
14 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A tool for IoT Firmware Certification / Bianco, G. M.; Ardito, L.; Valsesia, M.. - ELETTRONICO. - (2024), pp. 1-7.
(Intervento presentato al convegno ARES 2024: The 19th International Conference on Availability, Reliability and
Security tenutosi a Vienna (AUT) nel 30 July 2024- 2 August 2024) [10.1145/3664476.3670469].

Original

A tool for IoT Firmware Certification

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3664476.3670469

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991671 since: 2024-08-12T13:38:30Z

Association for Computing Machinery

A Tool for IoT Firmware Certification
Giuseppe Marco Bianco

Department of Control and Computer
Engineering

Politecnico di Torino
Torino, Italy

giuseppe.bianco@polito.it

Luca Ardito
Department of Control and Computer

Engineering
Politecnico di Torino

Torino, Italy
luca.ardito@polito.it

Michele Valsesia
Department of Control and Computer

Engineering
Politecnico di Torino

Torino, Italy
michele.valsesia@polito.it

ABSTRACT
The IoT landscape is plagued by security and reliability concerns
due to the absence of standardization, rendering devices susceptible
to breaches. Certifying IoT firmware offers a solution by enabling
consumers to easily identify secure products and incentivizing
developers to prioritize secure coding practices, thereby foster-
ing transparency within the IoT ecosystem. This study proposes a
methodology centered on ELF binary analysis, aimed at discerning
critical functionalities by identifying system calls within firmware.
It introduces the manifest-producer tool, developed in Rust, for an-
alyzing ELF binaries in IoT firmware certification. Employing static
analysis techniques, the tool detects APIs and evaluates firmware
behavior, culminating in the generation of JSON manifests encapsu-
lating essential information. These manifests enable an assessment
of firmware compliance with security and reliability standards, as
well as alignment with declared device behaviors. Performance
analysis using benchmarking tools demonstrates the tool’s versatil-
ity and resilience across diverse programming languages and file
sizes. Future avenues of research include refining API discovery
algorithms and conducting vulnerability analyses to bolster IoT
device security. This paper underscores the pivotal role of firmware
certification in cultivating a safer IoT ecosystem and presents a
valuable tool for realizing this objective within academic discourse.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation; Embedded software; Software maintenance tools; • Com-
puting methodologies → Ontology engineering; • Security and
privacy → Domain-specific security and privacy architec-
tures.

KEYWORDS
Certification; IoT; IoT Firmware; Behaviour; Static analysis; Binary
analysis; ELF file; IoT devices; Rust; Detection;
ACM Reference Format:
Giuseppe Marco Bianco, Luca Ardito, and Michele Valsesia. 2024. A Tool
for IoT Firmware Certification. In The 19th International Conference on
Availability, Reliability and Security (ARES 2024), July 30-August 2, 2024,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2024, July 30-August 2, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3670469

Vienna, Austria. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3664476.3670469

1 INTRODUCTION
The proliferation of Internet of Things (IoT) devices has introduced
numerous benefits such as increased efficiency, connectivity, and
automation. However, this rapid growth has also brought signifi-
cant challenges, particularly in security and reliability. The lack of
standardized practices for firmware development and certification
has made IoT devices vulnerable to threats, undermining user trust
and system integrity. Firmware, which interfaces directly with hard-
ware, is crucial for IoT device functionality and security, making
its integrity and reliability essential.

Current IoT security solutions focus on network protocols, en-
cryption, and device authentication but often overlook firmware
security. Without thorough scrutiny and certification, IoT devices
are prone to breaches exploiting vulnerabilities or malicious code.

This study introduces a novel tool for IoT firmware certification,
focusing on the analysis of ELF (Executable and Linkable Format)
binaries. The tool uses static analysis to detect system calls and eval-
uate API behavior, generating comprehensive JSON manifests to
ensure firmware compliance with security and reliability standards.
Developed in Rust, this tool automates the certification process,
promoting transparency and secure coding practices within the IoT
ecosystem.

