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Abstract

A novel approach to uncertainty quantification in codes simulating fusion plasma, De-
terministic Sampling (DS), is evaluated. This method uses a few carefully selected
samples and can be used to propagate input parameter uncertainties through calcula-
tions where other sampling methods are unmanageable due to time constraints. The
primary analysis is performed on the transport code TRANSP, but another faster code
is also tested where a comparison with Monte Carlo sampling is made.

The tests, performed with two JET pulses, show that even lower order DS will
give a reliable estimation of the standard deviation of the calculated neutron rate.
However, a higher order DS can give information about higher output moments, such
as skewness an kurtosis. The TRANSP-simulated neutron rates of both examined
pulses are found to have an uncertainty with an upward skewness, meaning input
parameter uncertainties are can better explain an underestimation of the neutron
rate than an overestimation. This information can, for example, be lead to a better
benchmarking comparison between the measured and calculated neutron rates.

1 Introduction

A commonly used method for modeling fusion plasma properties, such as fuel
ion distributions[1] confinement time[2], or diamagnetic flux[3], is the transport
code TRANSP[4], developed at Princeton Plasma Physics Laboratory. It is
often used together with the code NUBEAM[5] which models the slowing down
of the beam ions.

When conducting TRANSP simulations, an agreement between the cal-
culated and the measured neutron rate is frequently used as validation of a
TRANSP run’s accuracy[6][7]. However, a challenge with such a comparison is
the difficulty in knowing how much deviation between the measured and calcu-
lated neutron rate is acceptable. This question is one example of the need for
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1 Introduction 2

rigorous uncertainty quantification in TRANSP, as well as transport codes and
simulations in general.

Usually, when any simulation is performed, the input parameters come from
a measurement. In most measurements, an estimation of the uncertainty exists,
yet in other cases the uncertainty is unknown. In any case, one wants to estimate
the uncertainty of the simulation’s result, either by propagating the known input
uncertainty or by assuming a worst reasonable case. Either way, the uncertainty
of the input parameters have to be propagated through the calculation.

There are many approaches to uncertainty quantification, and a significant
class of such is sampling methods, such as Monte Carlo methods. Here the input
parameters are sampled randomly many times, and the propagated uncertainty
can be calculated from the result of the simulation being performed with each
of those samples. In the standard Monte Carlo method many samples, often a
few hundred or even a few thousand, are needed for a reliable estimation of the
propagated uncertainty. Sometimes running hundreds of simulations is not a
problem, but with massive and time-consuming simulations, this many samples
can make Monte Carlo methods unreasonable to use due to high time cost.

The high time cost of Monte Carlo can be circumvented in various ways.
One way is to use Stratified Sampling or Latin-Hypercube Sampling[8], which
are techniques to divide the parameter-space into smaller areas and sample
those individually. Another way is to work with surrogate models[9], meant to
approximate the original model with one which can be evaluated much faster.
Building a surrogate model though is not trivial and can be time-consuming in
itself.

In 1995[10] Uhlman defined the Unscented Transform (UT) based on the
idea that it is easier to approximate a probability distribution function than it is
to approximate an arbitrary model. UT approximates a continuous probability
distribution with a set of weighted samples which encode the lowest order sta-
tistical moments. The simulation is performed with each sample and from the
results, the propagated uncertainty is calculated.

Unscented Transform has traditionally been used in signal processing[11]
and Kalman filters[12]. In more recent years UT has found uses for uncertainty
propagation in the other fields, for example, wind turbine simulations[13], power
flow[14], state estimation[15][16], magnetic field mapping[17], battery capacity
assesment[18] and CFD computations in nuclear reactors[19]. To the authors
best knowledge, Unscented Transform has not been applied to fusion reactor
simulations until now.

UT has also been re-branded as Deterministic Sampling[20] (DS). This name
may be more explanatory, given that, for one, the method uses deterministically
calculated samples rather than a randomized ensemble, and secondly, it does
not involve an actual transformation without loss of information but instead
makes an approximation of the input parameters’ distribution.

This paper evaluates the application of DS for uncertainty propagation in
TRANSP. The uncertainty in the electron temperature, ion temperature, elec-
tron density and Z-effective have been propagated through TRANSP calcula-
tions, and the resulting uncertainty in the neutron rate has been determined.
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The expectation value, the standard deviation, the skewness and the kurtosis of
the uncertainty in the neutron rate have been calculated and compared to the
measured value.

