ” direction on the worldvolume CFT, which is set to coincide with

the “x” direction on the boundary of AdS3. In order to preserve supersymmetry we consider

identifications like (2.1), where the spacetime shift is embedded on a SU(2)L subgroup of

the full SU(2)L×SU(2)R isometry group of S3 . More precisely we consider the case where

fields are taken to be periodic on x only up to a ZN rotation of the transverse R4 [11]

x ∼ x+ 2π nR

ϕ2 ∼ ϕ2 + 2π n bR (2.12)

with bR = 1/N . Clearly this orbifolding preserves only an N = (4, 0) subset of the original

two-dimensional supersymmetries with R-symmetry group now reduced to SU(2)R×U(1)L.

From the five dimensional point of view (after reduction on x) our new supergravity solution

can be read off from (2.7), (2.8) and is described by the metric

ds25 = −r
2

`2
dt2 +

`2

r2
dr2 + `2 dθ2 +

+
`2

Λ

[

dϕ̃2
2 + 2 cos θ dϕ1 dϕ̃2 + dϕ2

1

(

1 +
b2

r2
`4 sin2 2 θ

)]

(2.13)

in terms of the new variable ϕ̃2 ≡ ϕ2 − b x. The remaining five dimensional fields are

given by

Λ = 1 +
b2 `4

r2

e−2(φ−φ∞) = Reσ = R
r

`
Λ1/2

Aϕ1 =
b `4 cos 2 θ

Λ r2

Aϕ̃2 =
b `4

Λ r2

Hrmtr =
2 r

`2

Hθϕ1
= 2 b `2 sin 2 θ

Htrµ = −2 r

`2
Aµ

Hθϕ1ϕ̃2
=

2 `2

Λ
sin 2 θ . (2.14)

Besides the background fields descending from the original RR sources we see from (2.14)

that the new solution involves non-trivial NS-NS fluxes Aµ for the gauge field gµx. These

fluxes are responsible for the partial supersymmetry breaking and the consequent non-

trivial profile of the dilaton field and the metric. In the next section we will present a

detailed study of the global features of this new supergravity solution from the six dimen-

sional point of view, but before that we would like to see how much we can learn from the

– 6 –
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local physics described by the metric and background fields above. In particular it is in-

teresting to notice that the flux parameter b sets a new scale in the near horizon geometry.

Indeed (2.13), (2.14) can be seen as a domain wall solution interpolating between regions

of small (r ¿ b`2) and large (r À b`2) radial distances. Remarkably both regimes can still

be accurately described inside perturbation theory and we will refer to them as the “deep

inside ” and “asymptotic” regions respectively. Let us first consider the solution in the

deep inside region r ¿ b`2. The limit can be achieved by turning the flux parameter b to

infinity while keeping bR = 1/N fixed and small, much in the same way as the near horizon

geometries can be recovered from large N expansions of the exact supergravity solutions.

To this end it is convenient to introduce the rescaled coordinates ϕ̂2 ≡ ϕ̃2/b, ϕ̂1 ≡ 2ϕ1

and θ̂ ≡ 2 θ. The metric (2.13) may then be written (up to orders 1/b) as

ds2near =
r2

`2
(−dt2 + dϕ̂2

2) +
`2

r2
dr2 +

`2

4
(dθ̂2 + sin2 θ̂ dϕ̂2

1) (2.15)

which describes an AdS3 × S2 space with radius ` and `/2 respectively. In a similar way

one can evaluate the limit of large b for the remaining NS-NS/RR backgrounds in (2.14).

The surviving components are given by

e−2(φ−φ∞) = Reσ = bR ` =
1

N
`

eσ Aϕ̂1
=

1

2
` cos θ̂

e−σ Hθ̂ϕ̂1
=

1

2
` sin θ̂

Htrϕ̂2
= −2 r

`2
(2.16)

It is worth stressing that the metric (2.15) and background fields (2.16) define a solution of

the Einstein-Hilbert equations of motion by itself and can therefore be extended to any r.