The remainder of this paper is organized as follows: Section 2 pro-
vides a comprehensive review of the background and related work
in the IoT landscape and device firmware certification. Section 3
delves into the exploration of analysis methodologies employed for
firmware analysis with the aim of identifying certifiable parameters.
Section 4 provides an in-depth elucidation of the mainfest-producer
tool’s functionality, specifically tailored to aid in firmware certifi-
cation analysis. Section 5 elucidates the data collected during the
analysis, presented in the form of a JSON manifest. Section 6 ag-
gregates a series of performance analyses of the tool concerning
execution times and memory usage during the analysis of specific
ELF files. Finally, Section 7 concludes the paper, outlining future
work.

2 BACKGROUND AND RELATEDWORK
The landscape of IoT, despite its advantages in terms of efficiency
and convenience, is often plagued by concerns regarding the se-
curity and reliability of connected devices and systems. Particu-
larly, the lack of standardization represents a significant gap in
this context[1, 3, 7]. This deficit creates an environment where the
security and reliability of IoT products can be compromised [5], as
there is no formal guarantee regarding the quality and compliance

https://doi.org/10.1145/3664476.3670469
https://doi.org/10.1145/3664476.3670469
https://doi.org/10.1145/3664476.3670469

ARES 2024, July 30-August 2, 2024, Vienna, Austria Giuseppe Marco Bianco, Luca Ardito, and Michele Valsesia

motion_detection

Behaviour
analysis

video_streamingcamera_control

API detection

API detection

motion_detection
video_streamingcamera_control

Behaviour
analysis

Manifests JSON

Manifests JSONFirmware
Certified

Firmware
Not

Certified

Figure 1: Example of the certification process

of the firmware used [2, 4]. Certifying firmware for IoT devices
could address this issue, offering numerous advantages. Firstly, cer-
tification would allow consumers to identify products that meet
certain security and reliability standards easily. This would help
ensure greater peace of mind for end-users, while simultaneously
reducing the risk of vulnerabilities and security breaches associated
with uncertified firmware. Moreover, certification would positively
impact the practice of IoT software development. Developers would
be encouraged to allocate more resources to secure coding and
code quality verification. This would enhance the robustness and
resilience of firmware, reducing the likelihood of critical errors or
security vulnerabilities. Lastly, firmware certification could con-
tribute to promoting greater transparency and accountability in the
IoT ecosystem. Developers would be required to accurately docu-
ment the functionalities and behaviours of their firmware, enabling
better understanding and evaluation by end-users and regulatory
bodies. In the context of firmware certification for IoT devices, an
important aspect is the analysis of ELF (Executable and Linkable
Format) binary. This section aims to introduce such analysis, high-
lighting its advantages and disadvantages, as well as the rationale
behind its consideration. IoT firmware represents a fundamental
component for Internet of Things (IoT) devices, defining itself as
the software incorporated directly into the hardware device. This
firmware, closely linked to the peculiarities of the IoT environment,
requires particular attention to ensure security and reliability [6],
given the extensive interconnection and data collection involved.

2.1 Motivations for analyzing ELF binary
Analyzing ELF binary files offers numerous advantages in the con-
text of IoT firmware certification. Firstly, this format is widely used
in Unix-like operating systems, particularly Linux, making it a nat-
ural choice given the widespread adoption of such systems in the
IoT ecosystem. Additionally, ELF binary files contain detailed in-
formation about program structures and functionality, providing a
comprehensive overview of the firmware and potential points to ex-
amine. ELF binary analysis enables the examination of firmware at
a lower level, providing a detailed view of program instructions and
data structures. This approach allows for the identification of po-
tential security vulnerabilities, understanding firmware behaviour,
and ensuring compliance with security standards and development
policies. Furthermore, ELF binary analysis can facilitate the cre-
ation of preventive measures and vulnerability correction, thereby

improving the overall security of IoT firmware.
However, ELF binary analysis may present some disadvantages,
including the complexity of program structures and the need for
specialized skills to conduct a thorough analysis. Additionally, ELF
binary analysis may not reveal all vulnerabilities present in the
firmware, necessitating the adoption of complementary approaches
to ensure a comprehensive security assessment.