When evaluating the usefulness of DS, the best case would be to compare
it to Monte Carlo. While this can not be done with TRANSP, due to time-
consuming simulations, a comparison between DS and Monte Carlo has been
made on the code TRAP-T[21], which executes fast enough for Monte Carlo to
be applicable.

2 Deterministic Sampling

Deterministic Sampling (or Unscented Transform) propagates uncertainty through
a function or simulation by running it with a small set of sigma-points, called
an ensemble. The sigma-points are chosen to represent the uncertain input
parameters’ probability distributions well. The sigma-points q(i) each have a
weight w(i) associated with them, and usually the weights are normalized so
that Σw(i) = 1. This way the ensemble can be seen as a discrete approxi-
mation of the probability distribution it represents. In figure 1 this discrete
approximation can be seen for a one-dimensional probability distribution.

In practice, the sigma-points are found by letting the ensemble encode the
same lowest order statistical moments as the uncertain input parameters’ dis-
tributions. In the simple case of only one uncertain input parameter Q, with a
known probability distribution f(Q), the ensemble {w(i), q(i)} representing this
would be one which has the same the expectation value and variance, i.e.

〈Q〉 =

∞∫
−∞

f(Q)dQ =
∑
i

w(i)q(i), (2.1)

var(Q) =

∞∫
−∞

(f(Q)− 〈Q〉)2
dQ =

∑
i

w(i)
(
q(i) − 〈Q〉

)2

. (2.2)

Encoding only two moments is the lowest order form of DS, but is still
widely used in uncertainty quantification[13][22][23]. To reach a higher order of
accuracy, one needs to include more moments in the ensemble. Usually adding
the third and fourth moments is considered enough. Encoding the skewness and
kurtosis is done by letting the sigma-points fulfill

skw(Q) =

∞∫
−∞

(f(Q)− 〈Q〉)3

var(Q)3/2
dQ =

∑
i

w(i)
(
q(i) − 〈Q〉

)3
var(Q)3/2

(2.3)

kur(Q) =

∞∫
−∞

(f(Q)− 〈Q〉)4

var(Q)2
dQ =

∑
i

w(i)
(
q(i) − 〈Q〉

)4
var(Q)2

. (2.4)
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This can in principle be done with any number of moments encoded, but a larger
number of moments will usually mean a larger and harder to find ensemble.

Usually a simulation has more than one uncertain input parameter, and in
this case, their correlations need to be encoded as well.

Once the sigma-points are found the simulation is run with each sigma-
point, producing a set of output samples S(q(i)). From those, the uncertainty
of the result is calculated. The expectation value and variance of the result are
estimated as

〈S(Q)〉 =
∑
i

w(i)S(q(i)) (2.5)

var (S(Q)) =
∑
i

w(i)
(
S(q(i))− 〈S(Q)〉

)2

. (2.6)

Higher order moments of the result can be calculated with corresponding ex-
pressions.

In short process of DS is as follows. For the uncertain input parameters, a set
of sigma-points is chosen to represent the first few moments of their probability
distributions. Once this ensemble has been determined, the process is the same
as in a Monte Carlo method, i.e., the simulation is run with each of the samples
giving a set of transformed sigma-points. From the simulation’s output, the
resulting uncertainty is calculated.

The validity of this approach has been argued for by using Taylor expansions[24],
or by invoking the correctness of ensuring the statistical knowledge available is
encoded in the samples[20].

The process is illustrated with an example in figure 1. Here the uncertainty
of a random normal distributed variable Q with µ = 2 and σ = 0.5 is propagated
through a non-linear function f(Q) = Q3. The process is shown using ensembles
encoding two moments and six moments and the samples are shown before and
after the function is applied. One can see that the higher moment ensemble
captures the behavior better than the two-moment one. The values gained from
the uncertainty propagation with Deterministic Sampling, using two, four and
six input-moments in the ensemble, are compared to that gained by Monte Carlo
in table 1.
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Normal distr. variable Q:
μ=2,  σ=0.5

The distribution of f(Q)=Q3

2 moment
ensemble

6 moment
ensemble

Note the small
sigma-points

Fig. 1: The Gaussian distribution of a random variable Q, along with a two-
moment ensemble a) and a six-moment ensemble c) for DS. b) and
d) shows f(Q) = Q3 for the same variable, along with the propagated
samples. Two-moment ensemble from a) and b) only gives information
about mean value and standard deviation, but the higher order ensemble
from c) and d) gives information about higher moments, e.g. skewness
and kurtosis, as well.