Notice that in the limit b → ∞, the space direction on the boundary of AdS3, pa-

rameterized by ϕ̂2, “leans” towards the x-direction in the originalAdS3 boundary. Indeed

the deep inside solution (2.16), (2.15) can be alternatively derived from reduction on the

ϕ2 fiber inside AdS3 × S3/ZN .2 This is in agreement with the expectations for the near

horizon geometry of the D1D5 system on M4 × S1 × R4/ZN . The above analysis can be

extended to the whole flow by exchanging the role of x and ϕ2 in (2.12), and rewriting all

five dimensional quantities in terms of x̃ = x−ϕ2/b. We will not present here the details of

this equivalent description of the flow, which follows similar lines as that presented above

and leads to identical conclusions.

Turning the flux parameter b to zero one can in a similar way isolate the asymptotic

geometry and background fields. Notice that in this limit the five dimensional dilaton is

no longer constant and the solution is better described in six-dimensional terms where we

recover our starting AdS3 × S3 metric and background fields (2.10). The boundary of

AdS3 decompactifies in this case to Minkowski M1,1 since R should be consistently taken

to infinity in this limit in order to keep bR = 1/N finite.

2Throughout the text we keep N fixed but large.

– 7 –



J
H
E
P
0
2
(
2
0
0
2
)
0
1
8

2.2 Adding KK monopoles

The D1D5 solution with fluxes (2.10) smoothly interpolates between a nearby and an

asymptotic AdS3 geometries naturally living in five and six dimensions respectively. The

effective size of the sixth dimension is related to the five-dimensional dilaton and grows to

infinity far away from the brane. This asymptotic behavior, although shared by most of

the flux-brane configurations studied in the literature, is not generic to all known Melvin

universes. In [14], the author shows how in the presence of Taub-Nut geometries, flux branes

get trapped and the region where the lower dimensional picture breaks down (since dilaton

diverges), is cut off. We would like now to exploit this idea to construct an interpolating

solution where both ends of ”the flow” admit a sensible five-dimensional interpretation.

The solution will be associated with non-trivial boundary conditions for a bound state

system of D1D5 branes and KK monopoles in type IIB. In the absence of fluxes the near

horizon geometry of this system can be obtained from the AdS3 × S3 metric describing

the pure D1D5 system by replacing the R4 cone over S3 by a Taub-Nut space. For Qk

coinciding KK monopoles this recipe yields a supergravity background with AdS3×S3/ZQk

geometry, which is believed to be holographically dual to the N = (4, 0) boundary CFT

describing the excitations of a bound state system of D1D5 branes and KK monopoles [16].

A dual version of this correspondence has been extensively studied in [17].

In the presence of fluxes the analysis of the near horizon geometry follows closely our

previous results but the two geometries differ drastically in the asymptotically far regime.

Another important difference with our former example is that the fluxes do not break

additional supersymmetries among those already preserved by the D1D5KK system (this

holds true already in the absence of D-branes, see [14]).

The starting metric (see for instance [18] and references therein) reads:

ds2 = H−1(−dt2 + dx2) +

+H
[

H−1k (dτ +Qk (1− cos θ) dφ)2 +Hk (dr
2 + r2 dθ2 + r2 dφ2 sin2 θ)

]

(2.17)

with

H = 1 +
`2

r
Hk = 1 +

Qk

r
(2.18)

the harmonic functions associated with the `2 = g6
√
Q1Q5 branes and KK monopole

charges. In addition the D1D5 background include the self-dual RR field strength

Htxr = ∂rH
−1

Hθφτ = `2 sin θ . (2.19)

After the identifications

x ∼ x+ 2πnR

τ ∼ τ + 4πn bR (2.20)

and reduction on x we are left with the five dimensional metric (in terms of the new variable

τ̃ = τ − 2 b x.

ds25 = −H−1 dt2 +HHk(dr
2 + r2 dθ2 + r2 sin2 θ dφ2) +

– 8 –
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+
HH−1k

Λ
(dτ̃ +Qk (1− cos θ) dφ)2 (2.21)

and NS-NS/RR fields

Λ ≡ 1 + 4 b2 H2H−1k

e−2φ = Reσ = RH−1/2 Λ1/2

Aφ =
2 bH2Qk(1− cos θ)

ΛHk

Aτ̃ =
2 bH2

ΛHk

Htr = ∂rH
−1

Hθφ = 2 b `2 sin θ

Hθφτ̃ =
`2 sin θ

Λ

Htrµ = −∂rH−1Aµ . (2.22)