3 EXPLORING STRATEGIES
3.1 Preliminary Analysis
The developmental trajectory of the manifest-producer tool started
with a preliminary analysis aimed at probing the inherent chal-
lenges associated with analyzing ELF binaries within the context of
certifying firmware for IoT devices. In this phase, the use of tools
such as radare21 and objdump2 was crucial. This preliminary
analysis method facilitated comprehension of the ELF structure,
enabling the identification of areas relevant to firmware certifica-
tion. Specifically, the analysis, initiated through code disassembly,
focused on system calls, deemed crucial in clarifying the firmware’s
authentic behaviour. Indeed, system calls allow user programs to
access functionality that requires access to operating system privi-
leges, such as file and memory management, communication with
I/O devices, and many other operations. However, despite the gran-
ular control offered by the analysis with the cited tools, the im-
perative need to adopt an automated solution has emerged, given
the laboriousness and impracticality associated with this approach.
Furthermore, it is important to note that since Rust has been chosen
as the programming language for the development of the manifest-
producer tool, radare2 and objdump do not offer adequately sup-
ported crates for direct integration within a Rust program. Conse-
quently, it was not possible to implement the manifest-producer
directly using the workflow of these tools to obtain references to
the various system calls during the analysis of the binaries. After
a comprehensive preliminary analysis, two primary approaches
for ELF binary analysis have been delineated: static analysis and
dynamic analysis.

Static analysis entailed the exploration of two distinct method-
ologies.

1radare2 is a complete framework for reverse-engineering and analyzing binaries.
2objdump is a program for displaying various information about object files on Unix-
like operating systems.

https://en.wikipedia.org/wiki/Radare2
https://en.wikipedia.org/wiki/Objdump
https://en.wikipedia.org/wiki/Objdump

A Tool for IoT Firmware Certification ARES 2024, July 30-August 2, 2024, Vienna, Austria

The first method conceived involved the use of hexadecimal pat-
terns: they make it possible to identify and compare particular byte
sequences in a hexadecimal representation, which is useful in this
context for identifying specific behaviour representing system call
instructions. However, this strategy was immediately recognized
as complex and onerous in terms of computational resources, as it
required the generation and management of a large corpus of hexa-
decimal models to cover the multiple architectures supported, as
not all share the same syscall patterns. Moreover, the requirement
to keep these models constantly updated, to adapt them to changing
architectures, would involve considerable effort. However, recogni-
tion of this pattern alone may not be sufficient to reliably identify
the syscall, as there may be other instructions in the code between
the one that loads the syscall number into the appropriate register
and the one that invokes it. Therefore, analysis based on hexadeci-
mal patterns requires careful consideration of context and may be
prone to errors if not implemented with attention and a thorough
understanding of the binary code. The second method was to create
a system call mapping table, which is a systematic approach to
correlate system call numbers with their respective names. As ex-
plained in the previous point, by convention the operating system
uses positive integers as identifiers for the various syscalls. This
methodology inherently exploits the insights of the prior approach
by focusing on the .text section of the ELF file, where the executable
code is contained. Through an analysis of this section, the mapping
process establishes a consistent association between the numeri-
cal identifiers of system calls and their semantic representations.
Compared with the use of hexadecimal patterns, this approach sig-
nificantly improves code readability and generalizability, as it can
be applied to different architectures (such as x86, x86-64, ARM, ...)
without requiring substantial modification or adaptation. However,
despite the inherent advantages, it is important to note that the
possible absence of a system call in the mapping table could result
in incomplete categorization, compromising the integrity of the
analysis.

Dynamic analysis is characterized by its ability to provide a
probable and contextualized representation of firmware behaviour
by focusing on tracking system calls during execution using the
strace tool3. However, the effectiveness of this approach is closely
related to the availability and functionality of strace in the target sys-
tem. The presence of strace and its ability to provide interpretable
output play a crucial role in determining the accuracy and useful-
ness of the dynamic analysis. Another significant aspect is that
dynamic analysis records the execution flow of a single firmware
instance. Therefore, it omits consideration of every possible alter-
native path that other instances might take in different contexts or
with different inputs. This implies that although dynamic analysis
provides realistic and immediate data, its coverage is inherently lim-
ited. To obtain a complete and thorough understanding of firmware
behaviour, it may be necessary to run many instances to explore
all possible combinations of scenarios and input configurations.