Tab. 1: The estimated uncertainty from DS using ensembles of two, four and six
input moments when propagating the uncertainty of a random normal
distributed variable Q with µ = 2 and σ = 0.5 through the function
f(Q) = Q3.

Mean value St. dev. Skewness Kurtosis Num. samples
2 moments 9.50 6.125 0.0 1.0 2
4 moments 9.50 6.718 1.23 3.52 3
6 moments 9.50 6.726 1.44 6.34 5
Monte Carlo 9.501(5) 6.723(6) 1.440(4) 6.25(27) 10000

From table 1 one can see that including more input-moments in the ensemble
one will get a better estimation of the output uncertainty. Specifically, the higher
output moments, skewness and kurtosis, needs higher input-moments for a good
result.

For a more in-depth explanation of Deterministic Sampling Hessling’s paper[20]
is suggested.

To verify the accuracy of the uncertainty gained from Deterministic Sam-
pling, one has to compare the propagated uncertainty with some reference value.
This comparison can be made using the result of some other method of uncer-
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tainty quantification, for example, Monte Carlo. In this paper, we also use a less
rigorous form of verification which benchmarks DS against itself by comparing
with DS simulations using a higher number of encoded moments. For example,
if DS with two moments agrees with DS with four moments, it is an indication
that using two moments are enough.

3 Method

In this study, the uncertainty in the input parameters is propagated through
TRANSP simulations, and the uncertainty of the calculated neutron rate is
determined with Deterministic Sampling. The four input parameters used are
the electron density (ne), electron temperature (Te), ion temperature (Ti) and
effective plasma charge (Zeff), since TRANSP relies heavily on these parameters.

The TRANSP uncertainty quantifications have been done with two different
JET pulses. As described in 3.2, DS has also been applied to TRAP-T[21] which
calculates the 14 MeV neutron emission rate from a JET pulse and evaluates
fast enough so that a comparison with Monte Carlo methods is viable.

The JET pulses used with TRANSP are 86918, a pulse with high neu-
tron rate, no RF heating and a neutron emission dominated by neutrons from
beam-target reactions and 92436, currently the highest neutron rate in an ILW
plasma with a neutron rate dominated by neutrons from thermonuclear reac-
tions. TRAP-T is run with an older pulse, 51009. A summary of the shots is
shown in Table 2.

Tab. 2: Properties of the analyzed JET pulses.
Pulse BT Ip ne Te PNBI PICRH Code
86918 2.1 T 2.0 MA 6.5× 1019 m−3 4 keV 18 MW 0 TRANSP
92436 2.8 T 3.0 MA 8× 1019 m−3 6 keV 27.2 MW 6.0 MW TRANSP
51009 2.6 T 2.5 MA 3× 1019 m−3 8 keV 7.6 MW 3.6 MW TRAP-T

3.1 The TRANSP simulations

The TRANSP simulations for shot 86918 has been run in the time interval 7 s
to 14 s and the ones for 92436 are run in the interval 8 s to 13 s. The measured
values of these parameters are shown in Figure 2, along with the neutron rate
and the NBI-heating power. The temperature and density have, in the plot,
been sliced at the magnetic axis. In the actual simulations, full profile data has
been used. Both the TRANSP and measured neutron rate is shown. These
TRANSP simulations are run with the unperturbed measured values for all the
parameters.
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Fig. 2: Measurements of the electron density, electron temperature and Z-
effective on the magnetic axis, along with the total heating power and
both measured and simulated neutron rate for pulse 92436 (left) and
86918 (right).

Measurements of ne and Te have done with High-Resolution Thompson
Scattering[25] (HRTS) for pulse 86918 and with Light Detection and Ranging
(LIDAR) Thompson scattering[26] for 92436. The ion temperature Ti has been
handled differently for the two pulses. For 92436 the ion temperature has been
measured with charge exchange recombination spectroscopy[27]. For 86918 the
measurement of Te has been used as ion temperature, but it is treated as an
independent Ti measurement.