The two interesting “fixed point” geometries are now recovered in the limits r ¿ b2`4/Qk

and rÀ b2`4/Qk. The crucial difference with our previously studied example is that now, in

both the limits r → 0 or r →∞, the dilaton eσ stabilizes leading to a solution with sensible

five dimensional description. Indeed the solution interpolates between an asymptotically

far solution with Ricci flat metric R × (Taub−Nut)∞ with trivial background fields and

the deep inside AdS3 × S2 geometry

ds2near =
r

`2
(−dt2 + dτ̂ 2) +

`2Qk

r2
dr2 + `2Qk (dθ

2 + sin2 θ dφ2) (2.23)

with τ̂ = τ/(2 b) and radii 2 `
√
Qk and `

√
Qk for the two pieces respectively. The surviving

background fields in this limit are given by

e−2φ = Reσ =
2 bR `√
Qk

=
2 `

N
√
Qk

eσ Aφ = `
√

Qk (1− cos θ)

e−σHθφ = `
√

Qk sin θ

Htrτ̂ =
1

`2
. (2.24)

3. Study of global properties of the solutions: charges at infinity

In the previous sections we have constructed new supergravity solutions that look locally

(but not globally) like products of AdS spaces times spheres. The aim of this section is to

present a systematic study of the global properties and charges characterizing these brane

geometries. We will adopt the hamiltonian formalism in General Relativity [19, 20], where

charges associated with asymptotic isometries of a given space-time solution are defined.
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3.1 Hamiltonian formalism in General Relativity

Let us briefly review the hamiltonian formalism in General Relativity [19, 20] and introduce

the basic definitions and notations that will be extensively used in this section. The first

step is to formalize the concept of time evolution of a system. To this end one introduces

a globally defined vector field ta and a function t(x) such that ta∇at = 1. The loci of

constant t(x) are space-like hyper-surfaces denoted by Σt while the vector ta is chosen to

define the time evolution of the quantities restricted to Σt (at least locally one would be

able to define a time coordinate t and n− 1 space coordinates xi such that ta = (∂/∂t)a).

We also choose a volume form ε
(n−1)
a1 ... an−1 = εa a1 ... an−1 t

a for Σt which is invariant under

time evolution (i.e. diffeomorphism generated by ta): Lt (ε(n−1)) = 0. Finally we define our

coordinate system such that ε(n−1) has non vanishing components ±1.
The definition of a space-like hyper-surface and a time direction allows to introduce

canonical variables which define the phase space of the system. In this formalism the

generator of the time evolution, i.e. the hamiltonian, will be denoted by H[ta]. If we

consider the pure gravity case, the system is totally described by the metric gab. We may

express gab in terms of the induced metric (hab) on Σt and of its components out of Σt given

in terms of the extrinsic curvature Kab. The induced metric hab is defined by means of

a unit time-like vector na (but not necessarily a geodesic) orthogonal to Σt:

hab = gab + na nb (3.1)

ha
b being simply the projector on T (Σt). The extrinsic curvature Kab is defined on the

other hand as the gradient of na along Σt

Ka b = ha
c∇c nb . (3.2)

Finally we introduce a covariant derivative Da which acts on tensor fields Ta1...ar

b1...bs on

Σt as:

Da Ta1...ar

b1...bs = ha
c ha1

c1 · · · har

cr hb1d1 · · · hbsds∇c Tc1...cr
d1...ds . (3.3)

We are now ready to define the canonical variables and the hamiltonian H ≡ H[ta].

The Einstein lagrangian can be rewritten in terms of quantities related to Σt as:

LG =
√−g R[g] = t⊥

√
h
(

R+ (Ka
a)2 − (KabK

ab)
)

, (3.4)

where we denote by t⊥, t
a
‖ the directions of ta parallel and orthogonal to Σt

ta = t⊥ n
a + ta‖ . (3.5)

The momentum πab conjugate to the field hab is defined in the following way:

πab =
δLG
δḣab

=
√
h (Kab − habK) (3.6)

with ḣab = ha
a1 hb

b1 Lt ha1b1 . Notice that the components of ta do not appear in the

lagrangian through time derivatives and therefore they are not dynamical variables and

have no associated conjugate momentum.
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The hamiltonian H is expressed as:

H =

∫

Σt

ε(n−1)
(

πab ḣab −LG
)