3.2 Definitive analysis
Preliminary analysis aimed at comprehending the structure of ELF
files and configuring an analysis to identify suitable parameters

3strace is a diagnostic and debugging utility for Linux.

for certification highlighted the necessity for a more precise and
targeted methodology. In particular, greater emphasis has been
placed on the implementation of individual public APIs rather than
only relying on the entire firmware execution. This approach allows
the analysis to focus on specific code blocks, thereby enhancing
the granularity and precision of the evaluation, and enabling the
division of firmware functionalities among different APIs. This
orientation of the analysis towards a more static view, suggests the
identification of the main functions and their memory addresses,
thus enabling the correct disassembly of the code and a detailed
analysis of system calls. Furthermore, the importance of identifying
library function calls has also been recognised in the context of
dynamically linked firmware.

4 HOWMANIFEST-PRODUCERWORKS
Themanifest-producer tool, developed in Rust, is therefore designed
to perform the firmware certification process through ELF binaries
analysis. Its primary objective is to ensure firmware integrity and
compliance through two key steps:

(1) API Detection: Firmware developers must provide the ELF
binary with a list of used public APIs. This list forms the
basis for the analysis, as each API is independently examined
to assess its adherence to the intended behaviour.

(2) Behavioral Analysis: Once the APIs provided by the de-
veloper are identified, the tool disassembles its code and
searches for system calls and external library functions, eval-
uating whether the APIs align with the expected behaviour
or exhibit undesired characteristics.

Through this process, the manifest-producer tool enables validation
of firmware compliance with security, reliability, and acceptable
performance. Ultimately, it generates three distinct manifests in
JSON format, which encapsulates the extracted and processed infor-
mation. In essence, the manifest-producer serves as an instrument
in binary firmware certification, offering a systematic approach
to validate aspects of firmware behaviour and foster a safer IoT
ecosystem.

4.1 API Detection
The first point of the analysis aims to carefully examine the public
APIs provided by a firmware developer, to assess their adherence
to specifications and ensure their integrity and compliance. Ini-
tially, the tool checks for the presence of the debug sections within
the ELF file. The debug sections contain useful data for analysis
purposes, including symbols representing variables, functions and
other code entities. This information is essential for identifying
and understanding the structure of a firmware. Once these sections
have been confirmed, the tool proceeds to retrieve the list of APIs
provided by the firmware developer. This list, consisting of a set of
strings representing the names of the APIs, is essential for guiding
the search process within the symbol table4 of the ELF file. The
symbol table in a binary file contains information on variables, func-
tions and other code entities, along with their memory addresses.
This information is used by the operating system to link program
symbols to data and executable code during program execution.
4symbol table holds information needed to locate and relocate a program’s symbolic
definitions and references.

https://en.wikipedia.org/wiki/Strace
https://refspecs.linuxbase.org/elf/gabi4+/ch4.symtab.html

ARES 2024, July 30-August 2, 2024, Vienna, Austria Giuseppe Marco Bianco, Luca Ardito, and Michele Valsesia

The tool then scans the symbol table, examining each symbol to de-
termine whether it represents a function and if it is associated with
a valid code section. These criteria are crucial for distinguishing
valid functions within the firmware. For each symbol that meets
these criteria, the tool checks if the function name matches one in
the API list. If there is a match, it is an API to be analysed and then
the tool obtains the starting address and size of the associated code
block. Using this data, the end address of the code block can be
calculated through a simple addition. At the end of this operation,
an appropriate data structure contains the information for each API
in the list:

• Name
• Starting address
• End address
• Vector of strings for syscalls

In addition, the structure provides the possibility of recording each
system call associated with an API, thus offering a broader context
for evaluating the behaviour and API usage in a firmware. In con-
clusion, the process above represents the first fundamental step in
the firmware certification process, allowing the identification of
public functions within the code, and thus providing a solid base
for the subsequent stages of firmware analysis.