These three parameters are all assumed to be normally distributed with a
sigma of 5%. For Zeff the line averaged value measured by the visible bremsstrahlung
diagnostic KS3 is used, and its sigma is assumed to be 10%. Note that the un-
certainties assumed here may not depict the actual diagnostic uncertainty. They
are more of a rough estimation of what the uncertainties are expected to be for
these parameters. If we were to go forward with this method in the future, a
more detailed investigation of what the diagnostic uncertainties are has to be
made. For the current paper where the aim is to assess the usefulness of this
method, we assume stated uncertainties.

As seen in Figure 2, the measured Zeff for pulse 86918 is below one for
much of the time interval. That an effective plasma charge lower than one is
unphysical follows directly from its definition[28], and hence the actual value
must be one or higher.

The measured value of Zeff is assumed to have a Gaussian uncertainty and to
be constant during the simulation. The average value of the measurements over
the discharge, here 0.99, is used as the mean value and the standard deviation
is assumed to be 10%. The non-physical measurement is treated in the same
Bayesian manner as, for example, the unphysical measurement of the neutrino
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mass[29]. The uncertainty distribution from the measured value fmeas(Zeff) is
multiplied with a prior which eliminates the non-physical region. Then the
distribution is renormalized, and the posterior distribution is found. This way
the skewed distribution of Zeff is constructed, and it is shown in figure 3.
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Fig. 3: The probability distribution of Zeff for pulse 86918, i.e. the positive part
of a normal distribution centred at 0.99.

Together these uncertain parameters have a four-dimensional distribution.
For this distribution, three ensembles have been created, encoding the first two,
four and six moments. These ensembles have been used to propagate these
uncertainties to the simulated neutron rate in TRANSP.

3.2 TRAP-T uncertainty and Monte Carlo comparison

To make a comparison between Deterministic Sampling and Monte Carlo, De-
terministic Sampling has been applied to TRAP-T[21], another code for cal-
culating neutron emissions. This code, which calculates the 14 MeV neutron
emission from a JET pulse, has been investigated similarly as TRANSP, i.e.,
input parameter uncertainties have been propagated to the calculated neutron
rate with DS. This code has the advantage of executing fast enough for Monte
Carlo methods to be useful and hence the DS result can be compared to an MC
value.

The test with TRAP-T has been run with JET pulse 51009 in the time
interval 6 s to 13 s. The parameters used for uncertainty propagation are ne, ni,
Te, Ti, and Zeff and the uncertainty of the 14 MeV neutron rate is calculated.
All these parameters are assumed to have a Gaussian uncertainty with a sigma
of 10 %. Deterministic Sampling has been run with ensembles encoding two,
four and six moments and the result has been compared with a Monte Carlo
test using 10,000 samples. The comparison has been made for the uncertainty
in the neutron emission rate at a single time step in the code.
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3.3 Validation

Two forms of validating the results have been used here. First, the TRAP-T
uncertainty propagation is compared with the uncertainty estimated by Monte
Carlo. Second, the Deterministic Sampling has been compared to itself using
a higher order of accuracy. The uncertainty propagation has been performed
with three different ensembles encoding two, four and six moments, and the
results have been compared. For the uncertainty of the resulting neutron rate,
the first four moments have been calculated. The resulting uncertainty given
by the three different ensembles have been compared, and outcomes that agree
with the six-moment results are considered reliable.

3.4 Analysis

A TRANSP simulation has been run with each sigma-point in each ensemble.
From the resulting neutron rates an expectation value, variance, skewness, and
kurtosis, representing the uncertainty of the result, have been calculated. The
different values for those gained from the three different ensembles have been
compared.

If one performs uncertainty quantification with Monte Carlo, one gets a
complete distribution of the result. However, Deterministic Sampling only gives
information about the lowest order moments of the output. Given this, it may
still be interesting to estimate what the distribution is like, if not for any other
reason than to visualize the meaning of a particular skewness and kurtosis. To
visualize the meaning of the four calculated moments, a probability distribution
function has been fitted to these moments using the technique described below
in section 3.4.1. This is done for both the total neutron rate as well as the
thermonuclear and beam-target neutron rate components.