+ J [ta] =

∫

Σt

ε(n−1)
(

t⊥H⊥ + taH‖ a
)

+ J [ta]

H⊥ ≡ −R+
1

h

[

πab π
ab +

π2

(2− n)

]

H‖a = −2Db π
ab . (3.7)

The additional boundary term J [ta] was shown in [19] to be required in order for the

functional derivatives of H with respect to the canonical variables to be well defined, namely

in order for them to vanish on ∂Σt, so that the boundary conditions on hab and πab at

spatial infinity are not affected by time-evolution. This quantity provides a definition

of the global charge associated with ta on the solution, which is the total energy of the

configuration. From functional derivation of H with respect to ta we deduce two phase

space constraints H⊥ = H‖ a = 0.

In analogy with the definition of H[ta] as the generator of time evolution, given an

asymptotically Killing vector ξ ∈ T (Mn) we may define the corresponding charge H[ξ] as

the following generator in the phase space:

H[ξ] =

∫

Σt

ε(n−1)
(

ξ⊥H⊥ + ξa‖ H‖ a
)

+ J [ξ] , (3.8)

where J [ξ] is the boundary contribution analogous to J [ta] for the energy. An explicit

expression for the functional variation of J [ξ] was derived in [13] and reads

δJ [ξ] =

∮

∂Σt

dSd

[

Gabcd (ξ⊥Dc − ∂cξ⊥) δhab +

+
(

2 ξb‖ π
ad − ξd‖ π

ab
)

δhab + 2 ξ‖a δπ
ad

]

(3.9)

with Gabcd = (
√
h/2)(hac hbd + had hbc − 2hab hcd). For solutions of the Einstein equation

of motion we have H⊥ = H‖a = 0 and therefore J [ξ] represents the only contribution to

the charge (3.8). For asymptotically flat space-times one can easily see that this general

expression reduces to the standard definitions of the energy and momentum charges:

J [∂t] = lim
r→∞

∮

∂Σt

dSk
√
h
(

∂i hi
k − ∂k hi

i
)

ADM mass

J [∂i] = lim
r→∞

2

∮

∂Σt

dSk π
ik Momentum along xi . (3.10)

In the next subsection we will evaluate, using the general expression (3.9), the global

charges characterizing the various locally AdS geometries previously defined.

3.2 Asymptotic AdS3 × S3 isometries and central charge.

In this section we study the global properties of the six-dimensional D1D5 geometry (2.10)

with boundary conditions (2.12). The non-trivial identifications in x, ϕ2 break the global
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AdS3 × S3 isometry group down to a U(1)3 × SU(2)R subgroup with cartan genera-

tors ∂x, ∂t, ∂ϕ2 , ∂ϕ1 . With each of these Killing vectors we can associate a global charge

through (3.9). More generally, a conserved charge can be associated with each asymptotic

(not necessary global) Killing isometry. We will see how, even in the presence of non-trivial

boundary conditions ( b 6= 0 in (2.12)) a full 2d conformal group is realized in the asymp-

totically far geometry in terms of two copies of the Virasoro algebra with the expected

central charge.

The AdS3 × S3 metric (2.12), after the global identifications (2.12), can be written as

ds2 =
r2

`2
(

−dt2 + dx2
)

+ `2

[

dr2

r2
+ dθ2 + dϕ2

1 + (dϕ̃2 + b dx)2 +

+ 2 dϕ1 (dϕ̃2 + b dx) cos 2 θ

]

(3.11)

in terms of the variables x ∼ x+2πR, ϕ̃2 ∼ ϕ̃2+2π with standard orbits. The metric (3.11)

is preserved by the Killing generators

J
(1)
R = cos(2ϕ1) ∂θ − cot(2 θ) sin(2ϕ1) ∂ϕ1 + csc(2 θ) sin(2ϕ1) ∂ϕ̃2

J
(2)
R = − sin(2ϕ1) ∂θ − cot(2 θ) cos(2ϕ1) ∂ϕ1 + csc(2 θ) cos(2ϕ1) ∂ϕ̃2

J
(3)
R = ∂ϕ1

J
(3)
L = ∂ϕ̃2

L0 =
i R

2
(∂t − ∂x + b ∂ϕ̃2)