4.2 Behavioural analysis
The analysis process continues using the previously collected in-
formation stored in the dedicated data structure. This process is
mainly divided into two phases:

(i)CodeDisassembly:During this phase, the process focuses on
analyzing the executed instructions to understand the operations
performed by a function. This step translates the machine code into
readable and understandable instructions, i.e. assembly code. This
translation simplifies the analysis of the program execution flow
and facilitates the identification of system calls. In particular, atten-
tion is focused on the identification of two specific instructions: call
and lea. The call instruction receives a single piece of information:
the address of the function to invoke. This can happen in two ways,
either by directly passing the address or by loading it into a register.
For example, we can express a call instruction as call 0x1352 or
call rax, where the function’s address is either directly specified
(0x1352) or has been previously loaded into the RAX register. The
lea instruction, short for load effective address, is used within
the code to load the address of a function which will be engraved
by the program into a specific register. For example, a lea statement
might have the following syntax: lea 0x6452(%rip), %rax. In this
context, lea instruction loads into the destination operand, the rax
register, an offset arithmetically added to the rip register.
These two instructions are fundamental in the analysis of the disas-
sembled code since they allow the identification of all system calls
made by a function. They provide a fundamental overview of the
operations performed by an API and its interactions with system
libraries and the operating system.

(ii) System Call Identification: During this phase of the anal-
ysis, system calls occurring within a function are detected and
logged. These calls are significant for the analysis as they offer
insights into the API’s behaviour. For instance, the detection of
the sendto system call implies potential involvement in network

operations, as sendto is typically used for transmitting data within a
network environment. In this context, it is essential to acknowledge
the potential scenario where certain system calls are not identi-
fied. This could occur when API operations are conducted within
functions called from external libraries. Even in these situations,
the tool can obtain the name of the function associated with the
external library called by the API. Once the addresses have been
obtained from lea or call instructions, it becomes crucial to consider
how the external dependencies are managed in a building process.
This analysis highlights two alternatives: for the static linking,
identifying the name of the called function associated with the
address is a relatively simple process. This is because the code of
the functions is contained within the .text section of the binary. This
structure simplifies the access to the various function allocations,
allowing the tool to directly consult the symbol table. From there,
it is possible to retrieve the index corresponding to the entry in the
string table, providing the exact name of the function invoked by
an API. In the dynamic linking case, the process is theoretically
more cumbersome. During dynamic linking, not all addresses are
resolved at compile time. This necessitates accessing the Proce-
dure Linkage Table (PLT)5 to retrieve the names of functions
from external libraries. These addresses are dynamically resolved
at runtime, making the process of identifying function names more
intricate and dynamic. To simplify this process, the tool adopts a
different strategy. First, identify the .plt section containing the PLT
table. Next, it loads all the addresses associated with their names
into a hash table. This design choice significantly speeds up the
search because the tool can perform a simple query against the hash
table rather than performing more complex operations in terms of
time and number of operations.

5 MANIFESTS GENERATION
The generation of JSONmanifests represents the last phase in the
binary analysis, as it allows the essential information obtained from
previous firmware analysis steps to be represented in a structured
way. These manifests provide an important overview of the salient
features of the analyzed ELF file and its interactions with system
calls and library functions.
Manifest for basic information is a starting point for under-
standing the firmware. It provides general information about the
ELF file, such as its file name, its programming language used, its
target architecture, and its dependency linking type, static or dy-
namic. Additionally, it lists all public APIs identified in the code,
providing a preliminary indication of the functionalities offered by
the firmware.
Manifest for syscall flow provides a detailed overview of the
system calls and library functions associated with each API iden-
tified in the firmware. This document provides a sequence of the
operations performed during the execution of the various public
functions. The peculiarity of this static analysis lies in its ability
to comprehensively capture the API interactions with the system
libraries and operating system, considering all possible execution
paths that may not be explored whether a single dynamic instance
of the program is used. By representing this information, this man-
ifest contributes to a detailed and comprehensive understanding of

5PLT is a table used to manage calls to functions present in dynamically linked libraries.