3.4.1 Fitting a PDF to higher order output moments

If we only have information about the two lowest moments, i.e., expectation
value and standard deviation, the assumption to make would be to see the
output variable as a Gaussian (normal) distribution. If we, however, have infor-
mation about four moments, i.e., about skewness and kurtosis as well, a normal
distribution can not encode this information. In this case, a modified version
of the normal distribution is here used to encode both a non-zero skewness and
non-Gaussian kurtosis.

To encode the third moment we use a modified version of the Gaussian dis-
tribution, what Hosking[30] calls the Lognormal distribution (not the usual the
Lognormal distribution). Encoding kurtosis in a normal distribution can be
done with what Nadarajah[31] calls the Generalied Normal Distribution. Com-
bining Hosking’s Lognormal distribution and Nadarajah’s Generalized Normal
Distribution we find the following expression for a continuous PDF,

f(x) =
g (y(x, ξ, κ, α), β)

α− κ(x− ξ)
(3.1)
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where

y(x, ξ, κ, α) =

{
− 1
κ log

(
1− κ(x−ξ)

α

)
, k 6= 0

x−ξ
α , k = 0.

(3.2)

and

g(x, β) =
β

2
√

2Γ(1/β)
exp

[
−
∣∣∣∣ x√2

∣∣∣∣β
]

(3.3)

giving us a possibility to adjust the kurtosis with β, the skewness with κ, set
the variance with α and the mean value with ξ. The parameters in (3.1) can
be fitted to encode the first four moments given from the output given from the
use of Deterministic Sampling.

4 Results and discussion

4.1 TRAP-T

From the uncertainty of the five parameters used in the TRAP-T simulations
and the application of Deterministic Sampling, the expectation value, the stan-
dard deviation, the skewness and the kurtosis of the 14 MeV neutron rate has
been calculated. The same thing has been calculated with Monte Carlo simula-
tions for comparison.

The mean values and standard deviations gained by Deterministic Sam-
pling ensembles agree well with the Monte Carlo values. Even the lowest order
two-moment ensemble give a reliable estimation of the resulting parameter un-
certainty. Since the standard deviation often is what one is looking for when
one does an uncertainty analysis, using a two-moment ensemble can be enough.

Higher order moments, skewness and kurtosis, are calculated here as well.
The calculated positive skewness of the result is captured by all the ensembles,
although the six-moment ensemble gets it most accurate. The resulting kurtosis
is the hardest one to get right, and only the six-moment ensemble shows a good
agreement with the Monte Carlo value.

From the calculated mean, standard deviation, skewness, and kurtosis of
the neutron rate, the estimated distribution of the neutron rate uncertainty has
been constructed using (3.1). Such a distribution has been determined from
both the values given by the Deterministic Sampling and Monte Carlo, and
they are presented at one time-slice in figure 4.
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Fig. 4: The 14 MeV neutron rate distribution of JET pulse 51009 reconstructed
from uncertainty quantification with both Deterministic Sampling and
Monte Carlo.

Note that even in the ensemble which only inserts two moments, a value for
higher-moments can be calculated, although should not be trusted. This is in
contrast to the example shown in figure 1 and table 1 where the two-moment
ensemble only used two samples and hence no skewness or kurtosis could be
found. In this case where there are four parameters the number of samples is
high enough to calculate a non-trustworthy value of the uncertainty’s skewness
and kurtosis.

This test indicates that Deterministic Sampling can produce reliable results
for neutron rate uncertainty estimation, comparable to Monte Carlo methods.
As previously stated, in the TRANSP simulations Monte Carlo cannot be used
due to time constraints. Instead, the results from the two, four and six-moment
ensembles are compared with each other, where the six-moment ensemble is
considered most reliable.

4.2 TRANSP

As an example of the data an ensemble produces, the neutron rates from the
TRANSP simulations of the six-moment ensemble of pulse 86918 is plotted
in figure 5. Each curve represents the neutron rate from a simulation with
one sigma-point from the ensemble, and the line-widths symbolize their various
weights.
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Fig. 5: The TRANSP simulations for the six-moment Deterministic Sampling
uncertainty quantification of pulse 86918.

From the simulations with each ensemble, as shown in figure 5, the mean
value, standard deviation, skewness, and kurtosis of the neutron rate has been
calculated using equation (2.5) and (2.6). The time-traces of the resulting mo-
ments are shown in figure 6 for both pulses.

JET#92436 JET#86918

Neutron rate (s )-1

Neutron rate (s )-1

Fig. 6: The time trace of the resulting neutron rate mean value, standard devi-
ation, skewness and kurtosis for pulse 92436 (left) and 86918 (right).