L̄0 =
i R

2
(∂t + ∂x − b ∂ϕ̃2) (3.12)

which correspond to the global U(1)3×SU(2)R ⊂ SL(2,R)L×SL(2,R)R×SU(2)L×SU(2)R
left unbroken by non-trivial identifications. A closer look into the Killing equations derived

from the metric (3.11) reveals however that a richer isometry algebra is restored in the

asymptotically far region r → ∞. The group of asymptotic isometries can indeed be

identified with the full two-dimensional conformal group like in the more familiar global

AdS3 × S3 instance. The new asymptotic Killing generators, realize two copies of the

Virasoro algebra and can be written as

Ln =
iR

2
ein(t−x)/R

[(

1− n2`4

2R2r2

)

∂t −
(

1 +
n2`4

2R2r2

)

(∂x − b∂ϕ̃2)−
inr

R
∂r

]

(3.13)

L̄n =
iR

2
ein(t+x)/R

[(

1− n2`4

2R2r2

)

∂t +

(

1 +
n2`4

2R2r2

)

(∂x − b∂ϕ̃2)−
inr

R
∂r

]

. (3.14)

The vector fields above generate asymptotic Killing isometries in the sense that all non-

trivial variations of the metric (3.11) generated by them:

δn gαβ = ∇(α Lβ)n = −∇(xLt)n = −n
3 `2

2R2
ei n (t−x)/R

δn̄ gαβ = ∇(α L̄β)n = −n
3 `2

2R2
ei n (t+x)/R ; α, β = {t, x} (3.15)
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fall off fast enough to leave unaltered the leading behavior of (3.11) at space infinity.

As before, with each generator (3.13) of the asymptotic isometries we associate a

charge through (3.8). We consider the most general linear combination of the cartan

generators ξ = a1 ∂t + a2 ∂φ + a3 ∂ϕ1 + a4 ∂ϕ̃2 , and read the corresponding charge from

the ai coefficients of the final answer. Charges associated with non cartan generators are

vanishing since they always involve trivial integrals over sines or cosines over ∂t ≡ S1.

The computation of the charge is simplified by the fact that the extrinsic curvature

of the hyper-surface Σt vanishes and therefore only the first two terms in (3.9), which do

not involve the canonical momenta πab or its variations, contribute to the charge. Indeed,

being the metric t-independent and block diagonal, the induced metric on Σt is simply

the restriction hij = gij with indices i, j 6= t of gab along Σt. In addition the only non-

trivial component of the covariant derivative of n = `
r∂t is ∇r n

t which does not have

components along Σt and therefore yields a vanishing extrinsic curvature according to

the definition (3.2). We are left with potential contributions coming only from the terms

involving ξ⊥ = −a1r/L in (3.9). These two contributions can be easily worked out and

vanish identically. In order to see this, let us recall that

δ hcd =
∂ hcd
∂b

db (3.16)

have components along the (x, ϕ1, ϕ̃2) plane. On the other hand the indices “d” and “c”

in eq. (3.9), referring to the direction normal to the boundary ∂Σt at r = ∞ and to the

components of the derivatives respectively, can only be “r”. Once again using the fact that

the metric is block diagonal (with respect to ∂Σt) the only contribution to (3.9) can only

come from the term proportional to habδ hab which clearly vanishes. We conclude that our

vacuum configuration carries vanishing charges with respect to all Killing isometries.

Even if all Virasoro charges are zero, once evaluated on our background one can still

compute the central extension by properly evaluating the boundary contributions (3.9) to

the relevant commutators [Ln, L−n]. We will however postpone this computation to the

next section, where a deformation of our solution carrying non-trivial L0 and L̄0 charges are

constructed and both terms in the Virasoro algebra (see eq. (3.29) below) can be displayed.

3.3 A point mass solution

In this subsection we follow the strategy of [13] in order to construct more general solutions

carrying non-trivial mass and momentum charges. We introduce a new variable φ = x/`

and consider the metric:

ds2 = −
(

1 +
r2

`2

)

dt2 + r2 dφ2 +
dr2

(1 + r2/`2)
+

+ `2
(

dθ2 + dϕ1
2 + (dϕ̃2 + b ` dφ)2 + 2 dϕ1 (dϕ̃2 + b ` dφ) cos(2 θ)

)

(3.17)

which clearly becomes (3.11) for r À `. In addition one can easily verify that the Ricci

tensors associated with the two metrics (3.11) and (3.17) coincide and therefore they are
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solutions of the same Einstein equations.3 The periodicity of φ however is: φ ∼ φ + 2πα

with α = R/` and therefore whenever α 6= 1 we encounter a conical singularity at the

origin. This corresponds to a point mass particle sitting at the origin with a non-trivial

contribution to the energy.