A Tool for IoT Firmware Certification ARES 2024, July 30-August 2, 2024, Vienna, Austria

the API’s behaviour and its impact on the execution environment.
Such static analysis is essential for revealing dependencies and in-
teractions of the API with the underlying system, providing a solid
base for evaluating the security and performance of a firmware.
Manifest for features, classifies APIs according to their function-
ality offering a structured overview of firmware’s capabilities. This
categorization occurs through a systematic process that evaluates
the system calls and library functions associated with each API,
identifying the tasks performed and grouping them into meaningful
categories. The categorization process is based on a predefined set
of functional categories, such as file manipulation, network access,
device management, encryption. Each category is associated with a
set of keywords or substrates that indicate the presence of specific
functionality within system calls and library functions. This ap-
proach helps to categorize APIs based on what they can do, giving
a clear picture of the firmware’s main features.

6 PERFORMANCE ANALYSIS
The performance analysis of the manifest-producer tool aims to
evaluate its effectiveness in analysing a series of ELF files written
in C/C++ and Rust. Some of them simulate the firmware behaviour
of an IoT device, others are well-known projects such as FFmpeg,
xi-core and OpenCV. The aforementioned projects are open-source,
which means that their source code is publicly available. FFmpeg6

has been chosen for its broad utility in digital media manipulation.
The complexity of the source code, primarily written in C with
some critical parts optimized in assembly, provides an opportunity
to assess the tool’s performance in scenarios where complexity
may impact the analysis of ELF files, making it a relevant study
subject to evaluate the performance of the manifest-producer tool in
practical contexts. OpenCV7, written in C++, has been included in
the analysis to examine the performance of the manifest-producer
on ELF files involving complex computational calculations and
intensive processing. The xi-core8 project, being the core of the
Xi text editor, represents an opportunity to evaluate the tool’s
capabilities in analyzing ELF binaries from projects that require
optimal performance and efficient management of system resources,
written in Rust.

This broad range of ELF binaries provides a comprehensive
methodology for evaluating the tool’s performance in real-world
contexts, allowing for a detailed understanding of its strengths and
possible areas for improvement.

6.1 Selected tools
Two performance analysis tools, Hyperfine and Heaptrack, have
been used to conduct a thorough analysis. Hyperfine9, a bench-
marking tool, plays a role in analyzing the performance of the
manifest-producer. It measures the execution times of programs,
providing valuable insights into the duration of the analysis for each
considered ELF binary file. Hyperfine’s repeated benchmark runs
offer an overview of the manifest-producer tool’s performance, par-
ticularly regarding its speed and responsiveness. Hyperfine comes

6Github repository:https://github.com/FFmpeg/FFmpeg
7GitHub repository: https://github.com/opencv/opencv
8GitHub repository: https://github.com/xi-editor/xi-editor
9GitHub repository: https://github.com/sharkdp/hyperfine

with a default configuration, including a warmup of 100 iterations
followed by 1000 actual runs. This setup ensures a stable execution
environment, minimizing the impact of any initial performance
variations due to initialization processes or caching. Consequently,
the data obtained through Hyperfine offers a dependable under-
standing of the manifest-producer tool’s performance, effectively
eliminating disturbances and providing a solid base for compar-
ative analysis of execution times among different ELF binaries.
Heaptrack10 is a performance analysis tool designed to provide
an insight into memory usage during program execution. This tool
plays a role in the performance analysis of the manifest-producer
tool. It enables monitoring and evaluating memory allocation in
the software under examination by recording information about
memory consumption peaks, temporary allocations, and any mem-
ory leaks. This ability to identify memory management issues is
essential for accurately and thoroughly assessing the efficiency of
memory allocation in a software.