A good agreement between all the three DS runs is found for the mean value
and standard deviation. Regarding skewness and kurtosis, two moments are
not sufficient to get a good value, which is expected. The four and six-moment
ensembles mostly agree, both indicating a skewness around 1, and a kurtosis
around 5 for pulse 86918 and slightly lower values for 92436.

As the 86918 neutron rate drops at 51.2 s, so does the skewness of the two
and four moment runs, while the six-moment runs’ skewness stays roughly the
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same throughout the whole run. The four-moment skewness seems to fluctuate
more than the six-moment runs, but beside the dip, at 51.2 seconds it appears
to get the correct value on average.

To get an estimation of the mean value and standard deviation, an ensemble
encoding the first two moments is enough and often when performing uncer-
tainty quantification an assessment of the standard deviation is what one is
after. The yellow region in figures 7 and 8 represents the 67% confidence in-
terval, which corresponds to one sigma, which is usually plotted as error bars.
However, showing the impact of higher moments can be necessary when deter-
mining whether a discrepancy between calculated and simulated neutron rate
is significant.

As described in section 4.1, a neutron rate distribution is reconstructed from
the four output moments at each time-slice. The distribution is an approxima-
tion that fulfills the four lowest order moments gained from an uncertainty
propagation carried out with a limited number of input moments. However,
even knowing this is an approximation, it can be seen as an indication of in
which region the actual value should be, given the calculated moments of the
output uncertainty.

The fitted neutron rate uncertainty distribution for the pulses is shown in
figure 7. The 67% 95% and 99% confidence intervals are showed in different
colors. This distribution is shown for both the total neutron rate as well as
for the beam-target and thermonuclear neutron rates for both pulse 92436 and
86918.
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Fig. 7: The simulated neutron rate uncertainty for both the total neutron rate
(top), thermonuclear neutron rate (middle) and Beam-Target neutron
rate (bottom) for pulses 92436 (left) and 86918 (right).

By visualizing the uncertainty, as shown in figure 7, one can make a better
comparison with the measured neutron rate, rather than just making a visual
comparison as in the top of figure 2. Figure 8 demonstrates this by displaying the
measured neutron rate together with the estimated uncertainty of the simulated
TRANSP neutron rate.
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Fig. 8: The calculated uncertainty of the simulated neutron rate compared to
the measured neutron rate for both pulse 92436 (a) and 86918 (b).

Both investigated pulses show a neutron rate uncertainty with a positive
skewness, as seen in figure 8. If the simulation has an uncertainty skewed
upwards, one can conclude that a downward deviation from the measured value
can be tolerable and could still be considered a match. On the other hand,
an upward deviation of the same magnitude, as seen in figure 8b, means the
simulation is indeed not compatible with the measurements.

The discrepancy shown in 8b after 11 s is, because of the upward skewness,
significant and can not be explained by the input uncertainties (assuming we
have not underestimated them). Had the measured neutron rate been above the
simulated by the same amount, the match would still be questionable, but not
impossible. This result further corroborates the result presented in [32] where it
was concluded that input parameter uncertainties do not explain the systematic
modeled neutron overproduction at JET.

When addressing the modeled overproduction of neutrons (sometimes re-
ferred to as a ’neutron deficit’), it is important to remember what is meant by
this positive skewness. The interpretation of the TRANSP neutron rate uncer-
tainty is that it shows which deviations from the measured neutron rate values
can be explained by the given input parameter uncertainties, as is illustrated in
figure 9a. In other words, the PDF gives a degree of compatibility between the
measured and the simulated neutron rates.
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Fig. 9: a) The TRANSP neutron rate uncertainty of pulse 86918 at 11 s, show-
ing which measured neutron rates can be considered to agree with the
TRANSP simulation. The positive skewness means a measured neutron
rate higher than the TRANSP value is more tolerable than a downward
deviation. b) The positive skewness means even if the magnitude of
the uncertainty is increased, it would be hard to explain a significantly
lower measured than modeled neutron rate. If on the other hand, as
in c), there was a negative skewness it would help explain the modeled
overproduction of neutrons.