More generally, following Brown and Henneaux we can accompany the cycle around φ

by a jump in time:

t ∼ t− 2π nA

φ ∼ φ+ 2π nα . (3.18)

This identification will generate a momentum charge. A convenient choice of coordinates

is given by the replacements

t → α t−Aφ

φ → −A
`2
t+ αφ

r → r
√

α2 −A2/`2
(3.19)

which give back to φ the standard period and removes the jump in time:

φ = φ+ 2πn

t ∼ t . (3.20)

The metric in the new variables reads

ds2 = −
(

r2

`2
−A2 b2 + α2

)

dt2 +
(

r2 −A2 + b2 `4 α2
)

dφ2 +Aα (1− b2 `2) dφ dt+

+`2 dΩ3 +
`2 dr2

(r2 −A2 + `2α2)
+ 2 b ` (`2 αdφ−Adt)(dϕ̃2 + cos 2θ dϕ1) (3.21)

which tends to AdS3 × S3 at infinity.

We are now ready to compute the energy-momentum charges carried by the solu-

tion (3.21). As before the charges are evaluated through the boundary integral (3.9). The

orthonormal vector n to the hypersurface Σt, the induced metric hab and the canonical

momentum πab are now given by

n =
1

r

(

` ∂t −
A`α

r2
∂φ +Ab∂ϕ2

)

hab = −A2 b2 dt2 + dφ2 r2 + 2Aα
(

−1 + b2 `2
)

dt dφ+
`2

r2
dr2 + `2dΩ3 +

+2 b ` (`2 α dφ−Adt)(dϕ̃2 + cos 2θ dϕ1) + · · ·

πrφ = πφr = −Aα `3 sin 2 θ

r2
+ · · ·

πrϕ2 = πϕ2r =
Abα2 `3 sin 2 θ

r2
+ · · · . (3.22)

3Notice that in absence of flux ,i.e. b = 0, and in the limit of R → `, the metrics (3.11) and (3.17) are

related by a change of coordinates and correspond to global AdS3 × S3. Solutions displaying asymptotic

AdS3 × S3 geometry and carrying non trivial global charges have been recently studied in [21].
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As before we compute the charge associated with the general linear combination ξ =

a1 ∂t + a2 ∂φ + a3 ∂ϕ1 + a4 ∂ϕ̃2 , and read the corresponding charge from the ai coefficients

of the final answer. The decomposition into normal and parallel part leads to:

ξ⊥ =
a1 r

`

ξa|| = a2 ∂φ + a3∂ϕ1 +

(

a4 −
Aa1 b

`

)

∂ϕ̃2 . (3.23)

Plugging (3.22), (3.23) in (3.9) one finds that only the energy and momentum charges,

associated with ∂t, ∂φ, are excited in our solution. The overall additive constant is fixed by

the condition that charges vanish in the regular α = 1, A = 0 vacumm metric. In addition

an overall 1
g26 VS3×S1

= 1
4π3 g26

normalization factor is included in the definition (3.8) to

account for the difference between the string and Einstein metrics and the normalization

to one of the volume of the S3×S1 boundary in the case of spheres of unit radii. The final

result can be written as:

J[` ∂t] =
l̂4

2

(

1− α2 − A2

`2

)

J[` ∂φ] = 2 l̂4Aα , (3.24)

where l̂4 = `4/g26 = Q reabsorbs the 1/g26 factor in front of the charge definition. We notice

that b does not enter the above expression for the charges.