6.2 Programming language comparisons
Through the utilization of binaries generated from a library de-
signed to simulate potential firmware for IoT devices11, a com-
parative analysis was conducted among the various programming
languages under consideration. rust-dynamic shows the largest size
at 54.0 MB, followed by C-dynamic at 18.2 MB and Cpp-dynamic at
7.3 MB. This variation may indicate differences in code optimization
among the programming languages. Regarding execution times,
Cpp-dynamic is the fastest at 10.7 ms, followed by C-dynamic at
15.8 ms and rust-dynamic at 43.6 ms. Interestingly, there is no direct
correlation between file size and execution times. While the file
size-to-execution time ratio in the case of the Cpp version may
suggest increasing times with larger file sizes, this is not confirmed
in the versions written in C and Rust, which exhibit accessible ex-
ecution times despite their larger sizes. This suggests that factors
such as code complexity and resource management significantly
influence performance. Figure 2 shows the relationship between
file size and execution time just described.

Figure 2: Execution time vs. file size for IoT library variants.

10GitHub repository: https://github.com/KDE/heaptrack
11GitHub repository: https://github.com/SoftengPoliTo/dummy-firmware-device

https://github.com/FFmpeg/FFmpeg
https://github.com/opencv/opencv
https://github.com/xi-editor/xi-editor
https://github.com/sharkdp/hyperfine
https://github.com/KDE/heaptrack
https://github.com/SoftengPoliTo/dummy-firmware-device

ARES 2024, July 30-August 2, 2024, Vienna, Austria Giuseppe Marco Bianco, Luca Ardito, and Michele Valsesia

The comparison between FFmpeg, OpenCV, and xi-core files
aims to contrast their different implementations and functionalities,
along with their programming languages. FFmpeg, with a file size
of 409.9 kB, exhibits an execution time of 6.3 ms, while OpenCV,
with a smaller file size of 177.3 kB, shows a faster execution time
of 4.0 ms. In contrast, xi-core stands out with a significantly larger
file size of 74.6 MB, resulting in a longer execution time of 34.7 ms.
This disparity suggests that larger file sizes generally correspond
to longer execution times. However, it is interesting to note that,
similar to previous analyses, there is no significant increase in
execution times as file sizes increase, contrary to the trend observed
for FFmpeg and OpenCV files. The graph in Figure 3 shows this
comparison.

Figure 3: Execution time vs. file size for open-source projects.

From the point of view of memory usage, it is interesting to note
the trend represented by the data collected through the memory
peak and peak RSS parameters. Despite the obvious differences in
file sizes, a consistent pattern emerges showing uniform growth
ratios in both heap memory usage and maximum physical memory
usage. This trend is precisely illustrated in the graph in Figure 4. For
example, although FFmpeg and OpenCV are relatively compact file
sizes, their memory usage growth ratio is approximately equal to
that of the largest file size, xi-core. This suggests that, regardless of
file size, the tool tends to use memory consistently and predictably.

Figure 4: Memory usage comparison.

7 CONCLUSIONS AND FUTUREWORKS
The manifest-producer tool emerges as a viable alternative in the
firmware certification process for IoT devices, providing a system-
atic approach to analyse ELF binaries and generate comprehensive
manifests encapsulating essential information. This certification
process offers insights into firmware functionality, system depen-
dencies, and interactions with the underlying environment. Perfor-
mance analysis of the tool has provided a comprehensive overview
of its capabilities in analysing a range of ELF files. The gathered
data demonstrates that file sizes do not solely dictate program exe-
cution times. Notably, significant variability in execution times, not
directly proportional to file sizes, was observed, particularly in files
written in the C language. Moreover, memory allocation analysis
revealed distinct resource utilization patterns among different types
of ELF files, indicating varying efficiency levels. Despite differences
in programming languages and file sizes, the tool exhibits uniform
performance across various contexts, suggesting a high level of
adaptability and robustness. Looking towards future developments,
efforts could be directed towards further enhancing the tool’s effec-
tiveness in firmware certification for IoT devices. This may involve
improving the API discovery algorithm to allow more comprehen-
sive searches for public functions without explicitly requesting a
list of API names from the firmware developer. A thorough analysis
of external library functions could enhance the tool’s functional-
ity in retrieving system calls. Currently limited to retrieving the
names of these external library functions, there is potential to ex-
tend the tool’s capabilities to recursively resolve the code of various
functions from external dependencies, thereby capturing system
calls that would otherwise go unnoticed. A comprehensive study
of potential vulnerabilities in IoT device firmware code could be
conducted, aiming to implement an analysis focused on highlight-
ing device security. Such an initiative could significantly contribute
to bolstering the overall security of IoT devices.