TRANSP will often produce a 0-100% higher neutron rate than what is
measured at JET[32], and this is hard to explain by uncertainties alone, even
with more substantial input parameter uncertainties than the ones used in this
paper. The positive skewness means the compatibility with lower neutron rates
is worse than it had been with a Gaussian distribution. Even if the uncertainty
were broader than shown here, the upward skewness would hinder the distri-
bution from reaching the much lower values, as displayed in figure 9b. Had
there been a negative skewness instead, as shown in 9c, it would have helped
to explain the lower measured neutron rate, but this result shows the opposite
case.

In addition to the estimated skewness, the kurtosis will impact our estima-
tion of whether the simulated and measured neutron rates match. Kurtosis can
tell us how likely extreme deviations from the expectation value are. If kurtosis
is high, as in for example figure 7b, where the yellow 67% confidence interval is
small compared to the other, deviations from the mean value greater than one
sigma are not unlikely. If, on the other hand, kurtosis is small, as in figure 7c a
deviation of just two standard deviations is entirely unreasonable.

According to the tests performed here, information about the skewness and
kurtosis of the result is reliable, which is indicated by the agreement between the
four and six-moment ensembles (as seen in figure 6). Hence if one is interested
in the higher moments of the neutron rate uncertainty, an ensemble including
four moments is sufficient.



5 Conclusions 17

Here the uncertainty propagating has been examined assuming a 5% sigma in
ne, Te and Ti, which may be an underestimation for some of the used diagnostics
and an overestimation for others. Regardless of this, DS should be a valid
method of propagating uncertainty even with smaller or larger uncertainties.

Another assumption made is that the uncertainties in the input parameters
are independent, and hence the covariance is zero. Uncorrelated parameter-
uncertainties are expected if they are measured independently, but that is not
necessarily the case here. For example, both ne and Te are measured by the
same instrument and therefore we should expect some correlation between their
uncertainties. A covariance can be encoded into the ensembles, and its effect
on the resulting uncertainty studied, but this has not been done here.

5 Conclusions

Based on the tests performed in this paper we draw the concussions that, De-
terministic Sampling produces reliable results and give a sound estimation of
the simulation’s uncertainty when applied to either of the tested codes TRAP-
T or TRANSP. For these codes, the method gives a consistent estimate of the
neutron rate error, and when a comparison with Monte Carlo has been possible,
results have agreed.

Apart from producing a reliable estimate of the neutron rate standard de-
viation, information about the third and fourth order moments can also be ob-
tained, if their input-parameter counterparts are included in the simulation. In
other words, when Deterministic Sampling is applied to TRANSP using samples
which encode a skewness and kurtosis of the input-parameters, the estimated
skewness and kurtosis of the simulated neutron rate are consistent. Such a de-
scription of the neutron rate distribution can, for example, be used for more
precise comparison between the simulated and measured neutron rates when
benchmarking TRANSP runs.

The four output moments have been used to produce an approximated dis-
tribution function of the TRANSP neutron rate uncertainty, which can be used
as a degree of compatibility between the modeled and the measured neutron
rates, for benchmarking purposes. Because of its positive skewness, a TRANSP
simulation’s deviation from a significantly lower measured neutron rate is made
less acceptable than if the distribution would have been Gaussian, or if the
skewness would have been negative.

Only two pulses have been investigated in this paper, one dominated by ther-
monuclear reactions and one by beam-target reactions. While the magnitude
of their neutron rate uncertainties differs one has a sigma of 6% and one has
almost twice as high, they both have an upward skewness, meaning the simu-
lated neutron rate in those two pulses is more likely to underestimate the actual
neutron rate than to overestimate it. This upward skewness means that there
is a difference between whether the simulation diverges upwards or downwards
from the measured neutron rate. In especially one of the tested pulses it can
be seen that downward deviation of two sigmas can still be seen as a match,
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while an upward deviation of the same amount is significantly outside the region
which can be explained by input parameter uncertainties.

Both pulses also have a high kurtosis of five to six, compared to the normal
distribution’s kurtosis of three. Since both have a similar shape, it is an inter-
esting question whether this is a general shape of the TRANSP neutron rate
uncertainty or these just happened to be similar by coincidence.

In this paper, Deterministic Sampling has been applied to two fusion related
codes and is found to perform well. It can be utilized for uncertainty propagation
in other transport codes as well and could be valuable as a quicker alternative
to Monte Carlo methods when a high computational time is an issue.
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