As promised we now evaluate the central extension of the Virasoro algebras realized

by (3.14). Following [13] we can derive this term by evaluating the Poisson brackets:

[J[ξ], J[η]] = δη J[ξ] (3.25)

with ξ = Ln and η = L−n given by:

Ln =
i`

2
ein(

t
`
−φ)

[(

1− n2`2

2r2

)

∂t −
1

`

(

1 +
n2`2

2r2

)

(∂φ − `b∂ϕ̃2)−
inr

`
∂r

]

L̄n =
i`

2
ein(

t
`
+φ)

[(

1− n2`2

2r2

)

∂t +
1

`

(

1 +
n2`2

2r2

)

(∂φ − `b∂ϕ̃2)−
inr

`
∂r

]

. (3.26)

The variations of the metric δξ hab and canonical momentum δξ hab are now defined by the

Lie derivative δξ = Lξ along the vector field ξ. Plugging (3.22) in (3.9), after some algebra

one is left with the final result

[J[ξ], J[η]] = − in

2
ˆ̀4

(

α2 +
A2

`2
+

4Aα

`
− n2

)

. (3.27)

One can see that the result (3.27) can be written as a sum of two pieces:

2n J[L0] = i ` n (J[∂t]− ` J[∂φ])

= − in ˆ̀4

2

(

α2 +
A2

`2
+

4Aα

`
− 1)

)

(3.28)
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and the central term i
2
ˆ̀4 (n3 − n). We conclude that the asymptotic Killing generators

realize two copies of Virasoro algebras with commutation relations:

[ J[Ln], J[Lm] ] = (n−m) J[Ln+m] +
i c

12
(n3 − n) δn+m, 0

[

J[L̄n], J[L̄m]
]

= (n−m) J[L̄n+m] +
i c

12
(n3 − n) δn+m, 0

[

J[Ln], J[L̄m]
]

= 0 (3.29)

with the expect central charge c = 6 ˆ̀4 = 6Q. Notice that the result is independent of the

flux parameter b.

4. Concluding remarks

In this paper we construct solutions of five-dimensional supergravity which provide a simple

setting where the physics of RG-flows out of two-dimensional N = (4, 0) CFTs can be

quantitatively studied. The solutions are constructed by tilting AdS3 ×S3 geometries and

further reducing it to five-dimensions. The final results are warped geometries of Melvin

type with various NS-NS/RR fluxes.

We identify interesting decoupling limits at the two ends of the flow. In both cases

the deep inside region can be accurately described by an AdS3 × S2 exact solution of

five-dimensional supergravity. This background corresponds to the reduction from the

AdS3 × S3/ZN type IIB vacuum on the Hopf fiber of the compact factor. In the ultra-

violet, the two dimensional theory flows to a non-conformal theory with non-trivial five

dimensional dilaton, better described in terms of the familiar six-dimensional AdS3 × S3

supergravity vacuum with constant dilaton. The S2 and S3 isometries realize the global

part of the N = (4, 0) and N = (4, 4) conformal field theories at the two ends of the flow.

We stress the fact that the two AdS3 are relatively tilted due to the non-trivial global

identifications that mix the AdS3 and S3 geometries, making a purely three dimensional

analysis along the lines of [22] more involved. In these more conventional terms the flux

solutions above correspond to the flow out of an AdS3 vacuum of three-dimensional SU(2)

gauged supergravity with N = 4 unbroken supercharges, towards an asymptotic geometry

with non-trivial dilaton. It would be very interesting, to apply the techniques developed

in [22], to make this correspondence more precise. Alternatively one can study the flow out

of the AdS3 × S3 fixed point geometry in the asymptotic region using the tools of N = 8

gauged supergravities [23].

In [24], the spectrum of D1D5 BPS excitations in various freely acting orbifolds and

orientifolds of type IIB theory was determined and they were shown to match the AdS/CFT

predictions in terms of chiral harmonics of the corresponding AdS3×S3 dual supergravities

(see [25] for earlier results in the more familiar D1D5 systems for type IIB on T 4 or K3

and [26] for a D1D5 system with AdS3 × S3 × S3 dual supergravity). It would be inter-

esting to apply these techniques to provide more quantitative tests of the correspondences

proposed here.
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Another interesting feature of the AdS3 ×S2 decoupled geometry is that it provides a

black string solution in D = 5 dimensions which can be used as the starting point for the

construction of four-dimensional black holes.4

Finally it would be nice to extend the results attained in the present work to cases

involving four-dimensional gauge theories. We believe that this analysis can provide a deep

insight into the nature of the lifts of locally AdS5 geometries, associated withN = 1, 2 gauge

theories, to ten dimensions. Another possibility is the study of the effects of introducing

supersymmetric RR flux-branes on AdS5 × S5.

We plan to deal with some of these issues in the near future.
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