ACKNOWLEDGMENTS
This study was carried out within the AsCoT-SCE project – funded
by the European Union – Next Generation EU within the PRIN
2022 program (D.D. 104 - 02/02/2022 Ministero dell’Università e
della Ricerca). This manuscript reflects only the authors’ views and
opinions and the Ministry cannot be considered responsible for
them

REFERENCES
[1] Sarah A. Al-Qaseemi, Hajer A. Almulhim, Maria F. Almulhim, and Saqib Rasool

Chaudhry. 2016. IoT architecture challenges and issues: Lack of standardization.
In 2016 Future Technologies Conference (FTC). 731–738. https://doi.org/10.1109/
FTC.2016.7821686

[2] Taimur Bakhshi, Bogdan Ghita, and Ievgeniia Kuzminykh. 2024. A Review of IoT
Firmware Vulnerabilities and Auditing Techniques. Sensors 24, 2 (2024). https:
//doi.org/10.3390/s24020708

[3] André Cirne, Patrícia R. Sousa, João S. Resende, and Luís Antunes. 2022. IoT
security certifications: Challenges and potential approaches. Computers & Security
116 (2022), 102669. https://doi.org/10.1016/j.cose.2022.102669

[4] Xiaotao Feng, Xiaogang Zhu, Qing-Long Han, Wei Zhou, Sheng Wen, and Yang
Xiang. 2023. Detecting Vulnerability on IoT Device Firmware: A Survey. IEEE/CAA
Journal of Automatica Sinica 10, 1 (2023), 25–41. https://doi.org/10.1109/JAS.2022.
105860

[5] Basem Ibrahim Mukhtar, Mahmoud Said Elsayed, Anca D. Jurcut, and Marianne A.
Azer. 2023. IoT Vulnerabilities and Attacks: SILEX Malware Case Study. Symmetry
15, 11 (2023). https://doi.org/10.3390/sym15111978

https://doi.org/10.1109/FTC.2016.7821686
https://doi.org/10.1109/FTC.2016.7821686
https://doi.org/10.3390/s24020708
https://doi.org/10.3390/s24020708
https://doi.org/10.1016/j.cose.2022.102669
https://doi.org/10.1109/JAS.2022.105860
https://doi.org/10.1109/JAS.2022.105860
https://doi.org/10.3390/sym15111978

A Tool for IoT Firmware Certification ARES 2024, July 30-August 2, 2024, Vienna, Austria

[6] Ibrahim Nadir, Haroon Mahmood, and Ghalib Asadullah. 2022. A taxonomy of
IoT firmware security and principal firmware analysis techniques. International
Journal of Critical Infrastructure Protection 38 (2022), 100552. https://doi.org/10.
1016/j.ijcip.2022.100552

[7] Jibran Saleem, Mohammad Hammoudeh, Umar Raza, Bamidele Adebisi, and Ruth
Ande. 2018. IoT standardisation-Challenges, perspectives and solution. In ACM
International Conference Proceeding Series.

Received 15 May 2024; revised 15 May 2024; accepted 30 May 2024

https://doi.org/10.1016/j.ijcip.2022.100552
https://doi.org/10.1016/j.ijcip.2022.100552

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Motivations for analyzing ELF binary

	3 Exploring Strategies
	3.1 Preliminary Analysis
	3.2 Definitive analysis

	4 How manifest-producer works
	4.1 API Detection
	4.2 Behavioural analysis

	5 Manifests Generation
	6 Performance Analysis
	6.1 Selected tools
	6.2 Programming language comparisons

	7 Conclusions and future works
	Acknowledgments
	References

